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Abstract

Enabling multiple base stations to utilize the spatial dimension in a co-
ordinated manner has been shown to be a fruitful technique for improving
the spectral efficiency in wireless interference networks. This thesis considers
multicell systems where base stations and mobile stations are equipped with
multiple antennas. The base stations coordinate their spatial precoding, but
individually serve their mobile stations with data. For such coordinated pre-
coding systems, interference alignment (IA) is a useful theoretical tool, due
to its ability to serve the maximum number of interference-free data streams.
Three topics related to interference alignment and coordinated precoding are
studied.

First, the feasibility of IA over a joint space-frequency signal space is stud-
ied. A necessary condition for space-frequency IA feasibility is derived, and
the possible gain over space-only IA is analyzed. An upper bound on the
degree of freedom gain is shown to increase in the number of subcarriers, but
decrease in the number of antennas. Numerical studies, using synthetically
generated channels and real-world channels obtained from indoors and out-
doors channel measurements, are used for sum rate performance evaluation.
The results show that although a degree of freedom gain is noticeable due to
the space-frequency precoding, the sum rate of the system is mainly improved
due to a power gain.

Second, distributed channel state information (CSI) acquisition techniques
are proposed, which provide estimates of the information necessary to perform
distributed coordinated precoding. The methods are based on pilot-assisted
channel estimation in the uplink and downlink, and correspond to different
tradeoffs between feedback and signaling, backhaul use, and computational
complexity. Naïvely applying the existing WMMSE algorithm for distributed
coordinated precoding together with the estimated CSI however results in
poor performance. A robustification of the algorithm is therefore proposed,
relying on the well known diagonal loading technique. An inherent prop-
erty of the WMMSE solutions is derived and, when enforced onto solutions
with imperfect CSI, results in diagonally loaded receive filters. Numerical
simulations show the effectiveness of the proposed robustification. Further,
the proposed robustified and distributed WMMSE algorithm performs well
compared to existing state-of-the-art robust WMMSE algorithms. In con-
trast to our approach, the existing methods however rely on centralized CSI
acquisition.

Third, coordinated precoding systems with hardware impairments are
studied. Assuming that impairment compensation techniques have been ap-
plied, a model is used to describe the aggregate effect of the residual hard-
ware impairments. An iterative resource allocation method accounting for
the residual hardware impairments is derived, based on an existing resource
allocation framework. Numerical simulations show that the proposed method
outperforms all benchmarks. In particular, the gain over impairments-aware
time-division multiple access is substantial.
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Sammanfattning

Genom att låta flera radiobasstationer samarbeta är det möjligt att för-
bättra spektraleffektiviteten i trådlösa interferensnätverk. Fokus i denna licen-
tiatavhandling ligger på multicellnätverk där både radiobasstationer och mo-
bilenheter har flera antenner. Radiobasstationerna väljer sina spatiella förko-
dare gemensamt, men skickar data individuellt till sina respektive mobilenhe-
ter. För sådana system med koordinerad förkodning (‘coordinated precoding’)
är interferensupprätning (‘interference alignment’) ett användbart teoretiskt
verktyg, eftersom det möjliggör överföring av maximalt antal dataströmmar i
nätverket. I avhandlingen studeras tre aspekter av interferensupprätning och
koordinerad förkodning.

Först undersöks interferensupprätning när signalrummet består av en
kombination av rymd- och frekvensdimensioner. Ett nödvändigt villkor här-
leds för existensen av rymd/frekvens-interferensupprätning, och prestanda-
vinsten analyseras i jämförelse med system där enbart rymddimensionerna
används för interferensupprätning. Det föreslagna systemet utvärderas med
hjälp av numeriska simuleringar och uppmätta inomhus- och utomhuskanaler.
Resultaten visar att rymd/frekvens-interferensupprätning ger upphov till ett
ökat antal frihetsgrader, men att summadatatakten främst förbättras tack
vare en upplevd effektförstärkning.

Därefter undersöks tekniker för skattning av den nödvändiga kanalkänne-
dom som krävs för att genomföra koordinerad förkodning. Det finns flera sätt
att erhålla den nödvändiga informationen, t.ex. genom olika kombinationer
av kanalskattning, feedback, signalering och användning av backhaulnätverk.
Speciellt söks distribuerade metoder, eftersom dessa är fördelaktiga vid prak-
tisk implementering. Tre metoder för skattning av kanalkännedom föreslås.
Dessa motsvarar olika avvägningar mellan kanalskattning och signalering, och
en av metoderna är helt distribuerad. När den skattade informationen används
med en existerande algoritm för koordinerad förkodning blir prestandan un-
dermålig. Därför föreslås två förändringar av algoritmen, vilka leder till mer
robusta prestanda. Förändringarna bygger på den välkända diagonal loading-
tekniken. Utvärdering av det föreslagna systemet, som består av distribuerad
erhållning av kanalkännedom samt den förbättrade algoritmen för koordine-
rad förkodning, genomförs med numerisk simulering. Resulterande prestanda
är i nivå med ett tidigare föreslaget system, som dock kräver centraliserad
tillgång till kanalskattningarna, till skillnad från vår nya lösning.

Slutligen studeras ett system med koordinerad förkodning och icke-perfekt
radiohårdvara. En modell för distortionsbruset orsakad av bristerna i radio-
hårdvaran används, och en iterativ resurstilldelningsteknik föreslås baserad
på ett existerande ramverk. Den föreslagna algoritmen kan implementeras
distribuerat över mobilenheterna, men kan i allmänhet inte implementeras
distribuerat över radiobasstationerna. Den föreslagna algoritmen utvärderas
med numeriska simuleringar, och resultaten visar att prestanda är bättre än
alla referensmetoder. Detta visar betydelsen av att hantera bristerna i radio-
hårdvaran i resurstilldelningen.

Sammantaget visar avhandlingen på möjligheterna att öka spektraleffek-
tiviteten i framtida multicellnätverk med hjälp av koordinerad förkodning.
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Chapter 1

Introduction

1.1 Background

As well known to anybody owning and using a smartphone, our reliance on mobile
communication as a society is rapidly increasing. The computational power of the
devices in our pockets is skyrocketing, yet the experience of surfing the web on a
mobile device is often constrained by the wireless connection to the base station.
The number of connected devices is expected to reach 50 billion within a couple of
years according to the industry [Eri11], and the amount of data transmitted over
the world’s wireless networks is increasing exponentially1 [Cis13]. This results in
the operators being stretched in their ability to serve the users to their demands at
peak times. The capacity of wireless networks can in principle be increased by either
1) acquiring more wireless spectrum, or 2) improving the spectral efficiency of the
transmissions. This thesis focuses on the latter option, in particular by applying
multi-antenna transceivers such that multiple mobile devices can be served on the
same time-frequency resource blocks simultaneously.

The idea of using multi-antenna techniques in wireless communication is fairly
old [Win84, Fos96, RC98]. For single-user point-to-point systems, the multiple
antennas can be used to increase the resilience against wireless channel varia-
tions (fading). By employing multiple, sufficiently separated, antennas at the
receiver, the incident signals are independent between antennas, and a diversity
gain is achieved. With multiple antennas both at the receiver and the transmit-
ter (multiple-input multiple-output, MIMO), several spatial data streams can be
served [Fos96, Tel99, RC98]. The added data streams lead to a multiplexing gain,
improving the spectral efficiency of the system at high signal-to-noise ratios. Due
to a fundamental diversity-multiplexing tradeoff [ZT03], both types of gain cannot
be maximized simultaneously.

1In Sweden alone, the mobile data traffic grew 69% from mid-2012 to mid-2013 [Cis13].

1
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Multicell MIMO Networks

Most interesting wireless systems have multiple users however, and are therefore
not accurately described by the point-to-point model. The traditional method of
serving multiple users in a system is to divide resources orthogonally between them.
This can be done using e.g. time-division multiple access (TDMA), or frequency-
division multiple access (FDMA). Applying these traditional methods is not spec-
trally efficient however. Instead, if multiple users could be served simultaneously
in each time-frequency resource block, the spectral efficiency of the system would
increase. This is the idea of space-division multiple access (SDMA), where the
spatial separation of the receivers is used to discriminate their corresponding trans-
missions. There are two main incarnations of SDMA: multiuser MIMO [GKH+07]
and multicell MIMO [GHH+10,BJ13]. In the former, one multi-antenna transmit-
ter serves several spatially separated receivers. In the latter, several multi-antenna
transmitters jointly coordinate their transmissions to their corresponding users. In
this thesis, we focus on multicell MIMO networks.

Interference Alignment

In the theoretical investigations into the fundamental performance-limits of mul-
ticell MIMO networks, the discovery of interference alignment (IA) was a break-
through [MAMK08, CJ08]. Interference alignment is a constructive method for
serving the maximum number of spatial data streams in a multicell MIMO network,
in an interference-free manner. By aligning the interference in a lower-dimensional
subspace at all receivers, it can easily be removed using linear techniques. The
detrimental impact of the interference is then completely removed, and the only
fundamental performance-limiting factor remaining is the thermal noise. In the
high-SNR regime, where interference is the main problem, applying IA can yield
significantly better spectral efficiency than using orthogonalization by means of
TDMA or FDMA. Indeed, there is a price to pay for the improved spectral effi-
ciency however. IA requires channel state information (CSI) at the transmitters in
order to properly align the transmissions. The CSI is estimated at the receivers,
and must therefore typically be fed back to the transmitters. This can result in high
overheads, which reduce the spectral efficiency gain. Furthermore, it is generally
only a good idea to employ IA when the interference truly is the main performance-
limiting factors. This may not always be the case in practical systems, which may
have imperfect CSI, hardware distortion noises, unaligned interferers, etc.

Coordinated Precoding

In this thesis, we study the problem of how to achieve high spectral efficiencies in
multicell MIMO networks from a practical standpoint. We investigate the concept
of coordinated precoding, wherein the multiple transmitters coordinate how they
serve their respective receivers. This can be done using e.g. IA, although other
resource allocation methods might be more practical. Coordinated precoding is in
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contrast to joint transmission, wherein the multiple transmitters jointly serve all
receivers. Joint transmission has higher requirements on backhaul and synchro-
nization compared to coordinated precoding, and is therefore less practical.

We study three main topics within the area of coordinated precoding. First,
we investigate the theoretical feasibility of interference alignment over a combined
space and frequency signal space. This is a practicably relevant scenario, where the
precoding is performed jointly over antennas and subcarriers. We derive a necessary
condition for the feasibility of IA in this scenario. Second, we study the problem of
how to implement a distributed coordinated precoding system. As mentioned, the
transmitters require CSI in order to design the precoders that are used for serving
the receivers with data. We propose three methods for obtaining this CSI, corre-
sponding to different tradeoffs between channel estimation, feedback, signaling and
backhaul use. We also show the need to robustify an existing coordinated precoding
method, since it performs poorly when naïvely coupled with the proposed CSI ac-
quisition schemes. The findings result in a system design for a distributed joint CSI
acquisition and coordinated precoding method. Thirdly, we investigate coordinated
precoding with imperfect hardware. The hardware imperfections lead to distortion
noises, for which compensation schemes typically are applied. The compensation
is not perfect however, so some residual hardware impairments always exist. These
negatively impact performance if not accounted for in the optimization. We show
how a semi-distributed method for coordinated precoding can be formulated, which
properly handles the residual hardware impairments.

1.2 Outline and Contributions

We now outline the thesis, and the contributions of which it consists. Many of the
results have previously been published under IEEE copyright. Some sentences in
this thesis may match sentences in the published works verbatim.

Chapter 2

In order to familiarize the reader with the general setting of this thesis, Chapter 2
reviews the literature and sets the stage for the forthcoming material. The founda-
tions of wireless communication is described in general terms, and then the topic
of aligning multiuser interference is discussed. The promising theoretical benefits
of interference alignment are shown to be substantial, but the case is made why
the weighted sum rate problem should be solved directly instead. The chapter
ends with a discussion about performance-limiting transceiver impairments, some
of which will be further investigated in the thesis.

Chapter 3

In Chapter 3, we investigate interference alignment for the case of a joint space-
frequency signal space. Necessary conditions for the feasibility of IA for this setting
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are derived, and the actual sum rate performance possible is studied using numer-
ical simulation. First, an urban outdoors macrocell scenario is studied, where the
channels were obtained from a measurement campaign. Second, a dense indoors
scenario is studied, and both measured and synthetic channels are used for the
performance evaluation. The sum rate results show that there is a performance
improvement from precoding over a joint space-frequency signal space, rather than
performing the precoding orthogonally over the different subcarriers. The perfor-
mance improvement however comes as a power gain, rather than a DoF gain.

The material in this chapter has previously been published in:

[BAB12] R. Brandt, H. Asplund, and M. Bengtsson. Interference alignment in
frequency – a measurement based performance analysis. In Proc. Int. Conf.
Systems, Signals and Image Process. (IWSSIP’12), pages 227–230, 2012. ©

IEEE 2012.

[BZB13] R. Brandt, P. Zetterberg, and M. Bengtsson. Interference alignment over
a combination of space and frequency. In Proc. IEEE Int. Conf. Commun.
Workshop: Beyond LTE-A (ICC’13 LTE-B), pages 149–153, 2013. © IEEE
2013.

Chapter 4

In Chapter 3, the numerical sum rate performance results indicated that superior
performance was achieved by directly trying to solve the sum rate optimization
problem, rather than trying to solve the IA conditions. Therefore, in Chapter 4,
we study a resource allocation method that is able to find locally optimal solutions
to the weighted sum rate optimization problem. The method is known to be dis-
tributed, but requires local CSI. We show how this local CSI can be obtained in
an almost fully distributed fashion, using channel estimation and uplink-downlink
reciprocity. We propose three CSI acquisition methods, and analyze their feed-
back/signaling requirements and computational complexities. When the proposed
distributed CSI acquisition is coupled with the existing resource allocation method,
the resulting sum rate performance deteriorates significantly at high SNR. We there-
fore propose robustifying measures, resulting in a distributed and robust coordi-
nated precoding method. The numerical sum rate performance results show that
the proposed system performs excellently compared to the state-of-the-art robust
coordinated precoding systems in the literature.

The material in this chapter has been submitted for possible publication in:

[BB14] R. Brandt and M. Bengtsson. Distributed CSI acquisition and coordinated
precoding for TDD multicell MIMO systems. IEEE Transactions on Signal
Processing, 2014. Submitted.

Subject to acceptance, copyright may be transferred to IEEE at a later date.
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Chapter 5

The last part of Chapter 4 studied weighted sum rate optimization under imperfect
CSI. This is not the only impairment that practical transceivers are affected by.
In Chapter 5, we study the impairment of distortion noises from imperfect radio
hardware in the transceivers. With a simple model for the distortion noises, a
weighted sum rate optimization problem can be formulated. Using an existing
framework, we show how an iterative algorithm for finding locally optimal solutions
can be devised. Using numerical simulation, the importance of accounting for the
hardware impairments in the optimization is shown. As the level of hardware
impairment is increased, performance for the unaware methods deteriorate, whereas
the proposed method is robust.

The material in this chapter has previously been published in:

[BBB14] R. Brandt, E. Björnson, and M. Bengtsson. Weighted sum rate opti-
mization for multicell MIMO systems with hardware-impaired transceivers.
In IEEE Conf. Acoust., Speech, and Signal Process. (ICASSP’14), pages
479-483, 2014. © IEEE 2014.

Chapter 6

This chapter concludes the thesis, and an outlook on future possible research is
presented.

Contributions Outside the Scope of this Thesis

The author has also produced some work which does not fall within the scope
of this thesis. In [BB11], methods for approximately diagonalizing a wideband
multi-antenna channel was studied. By modeling the channel as a matrix finite
impulse response filter, an approximate polynomial singular value decomposition
could be formed. In [BB11], the performance of applying this polynomial singular
value decomposition in a wideband multi-antenna scenario is studied. Compared
to the traditional approach of exactly diagonalizing the channel in a finite number
of orthogonal subcarriers, the polynomial approximate decomposition was shown
to have higher complexity and worse diagonalization performance.

[BB11] R. Brandt and M. Bengtsson. Wideband MIMO channel diagonalization in
the time domain. In Proc. IEEE Int. Symp. Indoor, Mobile Radio Commun.
(PIMRC’11), pages 1958–1962, 2011. © IEEE 2011.
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1.3 Notation

Bold font is used to describe matrices (e.g. C) and vectors (e.g. c).

’ ‘For all’
Ω≠· All uplink quantities are denoted with an arrow

ÁcË Ceiling function: the smallest integer not less than c

ÎcÎ2 Euclidean norm of vector c

ÎCÎ2
F Frobenius norm squared: sum of singular values of matrix C

[C]:,1:m Matrix formed from columns 1 through m of matrix C

[C]1:n,: Matrix formed from rows 1 through n of matrix C

Ak Receive filter for MS k in the IC

Aik
Receive filter for MS ik in the IBC

–k Data rate weight for MS k in the IC

–ik
Data rate weight for MS ik in the IBC

Bik
Component precoder for MS ik in the IBC

blkdiag (·) Creates a block-diagonal matrix from the arguments

C Set of complex numbers

dk Number of data streams for MS k in the IC

dik
Number of data streams for MS ik in the IBC

diag (·) Creates a diagonal matrix from the arguments

Diag (C) Diagonal matrix where the diagonal elements are taken from the
diagonal of the matrix C

Fik
Effective downlink channel for MS ik in the IBC

Φik
Received signal covariance matrix for MS ik in the IBC

Gik
Effective uplink channel for MS ik in the IBC

Γi Signal plus interference covariance matrix for BS i in the IBC

Mk Number of antennas for BS k in the IC

Mi Number of antennas for BS i in the IBC

Mtot Total dimension of precoder space

N Set of natural numbers
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Nk Number of antennas for MS k in the IC

Nik
Number of antennas for MS ik in the IBC

In Identity matrix of size n

Lc Number of subcarriers

Le Number of equations in a polynomial system of equations

Lf Number of subcarriers per alignment group

Lg Number of alignment groups

Lp,d Number of downlink pilot symbols

Lp,u Number of uplink pilot symbols

Lv Number of variables in a polynomial system of equations

⁄max (C) The eigenvalue of matrix C with the largest magnitude

⁄min (C) The eigenvalue of matrix C with the smallest magnitude

⁄n (C) The eigenvalue of matrix C with the nth largest magnitude

eigvecn (C) The eigenvector corresponding to the eigenvalue of matrix C with
nth largest magnitude

pX Probability density function for the random variable X

qik
(V) User utility for MS ik in the IBC

qsys(·) System utility

R Set of real numbers

R+ Set of positive real numbers

Rk Data rate for MS k in the IC

Rik
Data rate for MS ik in the IBC

fl Robustification parameter in the RB-WMMSE algorithm

Re (·) Real part of the argument

smax (C) The largest singular value of matrix C

smin (C) The smallest singular value of matrix C

sn (C) The nth largest singular value of matrix C

span (C) Column span of the matrix C

Tr (·) Sum of the diagonal elements of the matrix argument
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Uik
Weighted receive filter for MS ik in the IBC

V Tuple of all precoders

Vk Precoder for MS k in the IC

Vik
Precoder for MS ik in the IBC

vec (C) Column-wise vectorized version of matrix C

Wik
MSE weight matrix for MS ik in the IBC

xk Transmitted signal for MS k in the IC

xik
Transmitted signal for MS ik in the IBC

yk Received signal for MS k in the IC

yik
Received signal for MS ik in the IBC

zk Noise for MS k in the IC

zik
Noise for MS ik in the IBC

1.4 Acronyms

3GPP 3rd Generation Partnership Project

CDF Cumulative Distribution Function

CSI Channel State Information

BS Base Station

dB Decibel

EVM Error Vector Magnitude

FDD Frequency-Division Duplex

FDMA Frequency-Division Multiple Access

HIATUS European commission, 7th framework programme, future and
emerging technologies project on enHanced Interference Align-
ment Techniques for Unprecedented Spectral efficiency

IA Interference Alignment

IBC Interfering Broadcast Channel

i.i.d. Independent and identically distributed (random variables)

IC Interference Channel
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KKT Karush-Kuhn-Tucker (conditions)

LTE 3GPP Long-Term Evolution (standard)

MHz Megahertz

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

MMSE Minimum Mean Squared Error

MS Mobile Station

MSE Mean Squared Error

MVU Minimum Variance Unbiased (estimator)

OFDM Orthogonal Frequency-Division Multiplexing

RF Radio Frequency

SISO Single-Input Single-Output

SIMO Single-Input Multiple-Output

SINR Signal-to-Interference-plus-Noise Ratio

SINDR Signal-to-Interference-plus-Noise-and-Distortions Ratio

SNR Signal-to-Noise Ratio

TDD Time-Division Duplex

TDMA Time-Division Multiple Access

WMMSE Weighted Minimum Mean Squared Error

w.r.t. With respect to





Chapter 2

Coordinated Precoding

We begin the thesis by presenting the background knowledge that will be essential
in order to appreciate the contributions that will follow in subsequent chapters. We
first introduce the idea of wireless communication systems, and then move on to
present some fundamental performance limits of these systems. After introducing
the concept of interference alignment, we make the case for why we should attempt
to solve the non-convex system-level optimization problem instead. We proceed to
present some algorithms to do this, that exist in the literature. Finally, we end
with a discussion about practical challenges with coordinated precoding that will
be studied further along in the thesis.

2.1 Wireless Communications

Wireless communication is about transmitting a message from a transmitter to
a receiver over the air, without connecting the nodes using fixed infrastructure,
such as electrical wires or optical fibers. The general name for the transmitted
message will be x in this thesis. The received signal will be denoted y. In order
to mathematically analyze and design the wireless communication system, a model
is needed. That is, we need some mathematical description of how y is related to
x. In the spirit of Occam’s razor, we would like to have models that are as simple
as possible, without oversimplifying reality. A very simple model of a wireless
communication system would be that the receiver receives exactly the message that
was transmitted from the transmitter, that is y = x. Although being extremely
simple, this is not an interesting model since it does not reflect reality particularly
well1. For example, due to the temperature and electrical resistance of the wireless
receiver circuitry, the constituent free electrons have some motion. This thermal
motion can be measured as a voltage over the output of the circuitry, and hence

1There is no limit on how quickly data can be transferred error-free in this model; it has
infinite information theoretical capacity. We will discuss the notion of information theoretical
capacity in Section 2.2.1.

11
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constitutes thermal noise [Sto06, Ch. 10]. Additionally, the medium over which
the transmitted signal passes to end up at the receiver, the wireless channel, will
affect the received signal. Taking these two effects into account, our next attempt
at modeling the wireless communication link is then

y = hx + z, (2.1)

where h is the channel and z is the thermal noise. The model is more realistic with
these introduced quantities, and thus it is worth investigating further. Since the
nature of the thermal noise is that it is unpredictable, z is modeled as a stochastic
variable. The variable x is also modeled as a stochastic variable, since it carries
information content that is a priori unknown to the receiver. The wireless channel
h is given to us by nature, and in order to ease the following exposition, we assume
for now that h is deterministic, fixed over the transmission period, and known at
the receiver.

Our first step in analyzing (2.1) is to determine the quality of the received signal.
Assume that the transmit power is E

!
|x|2

"
= P [W] and that the bandwidth of the

system is W [Hz]. With a noise spectral density of N0 [W/Hz], the noise power is
N0W . We can then define a fundamental quality metric of the received signal, the
signal-to-noise ratio (SNR):

SNR =
E

!
|hx|2

"

E (|z|2)
=

|h|2P

N0W
. (2.2)

It is clear that we have a good signal when either the channel h and/or the signal
x are ‘strong’ or when the noise is ‘weak’.

The SNR describes if the received signal strength is good, but as a user of
a wireless link, the data rate is possibly a quality measure that is more directly
perceived. The maximum data rate for which arbitrarily small error probabilities
can be achieved is the capacity [TV08] of the link. For the model in (2.1), the
capacity is [Sha48]

C = W log2

3
1 +

|h|2P

N0W

4
[bits/s]. (2.3)

Notice that the SNR from (2.2) appears inside the logarithm. The capacity is the
maximum achievable data rate, with arbitrarily low error probability. It relies on
a set of idealistic assumptions, which will be further detailed in Section 2.2.1, and
is thus a fairly optimistic performance measure.

Even though the capacity in (2.3) is an optimistic performance measure, we
can use it to analyze the performance of the wireless link. We will expose the
performance-limiting aspects in two extreme operating regimes. We start with the
power-limited regime. Assume that |h|2P π N0W , i.e. the noise is much stronger
than the desired signal. Since the natural logarithm loge (1 + x) ¥ x for small x,
we then have that

C = W log2

3
1 +

|h|2P

N0W

4
¥ |h|2P

N0
log2(e) [bits/s], (2.4)
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where e = 2.718... is Euler’s number. Thus, in this regime, the performance is
improved by increasing the transmit power P . Increasing the bandwidth W will
not help. On the other hand, in the degree of freedom-limited regime, the opposite
will be true. Assume that |h|2P ∫ N0W . Then, we have that

C = W log2

3
1 +

|h|2P

N0W

4
¥ W log2

3
|h|2P

N0W

4
¥ W log2

!
|h|2P

"
[bits/s]. (2.5)

Since |h|2P is already large, performance will improve drastically by enlarging the
bandwidth W .

With the performance characterization in (2.4) and (2.5), we have a general idea
of how to design the system for good performance. If we are expecting to operate in
the power-limited regime, we should increase the transmit power. Reversely, if we
are in the degree of freedom-limited regime, the bandwidth should be enlarged. All
practical wireless systems are however constrained in their power and bandwidth
usage. For example, the regulator2 may require that the wireless system only
operates within a certain frequency band, and that the transmitted power is below
some limit. Wireless operators license parts of the spectrum through spectrum
auctions; increasing the bandwidth available for a wireless system may therefore
be very expensive. In addition to the regulatory requirements, the radio hardware
employed may only handle a certain bandwidth and power.

Multiple Antennas

Given a certain bandwidth and power budget, the ultimate performance of the
system in (2.1) is determined by (2.3). If the system is operating in the degree
of freedom-limited regime, and more spectrum is not available, it seems that per-
formance cannot be increased. By exploiting the spatial dimension, however, the
spectral efficiency can be improved. By employing multiple antennas at both the
transmitter and the receiver, say N antennas at the receiver and M antennas at the
transmitter, multiple spatial data streams can be transmitted using the same time
and frequency resources. Denote the capacity of this multiple-input multiple-output
(MIMO) system as CMIMO. At high SNR, the capacity then scales linearly with
the minimum number of antennas [DADSC04] such that

lim
SNRæŒ

CMIMO

log2 (SNR)
= W min (N, M) . (2.6)

There are several other advantages to employing multiple antennas for a wireless
communication link [DADSC04]. In addition to the MIMO multiplexing gain de-
scribed in (2.6), diversity gains can also be achieved using multiple antennas. In
this thesis, we will focus on the types of gains described by (2.6). A similar type of
gain will be shown to be important for systems where more than one user is served.

2In Sweden, the usage of wireless spectrum is regulated by the governmental authority Post-
och telestyrelsen.
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Naturally, systems where only one side of the wireless link has access to multiple
antennas exist. If the transmitter has multiple antennas, this is called a multiple-
input single-output (MISO) system, and the reverse case is called a single-input
multiple-output (SIMO) system.

2.1.1 Multiuser Communications

In the discussion in the previous section, there was only one transmitter and one
receiver; it was the point-to-point setting. Most interesting wireless systems—such
as WiFi, cellular communication, wireless ad-hoc networks, etc.—involve multiple
transmitters and multiple receivers, however. If proper orthogonalization [CT06,
Ch. 15.3] is applied, multiple users can be served simultaneously without experi-
encing inter-user interference. The point-to-point model can then be used for each
orthogonal resource. The orthogonalization can be performed in many domains,
e.g., time, frequency or code3. The corresponding multiple access techniques are
then called time-division multiple access (TDMA), frequency-division multiple ac-
cess (FDMA), or code-division multiple access (CDMA) [TV08, Ch. 4]. In essence,
the enforced separability between users enables them to be served data without
interference.

In the types of wireless systems that we are concerned with in this thesis, the
receivers will also be spatially separated. By harnessing this provided spatial di-
versity [DADSC04], the users can be served using space-division multiple access
(SDMA). The time and frequency dimensions are naturally available to the wire-
less transceivers. By adding multiple antennas to the transceivers, the spatial
dimension also becomes available to the transceivers. The multiple antennas can
be thought of as sampling the space [TV08, Ch. 7.3].

There are two main incarnations of the described SDMA: multiuser MIMO
[GKH+07] and multicell MIMO [GHH+10] (see Figure 2.1 on the facing page). In
the former, one multi-antenna transmitter transmits to several receivers. In the lat-
ter, several multi-antenna transmitters transmit to several receivers. In this thesis,
we are interested in the multicell MIMO approach, where the transmitters cooper-
ate to serve the receivers in a way that is good for the system-level performance. If
the transmitters jointly serve the receivers with data, the operation mode is called
joint transmission. We are more interested in another operation mode, the coor-
dinated precoding. In this mode, the transmitters each serve their receivers, while
still coordinating the interference that is created towards receivers served by other
transmitters. Precoding is a linear transformation technique which will be further
described later in this thesis.

3By spreading a signal over a wide frequency band using a code, many users can be accom-
modated over the same frequency band, if the codes are orthogonal [TV08, Ch. 4].
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BS 1

BS 2

BS 3

MS 11

MS 12

MS 21

MS 22

MS 31

MS 32

Figure 2.1. Example of a multicell system.

2.1.2 System Operation

So far, we have assumed that the data transmission only takes place in one direction:
from the transmitter to the receiver. In most wireless systems, there is data to be
transmitted in both directions however. In order to make the notion clear, we
introduce the concept of a base station (BS) and the corresponding mobile stations
(MSs). A base station is a fixed piece of hardware, which is typically connected
to both the power grid and an operator backhaul network. The mobile stations on
the other hand are roaming terminals, powered by battery and only connected to
the network using wireless techniques. Typical MSs can for example be cell phones,
tablets, portable computers, etc. At each point in time, each MS is served by one
particular BS. The BS, together with its geographically served area, is called a cell.
The BS and the MSs may both transmit and receive; they are transceivers.

The MS receives data from the BS in the downlink. Reversely, the MS transmits
data to the BS in the uplink. In order for the uplink/downlink transmissions not
to interfere, they must be orthogonalized. In many deployed systems, this is often
done using frequency-division duplexing (FDD) [TV08, Ch. 4], where the uplink
and downlink transmissions are performed on separated frequency bands. The up-
link/downlink transmissions can also be orthogonalized in time using time-division
duplexing (TDD) [TV08, Ch. 4]. TDD and FDD are compared in Figure 2.2 on
the next page.

Although FDD traditionally has been more popular by operators, partially due
to the spectrum plans set by regulators, there are some benefits of TDD over FDD.
One benefit is that the ratio between the capacity of the uplink and downlink
transmissions can adaptively be changed in TDD mode [HT11, Ch. 15]. Another
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Figure 2.2. Comparison of Frequency-Division Duplex (FDD) and Time-Division
Duplex (TDD).

benefit of TDD is the reciprocity of the uplink and downlink channels. All wireless
channels are reciprocal [Smi04], meaning that they are perceived the same in both
the uplink and downlink. This can be exploited in channel estimation [BG06]; by
pilot transmission in the uplink, the BSs can actually gain information about the
channels in the downlink. This is beneficial, since downlink channel state informa-
tion at the BSs is crucial for the operation of coordinated precoding. Although the
wireless channel is perfectly reciprocal, the uplink/downlink RF hardware might
not be. The effective channel that the coordinated precoding baseband algorithms
perceive is the cascade of the transmit filter, the wireless channel, and the receive
filter [GSK05]. Without proper calibration [BCK03,GSK05,RBP+13], this effective
channel might not be reciprocal. In Chapter 4, we will assume a perfectly calibrated
TDD system in order to achieve channel state information at the BSs, to be used
in the coordinated precoding.

One drawback of using TDD is that neighbouring cells must be time-synchro-
nized, such that the uplink transmissions in one cell are not disturbed by the
unsynchronized (high power) downlink transmissions in a neighbouring cell [HT11,
Ch. 15]. In terms of actually deployed cellular systems, FDD still dominates over
TDD. In Sweden for example, in the 2.6 GHz band used for LTE, only 1 out of
15 frequency blocks is designated for TDD, and the rest are designated for FDD
[Pos08].

Phases of System Operation

We now detail the phases of the system operation. For the most part of this
thesis, we will study the downlink transmissions, and we thus describe the system
operation from this perspective. The reason for mainly studying the downlink is
that the traffic load experienced in the downlink is typically higher than the traffic
load experienced in the uplink, due to e.g. video streaming and file downloads.

In essence, the idea of coordinated precoding is to serve multiple MSs from
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multiple BSs, in a way that is beneficial for the entire system. In order to do this,
the system must be aware of the current channel conditions. That is, the nodes
of the network must have access to some channel state information (CSI). In our
proposed system in Chapter 4, this information is obtained by pilot transmissions
and channel estimation together with feedback and signaling. When the CSI is
acquired, this information is used to select how the MSs should be served in a
good way; this is the task of the resource allocation algorithm. Finally, data is
transmitted in the way determined by the resource allocation. In summary:

CSI acquisition Channels are estimated using pilot transmissions. Other infor-
mation is exchanged between the nodes through feedback and signaling.

Resource allocation Based on the obtained CSI, a resource allocation algorithm
determines how the BSs should serve the MSs to maximize system perfor-
mance.

Data transmission Data is transmitted in the fashion determined by the resource
allocation. The estimated downlink channels are used by the MSs in their
decoding of the received signals.

2.1.3 General System Models

We now introduce some general forms of mathematical system models which will
be used throughout the thesis.

Point-to-Point Channel

For completeness, we first define the point-to-point channel. Here, one BS serves one
MS in the downlink, without interference from other transmitting BSs. We assume
that the MS has N receive dimensions, and that the BS has M transmit dimensions.
These dimensions will often be spatial dimensions that are accessed through the
use of multiple antennas, but the dimensions may also describe a combined space-
frequency signal space, as elaborated on in Chapter 3. The narrowband complex
valued equivalent baseband channel between the BS and the MS is then denoted
H œ C

N◊M . The signal to be conveyed is x ≥ CN (0, Id), and we assume that
the BS uses a linear precoder V̄ œ C

M◊d such that the transmitted signal is s =
V̄x. The number of data streams that are transmitted is determined by d. By
letting d = min(N, M), and using the eigenprecoding with waterfilling technique
(see Section 2.3.3), the resource allocation can implicitly determine the optimal
number of streams to transmit.

Under these assumptions, the received signal is modeled as

y = HV̄x + z, (2.7)

where z ≥ CN
!
0, ‡2 IN

"
is some additive thermal noise. Modeling the thermal

noise as a zero-mean circularly-symmetric complex white Gaussian distribution is a
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very common assumption in wireless communication [CT06, Cou07, Mad08, TV08]
and is basically due to the central limit theorem [Str93, Ch. 2] and the fact that
there is a large number of electrons with thermal energy in the receiver circuitry.

Interference Channel

We now define the interference channel (IC). In this model, there are K BSs, each
serving one MS in the downlink. Due to the shared medium, the intended signal for
one MS will be perceived as interference at the other MSs. MS k is served by BS k for
k œ {1, . . . , K}. We assume that BS k has Mk transmit dimensions (e.g. antennas),
and correspondingly that MS k has Nk receive dimensions (e.g. antennas). The
narrowband complex valued equivalent baseband channel between BS l and MS k is
Hkl œ C

Nk◊Ml . MS k is served dk data streams from its corresponding BS, and its
signal is xk ≥ CN (0, Idk

). The signals intended for different MSs are independent
and identically distributed (i.i.d.). The BSs apply linear precoders Vk œ C

Mk◊dk

such that the transmitted signal from BS k is sk = Vkxk. Finally, assuming that
the interference perceived over the shared medium can be described in an additive
fashion, the received signal at MS k is

yk = HkkVkxk +
ÿ

l ”=k

HklVlxl + zk. (2.8)

The first term is the desired signal and the second term is the sum of all the
interfering signals. The last term zk ≥ CN

!
0, ‡2

k INk

"
is the additive noise, which is

independent of all the transmitted signals. For this multiuser model, the covariance
matrix for the received signal in (2.8) is

Φk = E
!
ykyH

k

"
= HkkVkVH

k HH

kk¸ ˚˙ ˝
desired signal

+
ÿ

l ”=k

HklVlV
H

l Hkl

¸ ˚˙ ˝
inter-cell interference

+ ‡2
kI.¸˚˙˝

thermal noise

(2.9)

The corresponding interference plus noise covariance is then

Φ
i+n
k = Φk ≠ HkkVkVH

k HH

kk =
ÿ

l ”=k

HklVlV
H

l HH

kl + ‡2
kI. (2.10)

Interfering Broadcast Channel

In the interference channel of (2.8), each BS only served one MS. In order to increase
the generality of the model, we now define the interfering broadcast channel (IBC).
In this model, there are I BSs. We index the BSs as i œ {1, . . . , I}, and now we
let BS i serve Ki MSs in the downlink. In total, there are K =

qI
i=1 Ki MSs. We

index the MSs served by BS i as ik œ {1, . . . , Ki}. MS ik is thus the kth user in the
group of users that are served by the ith BS. We call the BS and its associated MSs
a ‘cell’. The cells are typically geographically defined. We assume that BS i has
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Mi transmit dimensions (e.g. antennas), and correspondingly that MS ik has Nik

receive dimensions (e.g. antennas). The narrowband complex valued equivalent
baseband channel between BS j and MS ik is Hikj œ C

Nik
◊Mj . MS ik is served

dik
data streams from its corresponding BS, and its signal is xik

≥ CN
1

0, Idik

2
.

The signals intended for different MSs are i.i.d. The BSs apply linear precoders
Vik

œ C
Mi◊dik such that the transmitted signal from BS i is si =

qKi

k=1 Vik
xik

.
Assuming that the intra-cell interference can be described similarly as the inter-cell
interference, the received signal at MS ik is modeled as

yik
= HikiVik

xik
+

ÿ

(j,l) ”=(i,k)

HikjVjl
xjl

+ zik
. (2.11)

The main difference between (2.11) and (2.8) is that the intra-cell interference terms
are seen by the MSs as originating from the same direction as its desired signal.
The noise term zik

≥ CN
1

0, ‡2
ik

INik

2
is complex Gaussian as before. For this

multiuser model, the covariance matrix for the received signal in (2.11) is

Φik
= E

!
yik

yH

ik

"

= HikiVik
VH

ik
HH

iki¸ ˚˙ ˝
desired signal

+
ÿ

(j,l) ”=(i,k)

HikjVjl
VH

jl
Hikj

¸ ˚˙ ˝
inter-cell and intra-cell interference

+ ‡2
ik

I.
¸˚˙˝

thermal noise

(2.12)

The corresponding interference plus noise covariance is then

Φ
i+n
ik

= Φik
≠ HikiVik

VH

ik
HH

iki =
ÿ

(j,l) ”=(i,k)

HikjVjl
VH

jl
HH

ikj + ‡2
ik

I. (2.13)

With a clear definition of the multiuser interaction models, we are prepared
to analyze their performance. In that vein, we will in the next section introduce
the concept of information theoretical capacity and the connection to interference
alignment.

2.2 Interference Alignment

In Section 2.1, we did a basic performance analysis of a simple point-to-point wire-
less link. In this section, we will provide a more thorough description of the fun-
damental limits of the performance of the system models in the previous section.
To do so, we will introduce the information theoretical capacity and the notion of
degrees of freedom of an interference network. We will also introduce interference
alignment, which is a method for achieving the maximum degrees of freedom.

2.2.1 Information Theoretical Capacity

The fundamental limits of wireless communication are described using information
theory [CT06]. This field was pioneered by C. E. Shannon in his formative pa-
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per [Sha48]4. In this paper, Shannon showed that a strictly positive data rate is
achievable with arbitrarily low error probability, a fact that was not thought to be
true before.

Information theory is thus partly concerned with finding channel capacities for
different channel models. These capacities are described by coding theorems, which
generally comprise two parts: the converse and the achievability construction. The
converse describes an upper bound on performance that no channel code can sur-
pass. The achievability construction gives a channel code that can achieve a certain
performance. If the achievable performance of a particular code coincides with the
upper bound, the code achieves the capacity of the system. In order to not get en-
tangled in the details of information theory, we will in this thesis use the following
operational definition of channel capacity: the channel capacity is the highest rate
of information that can be transmitted over a channel with arbitrarily low error
probability [CT06, p. 184]. The channel capacity is given by, in loose terms, the
maximum mutual information between the transmitted signal x and the received
signal y, when maximized over all possible input distributions pX . When the noise
is Gaussian, the input distribution pX that maximizes the mutual information is
the Gaussian distribution. The interested reader can find more details in some
information theory textbook, e.g. [CT06].

Achievable Rate of the Point-to-Point Channel

The capacity of the (Gaussian, deterministic) point-to-point channel in (2.7) on
page 17 was derived in [Tel99]. There it was shown that the optimal input distribu-
tion pX is the multivariate Gaussian distribution, leading to the following mutual
information between x and y:

R = log2 det
!
Id + V̄HHHHV̄

"
. (2.14)

Note that R in (2.14) can be interpreted as an achievable rate. The maximum Rı

is thus the capacity, given by the optimal precoder V̄ı. The precoder is found by
solving a convex optimization problem; see Section 2.3.1.

Finding a code that achieves the capacity Rı hinges on a set of idealistic assump-
tions. First, the transmitted signal x must be drawn from a zero-mean circularly
symmetric complex Gaussian distribution with covariance V̄ıV̄ı,H. This maximizes
the entropy of the received signal, and thus maximizes the mutual information. In
practical systems, the components of x are often drawn from a finite constella-
tion [Mad08, Ch. 3.3] instead. The second idealistic assumption is that the length
of the codewords that are used to achieve the capacity must go to infinity for the
error probability to go to zero. In practical systems, long codewords give corre-
spondingly long decoding delays, which is not desired. Finally, the rate in (2.14) is
only achievable with an optimal, and therefore high complexity, detector.

4As trivia, we note that this landmark paper has had 65033 citations according to Google
Scholar, at the time of this writing.
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Even though the formulation of (2.14) hinges on these idealistic assumptions,
it is a good model for how a well-designed practical wireless system would perform
given a certain precoder V̄.

Degrees of Freedom for the Interference Channel

For the point-to-point channel above, the achievable data rates were described by
a single number, the capacity. For the interference channel however, all K MSs
have individual data rates, and the possible data rate performance of the entire
system is thus given by a K-dimensional capacity region [Car78]. We denote this as
C œ R

K
+ , and each dimension describes the achievable rate for one MS. One point

on the boundary of the capacity region is the sum capacity, which is the point that
maximizes the sum of the MS capacities.

The capacity of the point-to-point channel is easily obtained by solving a convex
optimization problem (see Section 2.3.1), but for the interference channel a full
characterization of the capacity region has eluded information theorists for many
decades. Instead, lately a lot of focus has been on the related concept of degrees
of freedom (DoF) of the interference channel. The corresponding DoF region is
interesting since it partially characterizes the capacity region.

For the K user interference channel, let the achievable rate of MS k be Rk and
define the achievable rate tuple R(SNR) = (R1(SNR), . . . , Rk(SNR)). The capacity
region C(SNR) is the closure of the set of achievable rate vectors [Car78], and the
DoF region is then defined as [CJ08]:

D =

I
(d1, . . . , dK) œ R

K
+ : ’ (–1, . . . , –K) œ R

K
+

Kÿ

k=1

–kdk Æ lim sup
SNRæŒ

A
sup

R(SNR)œC(SNR)

1

log2 (SNR)

A
Kÿ

k=1

–kRk (SNR)

BB J
.

(2.15)

Essentially, the DoF region describes what high-SNR slope, or pre-log factor, that is
possible for the sum rate. The DoF dk can equivalently be thought of as the number
of interference-free data streams, that are successfully communicated to MS k. As
a system-level metric, the sum DoF is defined as dsum =

qK
k=1 dk. Consequently,

the sum DoF describes the total number of interference-free data streams in the
network.

In the high-SNR regime, the performance of the interference channel is limited
by the DoFs. In this regime, the DoF region is therefore an interesting metric on
the ultimate performance of the system.

Interference Alignment

Lately, a large body of work has been performed on finding the sum DoF for
a number of different interference channels. One of the first works in this area
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was [CJ08], where it was shown that the optimal sum DoF for the SISO interference
channel with K MS/BS pairs and time-varying channels was dsum = K/2. The
achievability was shown using linear techniques and the concept of interference
alignment5 [MAMK08, CJ08, Jaf11]. Using traditional orthogonalization methods
(e.g. TDMA or FDMA), the sum DoF is unity since only one interference-free
data stream can be successfully transmitted. In comparison, the IA results of K/2
interference-free data streams was seen as a very exciting result in the wireless
communication community.

The basic idea of interference alignment is to align all inter-user interference
into a lower-dimensional subspace, at all receivers simultaneously. This is done by
appropriately selecting the precoders. If the interference is aligned, it can easily
be removed from the received signal, using e.g. linear zero-forcing. The remaining
subspace will then be completely free of interference. Assuming that the desired
signal is linearly independent of the interference, it can be detected by the receiver
in the interference-free subspace. In most schemes, the interference is forced into
a subspace of half the dimension of the full signal space, and all MSs therefore get
the remaining half of the signal space without interference. Again comparing to
traditional orthogonalization, this is indeed remarkable, since each MS only gets
1/K of the signal space interference-free using TDMA/FDMA.

Note that there still exists thermal noise in the interference-free subspace. These
IA techniques are therefore only interesting in regimes where the interference is the
main problem, and not the noise power.

2.2.2 Interference Alignment Conditions and Feasibility

In order to describe interference alignment mathematically, we will now introduce
the idea of linear receive filters. These have a similar function as the linear precoder
applied at the transmitter, but they are instead applied to the received signal at
the receiver. For the interference channel in (2.8), each MS has a receive filter
Ak œ C

Nk◊dk . The received filtered signal at MS k is then

x̂k = AH

k yk = AH

k HkkVkxk¸ ˚˙ ˝
filtered desired signal

+
ÿ

l ”=k

AH

k HklVlxl

¸ ˚˙ ˝
filtered interference

+ AH

k zk¸ ˚˙ ˝
filtered noise

. (2.16)

A set of receive filters and precoders {Ak, Vk} is then an IA solution if it satisfies

AH

k HklVl = 0, ’ k œ {1, . . . , K}, l œ {1, . . . , K}, l ”= k (2.17)

rank
!
AH

k HkkVk

"
= dk, ’ k œ {1, . . . , K}. (2.18)

The requirement of no residual interference is described by the equations in (2.17).
These equations can be trivially fulfilled by letting e.g. the precoders be zero. To

5The work on interference alignment lead to a best paper award for [CJ08]. In [CJ09], the
authors of [CJ08] muse on the impact of their work, and point out some of the subsequent work
in the field.
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avoid such solutions, the equations in (2.18) describe the need for the effective
channel to be of sufficient rank to receive the data streams. For a set of given
system parameters — such as number of users, number of antennas, number of data
streams per user, etc. — the feasibility of IA is thus described by the solvability
of the system of equations in (2.17) and (2.18). We now review some existing
feasibility results from the IA literature.

The Time-Varying K User SISO Interference Channel

For the K user SISO interference channel with varying coefficients (either in time
or frequency), the optimal sum DoF is K/2 [CJ08]. The method for achieving
this bound is interference alignment, performed in the time domain or frequency
domain by coding over Lext channel extensions. In particular, for some n œ N and
with Lext = (n + 1)K2≠3K+1 + nK2≠3K+1 channel extensions, the following DoFs
are achievable using IA [CJ08]:

d1 =
(n + 1)K2≠3K+1

(n + 1)K2≠3K+1 + nK2≠3K+1
, (2.19)

dk =
nK2≠3K+1

(n + 1)K2≠3K+1 + nK2≠3K+1
, ’ k œ {2, . . . , K}. (2.20)

The details of the construction of the precoders that achieve the bound can be found
in [CJ08]. As n æ Œ, each MS achieves 1/2 DoF, and this gives the sum DoF result.
The number of channel extensions grow exponentially in the number of MS/BS pairs
K, and in order to get close to the asymptotic sum DoF, a large number of channel
extensions are clearly needed. Although (asymptotically) achieving the sum DoF,
this is clearly not a practical precoding method. Furthermore, the constructive
method requires global CSI knowledge, which also is not practical.

For a K user MIMO interference channel with time-varying channels and M =
Mk = Nk for all k, the above scheme can be applied as well. By treating each
antenna, at each MS, as a virtual MS, it is straightforward to show that the sum
DoF for this scenario is KM/2. Clearly, this still requires very many channel
extensions. The corresponding sum DoF using TDMA is M , and thus the gain of
using IA can be very large.

The sum DoF for the time-varying channel is quite remarkable, as it grows with
the number of MS/BS pairs K. In order to increase the DoF region, and thus the
capacity region at high SNR, more users can simply be added to the system. This
result is highly idealistic however, as will be shown in the following.

The Constant K = 3 User Symmetric MIMO Interference Channel

We now study the K = 3 user MIMO interference channel whose coefficients do
not vary with time. The number of antennas are M = Mk = Nk for all k, and each
MS is served d = M/2 data streams. We assume M to be even, but a similar result
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holds for odd M , see [CJ08]. For this scenario, the IA conditions in (2.17) can be
reformulated as [CJ08]

span (H12V2) = span (H13V3) , (2.21)

H21V1 = H23V3, (2.22)

H31V1 = H32V2. (2.23)

The equations (2.22) and (2.23) force the interference to arrive from the same
direction at MSs 2 and 3. Equation (2.21) forces the interference at MS 1 to belong
to a common subspace. For full-rank channels, these conditions are solvable almost
surely, and (2.18) on page 22 holds almost surely. For even M , a solution to (2.21)–
(2.23) is [CJ08]

V1 = [L]:,1:M/2 , (2.24)

V2 = (H32)
≠1

H31V1, (2.25)

V3 = (H23)
≠1

H21V1, (2.26)

where [L]:,1:M/2 picks out the first M/2 columns of L. The columns of L are the
eigenvectors of

(H31)
≠1

H32 (H12)
≠1

H13 (H23)
≠1

H21

in some arbitrary order. For this special case, IA is always feasible with d = M/2 for
all MSs. There might be several IA solutions, and the ordering of the eigenvectors
in L determines which solution is found. Compared to the IA construction for
the K user SISO interference channel with time-varying channels, here the optimal
DoF can be achieved using IA with a finite number of antennas instead. The fact
that d = M/2, and hence dsum = KM/2, is optimal was shown at the end of the
previous section.

The Constant K User Symmetric MIMO Interference Channel

For the MIMO interference channel with a general number of MS/BS pairs K, and
assuming M = Mk, and N = Nk for all k, a necessary condition for IA feasibility
is [RLL12]

Kÿ

k=1

dk Æ M + N ≠ 1. (2.27)

On less rigorous grounds, the same condition for d = dk = 1 for all k, was derived
in [YGJK10]. Interestingly, since dsum =

qK
k=1 dk, the sum DoF is bounded as

dsum =
(2.27)

Æ M + N ≠ 1 (2.28)

That is, the achievable sum DoF does not grow with K, as was the case for the
time-varying channel.
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For the special case of d = dk for all k, where d divides both M and N , a
necessary and sufficient condition for IA feasibility is [RLL12]

(K + 1)d Æ M + N. (2.29)

The General MIMO-IC

For the general MIMO interference channel, there are so far no results that describe
IA feasibility analytically. The only existing result is a computational framework
[GBS14], which essentially shows IA feasibility by checking the rank of a matrix.
This numerical test is conveniently available as a web service at [GBS].

There is also no closed-form expression for the IA solution of a general scenario.
Instead, numerical iterative algorithms can be employed to seek IA solutions. One
such method will be described in Section 2.3.3.

2.2.3 Fundamental Limits of Cooperation

In any large wireless system, the cooperation using coordinated precoding must be
performed in clusters [PGH08]. Otherwise, the number of BSs that must cooperate
grows quickly, as well as the number of interfering cross-channels that the MSs
must estimate. As stated, the models in (2.8) and (2.11) on pages 18–19 assume
that the clusters are orthogonalized, either because they are sufficiently geograph-
ically separated, or alternatively because they are using orthogonal resources for
the communication.

If these assumptions do not hold, the corresponding models should incorporate
a term that describes the out-of-cluster interference. By adding such a term to the
models, it can be shown that the benefits of coordinated precoding is fundamentally
limited [LHA13]. The results in [LHA13] essentially show that the DoF gains,
as explained earlier, only apply within an SNR window. For sufficiently large
transmit powers, the out-of-cluster interference becomes substantial, and the sum
rate saturates [LHA13]. In this thesis, we assume that the clusters are sufficiently
orthogonal, such that the models in (2.8) and (2.11) well represent the system.

2.3 Weighted Sum Rate Optimization

The DoF metric introduced in the previous section is useful in the high-SNR regime,
since it then gives a partial characterization of the capacity region. For the resource
allocation in our coordinated precoding system, we may thus try to achieve the
optimal sum DoF directly, using interference alignment. We call this approach
pure IA, since it is only concerned with finding some IA solution that maximizes
the DoF of the system. As alluded to earlier, there may often be several IA solutions
[GSB13], which may correspond to different sum rates.

In this thesis, our true objective is to maximize the MS rates. In certain scenar-
ios, trying to solve the IA conditions in (2.17)–(2.18) on page 22 may be a fruitful
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approach to finding solutions with good sum rates. However, there are several
downsides with trying to solve this proxy problem.

• In case IA is not feasible, it is not meaningful to try to solve the IA conditions.
IA feasibility depends on the problem dimensions, and we are interested in
optimizing the MS rates for arbitrary problem dimensions.

• The sum DoF, which is provided by the achievable IA schemes, is only an
interesting metric in the high-SNR regime. We are interested in optimizing
the MS rates for arbitrary SNRs.

• In order to achieve the optimal sum DoF, perfect and global CSI as well
as perfect transceiver hardware is typically assumed. Real-world systems
have neither, and we are interested in building systems that are amenable for
practical implementation.

Due to these challenges with using the pure IA precoders for coordinated precoding,
in this chapter we will instead study how to directly maximize the weighted sum
rate. In the high-SNR regime, when IA is feasible, the optimal solution to the
weighted sum rate problem will be the IA solution with the highest weighted sum
rate.

2.3.1 System Utility and Constraints

In the field of mathematical optimization [BV04,Ber06], the goal is to optimize an
objective function subject to some constraints on the involved optimization vari-
ables. In the wireless networks that we study, each MS will have its own objective
function, and the goal is to optimize all of these objective functions simultaneously.
Since the MSs share the ether, they are inherently coupled however. Improving
performance for one MS may therefore degrade performance for another MS. This
corresponds to multi-objective optimization, and all achievable working points are
described by a performance region [BJ13]. Since the performance region is not
easily characterized for the multicell MIMO case [BJ13], we focus on a scalarized
problem. A system-level objective is formed, as a function of all the MSs’ objec-
tives, and the system-level function is optimized. For the exposition in this section,
we will use the interfering broadcast channel in (2.11) on page 19, but the results
are analogous for the interference channel in (2.8) on page 18.

Optimization Variables

For each MS ik, the serving BS i has a corresponding linear precoder Vik
œ C

Mi◊dik .
We restrict ourselves to linear techniques due to their low complexity in terms of
implementation, and due to the fact that IA was shown to be achievable using
linear filters in Section 2.2. The precoders will be the optimization variables in the
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forthcoming optimization problem. In order to have a compact notation, we put
all the precoders {Vik

} in the tuple V such that

V =
1

V11
, V12

, . . . , V1K1
, . . . , VI1

, VI2
, . . . , VIKI

2
œ C

Mtot . (2.30)

In (2.30), the total dimension of the precoder space is

Mtot = Π
I
i=1Mi ◊

1
Π

Ki

k=1dik

2
, (2.31)

where the outer-most product is over the BSs, and the inner-most product is over
the MSs served by each BS.

User Utilities

We now assume that each MS ik will have some utility qik
(V), which depends on

the selected precoders V. This utility can for example be the bit error probability,
the mean squared error, or the achievable data rate for MS ik. In principle, we
could select any user utility, but in this thesis we will mainly be concerned with the
achievable data rate. As mentioned in Section 2.2.1, this is the data rate that can
be achieved assuming Gaussian codebooks, long codewords and optimal decoders.
Although these assumptions do not hold in practical systems, the achievable data
rate can be seen as an upper bound on the ‘true performance’.

For mathematical tractability, and in order to decrease the complexity of the
decoder, we assume that the received interference is treated as noise in the decoder.
The data rate for MS ik in the interfering broadcast channel is then

Rik
= log2 det

1
Idik

+ VH

ik
HH

iki

!
Φ

i+n
ik

"≠1
HikiVik

2
, (2.32)

where Φ
i+n
ik

is defined in (2.13) on page 19. Treating the interference as noise is
in general suboptimal in capacity sense, but leads to simple and practical receiver
algorithms. Note that (2.32) is non-convex in the precoders {Vjl

}, since they show
up both as an outer quadratic term, as well as inner quadratic terms inside Φ

i+n
ik

.
Similarly, the data rate for the MS k in the interference channel is

Rk = log2 det
1

Idk
+ VH

k HH

kk

!
Φ

i+n
k

"≠1
HkkVk

2
, (2.33)

where Φ
i+n
k is defined in (2.9) on page 18.

System Utility

The goal is now to optimize the rates for all the MSs. That is, we want to solve
the optimization problem

maximize
{Vik

}

Ó
R11

, R12
, . . . , RIKI

Ô

subject to V œ V.

(2.34)
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The precoders stacked in the tuple V are the optimization variables, and we wish
to simultaneously optimize all data rates. The set V is a convex set that describes
the feasible precoders. We give some examples of sets V that might appear in
applications on the next page.

The problem (2.34) is a multi-objective optimization problem [BJ13, Ch. 1.4.2].
The Pareto boundary describes all operating points where the performance of some
MS cannot be increased without decreasing the performance of at least some other
MS [BV04, Ch. 4.7]. The Pareto boundary has been fully characterized for the
MISO scenario in [JLD09], and partially characterized for the MIMO scenario
[CJS13].

In order to simplify the problem, instead of searching for the Pareto boundary,
we will scalarize it using a system-level objective [BV04, Ch. 4.7.4]. For some

system-level objective qsys

1
R11

, R12
, . . . RIKI

2
, the scalarized optimization problem

is

maximize
{Vik

}
qsys

1
R11

, R12
, . . . RIKI

2

subject to V œ V.

(2.35)

The system-level objective describes how the individual MS rates impact the system-
level performance. The selection of the system-level objective is inherently subjec-
tive, and common choices are: a weighted sum, the harmonic mean, the minimum
MS rate, etc [BJ13]. In this thesis, we choose the weighted sum rate as our system-
level objective:

qsys

1
R11

, R12
, . . . RIKI

2
=

ÿ

(i,k)

–ik
Rik

. (2.36)

In essence, the sum rate describes the ultimate performance of the system, when
fairness is not taken into account. That is, the system will completely turn off MSs,
if that benefits system performance. By suitably selecting the weights –ik

œ [0, 1],
all Pareto optimal points that coincide with the convex hull of the Pareto boundary
can be found [BJ13]. The weights can also be thought to describe the relative
importance of the MSs, and can e.g. be selected to achieve a proportionally fair
solution [KMT98].

Finally, we state the weighted sum rate optimization problem as

maximize
{Vik

}

ÿ

(i,k)

–ik
log2 det

1
Idik

+ VH

ik
HH

iki

!
Φ

i+n
ik

"≠1
HikiVik

2

subject to V œ V.

(2.37)

This is a non-convex optimization problem, since the MS rates (2.32) are non-convex
in {Vjl

}. At least when Nk = 1 for all k, the problem is also NP-hard [LDL11].
In addition to the user utilities, the set of feasible precoders V will affect the

solution to (2.37). We now detail some common feasible sets.
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Total Power Constraint

If the total radiated power of the system is constrained, the feasible set would be:

V =

I 1
V11

, V12
, . . . , VIKI

2
œ C

Π
I
i=1Mi◊

!
Π

Ki
k=1

dik

"
:

ÿ

(i,k)

Tr
!
Vik

VH

ik

"
Æ Ptot

J
.

(2.38)

Per-BS Sum Power Constraint

A more common feasible set is the one corresponding to the per-BS sum power
constraint. For this set, the total radiated power per BS is constrained. This
constraint may be due to either hardware limitations, or regulatory requirements.
The feasible set is a Cartesian product of the feasible sets corresponding to the
different BSs,

V = V1 ◊ V2 ◊ · · · ◊ VI (2.39)

and the feasible set for each BS is described by

Vi =

I
!
Vi1 , . . . , ViKi

"
œ C

Mi◊Π
Ki
k=1

dik :

Kiÿ

k=1

Tr
!
Vik

VH

ik

"
Æ Pi

J
. (2.40)

Per-BS Per-Antenna Power Constraint

With the per-BS sum power constraint, in principle all power could be allocated to
one antenna for a particular BS. If the transmit power per RF-chain must be con-
strained, this can be done with the per-BS per-antenna power constraint. Similarly
to the per-BS sum power constraint, this feasible set can be written as a Cartesian
product over BSs,

V = V1 ◊ V2 ◊ · · · ◊ VI (2.41)

and the feasible set for each BS is described by

Vi =

I
!
Vi1

, . . . , ViKi

"
œ C

Mi◊Π
Ki
k=1

dik :

Kiÿ

k=1

...[Vik
]m,:

...
2

F
Æ Pi,m,

m = 1, . . . , Mi

J
.

(2.42)

2.3.2 Convexity and Optimality Conditions

The weighted sum rate problem in (2.37) on the facing page is non-convex, and
possibly NP-hard in general. It is therefore hard to solve, and we will only venture
to find locally optimal solutions. For completeness, we will however first shortly
discuss convex optimization problems in this section.
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A function f(x) œ R is said to be convex if it satisfies

f(tx + (1 ≠ t)y) Æ tf(x) + (1 ≠ t)f(y) (2.43)

for all x œ R
L, y œ R

L and t œ [0, 1]. A set X is said to be convex if

tx + (1 ≠ t)y œ X (2.44)

for any x, y œ X and t œ [0, 1]. Applying these concept to mathematical optimiza-
tion, we can formulate a convex optimization problem as

minimize
x

f(x)

subject to x œ X .
(2.45)

This problem is called convex since the objective function is convex, and the feasible
set is convex. A particularly prominent feature of convex optimization problems
is that any local optimum is also a global optimum [BV04]. This makes this class
of problem ‘easy’ to solve to global optimality, a property which does not hold in
general for non-convex optimization problems.

For a general non-convex optimization problem, under some regularity condi-
tions [Ber06, Ch. 3.3], the Karush-Kuhn-Tucker (KKT) conditions [BV04, Ch. 5.5],
[Ber06, Ch. 3.3], give necessary conditions for a point to be optimal. For the spe-
cial case of convex optimization problems, and assuming e.g. that a strictly feasible
point exists6, the KKT conditions are both necessary and sufficient [BV04, Ch. 5.5].
Finding the optimum to a convex optimization problem therefore amounts to solv-
ing the KKT conditions. In some cases, closed-form solutions can be found, but
in general, numerical methods must be used to solve them. In the last couple of
decades, interior-point methods [BV04] have been the state-of-the-art for solving
constrained convex optimization problems.

2.3.3 Algorithms

We now summarize some of the optimization algorithms that will be used to find
the precoders in this thesis. The IA and coordinated precoding literature is abound
with algorithms, see e.g. [SSB+13] for a comparison. We choose to highlight three
algorithms in particular, which will be used further along in the thesis. We will
present the WMMSE algorithm of [SRLH11], due to its rigorous construction and
good performance. Further, we present the algorithms MinWLI (pure IA) and
MaxSINR from [GCJ11].

For the MIMO interference channel with K = 3 MS/BS pairs, an achievable IA
scheme was presented in closed-form in Section 2.2.2. For general configurations
however, closed-form solutions do not exist, and iterative algorithms need to be
applied [SSB+13]. The original iterative method for finding pure IA solutions was

6This is known as Slater’s constraint qualification [BV04].
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proposed by Gomadam et al. in [GCJ08] (journal version in [GCJ11]), where a
surrogate function called the interference leakage was minimized using alternating
minimization. An algorithmically identical algorithm was soon thereafter proposed
in [PH09]. In [SGHP10], the leakage minimization method was combined with a
step moving along the gradient of the sum rate, in order to improve sum rate of
the resulting IA solution.

The interference leakage is a measure of how much interference power leaks
into the subspace that should be free of interference. By instead minimizing the
rank of the interference subspace, through a convex relaxation with the nuclear
norm, [PD12] proposed a rank constrained rank minimization algorithm based on
alternating minimization. This method was further improved by using an improved
surrogate function for the rank operator, resulting in a reweighted nuclear norm
minimization algorithm in [DRSP13].

Instead of minimizing the leakage, Schmidt et al. proposed an MMSE inter-
ference alignment technique in [SCB+09]. In [GCJ08], the MaxSINR method was
proposed, which iteratively maximizes the SINRs of the different spatial streams
of the network. The convergence of this heuristic has not been proven, but em-
pirically it often works very well [GCJ11, BAB12]. Modified versions of the SINR
maximization in [GCJ11], with proven convergence, have been proposed in [PH11]
and [WV13].

Point-to-Point Channel [Tel99]

For completeness, we first show how to find the optimal precoders for the point-to-
point channel in (2.7) on page 17. Under the standard assumptions of a Gaussian
codebook, long codewords, and an optimal decoder, the achievable data rate can
be written as

R = log2 det

3
Id +

1

‡2
V̄HHHHV̄

4
. (2.46)

Under a sum power constraint, the optimal precoder is found as the solution to the
optimization problem

maximize
V̄

log2 det

3
Id +

1

‡2
V̄HHHHV̄

4

subject to
..V̄

..2

F
Æ P.

(2.47)

This is a convex optimization problem in V̄. Telatar [Tel99] showed that the optimal
precoder V̄ı is such that it diagonalizes the effective channel. The available transmit
power should be allocated according to the water filling technique. Let LΛLH =
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HHH be the eigenvalue decomposition. Then it can be shown [Tel99] that

V̄ı = [L]:,1:d

Q
ccca


pı

1 
pı

2

. . . 
pı

d

R
dddb , (2.48)

where [·]:,1:d picks out the d first columns and pn is the power allocation for data
stream n. With this choice, note that

V̄ı,HHHHV̄ı =

Q
ccca

s2
1

!
HHH

"
pı

1

s2
2

!
HHH

"
pı

2

. . .
s2

d

!
HHH

"
pı

d

R
dddb (2.49)

where s2
n

!
HHH

"
is the nth largest singular value of HHH. Consequently, the

optimal rate is

Rı =

dÿ

n=1

log2

A
1 +

s2
n

!
HHH

"
pı

n

‡2

B
. (2.50)

The optimal pı
n are found via water filling as

pı
n = max

3
0, µ ≠ ‡2

s2
n (HHH)

4
. (2.51)

Here, µ is the water level which is selected such that
qd

n=1 pı
n = P . The name water

filling derives from the interpretation of (2.51), which can be seen as filling water
into a container with different depths for the different subchannels. The squared
singular values s2

n

!
HHH

"
determine the quality of the subchannels, and thus how

much power should be allocated to them. It can be shown that in the low-SNR
regime, only one subchannel will have non-zero power allocation. Conversely, in
the high-SNR regime, the power allocation will be uniform over the subchannels.

MinWLI [GCJ11]

Next, we present the MinWLI algorithm of [GCJ11]. This algorithm tries to find
solutions that satisfy (2.17) on page 22, i.e. it is a pure IA algorithm. It does so by
minimizing a surrogate function, called the interference leakage. The interference
leakage for MS ik is

ILik
= Tr

!
AH

ik
Φ

int
ik

Aik

"
= Tr

Q
aAH

ik

Q
a ÿ

(j,l) ”=(i,k)

HikjVjl
VH

jl
HH

ikj

R
b Aik

R
b (2.52)
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and describes the amount of interference power that leaks into the receive filtered
signal space. The system-level utility function is simply the weighted sum of in-
terference leakages. The MinWLI algorithm then tries to solve the following opti-
mization problem, under unitary constraints for precoders are receive filters:

minimize
{Aik

},{Vik
}

ÿ

(i,k)

–ik
Tr

Q
aAH

ik

Q
a ÿ

(j,l) ”=(i,k)

HikjVjl
VH

jl
HH

ikj

R
b Aik

R
b

subject to AH

ik
Aik

= Idik
, i = 1, . . . , I, k = 1, . . . , Ki

VH

ik
Vik

=
Pi

Kidik

Idik
, i = 1, . . . , I, k = 1, . . . , Ki

(2.53)

This is a non-convex optimization problem in the joint block of variables {Aik
, Vik

}.
Fixing either of the blocks however, the resulting optimization problem is convex,
and has a solution in closed-form. Fixing the precoders {Vik

}, the optimal receive
filter for MS ik is the eigenvectors corresponding to the dik

smallest eigenvalues of
the interference covariance matrix

Φ
int
ik

=
ÿ

(j,l) ”=(i,k)

HikjVjl
VH

jl
HH

ikj . (2.54)

By fixing {Aik
}, the optimal precoder for MS ik is the eigenvectors corresponding

to the dik
smallest eigenvalues of the virtual uplink interference covariance matrix

Υ
int
i =

ÿ

(j,l) ”=(i,k)

–jl
HH

jliAjl
AH

jl
HH

jli. (2.55)

Since a unique solution is found in each alternating minimization iteration, [Ber06,
Prop. 2.7.1] can be applied to show that every limit point of the iterates corre-
sponds to a stationary point of (2.53). We summarize the MinWLI algorithm in
Algorithm 2.1 on the next page.

MaxSINR [GCJ11]

We also present the MaxSINR algorithm of [GCJ11]. This is a completely ad
hoc method for sum rate optimization, which iteratively maximizes the SINRs of
the different streams of the network. In each step, the optimal receive filter, or
precoder, for one particular stream is found. Although the precoder is optimal
for the given stream, at that particular moment, it may not be optimal in the
sum rate sense. No convergence proof for the original formulation in [GCJ11]
has been provided, although modified versions which provenly converge have been
proposed [PH11,WV13]. Empirically, for scenarios where IA is feasible, this method
sometimes works extremely well however; see e.g. Section 3.4 and Section 4.4 in
this thesis.



34 CHAPTER 2. COORDINATED PRECODING

Algorithm 2.1 MinWLI [GCJ11] with Per-BS Sum Power Constraints
1: repeat

At MS ik:
2: aik,n = eigvecNik

≠n+1

!
Φ

int
ik

"
, n = 1, . . . , dik

3: Aik
=

!
aik,1 aik,2 · · · aik,dik

"

At BS i:
4: bik,n = eigvecMi≠n+1 (Υint

i ) , k = 1, . . . , Ki, n = 1, . . . , dik

5: Bik
=

!
bik,1 bik,2 · · · bik,dik

"
, k = 1, . . . , Ki

6: Vik
=

Ò
Pi

Kidik
Bik

, k = 1, . . . , Ki

7: until convergence criterion met, or fixed number of iterations

Algorithm 2.2 MaxSINR [GCJ11] with Per-BS Sum Power Constraints
1: repeat

At MS ik:

2: aik,n =
Φ

≠1
ik

Hikivik,n..Φ
≠1
ik

Hikivik,n

..
2

, n = 1, . . . , dik

3: Aik
=

!
aik,1 aik,2 · · · aik,dik

"

At BS i:

4: bik,n =
Ô

–ik (Υi+Î2
i I)

≠1
HH

ikiaik,n..Ô
–ik (Υi+Î2

i
I)

≠1
HH

iki
aik,n

..
2

k = 1, . . . , Ki, n = 1, . . . , dik

5: Bik
=

!
bik,1 bik,2 · · · bik,dik

"
, k = 1, . . . , Ki

6: Vik
=

Ò
Pi

Kidik
Bik

, k = 1, . . . , Ki

7: until fixed number of iterations

We do not show the details of the derivation of the original MaxSINR here,
since a very similar MaxSINDR algorithm is derived in Section 5.3.2. Instead, we
directly summarize the original MaxSINR in Algorithm 2.2. There,

Υi =
ÿ

(j,l)

–jl
HH

jliAjl
AH

jl
HH

jli (2.56)

is the signal plus interference covariance matrix in the virtual uplink. The noise
power of BS i in the virtual uplink is Î2

i . The transmit power is uniformly allocated
over streams and MSs.

WMMSE [SRLH11]

Finally, we now turn our attention to the weighted sum rate problem (2.37) on
page 28. One method for finding a local optimum to this optimization problem is
the WMMSE algorithm [SRLH11]. In this section, we present a trivially modified
version of this algorithm. The modification lies in accepting any convex feasible
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set7 for V. By enlarging the search space and applying a tight lower bound to
the MS rates, an iterative algorithm that monotonically converges to a stationary
point can be found. First, we assume that a linear receive filter is used at the
MSs, similarly as in (2.16) on page 22. With the estimate of the transmitted signal
x̂ik

= AH

ik
yik

, the mean squared error (MSE) matrix for MS ik is

Eik
= E

1
(xik

≠ x̂ik
) (xik

≠ x̂ik
)
H

2
= E

1!
xik

≠ AH

ik
yik

" !
xik

≠ AH

ik
yik

"H
2

= I ≠ AH

ik
HikiVik

≠ VH

ik
HH

ikiAik
+ AH

ik
Φik

Aik
.

(2.57)

The MSE is another user performance metric, and the optimal receive filter in sum
MSE sense is the well known MMSE filter. Minimizing Tr (Eik

) w.r.t. Aik
, the

optimal filter is given as
AMMSE

ik
= Φ

≠1
ik

HikiVik
. (2.58)

Note that since yik
and xik

have a linear relationship, and are jointly Gaussian,
the optimal receiver structure is linear [Kay93, Ch. 15]. The receiver in (2.58) is
therefore the MSE optimal receiver, and not just the best receiver (in MSE sense)
amongst all linear receivers.

The MMSE filter has an interesting connection to the data rate. By substituting
(2.58) into (2.57), it can be shown that

EMMSE
ik

= Eik

!
AMMSE

ik

"
= I ≠ Vik

HH

ikiΦ
≠1
ik

HikiVik

=
1

I + Vik
HH

iki

!
Φ

i+n
ik

"≠1
HikiVik

2≠1

.
(2.59)

The last equality in (2.59) is due to the matrix inversion lemma. From (2.32) on
page 27, we thus note that

Rik
= log2 det

1!
EMMSE

ik

"≠1
2

= max
Aik

log2 det
1

(Eik
)
≠1

2
= ≠ min

Aik

log2 det (Eik
) .

(2.60)

The second equality in (2.60) can be shown by noting that the gradient [HG07]
of Tr (Eik

) w.r.t. Aik
and the gradient of ≠ log2 det (Eik

) w.r.t. Aik
are such

that, when set to zero, they both give the same solution. Since both functions are
convex w.r.t. Aik

, the corresponding unconstrained optimization problems have
the same solution. This connection has long been known for the single-user MIMO
scenario [PCL03], the multiuser MIMO scenario [CACC08], and it was noted for
the multicell MIMO scenario in [SRLH11].

Our goal is to find a local optimum to the weighed sum rate problem (2.37) on
page 28. The first step in the WMMSE approach, as pioneered by [SRLH11],
is to enlarge the search space to {Aik

, Vik
} and use (2.60) to replace Rik

æ
7One practically relevant scenario would for example be sum rate optimization for OFDM

systems where the per-BS power constraints are summed over the subcarriers.
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≠ log2 det (Eik
) in the objective function. Then the concave log2 det (Eik

) can be
upper bounded by its first-order Taylor approximation, around a point Ēik

:

log2 det (Eik
) Æ log2(e)

!
≠ loge det

!
Ē≠1

ik

"
+ Tr

!
Ē≠1

ik
Eik

"
≠ dik

"
, ’ Ēik

º 0
(2.61)

where e = 2.718... is Euler’s number. Next, additional optimization variables
{Wik

º 0} are introduced such that Wik
= Ē≠1

ik
. These optimization variables

thus determine the current linearization point of the MS rates. Lastly, by minimiz-
ing the weighted sum of the right-hand side of (2.61), we arrive at the following
weighted MMSE problem,

minimize
{Vik

},{Aik
}

{Wik
º0}

log2(e)
ÿ

(i,k)

–ik
(Tr (Wik

Eik
) ≠ loge det (Wik

) ≠ dik
)

subject to V œ V,

(2.62)

where Eik
is given in (2.57) on the preceding page. This optimization problem

is still non-convex over the joint set {Aik
, Wik

, Vik
}. It is however convex in

any block ({Aik
}, {Wik

} or {Vik
}), when the remaining two blocks are kept fixed.

Further, a stationary point can be found through alternating minimization8 [Ber06,
Ch. 2.7] over the blocks {Aik

}, {Wik
}, and {Vik

} [SRLH11]. There is a one-to-one
correspondence between the stationary points of (2.37) and the stationary points
of (2.62) [SRLH11]. As will be shown later, in every iteration the bound in (2.61)
is locally tight. Therefore, alternating minimization of (2.62) will also converge to
a stationary point of (2.37) [RHL13]. Unless started from a local maximum, the
WMMSE iterations will converge to a local minimum, since the objective in (2.62)
is minimized in each iteration. It can also be shown that the global solutions to
(2.37) and the global solutions to (2.62) coincide [SRLH11] (see similar derivation
in Section 5.2.2).

The WMMSE algorithm, as termed by [SRLH11], follows from applying alter-
nating minimization to (2.62) over the blocks of variables. Assuming that the nodes
have perfect knowledge of their local CSI, the WMMSE algorithm is an example
of a distributed resource allocation algorithm [SSB+13]. We will deliberate on this
fact more in Chapter 4, where we will also discuss how to obtain the local CSI in
a distributed fashion.

The first step in the WMMSE algorithm is to find the solution to (2.62) w.r.t
{Aik

}, for fixed {Wik
, Vik

}. It is clear that it suffices to solve

minimize
{Aik

}

ÿ

(i,k)

Tr (Wik
Eik

) . (2.63)

This problem decouples naturally over the MSs, and since Wik
º 0, the solution

to the quadratic program for MS ik is Aı
ik

= AMMSE
ik

. That is, the optimal receive

8This technique is also known as block coordinate descent or block nonlinear Gauss-Seidel in
the literature.



2.3. WEIGHTED SUM RATE OPTIMIZATION 37

filter is the MMSE receiver. Next, fixing {Aik
, Vik

}, the problem again decouples
over the MSs. For MS ik, we should solve

minimize
Wik

Tr (Wik
Eik

) ≠ loge det (Wik
) . (2.64)

This corresponds to updating the linearization point of loge det (Eik
) and the solu-

tion for MS ik is

Wı
ik

= E≠1
ik

=
!
I ≠ VH

ik
HH

ikiΦ
≠1
ik

HikiVik

"≠1
(2.65)

where the last equality comes from plugging in Aı
ik

= AMMSE
ik

(cf. (2.59) on
page 35).

With the new iterates for Aik
and Wik

, it remains to solve (2.62) w.r.t {Vik
}

for fixed {Aik
, Wik

}. Removing terms that are constant w.r.t. Vik
and the scaling

with 1/ log2(e), this is equivalent to solving

minimize
{Vik

}

ÿ

(i,k)

–ik
Tr (Wik

Eik
)

subject to V œ V.

(2.66)

By using the property that Tr (CD) = Tr (DC), and dropping constant terms, it
can be shown that the following optimization problem is equivalent to (2.66):

minimize
{Vik

}

ÿ

(i,k)

Tr
!
VH

ik
ΓiVik

"
≠ 2–ik

Re
!
Tr

!
Wik

AH

ik
HikiVik

""

subject to V œ V.

(2.67)

where Γi =
q

(j,l) –jl
HH

jliAjl
Wjl

AH

jl
Hjli is a signal plus interference covariance

matrix for BS i in the uplink. This is a convex optimization problem with a
quadratic objective, which can be solved efficiently using e.g. interior-point meth-
ods [BV04, Ch. 11].

For the total power constraint in (2.38) and the per-BS sum power constraint
set (2.39) on page 29, the solutions to (2.67) are particularly simple to find. For
the total power constraint, the solution to (2.67) is

Vı
ik

= –ik
(Γi + ‹ıI)

≠1
HH

ikiAik
Wik

, i = 1, . . . , I, k = 1, . . . , Ki, (2.68)

where ‹ı Ø 0 is the optimal Lagrange multiplier for the constraint. If the constraint
is satisfied for ‹ = 0, the optimal precoders have been found. If this is not the case, ‹

can be found by 1D search methods such that
q

(i,k) Tr
!
Vik

VH

ik

"
= Ptot is satisfied.

Since
q

(i,k) Tr
!
Vik

VH

ik

"
can be shown to be monotonically decreasing in ‹, e.g.

bisection can be used.
The solution for the per-BS sum power constraint in (2.39) is very similar. The

solution is

Vı
ik

= –ik
(Γi + ‹ı

i I)
≠1

HH

ikiAik
Wik

, i = 1, . . . , I, k = 1, . . . , Ki, (2.69)
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Algorithm 2.3 WMMSE Algorithm [SRLH11] with General Constraint Set
1: repeat

At MS ik:
2: Find MSE weights: Wik

= I + VH

ik
HH

iki

!
Φ

i+n
ik

"≠1
HikiVik

3: Find MMSE receive filters: Aik
= Φ

≠1
ik

HikiVik

At BSs:
4: Find precoders as solution to:

minimize
{Vik

}

ÿ

(i,k)

–ik
Tr

!
VH

ik
ΓiVik

"
≠ 2–ik

Re
!
Tr

!
Wik

AH

ik
HikiVik

""

subject to V œ V.

5: until convergence criterion met, or fixed number of iterations

where the ‹ı
i Ø 0 are the optimal Lagrange multipliers for the I per-BS constraints.

This can be found in the same manner as for the total power constraint above, i.e.
if ‹i = 0 satisfies the constraint for BS i, the problem is solved. Otherwise, ‹i > 0
is found such that

qKi

k=1 Tr
!
Vik

VH

ik

"
= Pi is satisfied. This can be done using

bisection, since
qKi

k=1 Tr
!
Vik

VH

ik

"
can be shown to be monotonically decreasing in

‹i.
When the precoders {Vik

} have been found, the iterations start over by solving
for {Aik

} again. With each update of {Aik
}, {Wik

} and {Vik
}, the objective

value of (2.62) cannot increase. Since the objective value in (2.62) can be bounded,
the objective value therefore converges monotonically. Unless started from a local
maximum, the algorithm will find a local minimum, since it minimizes the objective
function in every iteration. The convergence was shown for the per-BS sum power
constraint in [SRLH11], but the convergence for the general case is a straight-
forward generalization that can be shown using e.g. [Ber06, Prop. 2.7.1], [RHL13]
or [GS00].

We now summarize the WMMSE algorithm in Algorithm 2.3. Note that the
original version in [SRLH11] only had per-BS sum power constraints, and Algo-
rithm 2.3 is therefore slightly more general.

2.4 Practical Considerations

In the discussion up until now, the presented models expose the multiuser interac-
tion, and the corresponding challenges of handling the negative impact of interfer-
ence. Assuming perfect CSI and aligned interference, the only performance-limiting
factor was the thermal noise at the receivers. In practice, several other challenges
exist however. Amongst others, these can be: outdated and imperfect CSI, trans-
mission delays, imperfect synchronization, limited and delayed backhaul, imperfect
hardware, etc. We will discuss some of these issues now, as they will be further
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investigated in the following chapters.

2.4.1 Distributed Techniques

Some precoding methods, such as the K = 3 closed-form IA solution in Sec-
tion 2.2.2, require the complete network CSI to be available in one central location.
For large networks, it is clearly not practical to collect all CSI in one location, due
to backhaul capacity and delay constraints, as well as limited channel coherence
time. Thus, distributed methods for CSI acquisition and resource allocation are
needed. In the detailed resource allocation methods, both BSs and MSs need CSI.
For FDD systems, the BSs can only obtain the CSI through feedback, whereas
for TDD systems, the channel reciprocity [GSK05] can be used together with up-
link pilot transmissions [JAWV11, SBH13]. Regarding the resource allocation, the
WMMSE algorithm in Section 2.3.3 is an example of a distributed method, since
the nodes can perform their part in the optimization based solely on local CSI.

Earlier work on distributed coordinated precoding methods include [SBH13],
where a reciprocal channel was exploited to directly estimate the SINR-maximizing
filters. Focusing on the reciprocity, and using the receive filters as transmit fil-
ters in the uplink, [GAH11] performed extensive simulations for a beam selection
approach. Channel reciprocity was also used in the original paper on distributed
interference alignment [GCJ11], but there the focus was on using it as an algorith-
mic construct. In [KTJ13], decentralized algorithms based on WMMSE ideas were
proposed, achieving faster convergence than the original WMMSE in [SRLH11],
in addition to CSI signaling strategies for obtaining the necessary CSI. TDD reci-
procity was assumed, and the MSs used combinations of inter and intra-cell effective
channel pilot transmissions. Contrary to our work in Chapter 4, perfect channel
estimation was assumed, and their decentralized algorithms still require some BS
backhaul.

2.4.2 Imperfect Channel State Information

In the described resource allocation methods, CSI at both BSs and MSs is essential.
Although the formulations in Section 2.3.3 assume that the BSs have knowledge of
CSI without errors, this will not be the case in practical systems. Since CSI often
is obtained through pilot transmissions and channel estimation [BG06, JAWV11,
SBH13], it is naturally imperfect. The resource allocation should take this into
account, in order to be robust against the imperfections.

Earlier work on robust resource allocation was performed in [SM12, LKY13],
where robustified weighted MMSE algorithms were proposed. The contribution of
the channel estimation errors in the involved covariance matrices were averaged
out, leading to robust but non-distributed solutions. The same approach was taken
in [RBCL13], where it was mentioned that this corresponds to optimizing a lower
bound on the achieved performance, and in [NGS12] where the lower bound was
explicitly derived. The receive filters and precoders were in effect robustified by



40 CHAPTER 2. COORDINATED PRECODING

diagonal loading, where the diagonal loading factors were determined by channel
estimation error and transmitted power. For all the prior robust WMMSE algo-
rithms [SM12, NGS12, LKY13, RBCL13], perfect knowledge of the receive filters,
MSE weights, and precoders are assumed at all involved nodes. The methods are
therefore not distributed, which is in contrast to the work presented in Chapter 4.

2.4.3 Imperfect Hardware

Another transceiver impairment is that of imperfect hardware. This may be in the
form of phase noise, I/Q imbalance, power amplifier non-linearities and sampling-
rate and carrier frequency offsets [Sch08]. Compensation schemes exist for all of
these different hardware impairments, but since the compensation in general is not
perfect, some residual hardware impairments still remain [SWB10]. These residual
impairments impact the performance [SWB11, BZBO12], and should therefore be
accounted for in the precoder optimization [BZB12,BJ13]. In Chapter 5, we present
a simple model for the residual hardware impairments based on [BJ13, Ch. 4.3].
We also propose a WMMSE algorithm for finding locally optimal points to the
corresponding weighted sum rate problem with hardware-impaired receivers. The
resulting algorithm is distributed over the MSs, but the precoders must in general be
found at a central BS. For a special case however, the resulting algorithm becomes
fully distributed.



Chapter 3

Interference Alignment over Space and

Frequency

In order to perform interference alignment, a signal space of dimension larger than
one is needed. For multi-antenna systems, this requirement is naturally satisfied.
For single-antenna systems, the idea of time- or frequency extensions for interfer-
ence alignment was proposed in [CJ08]. By precoding over several time slots, or
subcarriers, a signal space of dimension larger than one is created. Since chan-
nel state information is required at the transmitters, it seems more practical to
use frequency extensions than time extensions, since the latter generally requires
noncausal knowledge of the channel.

In this chapter, we study a more general model, where interference alignment is
performed over a signal space composed of a combination of spatial and frequency
dimensions. The spatial dimensions are accessed through multiple antennas at
the transceivers, and the frequency dimensions are accessed through orthogonal
frequency-division multiplexing1 (OFDM). First, the system model incorporating
the combined signal space is introduced. Three different types of uses of the com-
bined signal space are presented. Then the main contribution of this chapter, the
necessary condition for space-frequency IA feasibility, is presented. Finally, the per-
formance of the system is evaluated using numerical simulation. In the simulator,
both synthetically generated channels, as well as measured channels, are employed.

1OFDM [TV08] is a popular method for communicating over a wideband channel, reducing
the complexity of the equalization at the receiver compared to single-carrier transmission. As-
suming that the channel is linear and time-invariant (at least over some coherence time), it can
be diagonalized using the discrete Fourier transform. The resulting parallel and narrowband sub-

carriers can then easily be equalized at the receiver. Since the discrete Fourier transform can
be performed using the fast Fourier transform algorithm [OS99, Ch. 9], OFDM is amenable to
practical implementation. It is being used in many wireless standards, such as WiFi (802.11g/n)
and LTE.

41
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3.1 System Model

We assume a K user MIMO-OFDM interference channel, where each MS has N
antennas and each BS has M antennas. Through OFDM, the system can com-
municate over Lc orthogonal subcarriers. We study the downlink of the system,
and each MS is served d data streams by its corresponding BS2. We denote the
channel matrix between BS l and MS k at the nth subcarrier as H

(n)
kl œ C

N◊M .
In the analysis, we will assume that the channel matrix entries are realizations of
random variables, independent over antennas, subcarriers and transmitter-receiver
links. We will mainly focus on studying the IA feasibility problem (see Sec. 2.2.2),
and thus we assume that all transceivers have perfect knowledge of the necessary
channel state information.

In traditional systems, only one MS is served per subcarrier. This type of
orthogonalization is called OFDM multiple access (OFDMA). In the spirit of IA,
we are however interested in serving multiple MSs over the same subcarrier. Since
we are studying space-frequency precoding, we form a combined space-frequency
space by defining the frequency-extended channel from BS l to MS k as

Hkl = blkdiag
1

H
(1)
kl , . . . , H

(Lc)
kl

2
=

Q
cccca

H
(1)
kl

H
(2)
kl

. . .

H
(Lc)
kl

R
ddddb

. (3.1)

The block-diagonality is due to the the orthogonality of the subcarriers. The
frequency-extended channels can be used in different ways, and the three combined
signal space methods that will be studied in this chapter are:

Space-Frequency Precoding The MSs are served jointly over the combination
of spatial and frequency dimensions. Denoting the space-frequency precoder
for MS l as Vl œ C

MLc◊d, the received signal at MS k is

yk = HkkVkxk +
ÿ

l ”=k

HklVlxl + zk. (3.2)

Space-Only Precoding The MSs are served jointly over the spatial dimension
for each subcarrier, but the precoding over different subcarriers is orthogonal.
Denoting the space-only precoder for MS k at the nth subcarrier as V

(n)
k , this

corresponds to block diagonal space-frequency precoders:

Vk = blkdiag
1

V
(1)
k , . . . , V

(Lc)
k

2
. (3.3)

2This is called a symmetric setup in the literature (e.g. [YGJK10]), since the number of
antennas are the same for all transceivers, and all MSs are served the same number of data
streams.
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Combining (3.3) with (3.2), the received signal at MS k at the nth subcarrier
is

y
(n)
k = H

(n)
kk V

(n)
k x

(n)
k +

ÿ

l ”=k

H
(n)
kl V

(n)
l x

(n)
l + z

(n)
k . (3.4)

Frequency-Only Precoding For the special case that N = M = 1, the frequency-
extended channels are diagonal Hkl = diag

1
h

(1)
kl , . . . , h

(Lc)
kl

2
, and the MSs are

served jointly over all subcarriers as in (3.2).

Space-only precoding is simply a method for performing independent and simulta-
neous precoding over the Lc subcarriers. Applying IA in this setting boils down
to applying IA independently on each subcarrier. The feasibility of space-only
IA is thus determined by the single-carrier IA feasibility conditions, which were
elaborated on in Section 2.2.2. We remind the reader that the number of single-
stream (i.e. d = 1) MSs that can be served interference-free over one subcarrier
is [YGJK10,RLL12]

K = N + M ≠ 1. (3.5)

For frequency-only precoding, if the number of subcarriers grows exponentially
fast in K, an achievable IA scheme can be set up that asymptotically achieves
the optimal sum DoF of K/2 [CJ08]; see (2.19) and (2.20) in Section 2.2.2. In
addition to requiring a large amount of subcarriers, this original scheme also relies
on transmitting an exponentially large number of data streams per MS. In the
computationally less demanding case3 of single-stream transmission (d = 1), the
number of MSs that can be served interference-free over Lc subcarriers must satisfy
[SBH11]

K Æ 2Lc ≠ 2. (3.6)

Both space-only precoding and frequency-only precoding can be seen as special
cases of the more general space-frequency precoding. In this chapter, we present
a necessary condition for single-stream IA feasibility for the space-frequency pre-
coding setting. We also present sum rate performance evaluations for both space-
frequency precoding, as well as frequency-only precoding. For the space-frequency
setting, we compare to space-only precoding using synthetically generated channels,
as well as measured channels. For the frequency-only setting, we use measured
channels for the performance evaluation.

3.2 Necessary Condition for Space-Frequency IA Feasibility

In order to derive the necessary condition for space-frequency IA feasibility, we first
restate the IA conditions from Section 2.2.2:

AH

k HklVl = 0, ’ k œ {1, . . . , K}, l œ {1, . . . , K}, l ”= k (3.7)

rank
!
AH

k HkkVk

"
= dk, ’ k œ {1, . . . , K}. (3.8)

3The complexity of the optimal detector will grow quickly in the number of data streams that
are jointly decoded.
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The IA conditions succinctly describe the alignment: the equations in (3.7) require
all effective interfering channels to be zero, and the equations in (3.8) require that
the effective desired channel have sufficient rank to decode d streams. The feasibility
of IA is determined by the solvability of (3.7)–(3.8). The equations in (3.7) are a
set of bilinear equations in {Ak, Vk}. The solvability of this type of polynomial
system of equations can be analyzed using techniques from the mathematical field
of algebraic geometry [CLO98].

In this chapter, we will use the properness framework of [YGJK10], together with
Bernstein’s theorem from algebraic geometry, to determine a necessary condition
for the IA feasibility. We first define the notion of properness.

Definition 1 (Properness of symmetric systems [YGJK10]). Let Le and Lv denote
the number of equations and number of complex variables, respectively, in (3.7).
Then the polynomial system of equations in (3.7) is proper iff Lv Ø Le.

In [YGJK10], the properness condition was shown to be necessary for IA fea-
sibility for single-carrier MIMO systems with single-stream transmission. For this
setting, the number of MSs K that can be served interference-free is determined by
(3.5).

In our venture to find a necessary condition for IA feasibility for the space-
frequency setting, we start by deriving the properness condition for the frequency-
extended channels in (3.7) for arbitrary d.

Lemma 1. The polynomial system of equations in (3.7) with channels from (3.1)
is proper iff

Kd ((N + M)Lc ≠ 2d) ≠ Kd2(K ≠ 1) ≠
3

Lc ≠
9

d

min(N, M)

:4
Ø 0.

Proof. The number of equations in (3.7) is Le = Kd2(K ≠1). In order to count the
number of complex variables in (3.7), we need to use a parametrization with the
fewest number of independent variables possible. In total, there are K(N + M)Lcd
coefficients in all filters. However, the number of independent variables in the
polynomial system of equations is lower.

First, we notice that only the column spans of {Ak} and {Vl} matter in order
to satisfy (3.7). There is therefore no loss in letting

Ak =

3
Id

Āk

4
, Vk =

3
Id

V̄k

4
, ’ k œ {1, . . . , K}, (3.9)

which removes 2Kd2 variables. For some non-zero complex numbers —(n), n =
1, . . . , Lc, let

βA = blkdiag
1

—(1)IN , . . . , —(Lc)IN

2
, (3.10)

βV = blkdiag
1

—(1)IM , . . . , —(Lc)IM

2
. (3.11)
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Then notice that for k ”= l,

0
(a)
= AH

k HklVl = AH

k β≠1
A βAHklVl

(b)
= AH

k β≠1
A HklβV Vl = ÂAH

k Hkl
ÂVl,

where (a) is due to (3.7) and (b) is due to the block diagonal structure of βA, βV

and Hkl. That is, as similarly noted in [SBH11], any solution to (3.7) remains a
solution after the transformation

ÂAk = β≠H

A Ak, ’ k œ {1, . . . , K}, ÂVl = βV Vl, ’ l œ {1, . . . , K}. (3.12)

Note that the condition in (3.8) is still satisfied after this transformation. Under this
invariance, we can use the {—(n)} to further remove variables from the polynomial
system. For instance, let

ÂV1 = βV

3
Id

V̄1

4
=

Q
ca

—(1)IM

. . .
—(Lc)IM

R
db

3
Id

V̄1

4
. (3.13)

Since the topmost d rows of ÂV1 and ÂA1 should not be altered, Lc≠Á d
min(N,M) Ë of the

variables in ÂV1 can be fixed by selecting the {—(n)} appropriately. Subsequently,
the number of variables in the polynomial system (3.7) is

Lv = K(N + M)Lcd ≠ 2Kd2 ≠
3

Lc ≠
9

d

min(N, M)

:4
, (3.14)

and the lemma then follows from applying the properness condition Lv Ø Le from
Definition 1.

Although properness empirically often seems to be a sufficient indicator of IA
feasibility [Gui10], the condition in Lemma 1 is not a necessary condition for IA
feasibility for general d. By specializing to the d = 1 case however, we are able to
show that the properness criterion is indeed necessary. Before stating the result,
we remind the reader of the assumption that all channel coefficients are drawn
from random variables, independent over antennas, subcarriers and cross-links (see
Section 3.1).

Theorem 3.1. For d = 1, a necessary condition for space-frequency IA feasibility
is

K Æ
I

(N + M) ≠ 1, Lc = 1

(N + M)Lc ≠ 2, Lc Ø 2
. (3.15)

Proof. For d = 1, after rearrangement, the properness condition in Lemma 1 is
K Æ Â(N + M)Lc ≠ 1 ≠ Lc≠1

K Ê, which is equivalent to (3.15). To see why this
is a necessary condition for space-frequency IA feasibility when d = 1, we use an
argument previously used in [YGJK10] and [SBH11].
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Assume that (3.15) does not hold and thus Lv < Le. Then by removing the last
Le ≠ Lv equations from (3.7), we end up with a Lv–by–Lv polynomial system of
equations. In particular, this square system of equations is generic [CLO98], since
all coefficients are i.i.d. random variables. Through Bernstein’s theorem [CLO98,
Ch. 7], it can be shown that this square generic polynomial system has a bounded
number of non-zero solutions.

If there are zero solutions to the square polynomial system, there cannot be any
solution to the full polynomial system in (3.7) either. Since (3.7) cannot be solved,
space-frequency IA is not feasible.

If there is at least one solution to the square polynomial system, we study
the remaining Le ≠ Lv equations. These remaining equations have coefficients
that are random variables independent of the coefficients of the square polynomial
system. Therefore, any solution to the square polynomial system will not satisfy the
eliminated Le ≠ Lv equations with probability 1. Therefore, there are no solutions
to the full polynomial system in (3.7) in this case either, and space-frequency IA is
not feasible.

In conclusion, (3.15) is a necessary condition for the solvability of the full poly-
nomial system in (3.7). Due to the construction of the receive filters and precoders
in (3.9), the condition in (3.8) holds with probability 1 as well. Therefore, (3.15)
is a a necessary condition for space-frequency IA feasibility.

For the d Ø 2 case, the coefficients of the square polynomial system and the
coefficients of the remaining Le ≠ Lv equations might not be independent of each
other. It might therefore be possible to find a solution4 that holds for both the
square polynomial system, as well as the remaining equations, even though the full
system of equations is not proper.

The condition in Theorem 3.1 has the frequency-only condition in (3.6) as a
special case. The condition is further compliant with the necessary part of the
single-carrier condition in (3.5). From the feasibility perspective, it is clear that
spatial and frequency dimensions are equivalent, save for a constant loss of one
single-stream MS when using a frequency-extended channel instead of a single-
carrier system.

3.2.1 Gain of Space-Frequency IA over Space-Only IA

For space-frequency precoding with Lc Ø 2, we know from Theorem 3.1 that the
number of single-stream interference-free MSs served using IA must obey

KS-F Æ (N + M)Lc ≠ 2. (3.16)

4This can be illustrated with the following example. The K = 3 user 2 ◊ 2 scenario with
Lc = 1 and d = 1 is IA feasible [CJ08,YGJK10,RLL12]. Thus, the same scenario with Lc = 2 and
d = 2 is IA feasible through space-only precoding. The properness condition does not hold for this
frequency-extended scenario, and since space-only precoding is a special case of space-frequency
precoding (with block diagonal precoders), this means that the properness condition for general
d is not a necessary condition.
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Figure 3.1. Relative gain bound of space-frequency IA over space-only IA, in terms
of number of interference-free MSs served for the single-stream scenario.

With space-only precoding, we know from (3.5) that the number of single-stream
interference-free MSs that can be served per subcarrier using IA is N + M ≠ 1.
Thus, the total number of MSs that can be served over the Lc subcarriers in a
space-only configuration is

KS-O = (N + M ≠ 1)Lc. (3.17)

The relative gain of space-frequency IA over space-only IA, in terms of the number
of interference-free single-stream MSs served, can then be bounded as

KS-F

KS-O
Æ (N + M)Lc ≠ 2

(N + M ≠ 1)Lc
= 1 +

1 ≠ 2/Lc

N + M ≠ 1
Æ 1 +

1

N + M ≠ 1
, (3.18)

assuming Lc Ø 2. The relative gain improves with increasing Lc, but decreases with
increasing number of antennas N , M . If Lc = 2, the second term in the second last
expression of (3.18) is zero. Therefore, no relative gain is seen unless Lc Ø 3.

A plot of the maximum relative gain for a N = M scenario can be seen in
Figure 3.1. It is clear that the relative gain is the highest for the single-antenna
frequency-only case, and that the relative gain drops off as the number of antennas
is increased. This is because in the single-antenna scenario, only one MS can be
served interference-free on each subcarrier. In the multi-antenna scenario however,
using space-only IA, multiple interference-free MSs can be served on each subcarrier.
This results in the decreasing relative gain of the space-frequency IA method.
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Figure 3.2. Minimum number of subcarriers needed to serve K single-stream MSs
using space-frequency IA or space-only IA.
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Minimum Number of Subcarriers Needed

Reversely, assuming that K single-stream MSs should be served interference-free,
the feasibility conditions can be used to find the minimum number of subcarriers
Lc necessary. For three different combinations of N and M , this is plotted in
Figure 3.2 on the preceding page. It is clear that as the number of antennas grow,
a larger number of MSs must be served in order for space-frequency to have a
gain over space-only. For example, for N = M = 2, at least K = 10 MSs must
be served before space-frequency IA requires fewer subcarriers than space-only IA.
The reason for this effect is the same as the reason for the decreasing relative gain
of space-frequency IA over space-only IA, as described in the previous section.

3.3 Aspects of Correlation and Feasibility

In order to evaluate the sum rate performance of the proposed space-frequency
precoding, we first need to discuss some aspects of the combined signal space.
The first issue is that in the system model in Section 3.1, the channel matrices at
different subcarriers were assumed to be independent. This will in general not be
the case in real-world scenarios. Therefore, we here propose a simple method for
minimizing any subcarrier correlations for the subcarriers that partake in space-
frequency precoding. The second issue is that of performing user selection for
space-only precoding. Since each subcarrier will only be able to accommodate a
certain number of MSs, these need to be selected by a user selection algorithm.
Here, we will propose a simple greedy heuristic for this problem.

3.3.1 Alignment Groups

Real-world channels generally have a coherence bandwidth [TV08, Ch. 2], within
which the subcarriers may be highly correlated. As required by the system model
in Section 3.1, the subcarriers should be independent however. In this section
we introduce the concept of alignment groups, to ensure that the subcarriers in
one group are approximately uncorrelated. The Lc subcarriers are split into Lg

alignment groups, each containing Lf = Lc/Lg subcarriers. Precoding is performed
orthogonally over the alignment groups, and the subcarriers in each alignment group
are selected to minimize correlations. The alignment group structure that will be
used here is shown in Figure 3.3 on the following page. The subcarriers belonging to
one group are equidistant, and uniformly spread out over the available subcarriers.
This ensures that neighbouring subcarriers belong to different alignment groups,
and subcarrier correlations within one group are reduced.

3.3.2 User Selection for Space-Only Precoding

For space-frequency precoding, all KS-F MSs are served jointly over all subcarriers.
For space-only precoding, if KS-O > N + M ≠ 1, not all MSs can be active on all
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Figure 3.3. Alignment group structure. Each alignment group contains Lf sub-
carriers, and there are Lg alignment groups.

Algorithm 3.1 Greedy User Selection for Space-Only Precoding

1: Input: “
(n)
k =

...H
(n)
kk

...
2

F
, ’ k œ {1, . . . , K}, n œ {1, . . . , Lc}

2: Variables:

s̃
(n)
k œ {0, 1}. Equals 1 if MS k is a candidate for scheduling on subcarrier n.

L(n) = number of scheduled MSs on subcarrier n.

Lk = number of subcarriers which MS k is scheduled on.

3: Let s̃
(n)
k Ω 1, ’ k œ {1, . . . , K}, n œ {1, . . . , Lc}

4: repeat

5: Find (kú, nú) = argmax
{(k,n) : s̃

(n)

k
=1}

“
(n)
k

6: Schedule MS kú on subcarrier nú and let s̃
(nú)
kú Ω 0

7: // Check that this subcarrier is not overloaded w.r.t. to IA feasibility
8: if L(nú) = N + M ≠ 1 then
9: Let s̃

(nú)
k Ω 0, ’ k œ {1, . . . , K},

10: end if
11: // Ensure the MS is not scheduled on more subcarriers than its fair share.
12: if KLkú Ø Lc(N + M ≠ 1) then

13: Let s̃
(n)
kú Ω 0, ’ n œ {1, . . . , Lc}

14: end if
15: until “

(n)
k = 0, ’ k œ {1, . . . , K}, n œ {1, . . . , Lc}
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subcarriers. A user selection algorithm should then be employed, which picks out
the MS combinations that are suitable for being served together on the different
subcarriers. The selection algorithm should make sure that the IA feasibility con-
ditions are not violated, and should at the same time try to enforce some form of
fairness between MSs, in terms of the number of data streams allocated.

Since the user selection problem is combinatorial, and hence hard to solve to
optimality, we propose a simple greedy approach in Algorithm 3.1 on the preceding
page. In this algorithm, we let the user selection metric be the direct channel

strength “
(n)
k =

...H
(n)
kk

...
2

F
. We let the indicator variable s̃

(n)
k œ {0, 1} denote whether

MS k is a candidate for being scheduled on subcarrier n, and then we sequentially
schedule the available MS-subcarrier pairs based on their “

(n)
k . For each scheduled

MS-subcarrier pair, we let s̃
(n)
k Ω 0, to ensure that this pair is not incorrectly

considered for scheduling again. We verify that the IA feasibility condition for each
subcarrier is not violated. We also ensure a simple form of fairness, such that each
MS is not scheduled on more than its fair share of the total number of subcarriers.
The method proposed in Algorithm 3.1 is very crude; a more elaborate scheduler
should take into account the strength of the cross-links, which MSs are spatially
compatible for being served together, etc.

3.4 Performance Evaluation

Although the derived IA feasibility conditions give insights into the performance of
different types of IA systems, the optimization metric that we are mainly concerned
with in this thesis is the sum rate. In this section, we investigate the sum rate
performance5 of space-frequency precoding, space-only precoding and frequency-
only precoding. We use numerical simulation, and study two scenarios: one dense
indoor scenario, and one urban multicell outdoor scenario. In both cases, we use
measured channels6 in the performance simulator, in order to achieve real-world
correlations and path losses.

For the precoding, we use the WMMSE, MaxSINR and MinWLI algorithms as
detailed in Section 2.3.3.

3.4.1 Frequency-Only IA: Outdoors Scenario

As a motivating example of the benefits of coordinated precoding, we first study a
K = 3 user SISO interference channel with frequency-only precoding. The perfor-
mance evaluation is performed using channel measurements for an outdoors setting
with single-antenna transmitters. The channel measurements were taken in Kista,
Northern Stockholm. A map of the measurement area is shown in Figure 3.4. The

5In this chapter, all MSs have unit data rate weights such that αik
= 1 for all ik.

6All measurements were performed by Ericsson, and the measured channels were provided to
the author by Ericsson through the HiATUS FP7 EU project.
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Figure 3.4. Map over Kista with BS locations marked with triangles, and possible
MS locations indicated by black segments. The map is ©www.openstreetmap.org
contributors, CC-BY-SA, http://creativecommons.org/licenses/by-sa/2.0

average building height was 25 m and the transmit antennas were located a couple
of meter above the average rooftop level [MSKF09]. One centrally located trans-
mit unit was used for transmission from three geographically separated sites. The
inter-site distance was around 400-600 m, and the antenna sites were connected
to the central transmit unit using fiber optical cables and RF-optocouplers. This
enabled coherent transmission from the sites, and thus coherent channel estimation
at the receiver. The receiver consisted of a measurement van that was driven along
a predefined measurement trajectory. On the roof of the van, two electric dipoles
and two magnetic dipoles (loops) were used as receiving antennas (9⁄ distance).
The transmitter and receiver were part of a purpose-built channel sounder based on
an LTE-like OFDM-based design [SA08]. Pilot signals were transmitted at the 2.6
GHz band, over a bandwidth of 20 MHz, and the effective 4◊3 MIMO channel was
estimated at the receiver. The channel was measured at 190 Hz in 432 subcarriers,
which was sufficient to capture the fast fading dynamics [SA08]. The noise floor
of the channel impulse response estimates was around 30 dB lower than the peak
values.
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Multiuser Emulation and Simulation Setup

The single-antenna channels were obtained from the measurement data by selecting
one of the antennas on the measurement van as the active receive antenna. The
K = 3 single-antenna MSs could then be emulated by spatially separating them
along different segments of the measurement route. The possible locations of MS1,
MS2 and MS3 are shown as black segments in Figure 3.4. Channel realizations were
drawn with uniform probability along the defined segments. By assuming channel
stationarity in time, the measured channels from the three different segments were
then used to emulate the 3-user interference channel.

Although 432 measured subcarriers were available, we only used Lc = 48 sub-
carriers for the performance evaluation. The 48 subcarriers were selected uniformly
over the available 432 subcarriers, such that the spacing between selected subcar-
riers was 0.4 MHz. In order to limit the effect of correlation between subcarriers,
the subcarriers were divided into Lg = 16 alignment groups as described in Sec-
tion 3.3.1. Each group thus consisted of Lf = Lc/Lg = 3 subcarriers. The pre-
coding was performed independently over the alignment groups. For the Lf = 3
subcarriers in each alignment group, it is known from (2.19) and (2.20) that a
feasible data stream allocation for IA is d =

!
2 1 1

"
.

The sum rate results were averaged over a number of channel realizations. The
iterative algorithms (WMMSE/MaxSINR/MinWLI) were initialized with truncated
DFT matrices corresponding to the data stream allocation d. The algorithms were
run for 5000 iterations. For fairness between MSs, the data stream allocation d

was cyclically shifted for each new network realization. In addition to running
the standard algorithms from Section 2.3.3, an SINR balancing method [Ben02]
was also used. In each iteration of that method, the precoders were found as the
solution to an SINR balancing problem, where each MS was weighted equally. This
method relaxes the power constraint such that

q
l E

1
ÎVlxlÎ2

2
Æ KPLc.

As baselines, we use the original frequency-only IA solution from [CJ08], as
well as an optimized version from [SPLL10]. For the latter, the IA solution that
approximately maximized the chordal distance between the signal and interference
subspace, at all MSs, was selected. We further used orthogonalization in the fre-
quency domain, i.e. frequency-division multiple access (FDMA) with a reuse factor
of three as well as uncoordinated transmission (reuse factor one). All BSs used the
same transmit power P , and all MSs had the same noise power ‡2. The results
were evaluated as a function of average SNR

SNR =
P

‡2

1

K

Kÿ

l=1

E

3---h(n)
ll

---
2
4

, (3.19)

where the mean value was estimated using the sample mean over all channel real-
izations used.
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Figure 3.5. Sum rate performance for measured outdoors scenario (averaged over
500 network realizations).
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Results

The sum rate results, as a function of SNR, are shown in Figure 3.5 on the facing
page. The WMMSE method is always at least as good as all other methods,
with MaxSINR being a close second. The WMMSE and MaxSINR methods have
particularly good performance at low SNR, but they also outperform the pure IA
solution from MinWLI in the high-SNR regime. All coordinated precoding methods
outperform FDMA, as well as uncoordinated transmission for sufficiently high SNR.
Uncoordinated transmission performs well at low SNR, indicating that the cells are
effectively decoupled then, and the thermal noise is the main performance-limiting
factor.

In Figure 3.6 on the preceding page, the individual MS data rates are shown as
a function of SNR. The IA solution clearly achieves a better high-SNR slope than
the FDMA solution, as expected from the motivation of using IA in the first place.
Interestingly, the IA solution also beats FDMA in the low-SNR regime.

Estimated cumulative distribution functions (CDFs) of the MS rates are shown
in Figure 3.7 on the following page. The plateauing behaviour of the curves for the
coordinated precoding methods are due to the cyclic shift of the extra data stream
that is always allocated to one of the MSs. The WMMSE method ensures that the
two strong MSs have high data rates, at the expense of the weak MS. The SINR
balancing method, on the other hand, ensures that all MSs have a minimum data
rate. This can be seen from the fact that MS 1 and 2 have similar CDFs, whereas
the CDF for MS 3 is shifted to the right slightly.
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Figure 3.7. Empirical CDFs of the outdoors MS rates for SNR = 20 dB. The
estimates were obtained from 5000 network realizations.
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3.4.2 Space-Frequency IA: Indoors Scenario

We now study a full space-frequency precoding system. Again measurements are
applied, but this time from an indoors scenario. As a comparison, we also perform
simulations using synthetically generated channels.

The studied setting is a K = 10 scenario where N = M = 2 and Lc = 30. We
compare space-frequency precoding with Lg = 10 alignment groups to space-only
precoding where all 30 subcarriers are used independently, together with the user
selection heuristic in Algorithm 3.1 on page 50. For space-frequency precoding,
all MSs are served one data stream in all groups, i.e. the maximum sum DoF is
K/Lf = 10/3. For space-only precoding with user selection, three single-stream
MSs are accommodated per subcarrier, giving a maximum sum DoF of 3. For
space-frequency precoding, the power is uniformly allocated over the alignment
groups, whereas for space-only precoding, the power is uniformly allocated over the
subcarriers.

Sum rate performance is evaluated for the standard methods from Chapter 2.3.3,
and averaged over 100 Monte Carlo realizations. The pure IA method MinWLI is
run until the relative interference leakage satisfies

Tr
1q

k

q
l ”=k AH

k HklVlV
H
l HH

klAk

2

Tr
1q

k,l HklVlV
H
l HH

kl

2 Æ 10≠9. (3.20)

MaxSINR is not guaranteed to converge, so we run it for 2000 iterations. WMMSE
converges monotonically, and we run it until the relative change in sum rate is
less than 10≠5. All methods are initialized with truncated DFT matrices, and
the performance baselines are TDMA and uncoordinated transmission (with and
without water filling).

Synthetic Channels

For the synthetic channels, we used a tapped delay-line with Lt taps to generate
a block fading frequency-selective channel. We assume rich scattering and an ex-
ponentially decaying power-delay profile such that the channel impulse response in
one transmission period is

Hkl[n] = c

Ò
e≠ t

W t0 Hw
kl[n], n = 0, . . . , Lt ≠ 1.

The coefficients of Hw
kl[n] are i.i.d. CN (0, 1) and are constant within one transmis-

sion period, but vary independently between periods. The channels are normalized
to

qLt≠1
t=0 E

1
ÎHkl[n]Î2

F

2
= NM using c, and we assume a bandwidth delay spread

product Wt0 = 1.5 and Lt = 6 taps. The transmit power was P for all transmitters,
and the noise power was ‡2 for all MSs. Performance is evaluated as a function of

SNR =
P

Lc‡2
. (3.21)
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Figure 3.8. Sum rate performance for synthetic channel.
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The sum rate performance can be seen in Figure 3.8 on the facing page. In
Figure 3.8a, the high-SNR slopes of space-frequency IA and space-only IA is com-
pared, using the MinWLI algorithm. The estimated sum DoF for space-frequency
IA is 3.31, close to the theoretical 10/3. The estimated sum DoF for space-only
IA is 2.95, close to the theoretical 3. Comparing space-frequency IA to space-only
IA, it is clear that the gain in terms of sum DoF is present, but it is obvious that
the gain in terms of sum rate is very small. In Figure 3.8b, the performance of the
other precoding methods is shown. WMMSE and MaxSINR performs similarly,
but the high-SNR slope of WMMSE goes to zero due to its slow convergence in
the high-SNR regime. It is clear that the space-frequency precoding methods in
Figure 3.8b are shifted to the left with around 10 dB, compared to the space-only
precoding methods. This can be interpreted as a ‘power gain’, or ‘coding gain’, of
the space-frequency precoding methods. This is a consequence of there being more
IA solutions to choose from in the enlarged space-frequency search space, compared
to the smaller space-only search space. The conclusion is that space-frequency pre-
coding does give an improved DoF, but that the large sum rate improvement is due
to a power gain.

Measured Channels

In order to evaluate performance for real-world path losses and channel correlations,
we again use channel measurements [WAF+12,WAH+13]. The measurements were
taken along a 70 m long office building corridor (see map in Figure 3.9 on the
next page) using an 20 MHz LTE-Advanced testbed with a carrier frequency of
2.7 GHz. The measurement antenna array consisted of four dual-polarized patch
elements linearly arranged with 0.5⁄ spacing. Measurements were taken from three
8-antenna base stations (BSs), one located in the middle of the corridor (square,
2.3⁄ antenna spacing, ‘indoor omni’ in Figure 3.9), one located at the end of the
corridor (square, 1.15⁄ horizontal spacing, 1.85⁄ vertical spacing, ‘indoor panel’
in Figure 3.9) and one located 65 m away on an outdoor wall facing the corridor
(linear, 1.15⁄ antenna spacing, ‘outdoor pico’ in Figure 3.9). The channels were
measured in 100 frequency points, out of which we select 30 equidistant points
spaced 0.6 MHz apart. A typical channel response is shown in Figure 3.10 on the
following page.

In order to emulate a K = 10 scenario, we select ten spatially separated mea-
surement route segments, similar to the procedure in Section 3.4.1. We select one
dual-polarized patch antenna from the receive array (i.e. N = 2), all antennas from
the first BS and 6 antennas from the two other BSs. To achieve an M = 2 scenario,
the selected BS antennas are split into 10 virtual 2-antenna transmitters. The sim-
ulated transmit powers Pk were 6 dBm for the virtual transmitters corresponding
to the indoor central BS, 10 dBm for the virtual transmitters corresponding to
the indoor peripheral BS and 30 dBm for the virtual transmitters corresponding
to the outdoor BS. These transmit powers were selected such that the signal-to-
interference ratios of the emulated cross-links were approximately 0–15 dB. Since
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Figure 3.9. Map over indoors measurement location. Reproduced with permission
from Ericsson Research.
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Figure 3.10. Typical channel frequency response over 300 ms from the indoors
measurements.
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the different MSs all have different SNRs, due to their different channel conditions,
we vary the received signal quality by varying the noise power ‡2. This noise power
was the same for all MSs.

The sum rate results for the measured channels are shown in Figure 3.11 on
the next page. The DoF gain from space-frequency IA over space-only IA in Fig-
ure 3.11a is similar to the gain for the synthetic channel. Again, the sum rate gain
is very small. For the practical coordinated precoding methods in Figure 3.11b,
a power gain of around 10 dB is again visible. The conclusion for the measured
channels are thus the same as for the synthetic channel: although space-frequency
precoding can give rise to an improved sum DoF, the large practical gain lies in the
power gain.

3.5 Conclusions

In this chapter, necessary conditions for space-frequency IA were derived. The the-
oretical gain over space-only IA was studied in terms of number of interference-free
data streams served. The gain was shown to increase with the number of subcarri-
ers Lc, but decrease with the number of antennas N and M . For the frequency-only
outdoors sum rate simulations, it was clear that coordinated precoding did give a
performance boost over traditional multiple access methods as such as FDMA and
uncoordinated transmission. For the space-frequency indoors sum rate simulations,
the conclusion was that space-frequency can indeed give an improved sum DoF per-
formance, but the main practical benefit from applying space-frequency precoding
is a large power gain. This power gain only materialized for the practical precoding
methods WMMSE and MaxSINR, but not for the IA surrogate method MinWLI.

Altogether, space-frequency precoding can be an interesting approach for im-
proving performance in interference networks, but not mainly due to its increased
DoF.
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Chapter 4

Distributed CSI Acquisition and

Coordinated Precoding

In the previous chapter we focused on pure IA and its feasibility. The numerical
results in Section 3.4 showed that directly trying to solve the weighted sum rate
problem, through the WMMSE algorithm, in general yielded superior results to the
pure IA methods. In this chapter, we therefore turn our attention to the weighted
sum rate problem (2.37) under per-BS sum power constraints. In order to find
methods amenable for practical implementation, we will investigate distributed so-
lutions. Due to its shown excellent performance, and mathematical tractability, we
base the resource allocation on the WMMSE algorithm [SRLH11]. This algorithm
requires local information about effective channels and covariance matrices in each
iteration. We here denote this information as channel state information (CSI). We
take a systems perspective and propose methods for acquiring the necessary CSI
at the involved nodes in a distributed fashion. Combining a proposed robustified
version of the WMMSE algorithm with the proposed distributed CSI acquisition
yields a robust and distributed joint coordinated precoding and CSI acquisition
system.

Much of the literature on distributed coordinated precoding assumes perfect
access to the CSI. In [SRLH11] for example, it is not directly evident how the
CSI should be acquired for the WMMSE algorithm. In this chapter, we therefore
propose distributed CSI acquisition methods to be coupled with the WMMSE al-
gorithm. First, we succinctly describe what CSI is required by the nodes of the
network to perform one iteration of the WMMSE algorithm. Many approaches
can be imagined for obtaining this necessary CSI, e.g. using various combinations
of channel estimation, feedback, signaling, backhaul, etc. Based on channel esti-
mation and feedback, we propose three CSI acquisition methods. The methods
correspond to different tradeoffs between signaling, feedback, and backhaul use.
The key component is the effective channel estimation. Based on downlink pilot
transmissions, the receivers are able to obtain local CSI for both desired and inter-
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fering effective channels [SBH13]. Assuming time-division duplex (TDD) operation,
and perfectly calibrated transceivers [GSK05,RBP+13], similar channel estimation
can be performed in the uplink.

Second, it is shown that naïvely coupling the WMMSE algorithm with the dis-
tributed CSI acquisition methods leads to poor performance. This is since the
original WMMSE algorithm was not designed with robustness against imperfect
CSI in mind. We therefore propose a robustified WMMSE algorithm, which re-
tains the distributedness of the original algorithm. We derive the local worst-case
WMMSE optimization problems, and show that their solution structure is that of
diagonal loading. The optimal amount of diagonal loading unfortunately depends
on an unknown quantity. Therefore, we propose an implicit procedure for selecting
the diagonal loading level for the precoders. At the receivers, we show an inher-
ent property of the receive filters and MSE weights obtained from the WMMSE
algorithm with perfect CSI. When this property is enforced onto the filters with
imperfect CSI, this results in diagonally loaded filters, thereby robustifying them.

4.1 System Model

The system model in this chapter is the interfering broadcast channel from (2.11)
on page 19. The CSI is not known a priori at the transceivers, and must therefore
be estimated. In the interfering broadcast channel, the received downlink signal for
the kth MS served by the ith BS is

yik
= HikiVik

xik
+

ÿ

(j,l) ”=(i,k)

HikjVjl
xjl

+ zik
. (4.1)

The full details of the interfering broadcast channel models are available in Sec-
tion 2.1.3. In particular, we however remind the reader that the downlink interfer-
ence plus noise covariance matrix for MS ik is

Φ
i+n
ik

=
ÿ

(j,l) ”=(i,k)

HikjVjl
VH

jl
HH

ikj + ‡2
ik

I (4.2)

and the corresponding received downlink signal covariance matrix is

Φik
= HikiVik

VH

ik
HH

iki + Φ
i+n
ik

=
ÿ

(j,l)

HikjVjl
VH

jl
HH

ikj + ‡2
ik

I. (4.3)

The data rate weight –ik
œ [0, 1] for MS ik is known at the serving BS i.

In addition to downlink transmission, communication also takes place in the
uplink. Since the downlink is described by the interfering broadcast channel,
the uplink is described by the interfering multiple access channel. We will in
the following assume that the system operates in a perfectly time-synchronized
TDD mode, and that the corresponding radio hardware is perfectly calibrated
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[GSK05, RBP+13]. Under this assumption, the cascade of transmit filter, wire-
less channel, and receiver filters are reciprocal and the uplink channel from MS jl

to BS i is1 Ω≠
Hjli = HT

jli. Let Ω≠s ú
ik

≥ CN
1

0,
Ω≠
Ξ ik

2
be the uplink transmitted signal

from MS ik and Ω≠z ú
i ≥ CN

!
0, Î2

i IMi

"
be the receiver noise at BS i. The received

uplink signal at BS i is then modeled as

Ω≠y ú
i =

Kiÿ

k=1

HT

iki
Ω≠s ú

ik
+

ÿ

j ”=i

Kjÿ

l=1

HT

jli
Ω≠s ú

jl
+ Ω≠z ú

i (4.4)

For convenience, we will work with the complex conjugate version of the received
signal in (4.4). The model we will use for the uplink is thus

Ω≠y i = (Ω≠y ú
i )

ú
=

Kiÿ

k=1

HH

iki
Ω≠s ik

+
ÿ

j ”=i

Kjÿ

l=1

HH

jli
Ω≠s jl

+ Ω≠z i. (4.5)

We will assume that the MSs have individual sum power constraints such that

E

1
ÎΩ≠s ik

Î2
F

2
= Tr

1Ω≠
Ξ ik

2
Æ Ω≠

P ik
, ’ i œ {1, . . . , I}, k œ {1, . . . , Ki} (4.6)

holds on average per transmitted symbol. For the model in (4.5), the uplink signal
plus interference covariance matrix for BS i is

Γi =
ÿ

(j,l)

HH

jli

Ω≠
Ξ ik

HH

jli. (4.7)

The MSs will estimate their local CSI using downlink pilot transmissions from
the BSs. Conversely, the BSs will estimate their local CSI using uplink pilot trans-
missions from the MSs. Due to the assumed perfect reciprocity of the channel, this
will provide the BSs with the information they need to form the precoders.

For the resource allocation, the WMMSE algorithm (see Section 2.3.3 on page 30)
will be used. As will be shown below, the WMMSE algorithm is an example of a
distributed resource allocation method, which only requires local CSI at the par-
ticipating nodes.

4.1.1 WMMSE Algorithm with Per-BS Power Constraints

In order to lighten the forthcoming exposition, we first introduce some shorthands
for the quantities involved in the WMMSE algorithm. For MS ik, we define a
weighted receive filter as Uik

=
Ô

–ik
Aik

W
1/2
ik

and denote the effective downlink

channel as Fik
= HikiVik

. The receive filter can then be written as Aik
= Φ

≠1
ik

Fik
.

Similarly, at BS i serving MS ik, we have the precoder Vik
=

Ô
–ik

Bik
W

1/2
ik

and the

1The arrow Ω≠
· denotes uplink quantities.
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Table 4.1. Summary of CSI quantity shorthands

Downlink Fik
= HikiVik

Φik
= Fik

FH

ik
+ Φ

i+n
ik

Φ
i+n
ik

=
q

(j,l) ”=(i,k) HikjVjl
VH

jl
HH

ikj + ‡2
ik

I

Uplink Gik
= HH

ikiUik

Γi = Γ
s+i
i =

q
(j,l) HH

jliUjl
UH

jl
HH

jli

Table 4.2. Quantities needed at each network node to perform one iteration of the
WMMSE algorithm

Covariance matrix Effective channel(s) MSE weights

MS ik Φik
Fik

—

BS i Γi {Gik
}Kc

k=1 {W
1/2
ik

}Kc

k=1

Algorithm 4.1 WMMSE Algorithm [SRLH11] with Per-BS Sum Power
Constraints (Perfect CSI)

1: repeat
At MS ik:

2: Wik
=

!
I ≠ FH

ik
Φ

≠1
ik

Fik

"≠1

3: Aik
= Φ

≠1
ik

Fik
, Uik

=
Ô

–ik
Aik

W
1/2
ik

At BS i:
4: Find µi which satisfies

qKi

k=1 Tr
!
Vik

VH

ik

"
Æ Pi

5: Bik
= (Γi + µiI)

≠1
Gik

, Vik
=

Ô
–ik

Bik
W

1/2
ik

, k = 1, . . . , Ki

6: until convergence criterion met, or fixed number of iterations

effective uplink channel Gik
= HH

ikiUik
. Finally, we have the component precoder

Bik
= (Γi + µiI)

≠1
Gik

. The shorthands are summarized in Table 4.1. With these
shorthands, we restate the WMMSE algorithm with per-BS sum power constraints
in Algorithm 4.1.

It is obvious from Algorithm 4.1 that the WMMSE algorithm operates in two
phases: one in which the MSs form their receive filters and MSE weights, and
one in which the BSs form the precoders for their served MSs. In both phases,
only local CSI is required at the corresponding nodes. The MSs need estimates
of Φik

and Fik
to form their filters. Similarly, the BSs need estimates of Γi, and

estimates of Gik
for their correspondingly served MSs. The local CSI requirements

are summarized in Table 4.2. Assuming that this information is available, the filters
can be formed in parallel over all MSs. The same goes for the precoders at the BSs;
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no direct cooperation is needed between them, and the precoders can be formed in
parallel over BSs. Given local CSI, the WMMSE algorithm is thus an example of a
distributed resource allocation method. The details of how the estimation will be
performed will be described in Section 4.2.

4.1.2 Weighted MaxSINR

We also take this opportunity to present a modified version of the original MaxS-
INR algorithm [GCJ11]. The original MaxSINR (see Algorithm 2.2 on page 34)
empirically often performs well when applied to scenarios where IA is feasible (see
e.g. Section 4.4). However, for cases when the number of allocated data streams
exceed that for which is IA feasible, the performance of the original MaxSINR de-
teriorates. This can for example be seen in Figure 4.9a on page 91. In order to
alleviate this problem, we propose to apply a weighting to the MaxSINR precoders.
The weighting is inspired by the MSE weighting in Algorithm 4.1.

Using the shorthands defined in Table 4.1, the proposed algorithm is shown
in Algorithm 4.2 on the next page. Similarly to the original MaxSINR in Algo-
rithm 2.2, unweighted receive filters and precoders are obtained on a per-stream
basis. We denote these as aÕ

ik,n and bÕ
ik,n, respectively. The final precoders and re-

ceive filters are then obtained as normalized versions of the weighted concatenated
per-stream filters. Through the multiplication with the weights Wik

, power can
be spread over the data streams in the receive filters and precoders. Through this
power allocation, streams can effectively be turned off as deemed necessary by the
algorithm2. Due to the normalization of the final filters however, the same amount
of total power per user is still used, and entire users can thus not be turned off.
This is a major difference to the WMMSE algorithm, for which entire users can be
turned off if Uik

æ 0.
It is easy to show that Algorithm 4.2 gives the same receive filters and pre-

coders for MS ik as Algorithm 2.2, if dik
= 1. Just as the original MaxSINR, the

weighted MaxSINR qualifies as a distributed resource allocation method. The CSI
requirements at the different nodes of the network are the same as for the WMMSE
algorithm, as summarized in Table 4.2 on the facing page.

4.2 Distributed CSI Acquisition

According to Table 4.2, the MSs need to know their effective channel from their
serving BS Fik

, as well as their signal plus interference and noise covariance matrix
Φik

. The BSs need to know the effective uplink channels Gik
to the MSs they

serve, the corresponding MSE weights Wik
, and the uplink signal plus interference

covariance matrix Γi. There might be several methods useful for acquiring this local

2Note that for nondegenerate scenarios, where the MSE matrix Eik
º 0, the MSE weights

Wik
= E

−1

ik
are theoretically full rank. The condition number of Wik

may however become large,

and this effectively turns off data streams.
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Algorithm 4.2 Weighted MaxSINR with Per-BS Sum Power Constraint (Perfect
CSI)

1: repeat
At MS ik:

2: Wik
=

!
I ≠ FH

ik
Φ

≠1
ik

Fik

"≠1

3: aÕ
ik,n =

Φ
≠1
ik

fik,n..Φ
≠1
ik

fik,n

..
2

, n = 1, . . . , dik

4: AÕ
ik

=
!
aik,1 aik,2 · · · aik,dik

"

5: Aik
=

ÒΩ≠
P ik

AÕ

ik..AÕ

ik
W

1/2
ik

..
F

, Uik
=

Ô
–ik

Aik
W

1/2
ik

At BS i:

6: bik,n =
Ô

–ik (Γi+Î2
i I)

≠1
gik,n..Ô

–ik (Γi+Î2
i

I)
≠1

gik,n

..
2

, k = 1, . . . , Ki, n = 1, . . . , dik

7: Bik
=

!
bik,1 bik,2 · · · bik,dik

"
, k = 1, . . . , Ki

8: Bik
=

Ò
Pi

Ki

BÕ

ik..BÕ

ik
W

1/2
ik

..
F

, Vik
=

Ô
–ik

Bik
W

1/2
ik

, k = 1, . . . , Ki

9: until fixed number of iterations

Downlink pilots Downlink data Uplink pilots Uplink data

Optimization @ MSs

Subframe

Guard!
time

Optimization @ BSs

Figure 4.1. Schematic drawing of a subframe.

CSI. We will now propose an estimation framework that can be used to obtain these
quantities. The estimation will be based on pilot transmissions in both the downlink
and the uplink. Due to the assumed reciprocity of the network, the BSs will then
be able to obtain their local CSI from the uplink pilot transmissions.

As the effective channels change between iterations in the WMMSE algorithm,
a training phase always need to be performed between one WMMSE iteration and
the next. A simple schematic of the TDD transmission subframes that we envision
can be seen in Figure 4.1. The subframe is split between pilot transmission and
data transmission, in both the uplink and downlink. Note that we assume data
transmissions in all subframes. Before the iterative algorithm has converged, the
data rates that are achievable in the downlink data transmission phase may be low,
but not negligible, as shown by numerical results in Section 4.4. An illustration of
the downlink/uplink CSI estimation process is shown in Figure 4.2 on the facing
page.

We will only focus on the downlink transmission optimization, but the proposed
method can in principle be used for uplink transmission optimization as well. The
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training intervals would then need to be doubled, accommodating the corresponding
uplink optimization training symbols.

4.2.1 Global Sharing of Common Scale Factor

We will present three CSI acquisition schemes of varying levels of distributedness.
All schemes require some form of cooperation between the BSs, but the MSs only
need to cooperate with their serving BSs. The scheme presented in this particular
section is almost fully distributed over the participating nodes. The only level
of cooperation that is needed is the joint selection of a common power scaling
parameter for the uplink pilot transmissions.

When a priori statistical information about the channel to be estimated is avail-
able, the MMSE estimator [BG06] is often used. In our case, we are interested in
estimating effective channels, i.e. the product of the channel and a transmit filter.
It is complicated to obtain a statistical characterization of the effective channels,
and therefore we choose not to assign a prior distribution to the quantities to be
estimated. That is, for the estimation we regard the effective channels as deter-
ministic but unknown. With this perspective from classical estimation theory, it is
easy to find the minimum variance unbiased (MVU) estimator.

Downlink Estimation

First, we will show how to estimate the effective downlink channel Fik
= HikiVik

using synchronous pilot transmissions. First, define orthogonal pilot sequences
Pik

œ C
dik

◊Lp,d , such that

Pik
PH

jl
=

I
Lp,d Idik

(i, k) = (j, l)

0dik
◊djl

(i, k) ”= (j, l)
. (4.8)

In order to fulfill the orthogonality requirement, Lp,d Ø
q

(j,l) djl
must hold. In the

downlink training phase, BS i transmits si =
qKi

k=1 Vik
Pik

such that the received
signal at MS ik is

Yik
= HikiVik

Pik
+

ÿ

(j,l) ”=(i,k)

HikjVjl
Pjl

+ Zik
. (4.9)

Notice that the power allocated to the pilots in (4.9) is the same as the power
allocated to the data symbols in (4.1) on page 64. This is intentional, and will
enable distributed and unbiased estimation of Φik

. This type of pilot transmissions
are called ‘UE-specific reference signals’ in the LTE standard [DPSB07].

Assuming that MS ik knows its designated pilot Pik
, the problem of estimating

Fik
is a deterministic parameter estimation problem in Gaussian noise. The MVU

estimator is then [BG06]:

‚Fik
=

1

Lp,d
Yik

PH

ik
= HikiVik

+
1

Lp,d
Zik

PH

ik
. (4.10)
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The MVU estimator is an unbiased, efficient and asymptotically consistent (in Lp,d)
estimator of Fik

.
In addition to knowing Fik

, MS ik also needs knowledge of Φik
. This can be

obtained from the sample covariance estimator:

‚Φik
=

1

Lp,d
Yik

YH

ik

=
ÿ

(j,l)

!
HikjVjl

VH

jl
HH

ikj

"
+

1

Lp,d
Zik

ZH

ik

+
1

Lp,d

ÿ

(j,l)

!
HikjVjl

Pjl
ZH

ik
+ Zik

PH

jl
VH

jl
HH

ikj

"
.

(4.11)

Note that the pilots {Pjl
} are deterministic, and the channels {Hikj} are also

treated as deterministic. Since the only stochastic component of Yik
is Zik

, the
estimator in (4.11) is unbiased.

Uplink Estimation

The uplink estimation is performed in a similar fashion as the downlink estimation.
Now the MSs each transmit a signal

Ω≠
S ik

= “Uik

Ω≠
P ik

, where
Ω≠
P ik

œ C
dik

◊Lp,u are
orthogonal pilots, such that

Ω≠
P ik

Ω≠
PH

jl
=

I
Lp,u Idik

(i, k) = (j, l)

0dik
◊djl

(i, k) ”= (j, l)
. (4.12)

In order to fulfill the orthogonality requirement, Lp,u Ø q
(j,l) djl

must hold. As
will be shown in Theorem 4.1 on page 84, for MS ik it holds that

ÎUik
Î2

F = –ik

...Aik
W

1/2
ik

...
2

F
Æ –ik

dik

‡2
ik

. (4.13)

Based on this fact, the common scale factor “ can be set to make sure that the
uplink transmit power constraints are satisfied for all MSs. We let

“ik
=

ÛΩ≠
P ik

‡2
ik

–ik
dik

, ’ i œ {1, . . . , I}, k œ {1, . . . , Ki}, (4.14)
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and set the common scale factor as “ = minjl
“jl

. The sum power constraint for
MS ik is then satisfied since

...Ω≠
S ik

...
2

F
= “2

...Uik

Ω≠
P ik

...
2

F
= Lp,u“2 ÎUik

Î2
F

= Lp,u min
jl

AΩ≠
P jl

‡2
jl

–jl
djl

B
ÎUik

Î2
F

(4.13)

Æ Lp,u min
jl

AΩ≠
P jl

‡2
jl

–jl
djl

B
–ik

dik

‡2
ik

Æ Lp,u

AΩ≠
P ik

‡2
ik

–ik
dik

B
–ik

dik

‡2
ik

= Lp,u
Ω≠
P ik

.

(4.15)

MS ik will only use its full power if it has equality in (4.13) and if “ik
= “. For

heterogenous scenarios, potentially only one MS will use its full power, due to the
minjl

(·) in “. This is the price to pay for enabling distributed estimation of Γi in
the uplink.

In order to determine “, each MS can estimate its own “ik
and feed it back to

its serving BS. The BSs can then jointly determine “ = minjl
“jl

. After the selected
“ has been shared to the MSs from their serving BS, no more explicit cooperation
is needed. For static scenarios, where the data stream allocation and transmit and
noise powers do not change, “ only needs to be computed once in a transmission
interval. For symmetric scenarios, where “ = “ik

, ’ ik, no cooperation is necessary,
and the CSI acquisition can be performed in a fully distributed manner.

Assuming synchronized pilot transmissions from the MSs, the received signal at
BS i during the uplink training phase is

Ω≠
Yi = “

Kiÿ

k=1

HH

ikiUik

Ω≠
P ik

+ “
ÿ

j ”=i

Kjÿ

l=1

HH

jliUjl

Ω≠
P jl

+
Ω≠
Z i. (4.16)

Similarly to the downlink, the uplink effective channel MVU estimator is

‚Gik
=

1

“Lp,u

Ω≠
Yi

Ω≠
PH

ik
= HH

ikiUik
+

1

“Lp,u

Ω≠
Z i

Ω≠
PH

ik
. (4.17)

Furthermore, the signal plus interference and scaled noise covariance matrix is
estimated using the sample covariance method:

‚Γs+i+n
i =

1

“2

1

Lp,u

Ω≠
Yi

Ω≠
YH

i

=
ÿ

(j,l)

!
HikjUjl

UH

jl
HH

ikj

"
+

1

“2

1

Lp,u

Ω≠
Z i

Ω≠
Z H

i

+
1

“

1

Lp,u

ÿ

(j,l)

1
HH

ikjUjl

Ω≠
P jl

Ω≠
Z H

i +
Ω≠
Z i

Ω≠
PH

jl
UH

jl
Hikj

2
.

(4.18)
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Unless “ = 1, this is a biased estimator of the signal plus interference and noise
covariance matrix in the uplink. The WMMSE algorithm needs an estimate of
Γi = Γ

s+i
i , without the noise covariance part of Γ

s+i+n
i . In Section 4.3.3, we resolve

this issue by modifying the WMMSE algorithm.

MSE Weight Feedback

According to Algorithm 4.1 on page 66, the precoders are formed as

Vik
= –ik

(Γi + µiI)
≠1

HH

ikiAik
Wik

, ’ i œ {1, . . . , I}, k œ {1, . . . , Ki}, (4.19)

at the BSs, assuming perfect CSI. To form the precoders as in (4.19), the product
–ik

HH

ikiAik
Wik

=
Ô

–ik
Gik

W
1/2
ik

is needed. This quantity is however not directly
provided by the proposed estimation scheme. It could be independently estimated
in a second uplink estimation phase, but instead we let MS ik explicitly feed back
Wik

to its serving BS i. Together with ‚Gik
in (4.17), BS i can then form ‚Gik

W
1/2
ik

and use that in3 (4.19). The reason for this procedure is to avoid signal cancela-

tion [Cox73], where a small mismatch between the estimate of Gik
W

1/2
ik

and the
estimate of Γi can have a large detrimental impact on performance. If Gik

and Γi

are estimated using the same pilot transmissions, as in (4.17) and (4.18), we can
decompose

‚Γs+i+n
i = ‚Γi+n

i + ‚Gik
‚GH

ik
. (4.20)

Then, there is no mismatch between ‚Gik
and ‚Γi, and consequently no mismatch

between ‚Gik
W

1/2
ik

and ‚Γi. Therefore, signal cancelation does not occur [Cox73].
Note that Rik

= log2 det (Wik
) =

q
n log2 (⁄n (Wik

)). Thus, feedback of the
eigenvalues of Wik

constitute a rate request for each stream for MS ik, describing
what rate that stream can handle under the current network conditions. This is
information that is typically fed back to the serving BS in a practical system. Recall
that –ik

is known at BS i, so that information does not need to be fed back.
After “ has been formed at the network level, the effective channel estimation

proposed in this section can be performed in a fully distributed manner. The
MSs can estimate their local CSI, in the form of effective channels and covariance
matrices, since the downlink pilot transmissions are precoded the same was as the
data transmission. Thanks to the channel reciprocity, the BSs can estimate their
local CSI in a similar way. With the feedback of Wik

from the MSs served by BS
i, the BS can then form the associated precoders. Note that with the exception of
“ik

, no information needs to be shared over the BS backhaul.

Remark 4.1. The CSI acquisition proposed in this section is fully distributed, save
for the selection of “. Due to the channel reciprocity, all nodes are able to estimate
their local CSI from the pilot transmissions. MS ik feeds back Wik

to its serving
BS, but the BSs do not need to share the MSE weights over some backhaul.

3Recall that αik
is assumed a priori known at BS i.
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4.2.2 Global Sharing of Individual Scale Factors

In the previous section, an almost fully distributed CSI acquisition scheme was
proposed. In order to perform the estimation of Γi in a fully distributed manner at
the BSs, all MSs had to use a common power scaling “. For heterogenous settings,
with different “ik

over the different MSs, that meant that some MSs might not
satisfy their uplink pilot power constraint with equality, meaning decreased esti-
mation performance. In this section, we relax the requirement of fully distributed
estimation of Γi at the BSs, in order to improve the estimation SNRs. We keep the
distributed downlink pilot transmission phase the same as in Section 4.2, as well as
the MSE weight feedback, but modify the uplink pilot transmission phase.

Uplink Estimation

Letting
Ω≠
S ik

=

Ω≠
P ik

ÎUik Î
F

Uik

Ω≠
P ik

, the uplink sum power constraint in (4.6) on page 65

is met with equality for MS ik. The received signal at BS i is then

Ω≠
Yi =

Kiÿ

k=1

ÒΩ≠
P ik

ÎUik
ÎF

HH

ikiUik

Ω≠
P ik

+
ÿ

j ”=i

Kjÿ

l=1

ÒΩ≠
P jl

ÎUjl
ÎF

HH

jliUjl

Ω≠
P jl

+
Ω≠
Z i. (4.21)

Assuming that the scale factors
ÎUik Î

FΩ≠
P ik

are fed back from the MSs to their serving

BSs, and then globally shared over the BS backhaul, BS i can estimate the effective
channels from MS jl as

‚Gjli =
ÎUjl

ÎFÒΩ≠
P jl

Lp,u

Ω≠
Yi

Ω≠
PH

jl
= HH

ikjUjl
+

ÎUjl
ÎFÒΩ≠

P jl
Lp,u

Ω≠
Z i

Ω≠
PH

jl
. (4.22)

Since the scaled pilots effectively all have the same weight, the sample covariance
estimator of Γi in (4.18) cannot be used. Instead, we rely on the biased estimator

‚Γs+i+n
i =

ÿ

(j,l)

‚Gjli
‚GH

jli

=
ÿ

(j,l)

!
HH

jliUjl
UH

jl
Hjli

"
+

1

Lp,u

Ω≠
Z i

Q
a 1

Lp,u

ÿ

(j,l)

ÎUjl
Î2

FΩ≠
P jl

Ω≠
PH

jl

Ω≠
P jl

R
b Ω≠

Z H

i

+
1

Lp,u

ÿ

(j,l)

ÎUjl
ÎFÒΩ≠

P jl

1
HH

ikjUjl

Ω≠
P jl

Ω≠
Z H

i +
Ω≠
Z iP

H

jl
Ujl

Hikj

2
.

(4.23)

The bias is determined by the factors
ÎUjlÎ2

FΩ≠
P jl

and the pilots length Lp,u.
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This estimation scheme is similar to one proposed in [KTJ13]. There, a scaled
version of Aik

was used as the uplink precoder. Then, the MSE weights Wik
can

be calculated at the serving BSs, and do not need to be fed back. However, in order
for the BSs to estimate ‚Γs+i+n

i in that estimation scheme, they must exchange the
MSE weights for their corresponding MSs over the backhaul. In essence, reduced
over-the-air feedback has been traded for more backhaul use.

Remark 4.2. The CSI acquisition proposed in this section is fully distributed over
the MSs, but not over the BSs. Each BS needs knowledge of the individual scaling
factors for all MSs.

4.2.3 Global Sharing of Filters

Finally, we present a CSI acquisition scheme which relies even further on feedback
and backhaul. Here, only the underlying channels are estimated exploiting the
reciprocity, but the receive filters, MSE weights and precoders are fed back over an
out-of-band link. With the subframe structure in Figure 4.1 on page 68, this means
that consecutive training phases can be used to monotonically improve the channel
estimates in one coherence block of the channel. This can be done using iterative
techniques, see e.g. [Kay93, Ch. 12.6].

Downlink Estimation

Let Pj œ C
Mj◊Lp,d be orthogonal pilots sent from BS j such that

PiP
H

j =

I
Lp,dIMi

i = j

0Mi◊Mj i ”= j
. (4.24)

As usual, Lp,d Ø q
i Mi is needed for orthogonality reasons. For the downlink, the

received training signal would be

Yik
=

Ú
Pi

KiMi
HikiPi +

ÿ

(j,l) ”=(i,k)

Û
Pj

KjMj
HikjPj + Zik

. (4.25)

This type of pilot transmissions are called ‘cell-specific reference signals’ in the LTE
standard [DPSB07].

The receive filter is assumed to be fed back to the MSs, and the goal is therefore
only to estimate the channels. We can therefore use Bayesian methods for the
estimation. For example, assuming i.i.d. Rayleigh fading such that

vec (Hikj) ≥ CN
1

0, INik
◊Mi

2
, (4.26)

the MMSE estimator of the channel from BS j to MS ik is [BG06]

‚Hikj =

Ò
Pj

KjMj

Lp,d
Pj

KjMj
+ ‡2

ik

Yik
PH

j . (4.27)
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Then, assuming that all precoders {Vjl
} have been fed back to MS ik, and that

‡2
ik

is known, it can form

‚Fik
= ‚HikiVik

, (4.28)

‚Φik
=

ÿ

(j,l)

‚HikjVjl
VH

jl
‚HH

ikj + ‡2
ik

I. (4.29)

Uplink Estimation

A similar procedure is used in the uplink. The receive filters and MSE weights
for MS ik is fed back to BS i, and the BSs then share their information over the
backhaul.

Let Pjl
œ C

Nik
◊Lp,u be orthogonal pilots, assuming Lp,u Ø

q
(j,l) Njl

, such that

Ω≠
P ik

Ω≠
PH

jl
=

I
Lp,uINik

(i, k) = (j, l)

0Nik
◊Nj,l

(i, k) ”= (j, l)
. (4.30)

The received signal at BS i in the uplink training phase is then

Ω≠
Yi =

Kiÿ

k=1

ÛΩ≠
P ik

Nik

HH

iki

Ω≠
P ik

+
ÿ

j ”=i

Kjÿ

l=1

ÛΩ≠
P jl

Njl

HH

jli

Ω≠
P jl

+
Ω≠
Z i. (4.31)

The MMSE estimator of the uplink channel from MS jl to BS i is

‚HH

jli =

Ú Ω≠
P jl

Njl

Lp,u

Ω≠
P jl

Njl
+ Î2

i

Ω≠
Yi

Ω≠
PH

jl
. (4.32)

With the estimated uplink channels, together with perfect knowledge of all receive
filters {Ujl

}, BS i can form

‚Gik
= ‚HH

ikiUik
, k = 1, . . . , Ki (4.33)

‚Γi =
ÿ

(j,l)

‚HH

jliUjl
UH

jl
‚Hjli. (4.34)

The estimation procedure presented in this section requires significant feedback
and signaling of filters among BSs and MSs in every subframe in order to form
the effective channels and covariance matrices. This method is still interesting
however, since the state-of-the-art robust WMMSE algorithms in [NGS12, SM12,
LKY13,RBCL13] require this type of channel estimation.

Remark 4.3. The CSI acquisition proposed in this section is centralized. It requires
significant feedback and sharing of filters among BSs and MSs in every subframe.
In terms of estimating the underlying channels {Hikj}, it is however distributed
over the BSs and MSs.
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Table 4.3. Total estimation complexity, per iteration and MS

Method Approximate number of flops

Sec. 4.2.1 (Nd + N2)Lp,d + MdLp,u + M2Lp,u/Kc

Sec. 4.2.2 (Nd + N2)Lp,d + (MdLp,u + M2d + M2)I

Sec. 4.2.3 NMI(Lp,d+Lp,u)+(NMd+N2d+N2)K+(NMd+M2d+M2)I

4.2.4 Feedback Requirements and Complexity

The proposed CSI acquisition schemes in Section 4.2.1 to Section 4.2.3 have vastly
different feedback loads. We compare these in Table 4.4 on the following page.

The computational complexities [TI97] of forming the channel estimates are
given in Table 4.3. The expressions are for the special case that all MSs have N
antennas and are served d data streams. All BSs have M antennas, and each serve
Kc MSs. The NMI(Lp,d + Lp,u) term in the Section 4.2.3 estimation method flop
count dominates all other terms when the number of pilots is large. An illustration
of this will be given in Section 4.4.

4.2.5 Quantized Feedback of MSE Weights

In the proposed CSI acquisition schemes in Section 4.2.1 and Section 4.2.2, feedback
of the MSE weights is needed. In practical applications, quantized feedback should
be employed to reduce the overhead of the feedback. Since Wik

is Hermitian,
it has an eigenvalue decomposition, which can be quantized and fed back to the
serving BS. The eigenvectors can e.g. be quantized using Grassmannian subspace
packing [LH05]. For the quantization of the eigenvalues, we have the following
helpful lemma:

Lemma 4.1. The eigenvalues of the MSE weight for MS ik are bounded as 1 Æ
⁄n (Wik

) Æ 1 +
Pis2

max
(Hiki)

‡2
ik

, ’ n œ {1, . . . , dik
}.

Proof. For MS ik it holds that Φ
i+n
ik

≤ ‡2
ik

I, with equality if the MS does not
experience any interference. Thus, the MSE weight for that MS satisfies

Wik
= I + VH

ik
HH

iki

!
Φ

i+n
ik

"≠1
HikiVik

, (4.35)

∞ I +
1

‡2
ik

VH

ik
HH

ikiHikiVik
. (4.36)

Now introduce the spectral norm |||D|||2 = maxc
ÎDcÎ2

ÎcÎ2
= smax (D). Then, for all
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Table 4.4. Feedback and estimation needed for the different methods

Method Globally shared
common scale

parameter
(Section 4.2.1)

Globally shared
individual scale

parameters
(Section 4.2.2)

Globally
shared filters

(Section 4.2.3)

Estimated
at MS ik

Φik
, Fik

Φik
, Fik

{Hikj}(c)

BS i
feedback to

served
MS ik

— — {Vjl
}

Estimated
at BS i

Γi, {Gik
} {Gjli} {HH

jli}
(c)

MS ik

feedback to
serving BS i

Wik
, “ik

ÎUik
ÎF , Wik

Uik
, Wik

Shared over
BS

backhaul

{“jl
}(a)

; Ω≠
P jl

ÎUjlÎF

<
(b) {Ujl

}(b)

(a) The quantities “jl
=

Ú Ω≠
P jl

‡2
jl

–jl
djl

only need to be shared among BSs whenever

some of the involved variables change. For static conditions, this means that
they only need to be shared once.

(b) These quantities must be shared over the BS backhaul in each iteration.
(c) The estimated quantities for the methods in Section 4.2.1 and Section 4.2.2

depend on the transmit and receive filters, and must therefore be re-estimated
in every iteration. The estimated quantities for the method in Section 4.2.3 do
not change within one coherence block, and can therefore be improved upon in
every iteration.
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cik
such that Îcik

Î2 = 1, we have that

cH

ik
VH

ik
HH

ikiHikiVik
cik

Æ ÎVik
cik

Î2
2 · ⁄max

!
HH

ikiHiki

"

= ÎVik
cik

Î2
2 · s2

max (Hiki) Æ |||Vik
|||22 · Îcik

Î2
2 · s2

max (Hiki)

= |||Vik
|||22 · s2

max (Hiki) Æ ÎVik
Î2

F · s2
max (Hiki) Æ Pis

2
max (Hiki) .

(4.37)

Thus, ⁄max

!
VH

ik
HH

ikiHikiVik

"
Æ Pis

2
max (Hiki), and the upper bound then directly

follows from (4.36). For the lower bound, note that

I ∞ I + VH

ik
HH

iki

!
Φ

i+n
ik

"≠1
HikiVik

= Wik
. (4.38)

That is, the eigenvalues of Wik
can be suitably quantized over

5
1, 1 +

Pis
2
max(Hiki)

‡2
ik

6
. (4.39)

We however leave the details of how to design such quantizers for future work.
As mentioned in Section 4.2.1, Rik

=
q

n log2 (⁄n (Wik
)) can be seen as the

data rate (summed over data streams) for MS ik. Quantizing ⁄n (Wik
) therefore

corresponds to making a set of discrete rates available to the MS, corresponding to
e.g. a set of different modulation and coding schemes.

4.3 Inherent and Enforced Robustness of WMMSE Solutions

Using the methods developed in Section 4.2, we are able to perform CSI acquisition
with varying levels of distributedness. We now study the robustness of the WMMSE
algorithm, when applied together with these CSI acquisition schemes.

4.3.1 Naïve WMMSE Algorithm with Estimated CSI

It is straightforward to naïvely feed the WMMSE algorithm the estimated CSI
from one of the presented CSI acquisition methods. An example of the resulting
performance can be seen in Figure 4.3. The simulation settings are described in
detail in Section 4.4. It is clear that the naïve application of the WMMSE algorithm
works moderately well for the centralized CSI acquisition schemes, but performance
for the fully distributed CSI acquisition scheme in Section 4.2.1 catastrophically
deteriorates at high SNR. Thus, some form of robustification against CSI estimation
errors is necessary.

4.3.2 Diagonal Loading as a Robustifying Structure

One approach to robustifying the WMMSE optimization problem in (2.62) on
page 36 is to minimize the objective function under the worst-case estimation error
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Figure 4.3. Sum rate performance when naïvely applying the WMMSE algorithm
together with the CSI acquisition schemes. The scenario was a I = 3, Ki = 2 ’ i,
M = 4, N = 2 interfering broadcast channel with d = 1. The channels were i.i.d.

Rayleigh fading, and the uplink SNR was set as SNRu =
Ω≠
P /ς

2 = 10 dB for all
links. Note that SNRd = P/σ

2 affects both the power constraint in the WMMSE
algorithm, as well as the estimation performance in the downlink estimation, since
the downlink pilots are precoded with the same precoders as used in the data trans-
mission.

conditions. This is typically formulated by letting the estimation errors belong to
some known convex set, and then solving a corresponding min-max problem. The
CSI acquisition methods proposed herein provide estimates of the effective channels
and covariance matrices. Due to the definition of the effective channels, a worst-case
optimization problem cannot be formulated for both uplink and downlink estima-
tion errors simultaneously however4. Instead, each BS and MS can locally formulate
a worst-case optimization problem, given the estimation errors at that particular
BS or MS. In this section, we outline these local worst-case optimization problems.

Worst-Case Robust Precoders

By first studying the optimization at the BSs, we let the estimation errors for BS
i be

ÂΓi = Γi ≠ ‚Γs+i
i , (4.40)

ÂGik
= Gik

≠ ‚Gik
, k = 1, . . . , Ki. (4.41)

4For example, the term W
1/2

ik
AH

ik
HikiVik

= GH

ik
Vik

= W
1/2

ik
AH

ik
Fik

cannot be written in

terms of Gik
and Fik

simultaneously.
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We assume that the errors are norm bounded as
...ÂΓi

...
F

Æ Á
(BS)
i , (4.42)

... ÂGik
W

1/2
ik

...
F

Æ ›
(BS)
ik

, k = 1, . . . , Ki. (4.43)

Note that ›
(BS)
ik

depends on Wik
. The worst-case optimization problem for BS i is

then (cf. (2.67) on page 37):

minimize
{Vik

}
max..ÂΓi

..
F

ÆÁ
(BS)
i..ÂGik

W
1/2
ik

..
F

Æ›
(BS)
ik

, k=1,...,Ki

Kcÿ

k=1

Tr
1

VH

ik

1
‚Γs+i

i + ÂΓi

2
Vik

2

≠ 2
Ô

–ik
Re

3
Tr

3
W

1/2
ik

1
‚Gik

+ ÂGik

2H

Vik

44

subject to
Kcÿ

k=1

Tr
!
Vik

VH

ik

"
Æ Pi, i = 1, . . . , I.

(4.44)

The solution to the inner optimization problem of (4.44) can be found by extending
the results of [SGLW03,ZSGL05] to the multiuser matrix case. By upper bounding
the optimal value of the inner optimization problem using the triangle inequality5

and the submultiplicativity of the Frobenius norm, the form of the (pessimistic)
robust optimal precoder for MS ik is

Vrob
ik

=
Ô

–ik

3
‚Γs+i

i +

3
Á

(BS)
i +

›
(BS)
ik..Vrob
ik

..
F

+ µi

4
I

4≠1

‚Gik
W

1/2
ik

. (4.45)

As before, µi is the Lagrange multiplier for the sum power constraint. Note that
the robust precoder in (4.45) is diagonally loaded by a constant factor Á

(BS)
i , a

data dependent factor ›
(BS)
ik

/
..Vrob

ik

..
F

, and the Lagrange multiplier µi. Diagonal
loading is well known to robustify beamformers in various settings, and a large body
of literature has studied its robustifying effects; see e.g. [CZO87, Car88, WBM96,
LSW03,VGL03,SGLW03,ZSGL05].

In order to construct the robust precoder in (4.45), the parameters Á
(BS)
i and

›
(BS)
ik

must be known. For the fully distributed CSI estimation in Section 4.2.1, the

effective channel error ÂGik
follows a zero-mean Gaussian distribution with known

covariance, and ›
(BS)
ik

can thus be selected such that
... ÂGik

W
1/2
ik

...
F

Æ ›
(BS)
ik

holds

with some probability. The statistics of the covariance error ÂΓi however depend on
the filters {Uik

}, which are unknown at BS i. Since the optimal amount of diagonal
loading is unknown, we therefore propose to disregard Á

(BS)
i and ›

(BS)
ik

, and let the

5This effectively relaxes the problem such that the ÂΓi is the worst for each user simultaneously.
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factor µi handle all the diagonal loading. To compensate for the missing Á
(BS)
i and

›
(BS)
ik

, we will implicitly amplify µi using a scaling procedure, to be described in
Section 4.3.3.

Worst-Case Robust Receive Filters

The development of the worst-case robust receive filters follow similarly as for the
worst-case robust precoders. For completeness, we however briefly discuss this case
as well.

The estimation errors for MS ik are

ÂΦik
= Φik

≠ ‚Φik
, (4.46)

ÂFik
= Fik

≠ ‚Fik
. (4.47)

We assume that the errors are norm bounded as
...ÂΦik

...
F

Æ Á
(MS)
i , (4.48)

...ÂFik
W

1/2
ik

...
F

Æ ›
(MS)
ik

. (4.49)

The worst-case optimization problem for the receive filter of MS ik is then:

minimize
{Aik

}
max..ÂΦik

..
F

ÆÁ
(UE)
i..ÂFik

W
1/2
ik

..
F

Æ›
(UE)
ik

Tr
1

Wik

1
I + AH

ik

1
‚Φik

+ ÂΦik

2
Aik

22

≠2Re
3

Tr
3

Wik

1
‚Fik

+ ÂFik

2H

Aik

44
,

(4.50)

Using similar techniques as in the previous section, it can be shown that the form
of the (pessimistic) worst-case robust receive filter for MS ik is

Arob
ik

=

A
‚Φik

+

A
Á

(MS)
i +

›
(MS)
ik..Arob
ik

..
F

B
I

B≠1

‚Fik
. (4.51)

Again, the robust solution is diagonally loaded by a quantity that is unknown, in
this case Á

(MS)
i . Our proposed solution to this conundrum is to enforce a particular

property onto the receive filters. This will be detailed in Section 4.3.4.

4.3.3 Precoder Robustness

From Section 4.3.2 we know that the structure of the optimal worst-case robust
precoder is that of diagonal loading. Unfortunately, the optimal level of diagonal
loading is unknown however. We now detail a heuristic for selecting the diagonal
loading level.
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Given estimates ‚Γs+i+n
i , ‚Gik

and fed back Wik
, the naïve precoders from the

original WMMSE algorithm are formed like (cf. (4.1) on page 66)

Vik
=

Ô
–ik

1
‚Γs+i+n

i + µiI
2≠1 ‚Gik

W
1/2
ik

. (4.52)

Note that the form of (4.52) and (4.45) on page 81 are similar, and that µi alone
acts as the diagonal loading for the naïve WMMSE precoder. The level of diagonal
loading is determined by ‚Γs+i+n

i , ‚Gik
W

1/2
ik

and Pi. As seen in Figure 4.3, this level
of diagonal loading may be too low when it is solely determined by the sum power
constraint. We therefore propose to artificially inflate the level, using a scaling
technique.

Common Downlink Sum Power Constraint Scale Factor

We let 0 Æ fl Æ 1 be a scaling factor, and modify the WMMSE algorithm with the
following steps:

1. In the precoder optimization at BS i, let the sum power constraint be flPi.
The resulting precoders from (4.52) are denoted {V

(fl)
ik

}, and will have equal
or higher diagonal loading level than the original precoder in (4.52), since µi

is nonincreasing in the sum power constraint value.

2. Form scaled precoders Vik
= 1Ô

fl
V

(fl)
ik

, and use these for downlink pilot and
data transmission. This scaling ensures that all allowable transmit power can
be used.

3. At the MSs, perform the estimation given the precoders {Vik
}, giving {‚F(fl)

ik
}

and {‚Φ(fl)
ik

}.

4. Scale the estimates as ‚Φik
= fl‚Φ(fl)

ik
, ‚Fik

=
Ô

fl‚F(fl)
ik

, and use {‚Φik
} and {‚Fik

}
to form receive filters and MSE weights. This scaling is necessary in order for
the WMMSE algorithm at the MSs to be aware of what the original precoders
V

(fl)
ik

were.

The same scaling fl is used at all BSs, and therefore the signal-to-interference ratios
of the cross-links are not affected. In Figure 4.4 on the following page, we plot
the impact of selecting different fl. A simple selection that appears to work well is
fl = min(

Ω≠
P /P, 1).

Removing the Noise Component of ‚Γs+i+n
i

Comparing (4.52) on the current page with the version with perfect CSI in (2.69)
on page 37, it can be noted that the covariance matrix should be ‚Γs+i

i , and not
‚Γs+i+n

i . The noise portion of ‚Γs+i+n
i will on average be ‡2

t

“2 , but simply subtracting
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ρP

Figure 4.4. Sum rate performance when varying ρ, for P = 1000 and σ
2 = 1 and

varying SNRu. The solid markers represent the performance for ρ = min(
Ω≠
P /P, 1).

The scenario is the same as in Figure 4.3.

that might make the resulting matrix indefinite. Instead, we modify µi to allow
for negative values; this is the same as seeing µi as the difference of a non-negative
Lagrange multiplier with an estimate of the noise power. Specifically, we let µi Ø
≠ min

1
‡2

t

“2 , ⁄min

1
‚Γs+i+n

i

2
≠ ’

2
where ’ is some value determining how close to

singular ‚Γs+i+n
i + µiI can be.

4.3.4 Receive Filter and MSE Weight Robustness

The precoders determined at the BS side are naturally robustified due to the diag-
onal loading from the downlink sum power constraint. By artificially inflating the
loading level, the robustness level can be increased. On the MS side however, where
Aik

and Wik
are found, so such natural robustification takes place. Again, the op-

timal worst-case robustness structure is that of diagonal loading however. Since the
optimal level of diagonal loading is unknown, in this section we propose a method
for selecting this level. This procedure is based on the following observation:

Theorem 4.1. The receive filter Aik
and MSE weight Wik

obtained for MS ik in
the WMMSE algorithm with perfect CSI (Algorithm 4.1 on page 66) satisfies

...Aik
W

1/2
ik

...
2

F

= Tr
1!

Φ
i+n
ik

"≠1 ≠ Φ
≠1
ik

2
Æ dik

‡2
ik

.

If the effective channel Fik
is fully contained in an interference-free subspace of

dimension Âdik
Æ dik

, then asymptotically
...Aik

W
1/2
ik

...
2

F

æ Âdik
/‡2

ik
as the SNR in

the interference-free subspace grows large.

Proof. The proof is given in Appendix 4.A.
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Figure 4.5. Example of convergence of

...Aik
W

1/2

ik

...
2

F

for d = dik
= 1, ’ ik,

σ
2 = σ

2

ik
= 1, ’ ik. Note how 4 MSs get close to achieving the bound, and how the

remaining 2 MSs are effectively turned off.

Remark 4.4. The first part of this theorem has an important connection to the
uplink training phase in Section 4.2.1. In the uplink training, the transmitted signal

from MS ik is
Ω≠
S ik

= “Uik

Ω≠
P ik

= “
Ô

–ik
Aik

W
1/2
ik

Ω≠
P ik

. Since “, –ik
and

Ω≠
P ik

are

fixed, then Aik
W

1/2
ik

directly determines the effective MS transmit power, and hence

the uplink estimation SNR. The second part of the theorem shows that
...Aik

W
1/2
ik

...
2

F

also indicates whether ‘perfect IA’ is achieved for MS ik.

An example of how
...Aik

W
1/2
ik

...
2

F
converges, as a function of subframe number

for a I = 3, K = 2 network at P/‡2 = 30 dB, can be seen in Figure 4.5.

Enforcing Theorem 4.1 onto WMMSE Solutions with Imperfect CSI

Theorem 4.1 relates to perfect CSI, but the inequality may not hold for the naïve
solutions in (2.58) and (2.65) on pages 35–37 with imperfect CSI. In order to ro-
bustify the algorithm, we therefore explicitly impose the constraint on the MS side
optimization problem with imperfect CSI. Fixing {Vik

} in (2.62) on page 36, the
resulting optimization problem decouples over users. Dropping constant terms, the
optimization problem that MS ik should solve is then

minimize
Aik

,Wik
º0

Tr
1

Wik
‚Eik

2
≠ loge det (Wik

)

subject to
...Aik

W
1/2
ik

...
2

F
Æ dik

‡2
ik

(4.53)

where ‚Eik
= I ≠ AH

ik
‚Fik

≠ ‚FH

ik
Aik

+ AH

ik
‚Φik

Aik
.
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Figure 4.6. Sum rate performance when selectively applying the robustifying mea-
sures, together with the fully distributed CSI acquisition in Section 4.2.1. For com-
parison purposes, the scenario is the same as in Figure 4.3 on page 80.

Theorem 4.2. The solution to (4.53) is

Aı
ik

=
1

‚Φik
+ ‹ı

ik
I
2≠1 ‚Fik

Wı
ik

=

3
I ≠ ‚FH

ik

1
‚Φik

+ ‹ı
ik

I
2≠1 ‚Fik

4≠1

= I + ‚FH

ik

1
‚Φi+n

ik
+ ‹ı

ik
I
2≠1 ‚Fik

.

If
...Aı

ik

!
Wı

ik

"1/2
...

2

F

Æ dik
/‡2

ik
holds for ‹ı

ik
= 0, the constraint is not active and the

solution has the same form as the original solution in (2.58) and (2.65). Otherwise,

‹ı
ik

can be found by bisection over
!
0, ‡2

ik

$
such that

...Aı
ik

!
Wı

ik

"1/2
...

2

F

= dik
/‡2

ik
.

Proof. The proof is given in Appendix 4.B.

Interestingly, explicitly imposing the results of Theorem 4.1 as a constraint
in (4.53) corresponds to diagonal loading of the receive filter, thereby robustify-
ing it in a similar fashion as the robustification of the precoder in Section 4.3.3.
By increasing ‹ik

, the requested rate log2 det (Wik
) is decreased. A large ‹ik

,
would occur when there are obvious discrepancies in the estimated CSI, such that...Aik

W
1/2
ik

...
2

F
Æ dik

/‡2
ik

is far from being fulfilled without the diagonal loading.

Imposing the constraint in the optimization can be seen as a ‘sanity check’ on the
solution.

We visualize the robustifying effects in Figure 4.6, using the same simulation
settings as in Figure 4.3 on page 80. The robustifying measures are effective, and
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Algorithm 4.3 RB-WMMSE Algorithm (Estimated CSI)
1: Input: BS robustification parameter fl œ [0, 1].
2: repeat

At MSs:
3: Pilot transmission from BSs: estimate ‚Φ(fl)

ik
and ‚F(fl)

ik

4: Rescale ‚Φik
= fl‚Φ(fl)

ik
, ‚Fik

=
Ô

fl‚F(fl)
ik

5: Find ‹ik
to satisfy

...Aik
W

1/2
ik

...
2

F
Æ dik

/‡2
ik

6: Wik
=

3
I ≠ ‚FH

ik

1
‚Φik

+ ‹ik
I
2≠1 ‚Fik

4≠1

7: Aik
=

1
‚Φik

+ ‹ik
I
2≠1 ‚Fik

, Uik
=

Ô
–ik

Aik
W

1/2
ik

At BSs:
8: Pilot transmission from MSs: estimate ‚Γs+i+n

i and ‚Gik
.

9: Obtain W
1/2
ik

through feedback.

10: Find µi Ø ≠ min
1

Î2
i

“2 , ⁄min

1
‚Γs+i+n

i

2
≠ ‘

2

to satisfy
qKi

k=1 Tr
1

V
(fl)
ik

V
(fl),H
ik

2
Æ flPi

11: B
(fl)
ik

=
1

‚Γs+i+n
i + µiI

2≠1 ‚Gik
, V

(fl)
ik

=
Ô

–ik
B

(fl)
ik

W
1/2
ik

12: Scale Vik
= 1Ô

fl
V

(fl)
ik

13: until fixed number of iterations

when combined results in a factor 5 sum rate gain over the naïve WMMSE algorithm
at high SNR.

4.3.5 Robustified WMMSE Algorithm

We now combine the diagonal loading robustifications in Section 4.3.3 and Sec-
tion 4.3.4 to form a RoBustified WMMSE algorithm (RB-WMMSE); see Algo-
rithm 4.3 on this page. This algorithm can be combined with any of the CSI
acquisition schemes outlined in Section 4.2, and the joint system is fully distributed
if the CSI acquisition is distributed.

In the performance evaluation to come, we will compare to the existing robust
WMMSE algorithms in [NGS12, SM12, LKY13, RBCL13]. These also gain their
robustness from diagonal loading, but their diagonal loading comes from optimizing
a lower bound on performance. These methods require the CSI acquisition method
in Section 4.2.3, and the joint coordinated precoding system can hence not be
implemented in a fully distributed fashion.
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4.4 Performance Evaluation

We evaluate the performance of the proposed RB-WMMSE algorithm, together
with the distributed CSI acquisition systems, using numerical simulations. Syn-
thetic channels were used, and the channel model was i.i.d. Rayleigh fading on
all channels such that [Hikj ]mn ≥ CN (0, 1). The results were averaged over 1000
Monte Carlo independent realizations. We study scenarios where I BSs each serve
Kc MSs (i.e. Kc = Ki, ’ i), for a total of K = IKc users. Further, all BSs have the
same number of antennas M and all MSs have the same number of antennas N .
The number of served data streams are d = dik

for all MSs. All MSs have the same
noise power ‡2 = ‡2

ik
, ’ ik, and all BSs have the same noise power Î2 = Î2

i , ’ i. All
BSs have the same maximum downlink transmit power P , and all MSs have the
same maximum uplink transmit power

Ω≠
P . We let all users have the same data rate

weights, i.e. –ik
= 1, ’ ik. Unless otherwise stated, the BS power scaling is set as

fl = min(
Ω≠
P /P, 1) based on the results in Figure 4.4. Due to the symmetry of the

setup, “ = “ik
for the CSI acquisition in Section 4.2.1, and “ can thus be assumed

to be known a priori at the BSs. In this setup, the CSI acquisition in Section 4.2.1
is therefore fully distributed. For all estimation schemes, we let Lp,d = IM and
Lp,u = KN . For the uplink and downlink pilots, truncated DFT matrices of ap-
propriate dimensions were used. We always initialize the algorithms with precoders
corresponding to truncated DFT matrices.

As a baseline performance measure, we use single-user eigenprecoding and wa-
terfilling. For the single-user processing, we show the performance under TDMA,
as well as under uncoordinated concurrent transmissions (both with water filling).

4.4.1 Convergence

First, we investigate the average convergence behaviour of the RB-WMMSE al-
gorithm for an interfering broadcast channel with I = 3 BSs. Each BS serves
Kc = 2 users with d = 1 data stream each. The number of antennas is M = 4
and N = 2. The downlink and uplink SNRs are SNRd = P/‡2 = 20 dB and
SNRu =

Ω≠
P /Î2 = 10 dB, respectively. The performance of RB-WMMSE is com-

pared for the CSI acquisition schemes in Section 4.2.1 and Section 4.2.2. The
results are shown in Figure 4.7 on the next page, where it can be seen that the
robustifying measures in RB-WMMSE are needed for good performance. For the
estimation with global sharing of individual scale factors (Section 4.2.2), conver-
gence is slightly faster than for the fully distributed estimation (Section 4.2.1).
The WMMSE algorithms need on the order of 1000 iterations to converge, which
is consistent with the findings of [SSB+13]. We do however note that a significant
fraction of the final performance is achieved after just around 10 to 20 iterations.
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Figure 4.7. Convergence comparison of the different methods for I = 3, Kc =
2, M = 4, N = 2, d = 1, SNRd = 20 dB and SNRu = 10 dB.

4.4.2 Fixed SIR, Varying SNR

Next, we study the sum rate when varying downlink and uplink SNRs. Recall
that the downlink SNR affects both the downlink power constraint in the resource
allocation, as well as the downlink estimation performance (see Section 4.2.1). The
uplink SNR only affects the uplink estimation performance.

Interfering Broadcast Channel

We first study an interference broadcast channel with the same system parameters
as in the convergence study above. Based on the behaviour in Figure 4.7, we let the
algorithms iterate for 20 iterations. The averaged achieved sum rate is plotted in
Figure 4.8 on the following page. We compare to MaxSINR, for which we actively
turn off two users in order not to overload the algorithm. Note that MaxSINR and
Weighted MaxSINR are equivalent here, since d = 1. The results for the CSI ac-
quisition with globally shared common scaling parameter (Section 4.2.1) are shown
in Figure 4.8a. RB-WMMSE consistently performs slightly better than MaxSINR,
and better than TDMA for sufficiently high uplink SNR. The results for the CSI
acquisition with globally shared individual scaling parameter (Section 4.2.2) are
shown in Figure 4.8b. The results are almost identical to those of Figure 4.8a. The
results for the CSI acquisition with global sharing of filters (Section 4.2.3) are shown
in Figure 4.8c. We now let fl = 1, since the heuristic for selecting the diagonal load-
ing level seems to be too conservative in this case. We compare to the (centralized)
optimized lower bound method of [NGS12, SM12, LKY13, RBCL13], and it can be
seen that RB-WMMSE exhibits similar performance. Furthermore, comparing to
Figure 4.8a and Figure 4.8b, the corresponding sum rates are significantly higher
in Figure 4.8c. This is because of the assumed perfect feedback of filters, and that
the estimates of the channels can be improved in every iteration, as described in
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Figure 4.8. Sum rate after the 20th iteration for I = 3, Kc = 2, M = 4, N = 2
interfering broadcast channel with d = 1.
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Figure 4.9. Sum rate after the 20th iteration for I = 3, Kc = 1, M = 3, N = 3
interference channel with d = 2 and SNRu = 10 dB.
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Section 4.2.3.

Interference Channel

For the interfering broadcast scenario above, the weighted MaxSINR in Algo-
rithm 4.2 was identical to the original MaxSINR of [GCJ11] since d = 1. In order
to evaluate performance for the weighted MaxSINR version, we now let d = 2. We
also change the scenario into an interference channel, where the I = 3 BSs each
serve Kc = 1 user, in order to be able to check the IA feasibility using the test
in [GBS14]. With M = 3 and N = 3, the test in [GBS14] gives that IA is feasible if
two MSs are served with one stream, and one MS is served with two streams. We
initialize the algorithms with d = 2 however, and let them turn off the streams as
necessary. We let SNRu = 10 dB and vary SNRd. The sum rate results are shown in
Figure 4.9 on the previous page. With the CSI acquisition from Section 4.2.1, it can
be seen that for low to intermediate SNR, RB-WMMSE and weighted MaxSINR
perform similarly. At high SNR however, the performance of RB-WMMSE flattens
out. This is due to its slow convergence behaviour at high SNR. The unweighted
MaxSINR performs poorly due to being overloaded with respect to an IA feasible
data stream allocation. With the CSI acquisition from Section 4.2.3, the results are
almost identical. When the centralized CSI acquisition from Section 4.2.3 is applied
however, RB-WMMSE performs significantly better than the weighted MaxSINR.
This is possibly due to the ad hoc nature of the weighted MaxSINR.

4.4.3 Fixed SNR, Varying SIR

Next, we investigate sum rate performance for varying signal-to-interference ratio
(SIR). We study the interfering broadcast channel scenario described earlier, with
SNRd = 30 dB, SNRu = 10 dB. Now, we do not turn off any users for MaxSINR,
since that hinders performance at high SIR. The results are shown in Figure 4.10
on the facing page. RB-WMMSE performs better than MaxSINR, and gets close
to the perfect CSI case when the cells are effectively uncoupled. MaxSINR is
limited from its overloading at high SIR. Inter- and intra-cell TDMA (as used
before) do not gain from the cell separation. If TDMA is only applied for the
intra-cell interference however, performance improves at high SIR, but deteriorates
at low SIR. The uncoordinated transmission approach is still limited by intra-cell
interference at high SIR.

4.4.4 Sum Rate and Complexity vs. Flop Count

We also study the performance and complexity of the system, as a function of the
number of pilots used. For the interfering broadcast channel scenario, with SNRd =
20 dB, and SNRu = 10 dB, we vary Lp,d = Lp,u and show the results in Figure 4.11
on page 94. The CSI acquisition from Section 4.2.3 performs slightly better in the
sum rate sense than the CSI acquisition from Section 4.2.1, but the difference in
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Figure 4.10. Sum rate after the 20th iteration for I = 3, Kc = 2, M = 4, N = 2
interfering broadcast channel with d = 1 and SNRd = 30 dB, SNRu = 10 dB.

computational complexity is significant. The reason for the the centralized CSI
acquisition from Section 4.2.3 requiring particularly many flops is that it needs
to estimate all interfering channels, at both MSs and BSs. The computational
complexity of the RB-WMMSE algorithm is independent of the number of pilots
used, and is displayed as the black line in Figure 4.11.

4.4.5 Quantized MSE Weight Feedback

Finally, we evaluate performance with quantized MSE weights. For the interfering
broadcast channel scenario with fixed uplink SNRu = 40 dB, we vary the SNRd and
the number of quantization bits. Each MS had an individual codebook with MSE
weights uniformly quantized on

5
0, 10 log10

3
1 +

Pis
2
max(Hiki)

‡2
ik

46
dB. (4.54)

Using the channel estimation from Section 4.2.1, the performance is shown in Fig-
ure 4.12 on the following page. For higher downlink SNR, more bits are needed for
good performance. For high resolution quantization, the performance is equal to
that of perfect feedback.
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4.5 Conclusions

In this chapter, we focused directly on solving the weighted sum rate problem. In
order to find a practical solution, we sought a distributed and robust coordinated
precoding method. In that venture, first three CSI acquisition schemes of varying
level of distributedness were proposed. The most distributed method only required
joint selection of one real-valued parameter. When this parameter was fixed, all
further steps could be performed in a fully distributed manner. Directly using
the estimates into the WMMSE algorithm developed for perfect CSI, was shown
to yield inferior performance. Instead, robustifying measures at both the BS as
well as the MS sides were proposed. At the MS side, enforcing some properties
of the solutions with perfect CSI, to the solutions with imperfect CSI, resulted
in diagonally loaded receive filters. At the BS side, some diagonal loading was
provided by the sum power constraint. This effect was amplified using a common
power scaling parameter.
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4.A Proof of Theorem 4.1
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where the last equality comes from applying the matrix inversion lemma backwards.
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where the first Nik
≠ Âdik

eigenvalues are for the interference subspace, and the
remaining eigenvalues are for the interference-free subspace. The {· s
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signal powers of the effective channel in the interference-free subspace. Further,
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4.B Proof of Theorem 4.2

Proof. We first denote the objective function as g0 (Aik
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) and the constraint
function as g1 (Aik
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For future convenience, we also note that the complex partial gradients [HG07] of
the functions are
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minimizer is among the points described by the KKT conditions in (4.62)–(4.66).

We now venture to solve the KKT conditions. From (4.62), together with the
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where the last equality is due to the matrix inversion lemma [HJ85]. It now remains
to find the optimal ‹ı
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Chapter 5

Coordinated Precoding with

Hardware-Impaired Transceivers

At this point in the thesis, we have both obtained results for the IA feasibility of
certain scenarios, as well as designed practical methods for CSI acquisition and
coordinated precoding. In Chapter 3, where space-frequency IA was studied, the
only receiver impairment was the thermal noise. The system model was then further
extended in Chapter 4, to allow for imperfect CSI as well. In both of these chapters
however, a common assumption was that the radio hardware was ideal. In this
chapter, we relax this assumption, and investigate coordinated precoding under
imperfect hardware. In order to fully focus on this impairment, we instead assume
perfect knowledge of CSI at all the participating nodes.

All physical radio transceivers suffer from various impairments, such as phase
noise, I/Q imbalance, power amplifier non-linearities, etc [Sch08]. A large amount
of previous work has focused on these individual impairment, and proposing corre-
sponding compensation schemes; see e.g. [Sch08] and references therein. Here we
aim to find a simple model for the hardware impairments, to be used in precoder
optimization. A step in the direction of finding a simple model was [SWB10], where
the aggregate effect of the residual hardware impairments, after compensation, was
studied. For their hardware setup, it was shown that the distortion noises from
the residual hardware impairments were Gaussian [SWB10]. This type of residual
hardware impairments was shown to fundamentally limit performance in the high-
SNR regime for a MIMO point-to-point system [BZBO12]. A pure simulation study
was performed in [GGLF08], for a more complicated system with path loss. With
a generalized model for the residual impairments compared to the one proposed
in [SWB10], the optimal beamforming problem for a MISO multicell network was
solved in [BZBO12] and [BJ13, Ch. 4.3].
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5.1 System Model

We study a wideband system, where OFDM is used to transform the wideband
channel into a set of orthogonal narrowband channels (subcarriers). The subcarriers
are orthogonal, and we will thus study them separately1. The multiuser interaction
in the downlink will be described by the interfering broadcast channel in (2.11) on
page 19, but we will augment the model with some transceiver distortion noises
coming from the hardware impairments. At a given subcarrier, the received signal
at MS ik will be

yik
= HikiVik

xik
+

ÿ

(j,l) ”=(i,k)

HikjVjl
xjl

+

Iÿ

j=1

Hikjz
(BS)
j + z

(MS)
ik

. (5.1)

As before, the received signal contains terms for the desired signal, as well as the
received interference. The two last terms in (5.1) are however new compared to the
model in (2.11). They represent the additive transmitter distortion noises, z

(BS)
j , as

well as the additive receiver distortion noise z
(MS)
ik

. We assume that the system uses

compensation techniques [Sch08] for the hardware impairments, and thus z
(BS)
j and

z
(MS)
ik

are the distortion noises coming from the residual hardware impairments. As
discussed in Section 2.4.3, the compensation techniques applied are necessarily im-
perfect, and the hardware impairment can therefore not be completely eliminated.

In the model with ideal hardware in (2.11), the desired transmitted signal of
BS i is si =

qKi

k=1 Vik
xik

. Under the residual hardware impairments however, the
actual transmitted signal of BS i is Âsi =

qKi

k=1 Vik
xik

+ z
(BS)
i .

Not all hardware impairments can be described using the model in (5.1). For
example, the common phase error due to phase noise can be seen as a rotation of
the perceived channel [Sch08], and should thus appear as a multiplicative error. We
however leave the extension of the current work to such models for future research.

5.1.1 Hardware Impairments

With the extended system model in (5.1), the goal is now to solve the corresponding
weighted sum rate problem. In order to formulate that problem, we introduce
models for the transceiver distortion noises. We will use a model proposed in [BJ13,
Ch. 4.3], where the distortion noises are modeled as zero-mean circularly symmetric
complex Gaussian random variables. The rationale for this modeling assumption is
the fact that there are generally many residual hardware impairments. Their sum,
after compensation, will then behave as Gaussian [Sch08,SWB10]. This fact applies
to both transmitters and receivers, and has been verified using measurements on a
wireless testbed [SWB10].

1For notational simplicity, we will not include the subcarrier index in the expressions.
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Transmitter Distortions

With the Gaussian assumption of the transmitter distortions, it now remains to find
the mean and covariance of the signal. The mean is assumed to be zero, otherwise
further compensation could be applied that reduces the power of the distortions.

Modeling the covariance, the distortion noises are assumed to be uncorrelated
over the antennas. This is a reasonable assumption for systems where the anten-
nas are served with individual RF chains, if the transmitted signal is independent
over the antennas. The point of the precoding is however to introduce correla-
tions between the transmitted signals at different antennas. The effect on the
cross-correlations of the corresponding transmitter distortion noises was studied
in [MZHH12], for a 3rd order non-linear memoryless system. The analysis showed
that the cross-correlation coefficient between the distortion noises scaled as the
cross-correlation coefficient between desired transmitted signals, to the 3rd power.
The correlation of the distortion noises is thus small, and in the forthcoming mod-
eling we will approximate it as zero, for tractability. Concluding, the model for the
transmitter distortion noise at BS i is

z
(BS)
i ≥ CN

1
0, C

(BS)
i

2
, C

(BS)
i = diag

1
c

(BS),2
i,1 , . . . , c

(BS),2
i,Mi

2
. (5.2)

The transmitter distortion noise z
(BS)
i is further assumed to be independent

of the desired transmitted signal si. If the compensation schemes are reasonably
effective, any distortion noises from the residual hardware impairments should be
independent of the desired transmitted signal, and this motivates our independence
assumption. The power of the z

(BS)
i will however be a function of the power of si.

To allow for a large class of relations between these powers, we model the power of
the transmitter distortion noise at the mth antenna branch of BS i as

c
(BS),2
i,m = ÷2

i

Q
a

ı̂ıÙ
Kiÿ

k=1

...[Vik
]m,:

...
2

F

R
b , (5.3)

where
qKi

k=1

...[Vik
]m,:

...
2

F
is the power of the desired signal allocated to antenna m.

In this model, the transmitter impairment functions ÷i(·) are convex, nonnegative,
and nondecreasing functions describing how the magnitude of the desired signal
maps to the magnitude of the distortions. These assumptions cover a large class of
functions, and crucially, will enable the optimization in Section 5.2.

In the literature, the level of distortion noises in a radio transmitter is typically
measured using the error vector magnitude (EVM) metric. In essence, this metric
describes the relation of the distortion noise power, to the desired signal power. For
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the proposed model, the EVM at transmitter antenna m at BS i is

EVM(BS)
i,m ,

ı̂ııÙ
c

(BS),2
i,m

qKi

k=1

...[Vik
]m,:

...
2

F

=

÷i

AÚ
qKi

k=1

...[Vik
]m,:

...
2

F

B

Ú
qKi

k=1

...[Vik
]m,:

...
2

F

. (5.4)

The first equality defines the transmitter EVM as the square root of the distortion
noise power relative to the desired signal power. The second equality shows how
÷i(·) affects the EVM.

Depending on the required spectral efficiency, a typical maximum transmit-
EVM range in the 3GPP LTE standard [HT11] is [0.08, 0.175].

Receiver Distortions

The modeling of the receiver distortion noises is performed in a similar manner.
Again, we base our model on the one proposed in [BJ13, Ch. 4.3]. That model
however only considered single-antenna receivers. Here we extend the model in a
simple way to allow for multi-antenna receivers. The receiver distortion noises are
assumed to be uncorrelated over the antennas, for the same reason as given for the
transmitter distortion noises. The receiver distortion noise at MS ik can then be
modeled as

z
(MS)
ik

≥ CN
1

0, C
(MS)
ik

2
, C

(MS)
ik

= diag
1

c
(MS),2
ik,1 , . . . , c

(MS),2
ik,Nik

2
. (5.5)

Assuming reasonably effective compensation schemes for the receiver hardware
impairments, the distortion noise z

(MS)
ik

is assumed to be independent of the received
signal

q
(j,l) HikjVjl

xjl
. Again, the power of the receiver distortion noise will

however depend on the power of the received signal. We model that as

c
(MS),2
ik,n = ‡2

ik
+ ’2

ik

Q
ca

ı̂ıÙ
ÿ

(j,l)

...[HikjVjl
]n,:

...
2

F

R
db . (5.6)

where
q

(j,l)

...[HikjVjl
]n,:

...
2

F
is the power of the received signal2 at antenna n. The

receiver impairment functions ’ik
(·) are convex, nonnegative, and nondecreasing

functions describing how the magnitude of the received signal maps to the magni-
tude of the receiver distortions. The ‡2

ik
represents the power of the thermal noise,

as a part of the total receiver distortion noise.

2Note that we neglect the received transmitter distortion noises here. In any well-designed
system, the part of the receiver distortion noise power which is directly dependent on the received
transmitter distortion noise power should be small. Because of this model simplification, some
expressions will simplify in the impending exposition.
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As in the transmitter case, we define a receiver EVM. We choose to define it in
terms of the receiver distortion noise, excluding the thermal noise, relative to the
desired received signal. At receive antenna m at MS ik, it is

EVM(MS)
ik,n ,

’ik

AÚ
q

(j,l)

...[HikjVjl
]m,:

...
2

F

B

Ú
q

(j,l)

...[HikjVjl
]m,:

...
2

F

(5.7)

Signal Covariances

With the proposed model for the distortion noises, the covariance matrix of the
received signal in (5.1) can be formed. In order to distinguish it from the covariance
matrix for the interfering broadcast channel (without hardware-impairments) in
(2.12), we denote it ÂΦik

for MS ik. It is defined as

ÂΦik
= E

!
yik

yH

ik

"
= HikiVik

VH

ik
HH

iki¸ ˚˙ ˝
desired signal

+
ÿ

(j,l) ”=(i,k)

HikjVjl
VH

jl
HH

ikj

¸ ˚˙ ˝
inter-cell and intra-cell interference

+

Iÿ

j=1

HikjC
(BS)
j HH

ikj

¸ ˚˙ ˝
impact of transmitter distortions

+ C
(MS)
ik

.
¸ ˚˙ ˝

receiver thermal noise
and distortions

(5.8)

The corresponding interference plus distortions covariance matrix is then

ÂΦint+dist
ik

= ÂΦik
≠ HikiVik

VH

ik
HH

iki

=
ÿ

(j,l) ”=(i,k)

HikjVjl
VH

jl
HH

ikj +
Iÿ

j=1

HikjC
(BS)
j HH

ikj + C
(MS)
ik

.
(5.9)

5.2 Weighted Sum Rate Optimization

Given the model of the transceiver distortion noises, the goal is now to maximize
the weighted sum rate. First, we must modify our definition of the user rates to take
into account the distortion noises. Assuming that the receivers treat the received
distortion noises as additive Gaussian noise in the decoder, the achievable data rate
for MS ik is

ÂRik
= log2 det

3
I + VH

ik
HH

iki

1
ÂΦint+dist

ik

2≠1

HikiVik

4
. (5.10)
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We now want to solve the weighted sum rate problem with hardware-impaired
transceivers

maximize
{Vik

}

ÿ

(i,k)

–ik
log2 det

3
I + VH

ik
HH

iki

1
ÂΦint+dist

ik

2≠1

HikiVik

4

subject to V œ ÂV,

(5.11)

where ÂV is some convex set describing the constraints on the precoders. This may be
different from the sets described in Section 2.3.1, due to the hardware impairments.
For example, assuming that the transmitted distortion noises count towards the
total power budget of a BS, the per-BS sum power constraint set for BS i would be

ÂVi =

I
!
Vi1

, . . . , ViKi

"
œ C

Mi◊Π
Ki
k=1

dik : Tr
1

C
(BS)
i

2
+

Kiÿ

k=1

Tr
!
Vik

VH

ik

"
Æ Pi

J
.

(5.12)

The full constraint set for (5.11) is then described by the Cartesian product of the
per-BS constraint sets:

ÂV = ÂV1 ◊ ÂV2 ◊ · · · ◊ ÂVI . (5.13)

5.2.1 Weighted MMSE Minimization

The weighted sum rate problem with hardware-impaired transceivers in (5.11)
is non-convex since (5.10) is non-convex in {Vik

}. We will therefore apply the
WMMSE approach [SRLH11] as described in Section 2.3.3. Assuming linear re-
ceive filters {Aik

} at all MSs, the MSE matrix for MS ik is

ÂEik
= E

1
(xik

≠ x̂ik
) (xik

≠ x̂ik
)
H

2
= E

1!
xik

≠ AH

ik
yik

" !
xik

≠ AH

ik
yik

"H
2

= I ≠ AH

ik
HikiVik

≠ VH

ik
HH

ikiAik
+ AH

ik
ÂΦik

Aik
.

(5.14)

Notice the similarity to the MSE matrix in (2.57) on page 35 for the system without
hardware impairments. The impact of the distortion noises appear inside ÂΦik

, and
therefore the WMMSE approach can be applied directly. Next, we seek the MMSE
receiver

AMMSE
ik

= arg min
Aik

Tr
1

ÂEik

2
= ÂΦ≠1

ik
HikiVik

(5.15)

and note that

ÂEMMSE
ik

= ÂEik

!
AMMSE

ik

"
= I ≠ VH

ik
HH

iki
ÂΦ≠1

ik
HikiVik

=

3
I + VH

ik
HH

iki

1
ÂΦint+dist

ik

2≠1

HikiVik

4≠1

.
(5.16)
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The last equality in (5.16) is due to the matrix inversion lemma. By applying
the WMMSE approach, we arrive at the weighted MMSE problem for hardware-
impaired transceivers,

minimize
{Vik

},{Aik
}

{Wik
º0}

log2(e)
ÿ

(i,k)

–ik

1
Tr

1
Wik

ÂEik

2
≠ loge det (Wik

) ≠ dik

2

subject to V œ ÂV.

(5.17)

Comparing to the WMMSE problem for unimpaired transceivers in (2.62) on page 36,
it can be seen that the two problems have the same structure, but different MSE ma-
trices. In a similar vein as the WMMSE algorithm without hardware impairments,
we can thus try to find a local optimum to (5.17) using alternating minimization.

5.2.2 Optimality Conditions

Before applying alternating minimization to (5.17), we derive the first-order nec-
essary optimality conditions [Ber06] for two of the blocks of variables. These are
found by setting the partial complex gradients [HG07] of the objective function to
zero.

Since Wik
º 0, the first-order optimality conditions for the receive filters are

ÂΦik
Aik

= HikiVik
, ’ i œ {1, . . . , I}, k œ {1, . . . , Ki}. (5.18)

The first-order optimality conditions for the MSE weights are

(Wik
)
≠1

= ÂEik
, ’ i œ {1, . . . , I}, k œ {1, . . . , Ki}. (5.19)

We will now show that (5.17) has the same global solutions as (5.11). This follows
analogously to the problem considered in [SRLH11], but we show the steps here for
completeness.

Substituting the necessary conditions in (5.19) into (5.17) and changing the base
of the logarithm, the resulting equivalent optimization problem is

minimize
{Vik

},{Aik
}

ÿ

(i,k)

–ik
log2 det

1
ÂE≠1

ik

2

subject to V œ ÂV.

(5.20)

Then further substituting (5.18) into (5.20), using (5.16), the resulting equivalent
optimization problem is

maximize
{Vik

}

ÿ

(i,k)

–ik
log2 det

3
I + VH

ik
HH

iki

1
ÂΦint+dist

ik

2≠1

HikiVik

4

subject to V œ ÂV.

(5.21)
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Clearly, (5.21) is identical to (5.11), and thus (5.17) and (5.11) have the same
globally optimal solutions.

Furthermore, it can be shown using [SRLH11, Thm. 3] that (5.17) and (5.11)
have the same locally optimal solutions as well. This is done by noting that the
stationarity condition of (5.17) w.r.t. {Vik

}, for optimal {Aı
ik

, Wı
ik

}, is the same
as the stationarity condition of (5.11). This fact is key in the convergence of the
alternating minimization in the WMMSE algorithm.

5.2.3 Alternating Minimization

Although we have shown that (5.17) has the same global optimal solutions as (5.11),
we will only be able to constructively find local optima. In order to do that, we
now apply alternating minimization over the blocks of variables {Aik

}, {Wik
} and

{Vik
} to (5.17).

By fixing {Wik
, Vik

}, the remaining unconstrained optimization problem is
convex in {Aik

}. The first-order necessary condition in (5.18) is thus both necessary
and sufficient, and the solution for MS ik is

Aı
ik

= ÂΦ≠1
ik

HikiVik
= AMMSE

ik
, (5.22)

where the last equality is identified from (5.15). Similarly, fixing {Aik
, Vik

}, the
remaining optimization problem is convex in {Wik

}. The necessary and sufficient
first-order condition in (5.19) then gives the solution for MS ik as

Wı
ik

=
1

ÂEik

2≠1

= I + VH

ik
HH

iki

1
ÂΦint+dist

ik

2≠1

HikiVik
, (5.23)

where the last equality is from substituting (5.22) and (5.16). Since Wı
ik

º 0, this
is indeed the solution.

Finally, we fix {Aik
, Wik

} and optimize over {Vik
}. By dropping constant

terms, and rearranging the remaining terms using properties of the trace, the fol-
lowing problem should be solved:

minimize
{Vik

}

Iÿ

i=1

C
Tr

1
ΓiC

(BS)
i

2
+

Kiÿ

k=1

Ë
Tr

!
VH

ik
ΓiVik

"

≠ 2–ik
Re

!
Tr

!
Wik

AH

ik
HikiVik

""
+ –ik

Tr
1

Aik
Wik

AH

ik
C

(MS)
ik

2 ÈD

subject to V œ ÂV.
(5.24)

Recall that Γi =
q

j,l –jl
HH

jliAjl
Wjl

AH

jl
Hjli is the signal plus interference covari-

ance matrix for a virtual uplink3. Compared to (2.67) on page 37, there are two

3In this chapter, we do not assume reciprocal channels, and Γi may therefore be a quantity
which is not related to the true uplink.
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Algorithm 5.1 WMMSE Algorithm for Hardware-Impaired Transceivers
1: repeat

At MS ik:

2: Find MSE weights: Wik
= I + VH

ik
HH

iki

1
ÂΦint+dist

ik

2≠1

HikiVik

3: Find MMSE receive filters: Aik
= ÂΦ≠1

ik
HikiVik

At Central BS Unit:
4: Find precoders as solution to:

minimize
{Vik

}

Iÿ

i=1

C
Tr

1
ΓiC

(BS)
i

2
+

Kiÿ

k=1

Ë
Tr

!
VH

ik
ΓiVik

"

≠ 2–ik
Re

!
Tr

!
Wik

AH

ik
HikiVik

""
+ –ik

Tr
1

Aik
Wik

AH

ik
C

(MS)
ik

2 ÈD

subject to V œ ÂV

5: until convergence criterion met, or fixed number of iterations

additional terms. The term Tr
1

ΓiC
(BS)
i

2
describes the impact of the transmitter

distortion noises generated by BS i on the total performance. Similarly, the term
–ik

Tr
1

Aik
Wik

AH

ik
C

(MS)
ik

2
describes the impact of the receiver distortion noises

generated by MS ik on the total performance.
Note that C

(BS)
i and C

(MS)
ik

are functions of {Vik
}, and since ÷2

i (·) and ’2
ik

(·)
are convex, the problem in (5.24) is convex in {Vik

}. For the general case, it can
then be solved efficiently using general interior-point methods [BV04, Ch. 11].

The alternating minimization procedure now consists of iteratively applying
(5.22), (5.23), and solving (5.24). The resulting algorithm is presented in Algo-
rithm 5.1. The iterations continue until convergence, or until a fixed number of
steps is reached.

Theorem 5.1. The alternating minimization of (5.17) monotonically converges.
Every limit point of the alternating minimization iterates is a stationary point of
(5.11).

Proof. In each substep, solving for either {Aik
}, {Wik

}, or {Vik
}, the objective

value of (5.17) can never increase. Since the objective function of (5.17) can be
lower-bounded, the objective value monotonically converges.

It now remains to show that the alternating minimization iterates reach a sta-
tionary point of the problem. If any of the c

(BS),2
i,m or c

(MS),2
ik,n are non-differentiable

w.r.t. {Vik
}, introduce auxiliary optimization variables d

(BS)
i,m and d

(MS)
ik,n to (5.17).
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Replace c
(BS),2
i,m æ d

(BS)
i,m , c

(MS),2
ik,n æ d

(MS)
ik,n and introduce inequality constraints

c
(BS),2
i,m = ÷2

i

AÛÿ

k

...[Vik
]m,:

...
2

F

B
Æ d

(BS)
i,m , ’ i, m

c
(MS),2
ik,n = ‡2

ik
+ ’2

ik

Q
ca

ı̂ıÙ
ÿ

(j,l)

...[HikjVjl
]n,:

...
2

F

R
db Æ d

(MS)
ik,n , ’ ik, n

to (5.17), in order to get the squared impairment functions on epigraph form. For
this equivalent problem, the objective function is continuously differentiable and the
extended feasible set is convex. Then, since the subproblem for {Aik

} is strictly
convex, [GS00, Prop. 5] gives that every limit point of the alternating minimization
iterates is a stationary point of (5.17). That this is also a stationary point of (5.11)
follows directly from the proof of Theorem 3 in [SRLH11].

5.3 Constant-EVM Transceivers

One interesting special case is that of constant-EVM transceivers. For these, the
EVMs are

EVM(BS)
i,m = Ÿ

(BS)
i , ’ i, m (5.25)

EVM(MS)
ik,n = Ÿ

(MS)
ik

, ’ ik, n. (5.26)

which for our model with impairment functions corresponds to

÷i(x) = Ÿ
(BS)
i x, ’ i, (5.27)

’ik
(x) = Ÿ

(MS)
ik

x, ’ ik. (5.28)

With these impairment functions, the distortion noise covariance matrices are

C
(BS)
i =

1
Ÿ

(BS)
i

22
Kiÿ

k=1

Diag
!
Vik

VH

ik

"
, (5.29)

C
(MS)
ik

= ‡2
ik

I +
1

Ÿ
(MS)
ik

22 ÿ

(j,l)

Diag
!
HikjVjl

VH

jl
HH

ikj

"
. (5.30)

Note that Diag (·) is the operator which retains the diagonal elements, and lets the
non-diagonal elements be zero.

Two features of this special case is that the proposed WMMSE algorithm will
become distributed over the BSs, and that we can propose a MaxSINDR method
for resource allocation.
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5.3.1 Distributed WMMSE Algorithm

Algorithm 5.1 on page 109 is naturally distributed over the MSs, but the BS side
optimization problem (5.24) must be solved centralized in general. Only if the term

ÿ

(i,k)

–ik
Tr

1
Aik

Wik
AH

ik
C

(MS)
ik

2
(5.31)

decomposes, the resulting problem can be solved in parallel over the BSs. This is
indeed the case for the constant-EVM transceivers.

It can easily be shown that Tr (F Diag (G)) = Tr (Diag (F) G), for arbitrary
square matrices F and G. Using this fact, together with the covariance matrix in
(5.30), we can rewrite (5.31) as
ÿ

(i,k)

–ik
Tr

1
Aik

Wik
AH

ik
C

(MS)
ik

2
=

ÿ

(i,k)

!
Tr

!
VH

ik
Γ̄iVik

"
+ –ik

‡2
ik

Tr
!
Aik

Wik
AH

ik

""
,

(5.32)
where

Γ̄i =
ÿ

(j,l)

–jl

1
Ÿ

(MS)
jl

22

HH

jliDiag
!
Ajl

Wjl
AH

jl

"
Hjli. (5.33)

Using the same trick, we can show that

Tr
1

ΓiC
(BS)
i

2
=

1
Ÿ

(BS)
i

22
Kiÿ

k=1

Tr
!
VH

ik
Diag (Γi) Vik

"
. (5.34)

Substituting (5.32) and (5.34) into (5.24), an equivalent problem is

minimize
{Vik

}

ÿ

(i,k)

C
Tr

3
VH

ik

3
Γi + Γ̄i +

1
Ÿ

(BS)
i

22

Diag (Γi)

4
Vik

4

≠ 2–ik
Re

!
Tr

!
Wik

AH

ik
HikiVik

""
D

subject to V œ ÂV.

(5.35)

Under the per-BS sum power constraint defined in (5.12) on page 106, the problem
in (5.35) decomposes over BSs, and the optimal precoder for MS ik is

Vı
ik

= –ik

3
Γi + Γ̄i +

1
Ÿ

(BS)
i

22

Diag (Γi) + Âµı
i I

4≠1

HH

ikiAik
Wik

. (5.36)

If the optimal Lagrange multiplier for BS i is Âµı
i = 0, the solution is given. Other-

wise, Âµı
i > 0 can be found by bisection such that

3
1 +

1
Ÿ

(BS)
i

22
4 Kiÿ

k=1

..Vı
ik

..2

F
= Pi. (5.37)
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Algorithm 5.2 WMMSE Algorithm for Constant-EVM Transceivers and Per-BS
Sum Power Constraint

1: repeat
At MS ik:

2: Find MSE weights: Wik
= I + VH

ik
HH

iki

1
ÂΦint+dist

ik

2≠1

HikiVik

3: Find MMSE receive filters: Aik
= ÂΦ≠1

ik
HikiVik

At BS i:

4: Find Âµi which satisfies
3

1 +
1

Ÿ
(BS)
i

22
4 qKi

k=1 Tr
!
Vik

VH

ik

"
Æ Pi

5: Find precoders:

Vik
= –ik

3
Γi + Γ̄i +

1
Ÿ

(BS)
i

22

Diag (Γi) + ÂµiI

4≠1

HH

ikiAik
Wik

, k = 1, . . . , Ki

(5.38)
6: until convergence criterion met, or fixed number of iterations

The algorithm for the constant-EVM transceivers and per-BS sum power constraint
is described in Algorithm 5.2.

5.3.2 Distributed MaxSINDR Algorithm

For the case of constant-EVM transceivers, with the covariances in (5.29) and
(5.30), a MaxSINDR algorithm can be devised. This is done by modifying the
original MaxSINR [GCJ11] described in Section 2.3.3, by taking into account the
constant-EVM distortions.

First, we define the virtual uplink signal for the MaxSINDR algorithm as

Υi =
ÿ

(j,l)

–jl
HH

ikjAjl
AH

jl
Hikj , (5.39)

and a corresponding ‘diagonalized’ signal plus interference covariance matrix

Ῡi =
ÿ

(j,l)

–jl

1
Ÿ

(MS)
jl

22

HH

jliDiag
!
Ajl

AH

jl

"
Hjli. (5.40)

Receive Filter Optimization

At the MSs, the receive filters {Aik
} are found on a per-stream basis, such that the

instantaneous per-stream signal-to-interference-distortions-and-noise ratio (SINDR)
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is maximized. The columns of the receive filters are then given by

aı
ik,n = arg max

aH

ik,n
aik,n=1

aH

ik,nHikivik,nvH

ik,nHH

ikiaik,n

aH

ik,n
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ik
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=

1
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ik

2≠1

Hikivik,n
....
1
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2≠1

Hikivik,n

....
2

=
ÂΦ≠1

ik
Hikivik,n...ÂΦ≠1

ik
Hikivik,n

...
2

, ’ ik, n

(5.41)

where the last equality is due to the matrix inversion lemma. The receive filters can
be found in parallel over the MSs, and even in parallel over the streams for each
MS. Note that the solution in (5.41) has the same form as aı

ik,n for the original
MaxSINR [GCJ11] as described in Section 2.3.3.

Precoder Optimization

At the BSs, the precoders {Vik
} are also found on a per-stream basis. These are

however selected to maximize a metric which is related to the ratio between the
received desired signal power due to the per-stream beamformer, and the received
interference and distortion signal power due to the per-stream precoder. We call
this metric a ‘quasi-SINDR’. The intuition is that each beamformer vik,n creates
a desired signal at MS ik, but it will also create interference at all other MSs, as
well as distortions at all MSs. The per-stream beamformers should thus be selected
to balance the positive and detrimental effects. In order to find the per-stream
beamformer for stream n to MS ik, we first note that the weighted received desired
signal power can be written as

–ik
aH

ik,nHikivik,n · vH

ik,nHH

ikiaik,n = –ik
vH

ik,nHH

ikiaik,n · aH

ik,nHikivik,n. (5.42)

This quantity will end up in the numerator of the quasi-SINDR.
We now study the quantities that will end up in the denominator of the quasi-

SINDR. The total weighted interference power due to vik,n is
ÿ

(j,l)

–jl
Tr

!
AH

jl
Hjlivik,nvH
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"
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(5.43)

For the constant-EVM transmitters, the transmitter distortion power is linear in
the power of the per-stream beamformers (cf. (5.29)). Therefore, the total weighted
(received) transmitter distortion power due to vik,n is

1
Ÿ

(BS)
i

22

Tr
!
ΥiDiag

!
vik,nvH

ik,n

""
=

1
Ÿ

(BS)
i

22

vH

ik,nDiag (Υi) vik,n. (5.44)
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Finally, using a similar relation as in (5.32) on page 111, the total weighted receiver
distortion power due to vik,n is

vH

ik,nῩivik,n. (5.45)

Putting together the desired signal power with the interference and distortion terms
in (5.43), (5.44), and (5.45), the quasi-SINDR to optimize is
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1

Ÿ
(BS)
i

22

Diag (Υi) +
‡2

ik
Ki

Pi
I

4
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.

(5.46)
Notice that a white term relating to the SNR of MS ik was also added to the
denominator. This term is needed at low SNR, since the interference is negligible
then.

Concluding, the per-stream beamformers are now given by
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ik,n = arg max
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where the last equality is due to the matrix inversion lemma. The full algorithm
is summarized in Algorithm 5.3 on the next page. Since the algorithm does not
optimize a single global objective, it is unclear whether it is guaranteed to converge
or not. A pragmatic approach is therefore to perform a predetermined fixed number
of iterations before quitting. In the numerical performance evaluation in Section 5.4,
it will be shown that the algorithm seems to converge on average.

5.4 Performance Evaluation

We study the performance of the proposed method using numerical simulation. In
the simulation study, we let the impairment functions be

÷i(x) = Ÿt x

3
1 +

1 x

Ÿ(NL)

22
4

, ’ i, (5.48)

’ik
(x) = Ÿr x, ’ ik. (5.49)
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Algorithm 5.3 MaxSINDR with Per-BS Sum Power Constraints
1: repeat

At MS ik:

2: aik,n =
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ik
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ik
Hikivik,n

..
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!
bik,1 bik,2 · · · bik,dik

"
, k = 1, . . . , Ki

6: Vik
=

Ò
Pi

Kidik
Bik

, k = 1, . . . , Ki

7: until fixed number of iterations

The receivers are thus constant-EVM receivers (with constant EVM of Ÿr), and the
transmitters have a 3rd order non-linearity. For low transmit powers, the EVM
of the transmitters is Ÿt. At a transmit power of Ÿ(NL), the EVM has doubled.
With this choice of impairment functions, the covariance matrices C

(MS)
ik

and C
(BS)
i

are differentiable w.r.t. {Vik
}. The BSs have individual sum power constraints,

including the created distortions, as described by (5.12) on page 106. We use the
modeling language YALMIP [L0̈4] together with the Gurobi solver [Gur14] to solve
(5.24).

We study a scenario with I = 3 BSs, each serving Kc = Ki = 2 MSs. The BSs
have M = Mi = 4 antennas each. The MSs have N = Nik

= 2 antennas each, and
the user priorities are –ik

= 1, ’ ik. The BSs are located at the corner of an equi-
lateral triangle with an inter-site distance of 500 m, and their antenna boresights
aimed towards the center of the triangle. For each Monte Carlo realization of the
network, the MSs were dropped with uniform probability in the cells belonging to
their serving BS. They were however never closer than 35 m to the BS. The other
simulation parameters are described in Table 5.1.

We compare the performance of the proposed Algorithm 5.1 to the case of
impairments-ignoring BSs and MSs using Algorithm 2.3 on page 38 with per-BS
sum power constraints. We also compare it to the case of having impairments-aware
MSs which use the impairments-aware MMSE receiver in (5.15), but impairments-
ignoring BSs which use Algorithm 2.3. The case of having aware MSs but ignorant
BSs could occur if the MSs estimate their covariances ÂΦik

over the air (using e.g.
the techniques in Section 4.2), without having a specific model for the impairments.
The impact of the distortions is then picked up by the MSs, and that knowledge
is implicitly distributed to the BSs in the WMMSE iterations. Effectively, the
ignorant BSs let C

(BS)
i = 0 and C

(MS)
ik

= 0 in their optimization of (5.24).
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Table 5.1. Simulation parameters

Path loss PLdB = 15.3 + 37.6 log10(distance [m])
Penetration loss 20 dB

BS antenna gain 12
!

◊
35¶

"2
dB

MS antenna gain 0 dB
Small scale fading i.i.d. CN (0, 1)

Bandwidth 15 kHz
Transmit power P = Pi, ’ i

Noise power ‡2 = ‡2
ik

= ≠127 dBm, ’ ik

As baselines, we use the proposed MaxSINDR algorithm in Algorithm 5.3, as
well as TDMA. MaxSINDR is only aware of the linear impairments, and is thus
unaware of the non-linearity in ÷i(x). For TDMA, we use Algorithm 5.1 to find
the impairments-aware precoders. For TDMA with impairments-ignoring BSs and
MSs, we use eigenprecoding with water filling as described in Section 2.3.3.

5.4.1 Convergence

First we investigate the convergence behaviour of the proposed algorithms. We
generate one user drop, and show sum rate performance as a function of iteration
number. The specific user geography for this user drop is shown in Figure 5.1.

We let d = 2 for Algorithm 5.1 and d = 1 for Algorithm 5.34. The power con-
straint per BS is P = 18.2 dBm and the impairments parameters are Ÿt = Ÿr = 10

100

and 20 log10(Ÿ(NL)) = 15.2 dBm. The sum rate evolution for these parameters
is shown in Figure 5.2. The proposed impairments-aware WMMSE converges
within a couple of tens of iterations. Interestingly, the WMMSE algorithm with
impairments-aware MSs but impairments-ignoring BSs also seems to converge, but
to a lower sum rate performance. The performance of the impairments-ignoring
WMMSE algorithm actually slowly deteriorates as the number of iterations grow
large. This shows that it is clearly important to take the hardware impairments
into account when performing the resource allocation. Finally, the MaxSINDR
also seems to converge, but to a sum rate around 25 % lower than the proposed
WMMSE algorithm.

5.4.2 Varying Impairment Levels

Next we study sum rate performance when varying the levels of impairments. We
fix the transmit power at P = 18.2 dBm. We generated 100 user drops, and 10
small scale fading realizations per user drop. The iterative methods were run with

4Using d = 2 for Algorithm 5.3 decreased performance.
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Figure 5.1. User geography for the convergence simulation in Figure 5.2.
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a stopping criterion of 10≠3 relative difference in increased sum rate. The sum
rate results, averaged over Monte Carlo realizations, are presented in Figure 5.3.
Clearly, the fully impairments-aware Algorithm 5.1 performs the best, but perfor-
mance drops as the severity of the impairments increases. The same trend holds
for the WMMSE algorithm with and without impairments-aware MSs. MaxSINDR
performs significantly worse than all other methods.

5.4.3 Varying Transmit Powers

Lastly, we study performance as a function of available transmit power. In order
to have a reasonable simulation scenario, we specialize to ÷(x) = Ÿtx and vary
Ÿt = Ÿr and the transmit power P . The sum rate results, averaged over Monte
Carlo realizations, can be seen in Figure 5.4. The sum rates saturate at high
transmit powers, due to the residual hardware impairments. Clearly, the high-
SNR scaling of the curves are zero, but the gain for coordinated precoding over
TDMA is significant, as predicted by [BZBO12]. Interestingly, in this case the
WMMSE algorithm with impairments-ignoring BSs performs almost equally well
as Algorithm 5.1. For TDMA, there is barely any difference in taking the hardware
impairments into account or not.

5.5 Conclusions

The studies in earlier chapters had assumed ideal hardware, but in this chapter
we studied the weighted sum rate optimization problem with hardware-impaired
transceivers. Applying the WMMSE approach to the weighted sum rate problem,
an alternating minimization technique was proposed. Convergence of the algorithm
was shown, and sum rate performance was evaluated using numerical methods.
These showed that the high-SNR scaling was zero due to the hardware impair-
ments, which essentially indicates that pure IA is not an interesting concept for
wireless networks with hardware-impaired transceivers. However, the relative gain
in performance for coordinated precoding over TDMA was still large, so it is highly
interesting to apply coordinated precoding techniques based on weighted sum rate
optimization, albeit not pure IA techniques.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

This thesis studied some aspects of coordinated precoding for multicell MIMO net-
works: IA feasibility, distributed CSI acquisition and robust precoding, and imper-
fect hardware. It was argued that IA is a useful tool for finding the achievable DoF
limits of the network, and in certain cases a useful tool for finding good precoders
(in the weighted sum rate sense). In general, an attempt to solve the weighted sum
rate optimization problem should be done however. Contrarily to IA, the weighted
sum rate problem formulation is relevant for all SNRs and system scenarios. In the
high-SNR regime, solving the weighted sum rate problem corresponds to finding
the IA solution with the best weighted sum rate.

The first contribution of the thesis was the derivation of a necessary condition
for the feasibility of space-frequency IA. Using a bound on the gains over space-
only IA, it was shown that the gain increased in the number of subcarriers, and
decreased in the number of antennas. Numerical sum rate studies show the exis-
tence of a DoF gain, but the performance improvement was largely due to a power
gain. The conclusion was the same both for synthetically generated channels, as
well as measured channels. Furthermore, the numerical results also showed that
coordinated precoding significantly outperformed traditional orthogonalization.

Leaving the theoretical realm, the next focus of the thesis was on practical
CSI acquisition. The need for coupling distributed coordinated precoding with dis-
tributed CSI acquisition, in order to achieve a distributed joint system, was argued.
The CSI requirements of the WMMSE algorithm were studied, and three CSI ac-
quisition methods were proposed. The methods correspond to different tradeoffs
between channel estimation, feedback and signaling, backhaul use, and computa-
tional complexity. Naïvely coupling the WMMSE algorithm with the proposed CSI
acquisition methods is straightforward, but was shown to yield poor performance.
Therefore, robustifying measures were proposed, which resulted in a robust and
distributed WMMSE algorithm. Numerical studies showed that the proposed sys-
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tem had similar performance to the (centralized) state-of-the-art methods, with the
added benefit that our system can be implemented in a fully distributed fashion.

The access to, and quality of, CSI is not the only practical aspect that should
be taken into account. Any practical RF transceiver will have some hardware
impairments, which give rise to distortion noises. The final contribution of the
thesis was to study the weighted sum rate problem with these hardware-impaired
transceivers. Using an extended WMMSE approach, a semi-distributed resource
allocation was proposed for this scenario. The numerical results clearly showed the
need for modeling and optimizing over the hardware impairments, and the proposed
algorithm was shown to be robust against increasing impairment levels.

Concluding, this thesis has shown the benefits of coordinated precoding for im-
proving the spectral efficiency of future multicell MIMO networks. Various practical
aspects were studied, and enabling and robustifying measures were proposed.

6.2 Future Research

We now highlight some items that might be worthy of further study:

• The result in Chapter 3 would be strengthened if it could be expanded to
include sufficiency as well. This would possibly require a deeper application of
algebraic geometry. It would also be good with a condition for the interfering
broadcast channel. In that case, several interfering streams arrive over the
same channel matrix, and the statistical dependence between the interfering
links must be handled.

• In Chapter 4, a perfectly reciprocal channel was assumed. Practical cali-
bration schemes will not be perfect however, leading to reciprocity errors.
By modeling these errors, better estimators could possibly be found. Such
reciprocity errors should also be taken into account in the resource allocation.

• In Chapter 5, the resource allocation was performed on a per-subcarrier basis,
even though a multicarrier system was studied. With phase noise for instance,
the distortion noise at one subcarrier will be affected by the signal power of
neighbouring subcarriers. By modeling these types of effects, a joint opti-
mization over all subcarriers could be performed. Further, models involving
more than additive distortion noises should be studied. For example, phase
noise gives rise to a complex rotation of all subcarriers, an effect that was not
studied in Chapter 5.

• In some cases at high SNR, the numerical results in this thesis have shown
that the WMMSE algorithms converge slowly. In cases where IA is feasible,
the objective function could possibly be regularized in a way to drive the
solution towards an IA solution. This would possibly improve convergence
speed.
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• A basic assumption in this thesis was that the user association is fixed. By
introducing the user association as a variable in the optimization problem,
the WMMSE approach might be able to give a constructive algorithm for
joint precoder and user selection. This would possibly involve relaxing the
binary decision variables that would model the user associations.

• Another basic assumption is that the continuous data rate function is a good
model for a practical system. In practical systems however, rates must be
selected from a finite set determined by the modulation and coding schemes
available. A tractable problem formulation can be obtained by formulating
a weighted discrete sum rate problem, linearizing the continuous rate con-
straints, and rewriting the objective function using an indicator function for
the selection of the discrete rates. By relaxing the indicator function, a con-
structive method for finding good precoders is obtained.
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