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Abstract 

The carbon tax is a cost-efficient scheme to curb emissions, and it has been 

implemented in Australia, British Columbia, and other places worldwide. We aim to 

analyze its effect on dynamic pricing in a supply chain with multiple suppliers and one 

manufacturer. The profit-maximizing manufacturer makes final products using raw 

materials from suppliers with heterogeneous prices and emission rates. A two-stage 

game model is built over an infinite time horizon for this issue. In the first stage, 

suppliers face price-dependent demand to set their prices and production rates under 

the constraint of inventory capacity. Then, in response to the carbon tax scheme, the 

manufacturer evaluates the procurement prices and emission rates of suppliers to 
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control its emission volumes and sets the sales price of its product. This paper 

predominately focuses on the optimal pricing strategies in a decentralized supply chain. 

The open-loop equilibrium and Markovian Nash equilibrium for the dynamic pricing 

game models of both suppliers and the manufacturer are derived, respectively. The 

equilibrium prices of suppliers and the manufacturer can be solved based on both 

irreversible actions and real-time states. These two types of equilibria can be regarded 

as the solutions of two different models in specific situations. To analyze the effect of 

sourcing diversity on pricing strategies and emissions control for the manufacturer, the 

more general equilibrium price for the manufacturer in an n-suppliers oligopoly is 

studied. Numerical examples are presented to illustrate the equilibrium and its 

monotonicity with various parameter settings. 
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1. Introduction 

Human activities have brought huge challenges, particularly the phenomenon of global 

warming, to the sustainable development of Earth. Curbing greenhouse gas (GHG) 

emissions is considered as a significant way to develop sustainability worldwide. 

According to McKinsey survey, 43% of the interviewed companies in 2014 seek to 

align sustainability with their overall business goals, mission, or values up from 30% 

in 2012 (McKinsey, 2014). In practice, several actions have been implemented in 

different countries to develop sustainability. For example, the United States 

Environmental Protection Agency (EPA) has carried out a clean power plan with the 

aim to improve the environment, health, and the economy (EPA, 2015). Besides, as an 

effective financial instrument, the carbon tax scheme has been implemented in several 

countries to incentivize firms to improve sustainability by adopting cleaner production 

technologies or using environmentally friendly raw materials (Ma, Ji, Ho, & Yang, 

2016). For instance, British Columbia (B.C.) implemented the carbon tax on July 1, 

2008, at a rate of C$10 per ton of CO2. In 2015, the B.C. carbon tax was increased to 

C$30 per ton of CO2 (Murray & Rivers, 2015). In Australia, the initial price of the 

carbon tax was set as a fixed number. However, it was replaced by a flexible price, 

which is determined by the market, on July 1, 2015 (Oracle, 2015). 

Constrained by the carbon tax scheme, firms are under tremendous pressure to 

respond to business pricing. Based on a survey from Australian Industry Group, there 

is a large gap between the proportion of manufacturing businesses experiencing 

immediate input price rises (61%) and the proportion of manufacturing businesses 
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planning to increase their selling prices (40%) as a result of a carbon tax (AIG, 2013). 

In particular, food manufacturers prefer immediate input price rises and pass on 

environmental-related costs through the supply chain to the end consumers of products 

(AIG, 2013). In addition, to produce sustainable products, manufacturers must source 

sustainable materials from suppliers, however, in practice, it is challenging to source 

sustainable inputs (Agrawal & Lee, 2016). Therefore, it is crucial for firms to identify 

effective methods for determining appropriate pricing and choosing environmentally 

friendly materials from upstream suppliers to reduce GHG emissions. 

From the sustainable operations perspective, the issue of emissions control based 

on carbon emission regulations has been studied extensively (Hua, Cheng, & Wang, 

2011; Choi, 2013; Jaber, Glockb, & El Saadany Ahmed, 2013; Chen, Benjaafa, & 

Elomri, 2013; Ma, Ji, Ho, & Yang, 2016). These studies focus on emissions control 

with classical operations research models, such as the newsvendor, dynamic 

programming, and economic order quantity models. However, the interaction between 

manufacturers and suppliers is often neglected in this context. Therefore, this paper fills 

this gap by using game models to establish appropriate and mutually beneficial pricing 

strategies for a manufacturer (or buyer) and suppliers, and studies how the manufacturer 

can use a reasonable pricing strategy in response to the carbon tax scheme to source 

from greener or traditional suppliers. 

In this paper, we take the viewpoint of how to coordinate pricing in a supply chain 

with multiple suppliers and a manufacturer. That is, we focus on the interaction of 

different pricing strategies for profit-maximizing suppliers and the manufacturer under 
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the carbon tax scheme. In such a situation, each supplier has a fixed initial inventory 

setting and suppliers compete with each other by adjusting their sales price to enlarge 

their business volume share. With respect to the manufacturer, reasonable procurement 

decisions should be made with flexible ordering probabilities to satisfy demand with 

consideration of the carbon emissions cost. To curb its emissions amounts, the ordering 

probability of the manufacturer depends on the unit procurement price of raw materials, 

emission rates of suppliers, procurement schedule, and total emission volumes of the 

manufacturer. 

To identify reasonable strategies for the dynamically coordinated pricing issue, 

two-stage differential game models are formulated for the manufacturer and suppliers. 

The effect of the variance of state conditions on pricing strategies is analyzed. To 

perform this analysis, the open-loop equilibrium and the Markovian Nash equilibrium 

for two sub-games of the two-stage game are derived. These solutions can be used to 

establish appropriate operations strategies for both suppliers and the manufacturer 

under different scenarios. The trade-off of game models also indicates a supplier 

selection issue for the manufacturer.  

A comparative statics analysis is then conducted based on the equilibrium prices 

of both suppliers and the manufacturer. We investigate whether parameters (e.g., the 

market size, the production cost, and the carbon tax) can affect the coordinated pricing 

issue. We observe interesting results in this setting: The manufacturer prefers to 

cooperate with greener suppliers if facing a higher carbon tax. This result is observed 

particularly at the initial period of implementing the carbon tax scheme. Meanwhile, 
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this strategy incurs a higher price, which implies that the manufacturer is more 

concerned about profit loss when the carbon tax scheme is initially launched. However, 

in the long-run, we observe that this strategy generates a lower price, and it can bring 

about higher demand for the manufacturer. 

The contributions of this paper are summarized as follows. First, this paper 

studies the coordinated pricing issue for suppliers and the manufacturer in the presence 

of inventory and carbon emission constraints. We characterize the open-loop 

equilibrium and the Markovian Nash equilibrium for both suppliers and the 

manufacturer over an infinite time horizon. This paper can help each individual supplier 

adjust its sales price and production rate to enlarge its business volume share in a timely 

manner, and also help the manufacturer set reasonable sales prices for their products 

under a carbon tax scheme and control its emissions amount effectively. Second, in a 

scenario of multiple suppliers, a more general model is developed to derive the general 

equilibrium strategies of the manufacturer. This can help the manufacturer control and 

adjust its emission amount and pricing, respectively, by following the variance of the 

unit carbon tax. Third, we further analyze the characteristics of monotonicity for 

equilibrium in order to investigate the impact of decision parameters (e.g., the market 

size, the production cost, and the carbon tax) on the equilibrium outcomes and the profit 

of the manufacturer. 

The remainder of this paper is organized as follows. In Section 2, the relevant 

literature is presented. Section 3 describes the basic setting of dynamic pricing game 

models for both suppliers and the manufacturer. Section 4 illustrates the open-loop 
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equilibrium and the Markovian Nash equilibrium of two sub-games for suppliers and 

the manufacturer. First, some general equilibrium outcomes are identified for the sub-

game model with one manufacturer and n-suppliers. Then, a special case for the sub-

game model with one manufacturer and two heterogeneous suppliers is studied. In 

addition, the comparative statics is conducted for these equilibria of the sub-games. 

Section 5 discusses the managerial implications of our work. Section 6 concludes the 

paper. All proofs are given in the Appendix. 

 

2. Literature Review 

This paper is related to two streams of research literature on the efficacy of carbon 

emission regulations in operations management and pricing coordination. 

The first stream of research that relates to our work focuses on the efficacy of 

carbon emission regulations, such as the emissions trading mechanism and the carbon 

tax scheme, from the perspective of operations management. In this paper, we 

predominantly focus on the analysis that relates to the effect of carbon tax on the pricing 

issue. In this context, Laffont and Tirole (1996) established a two-period model to study 

the interaction between a firm’s pollution abatement and production decisions. 

Subramanian, Gupta, and Talbot (2007) developed a three-stage game model to study 

the behavior of abatement, production, and the bidding for emission allowances. The 

above two papers are anchored in the viewpoint of abatement behavior to curb 

emissions or pollution. This behavior presents a positive way to reduce the emission 

amounts of a firm or an agent and to face emission regulations. In addition, following 
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emission regulations, several scholars have analyzed these issues by adjusting their 

operation strategies. Gemechu, Butnar, Llop, and Castells (2012) studied an 

environmental tax based on the carbon footprint of products in the pulp and paper sector. 

Two individual methods, life cycle analysis (LCA) and environmentally extended 

input-output analysis (EIO), were established to identify the emission intensities for the 

product. For the scenario of multiple suppliers in the market, Choi (2013) built a multi-

stage stochastic dynamic programming model based on the classical newsvendor 

approach to study the issue of supplier selection under the carbon tax scheme. The 

effects of the linear and quadratic structure of the carbon tax were discussed. Hua, 

Cheng, and Wang (2011) studied the optimal order size in consideration of the carbon 

price/tax based on the classical economic order quantity (EOQ) model. Chen, Benjaafa, 

and Elomri (2013) focused on the carbon-constrained EOQ model. They also studied 

how to reduce emissions by modifying order quantities under the influence of the 

carbon tax. Gong and Zhou (2013) studied the effect of the emissions trading 

mechanism in a multi-period production-planning problem. A dynamic programming 

model was developed to analyze this issue for a single firm. They focused on the 

structure of optimal emissions trading policy, technology selection, and production 

policy. Krass, Nedorezov, and Ovchinnikov (2013) mainly analyzed the effect of 

environmental taxes and subsidies on the choice of green technology. Drake, 

Kleindorfer, and Van Wassenhove (2016) studied the effects of carbon emission 

regulations and production technology choices on production decisions and capacity 

portfolio. The implications based on the above decisions were further analyzed for the 
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expected profit and emission allowances of a firm. Ma, Ji, Ho, and Yang (2016) 

developed a dynamic programming model to study the effect of the carbon tax on 

calculating the optimal order quantity over a finite time horizon. The effective range 

for the carbon tax was established to assist government in setting up a reasonable carbon 

tax for a certain industry. However, our paper differs from the aforementioned studies 

in that we aim to analyze how the carbon tax can influence the price of the final product 

in a dynamic scenario with the variance of control states and how to determine a 

reasonable sales price for the manufacturer based on traceable information in a supply 

chain. 

The second stream of research that relates to our work is coordinated decisions 

for pricing. For instance, several scholars have approached this topic from the 

viewpoint of both discrete and continuous time. Debo, Toktay, and Van Wassenhove 

(2005) studied the joint pricing and production technology selected for 

remanufacturable products in a market that consists of heterogeneous consumers. Using 

the Arrow-Karlin model, Dobos (2005) studied the production and inventory strategy 

of a firm under the emissions trading scheme. The linear emissions procurement or 

selling cost was integrated into the model. Perakis and Sood (2006) analyzed a discrete-

time stochastic game for pricing. The purpose of their study was to address the 

competitive aspect of the problem along with demand uncertainty using ideas from 

robust optimization and variational inequalities. Mookherjee and Friesz (2008) also 

focused on a discrete-time dynamic game model to study the problems of combined 

pricing, resource allocation, and overbooking under demand uncertainty. Martínez-de-
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Albéniz and Talluri (2011) studied price competition for an oligopoly in a dynamic 

setting. The unique subgame-perfect equilibrium for a duopoly was presented. This 

structure can be extended from a marginal-value concept of bid-price control to a 

competitive model. In addition, Liu and Zhang (2013) considered a dynamic pricing 

competition between two firms offering vertically differentiated products to strategic 

customers. The results show that a high-end business charging constant prices is 

frequently a desirable market outcome for sellers. 

This paper is an intersection of the two above-mentioned streams. First, this paper 

is the initial work on the coordinated pricing issue for suppliers and the manufacturer 

in the presence of inventory and carbon emission constraints. We characterize the open-

loop equilibrium and the Markovian Nash equilibrium for both suppliers and the 

manufacturer over an infinite time horizon. Second, in a scenario of multiple suppliers, 

a more general model is developed to derive the general equilibrium strategies of the 

manufacturer. Third, we investigate the effect of carbon tax on the price setting and 

emissions control issues of the manufacturer. In addition, we will further analyze the 

characteristics of monotonicity for equilibrium. 

 

3. The Model 

In this paper, under the constraint of the carbon tax scheme, we aim to analyze a 

decentralized supply chain in which a manufacturer sources a raw material/component 

from n (n ≥ 2) suppliers over an infinite time horizon. Both the manufacturer and 

suppliers independently set their sales prices. In addition, since the suppliers supply key 
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and valuable materials to the manufacturer, hence, the manufacturer is the price taker. 

Meanwhile, there exists a trade-off for both the manufacturer and suppliers because the 

manufacturer is constrained by the carbon tax scheme, which has impact on its sourcing 

decisions. A nature question to ask is: Should a supplier keep its current production 

technology or make improvement to supply more environmentally friendly raw 

materials with a higher profit? As the diverse types of raw materials (i.e., traditional 

and environmentally friendly) also influence the sales price of the manufacturer’s final 

products, therefore, the sales prices of both the manufacturer and suppliers should be 

adjusted in each period. Focusing on our analysis in a dynamic situation, we develop a 

two-stage differential game model, with the manufacturer being the Stackelberg leader, 

to analyze the strategic interactions between the manufacturer and suppliers over time. 

Specifically, we focus on two separate games to analyze the strategic production, 

pricing, and sourcing interactions over an infinite time horizon. In the supplier’s sub-

game model, each individual supplier determines its sales price of diverse types of raw 

materials (i.e., traditional and environmentally friendly) and production rate with 

respect to the variance of its inventory level to the manufacturer who adopts an 

assemble-to-order (ATO) strategy. In the manufacturer’s sub-game model, under the 

constraint of the carbon tax scheme, the manufacturer needs to control its emissions 

amount by sourcing from multiple suppliers who supply substitutable raw materials 

with reasonable prices and emissions rate. The sales prices of suppliers can be set or 

adjusted in each period to enlarge their business volume. In the following sections, two 

sub-game models are developed first. After that, we start by solving the supplier’s sub-
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game model, and then recursively solve the manufacturer’s sub-game model. 

For the manufacturer’s decision, a general model is first developed for the 

manufacturer sourcing from multiple suppliers (n > 2). In addition, a basic model is 

formulated to study a special case for the manufacturer sourcing from two types of 

suppliers: traditional and environmental (n = 2). A traditional supplier provides raw 

materials with a lower sales price, but its emissions rate of materials is high; an 

environmental supplier has lower emissions rate but a higher sales price. Based on the 

price setting of suppliers, the manufacturer determines its ordering probability. Then, 

under the carbon tax scheme, the manufacturer makes dynamic adjustment regarding 

its sales price and emissions amount. To achieve both profit maximization and 

emissions minimization, the manufacturer can source from traditional suppliers, 

environmental suppliers, or both. The cost structure of the manufacturer is 

predominantly determined by the procurement cost and the carbon tax. With respect to 

the demand function, we assume additive demand where D(p) = a + bp. The additive 

demand function has been widely used in the literature (e.g., Chen & Simchi-Levi, 2004; 

Chou & Parlar, 2006). The notation used in the model formulations is summarized in 

Table 1. 

<Please insert Table 1 around here> 

 

3.1 The Supplier’s Decision Issue 

For each individual supplier, the emission rate of its product (raw material) is directly 

determined by its production technology. Therefore, the value of the emission rate can 
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be taken as a fixed constant. In such a scenario, a supplier predominately focuses on 

production planning, inventory control, and price setting to maximize its profit. With 

respect to the demand function of the supplier, ( )sD t , the additive case is adopted, 

( ) ( )s s s sD t p tα β= − , where sα  is the vertical intercept and sβ  is the slope of the 

demand curve; both sα  and sβ  are nonnegative constants. The demand of a supplier, 

( )sD t , is predominately influenced by the sales price of a supplier, ( )sp t . The suppliers, 

as the leader, determine their sales price first. Then, the manufacturer makes the 

sourcing decision and sets its sales price under the carbon tax scheme. Similar model 

settings are commonly used in the literature in this domain, e.g., Camdereli and 

Swaminathan (2010), Dai et al. (2012), and Chiang (2012). Besides, we assume that the 

demand of each individual supplier is determined by its sales price which changes over 

time. This assumption is commonly used in pricing situations, e.g., Chou and Parlar 

(2006). However, to describe the competition behavior of suppliers regarding their sales 

prices, the multinomial logit model was applied in the following Section 3.2. That is, 

the sales price of a supplier not only affects its market demand but also influences the 

ordering probability of the manufacturer. In addition, due to the mutual influence 

between production planning and inventory control, we model the inventory dynamics 

of the individual supplier with the following kinematic equation. 

( ) ( ) ( ) ( )s s s sx t q t x t D t= + −           (1) 

where ( )sx t  is the inventory level of the supplier, and ( )sq t  is the production rate of 

the supplier. The available inventory level is the summation of the production quantity 

and the leftover inventory. As shown in Equation (1), for a certain period t, the dynamics 
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of the inventory level is the difference between the available inventory level and the 

demand. Assume the initial inventory level of the supplier is zero, i.e., (0) 0sx = . 

Given the dynamic process of inventory as shown in Equation (1), the objective 

of an individual supplier is to maximize its net discounted profit over an infinite time 

horizon with discount factor sr te− , here, sr  is the continuous discount rate, which is 

an exogenous variable. 

2 2

0

1 1[ ( ) ( ) ( ) ( )]
2 2

sr t
s s s s s s se p t D t h x t c q t dt

∞ −Π = − −∫ ,      (2) 

In Equation (2), the supplier’s sales revenue is given by ( )( ( ))s s s sp t p tα β− . 

Backlogging is allowed in this model, that is, the holding cost is incurred by the leftover 

raw materials at the end of each period. The holding cost is modeled as 2 ( ) / 2s sh x t , 

where sh  is the unit holding cost for each raw material, as the level of inventory 

increases, so does the labor force or time spent in inventory, which in turn increases the 

risk of obsolescence (Choi, 2013). The production cost is given by 2 ( ) / 2s sc q t , where 

sc  is the unit production cost, that is, the production cost is a convex function 

increasing with the production rate. Both the holding cost and the production cost are 

commonly modeled using the quadratic function in the literature (e.g., Jørgensen, 1986; 

Dobos, 2005; Ferguson & Toktay, 2006; Galbreth & Blackburn, 2006; Erickson, 2011). 

Note that the quadratic cost function is used in this paper for all the holding cost, 

production cost, and emission cost because: (1) there exists diminishing returns to 

variables, such as inventory level, production rate, and emissions rate; (2) the property 

of concavity can be imposed on payoff functions for both suppliers and manufacturer 

in a simplified way, while the flexibility of the functional form can still be maintained. 
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Based on the above analysis, each individual supplier seeks to maximize its long-

run total discounted payoff over an infinite time horizon subject to inventory capacity 

at any time, i.e., Problem Ps (Supplier’s sub-game): 

2 2

0( ), ( )

1 1max max [ ( ) ( ) ( ) ( )]
2 2

. . ( ) ( ) ( ) ( )

s

s s

r t
s s s s s s sp t q t

s s s s

e p t D t h x t c q t dt

s t x t q t x t D t

∞ −Π = − −

= + −

∫


, 

where the decision variables in Problem Ps are ps(t) and qs(t). 

 

3.2 The Manufacturer’s Decision Issue 

Under the carbon emission regulation, i.e., the carbon tax scheme, the emissions-related 

cost is the vital component of the manufacturer’s total cost. Let ( )E t  be the emissions 

amount of the manufacturer in period t, which is predominantly determined by the 

emission rates of raw materials and the demand of the manufacturer. We denote iξ  by 

the ordering probability of the manufacturer from supplier i, and we use multinomial 

logit function to describe the ordering probability (Lin & Sibdari, 2009). 

1

,
i i

i i

p

i N
p

i

e

e

τ ρ

τ ρ
ξ

−

−

=

=

∑
            (3) 

where iτ  is the manufacturer’s expected utility of reducing emissions by using the raw 

materials from supplier i, and ρ  is the price sensitivity parameter. For manufacturer’s 

decision, when n ≥ 2, it is no longer appropriate to use the subscript ‘s’ for a single 

supplier. Instead, we employ subscript ‘i’ to represent the variables related to suppliers 

when n ≥ 2, such as, the sales price pi. The unit emissions rate and the sales price of 

supplier i are denoted by iε  and ip , respectively. The summation of iξ  equals one, 
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that is, ( 1 2, , , nξ ξ ξ ) is the sourcing profile of the manufacturer. Analogously, we use 

additive demand function to describe the manufacturer’s demand, ( ) ( )m m m mD t p tα β= − , 

where ( )mp t  is the unit sales price of the manufacturer, mα  is the vertical intercept, 

and mβ  is the slope of demand curve. Both mα  and mβ  are nonnegative constants. 

Therefore, ( )E t  can be formulated as the following kinematic equation. 

1
( ) ( ( )) ( )

n

i i m m m
i

E t p t zE tε ξ α β
=

= − +∑             (4) 

The first part of Equation (4) represents the total emissions amount incurred using 

raw materials from multiple suppliers. The second part is the amount of environmental 

absorption, where ( 0)z z <  is the absorption rate. In particular, this model can be 

applied to study a special scenario of procurement management from two suppliers, 

which will be discussed in the following section. At the initial period, assume the 

emission amounts of the manufacturer is zero, i.e., (0) 0E = . 

The objective of the manufacturer is to maximize its profits over an infinite time 

horizon. The discounting of profits is accomplished through discount factor mr te− , 

where mr  is the discount rate (an exogenous variable). It is particularly important to 

discount returns if the time horizon is infinite, so the integral in Equation (5) can be 

finite (Erickson, 2011). Following the emissions dynamics in Equation (4), the payoff 

function of the manufacturer can be formulated as follows. 

2

0
1

1[( ( )) ( ( ) ( )) ( )]
2

n
rt

m m m m i m i
i

e p t p t p t E t dtα β ξ ω
∞ −

=

Π = − − −∑∫     (5) 

Regarding the integral function in Equation (5), the first part represents the 

revenue using the raw materials from suppliers. The purchasing quantity is determined 
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by ordering probability iξ . The second term is the emissions-related cost incurred by 

the carbon tax scheme. In this paper, the emissions cost is established by using an 

increasing convex function with the quadratic form, the unit carbon tax,ω , can be 

considered as the cost coefficient associated with the manufacturer’s emissions amount. 

The quadratic form is commonly used in the literature of emissions control (e.g., 

Subramanian, Gupta, & Talbot, 2007; Choi, 2013; Bertinelli, Camacho, & Zou, 2014; 

Li, 2014). Besides, the reasons of using the quadratic function for the emission cost 

were mentioned above as the case with the holding cost and production cost in Section 

3.1. The difference in the total revenue and the emissions cost is the profit of the 

manufacturer. In this model, in consideration of dynamic pricing with the constraint of 

the carbon tax scheme, we aim to analyze a manufacturer that adopts the ATO strategy; 

thus, the inventory cost can be ignored. 

Based on the above analysis, the manufacturer’s objective is to maximize its long-

run total discounted payoff over an infinite time horizon subject to emissions amount 

at any time, i.e., Problem Pm (Manufacturer’s sub-game): 

2

0( ) 1

1max max [( ( )) ( ( ) ( )) ( )]
2m

n
rt

m m m m i m ip t i
e p t p t p t E t dtα β ξ ω

∞ −

=

Π = − − −∑∫  , 

1
. . ( ) ( ( )) ( )

n

i i m m m
i

s t E t p t zE tε ξ α β
=

= − +∑ , 

where the decision variable in this model is pm(t).  

 

4. Equilibrium Analysis 

This section focuses on the equilibrium analysis of three sub-games, including the 
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supplier’s sub-game, the manufacturer’s sub-game with multiple suppliers (the general 

case), and the manufacturer’s sub-game with two suppliers (the special case), under the 

carbon tax scheme. Both suppliers and the manufacturer seek to maximize their payoff 

functions (the present value of the profit functions) by adopting appropriate pricing 

strategies over an infinite time horizon. Based on the two sub-game model settings in 

Section 3, we derive equilibria, including the open-loop equilibrium and the Markovian 

Nash equilibrium, for the individual supplier and manufacturer, respectively. 

Both the open-loop and the Markovian Nash equilibria can be regarded as the 

solutions of two different models under specific situations, where the former depends 

only on time and the latter based on the state variable at that particular time (Chiang, 

2012). Note that the open-loop equilibrium presents the original best decisions, which 

make it easier to derive tractable strategies. If the manufacturer and suppliers adopt the 

open-loop strategy, they can make an irreversible pre-commitment decision only at the 

beginning of the game (Gallego & Hu, 2014). However, the open-loop equilibrium is 

time-inconsistent. That is, the original best decision for some future period is 

inconsistent with what is preferred when that future period arrives (Chiang, 2013). 

Therefore, it is worth examining another strategy, i.e., the Markovian Nash equilibrium, 

to analyze the game model. Based on the outcomes of the Markovian Nash equilibrium, 

both the manufacturer and suppliers can make timely adjustments based on the 

changing of states to pursue the maximized total profit. The characteristics and practical 

implications of two types of equilibria in our models are further discussed in the 

following sub-sections. 
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4.1 Supplier’s Sub-game Division 

This subsection aims to address issues of optimal production and inventory 

management for individual suppliers. The decision issues are the optimization of the 

inventory level, which is a state variable, and the sales price and the production rate, 

which are control variables. 

Based on the standard procedure from differential game theory (Dockner, 

Jorgensen, Long, & Sorger, 2000), the Hamiltonian function of the supplier sub-game 

can be established as follows: 

2 21 1( )( ( )) ( ) ( ) [ ( ) ( ) ( )],
2 2s s s s s s s s s s s sH p t p t h x t c q t q t x t D tα β λ= − − − + + −   (6) 

where λ  is a co-state variable (or the shadow price). 

The supplier’s necessary conditions for optimality are 

2 ( ) 0,s
s s s s

s

H p t
p

α β λβ∂
= − + =

∂
         (7) 

0.s
s s

s

H c q
q

λ∂
= − + =

∂
           (8) 

Then, we can obtain 
1 ( )
2

s
s

s

p α λ
β

= +  and s
s

q
c
λ

= . 

Proposition 1. There exists the Nash equilibrium for the supplier's sub-game. 

Proposition 1 indicates the existence of the Nash equilibrium for the supplier’s 

sub-game model. In addition, the maximized Hamiltonian function of the supplier’s 

sub-game is a concave function with respect to xs(t), ps(t), and qs(t). Therefore, we need 

to further analyze how these three variables influence the decisions of the supplier. The 
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equilibrium analyses for three variables over time are summarized in the following 

propositions. 

Proposition 2. (The Open-loop Equilibrium) The open-loop inventory level, the 

production rate, and the sales price, respectively, are given by 

(1 )( ) (1 ),
2( 1)

gts s
s

s s

rx t e
bh r

α−
= −

− +
          (9) 

(1 )1( ) [ ],
2( 1) 2( 1)

gts s s s
s

s s s s s

h r fq t e
c bh r bh r

α α−
= −

− + − +
          (10) 

(1 )1( ) [ ],
2 2( 1) 2( 1)

gts s s s s
s

s s s s s

h r fp t e
bh r bh r

α α α
β

−
= + −

− + − +
         (11) 

where 
1 ,

2
s

s

b
c

β
= +

2 4 4 4 2
2

s s srb r r bh
f

b
− − + + −

=  and 21 ( 4 4 4)
2 s s s sg r r r bh= − − + + . 

Proposition 2 illustrates the optimal operation trajectories, including the sales 

price, the production rate, and the inventory level of a supplier. When the supplier 

makes its individual decision at the initial state, both the price trajectory and the 

trajectory of the production rate demonstrate the decreasing trends. This is because the 

first-order conditions of ps(t) and qs(t) with respect to t are smaller than zero. The 

decreasing phenomenon of the inventory level is particularly apparent at the beginning 

phase. Then, with the increase in the production rate, this phenomenon will incur an 

increase in the inventory level. In addition, the way other parameters involved in control 

and state variables influence suppliers’ decision is worth addressing. Based on the 

results in Proposition 2, closed forms of stable states ( t →∞ ) and their monotonicity 

are further analyzed. 

Proposition 3. The stable states of sales price, production rate, and inventory level are 
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given as follows: 

(i) The stable state of the inventory level is 

(1 )
2( 1)

s s

s s

rx
bh r

α−
=

− +
            (12) 

which is a submodular function in ( ,s sh α ); 

(ii) the stable state of the production rate is 

2 ( 1)
s s

s s s

hq
c bh r

α
=

− +
            (13) 

which is a submodular function in ( ,s scα ); 

(iii) the stable state of the sales price is 

1[ ]
2 2( 1)

s s

s s s

hp
bh r

α
β

= +
− +

           (14) 

which is a supermodular function in ( ,s sh c ). 

As we discussed above, the increasing phenomenon is particularly apparent at the 

beginning phase. Therefore, controlling and adjusting these factors for maximization of 

supplier profit is critical. The results of Proposition 3 present stable states of the 

inventory level, the production rate, and the sales price. In the long run, their trajectories 

change from a trend to constant values, which can assist suppliers in coordinating their 

operational behaviors at the initial period. The results in Propositions 2 and 3 are 

presented in the following three numerical examples. 

EXAMPLE 1. Suppose cs = 100, βs = 0.1, and rs = 0.5. The inventory trajectory with 

the variance of hs and αs is shown in Figure 1 (a), and the submodularity of x  is shown 

in Figure 1 (b). As shown in Figure 1 (a), xs(t) will converge to a constant value, which 

can be described by a closed-form, as shown in Equation (12). With the same initial 
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setting, the supplier is willing to increase its inventory level to meet the large-scale 

market demand, even when facing a higher inventory holding cost. In addition, the 

submodularity of x  implies that the individual supplier needs to adjust its stock level 

if the holding cost is continuously increasing, even with a larger market size; this is 

because the supplier should spend more sales revenue to cover the higher inventory 

holding cost. 

<Insert Figure 1 (a) and Figure 1 (b) around here> 

EXAMPLE 2. Suppose hs = 0.8, βs = 0.1, and rs = 0.5. The trajectory of the production 

rate with the variance of αs and cs is shown in Figure 2 (a), and the submodularity of q  

is shown in Figure 2 (b). The production rate converges to a constant value, illustrated 

in Equation (13). With respect to q , it shows an intuitive result; that is, q  decreases 

with cs and increases with αs. The submodularity of q  shows that a supplier will 

reduce its production rate when facing a smaller market size and a higher unit 

production cost. In practice, this result can occur when a supplier is preparing for 

adjusting its production technology to meet sustainability requirements. 

<Insert Figure 2 (a) and Figure 2 (b) around here> 

EXAMPLE 3. Suppose αs = 10, βs = 0.1, and rs = 0.5. Figure 3 (a) presents the price 

trajectories of three suppliers with the variance of cs and hs, and the supermodularity of 

p  is shown in Figure 3 (b). Considering an increase in cs and hs, a greener supplier 

(supplier 3) with the highest production cost increases its sales price to cover production 

and inventory costs. In this scenario, the greener supplier has to increase the sales price, 

that is, part of cost will shift to the manufacturer. However, with respect to the suppliers, 
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the increase in sales prices could induce the loss of market share. Therefore, there exists 

a trade-off for the suppliers. 

<Insert Figure 3 (a) and Figure 3 (b) around here> 

Note that the open-loop equilibrium presents the original best decisions, which 

make it easier to derive tractable strategies. However, the open-loop equilibrium is 

time-inconsistent. If a supplier adopts the open-loop strategy, it cannot observe the 

change in the state variable (Dockner, Jorgensen, Long, & Sorger, 2000). That is, the 

supplier can make an irreversible pre-commitment decision only at the beginning of the 

game using the open-loop strategy (Gallego & Hu, 2014). Therefore, it is worth 

examining another strategy, i.e., the Markovian Nash equilibrium, to analyze the game 

model. Based on the state equation of a supplier, the inventory level is influenced by 

the interaction between the sales price and the production rate. In this scenario, the 

supplier needs to design appropriate pricing and production strategies that depend on 

the state of the inventory level. That is, the supplier can make timely adjustments based 

on the changing of states to pursue the maximized total profit. 

Proposition 4. (Markovian Nash Equilibrium) The Markovian Nash equilibrium of 

the sales price and the production rate are characterized by 

1ˆ ( ) ( 2 ( )),
2

s
s

s

p t B Dx tα
β

= + +           (15) 

1ˆ ( ) ( 2 ( ))s
s

q t B Dx t
c

= + ,           (16) 

and the corresponding inventory level over time is given by 

2( 1)( ) 2ˆ( ) [1 ],
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where 
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β

β
− − − + +

=
+

 

The Markovian Nash equilibria of the supplier are presented in Proposition 4, 

which indicate the more general results because each Markovian Nash equilibrium of a 

differential game is time consistent (Dockner, Jorgensen, Long, & Sorger, 2000). These 

solutions allow suppliers to control/adjust their production and pricing rates contingent 

upon the state of the game, which are more realistic and tractable results. In addition, 

the Markovian Nash equilibria of both price and production are dependent on and non-

decreasing in the state variable. The characteristics of the monopolist for price and 

production rate are similar to the results in Proposition 2 because the Markovian Nash 

equilibrium takes into full consideration the strategic interactions through the evolution 

of cumulative demand, which is sub-game perfect (Chiang, 2012). Compared with the 

results in Propositions 2 and 4, we can observe the differences between two types of 

equilibria. That is, these results provide two types of decision modes for suppliers. 

However, unlike the open-loop equilibrium, the Markovian Nash equilibrium takes time 

and inventory into consideration jointly. 

 

4.2 Manufacturer’s Sub-game Division (A general case for n > 2) 

In this section, we aim to study the sub-game model of the manufacturer with multiple 

independent suppliers (n > 2). The objective is to analyze the robustness of pricing 

strategies and to study the more general observations for the pricing strategies of the 

manufacturer. With respect to the effect of the carbon tax, the manufacturer needs to 

determine the optimal price to maximize its total profit. In this sub-game model, the 
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emissions amount is a state variable, and the sales price is a control variable. First, the 

decision issue is analyzed by considering the time factor. Then, the optimal sales price 

strategy with the state of emission amounts is discussed. 

Based on the model Pm in Section 3.2, the Hamiltonian function of the payoff 

function of the manufacturer can be developed as follows. 

2

1 1

1( ( )) ( ( ) ( )) ( ) [ ( ( )) ( )]
2

n n
n
m m m m i m i i i m m m

i i
H p t p t p t E t p t zE tα β ξ ω µ ε ξ α β

= =

= − − − + − +∑ ∑ (18) 

where μ is the co-state variable. The manufacturer’s necessary condition for optimality 

should satisfy the following equation: 

1 1
2 0.

n n n
m

m m m m i i m i i
i im

H p p
p

α β β ξ µβ ε ξ
= =

∂
= − + − =

∂ ∑ ∑       (19) 

Proposition 5. There exists the Nash Equilibrium for the manufacturer’s sub-game with 

multiple suppliers (n > 2). 

This proposition indicates the existence of the equilibrium of the manufacturer’s 

sub-game with multiple suppliers. Therefore, the maximized Hamiltonian function can 

be achieved. The optimal pricing strategy of the scenario with multiple independent 

suppliers (n > 2) is illustrated in the following propositions. 

Proposition 6. (Open-loop Equilibrium) For n > 2, the open-loop equilibrium of the 

sales price and the emissions amount of the manufacturer are 

2

1
( / 2)1 [( 2 ) ( 2 ) ],

2 4
n atm m
m m m
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k
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α β
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Since the manufacturer has to face the conflicting issue of sourcing from the 

supply pool with a large number of suppliers, Proposition 6 presents a more general 

result of the open-loop equilibrium strategies for the manufacturer. With respect to the 

manufacturer, the price is predominately determined by the ordering probability and 

unit procurement cost from each individual supplier. This also indicates that the carbon 

tax has less effect on the pricing issue for the manufacturer. The shadow price shows a 

positive correlation with the carbon tax. Accordingly, the manufacturer can adjust the 

price based on the initial setting to maximize its profit. 

Proposition 7. (Markovian Nash Equilibrium) For n > 2, the Markovian Nash 

equilibrium of the sales price and emission volumes of the manufacturer are given as 

1 ˆˆ ( ) [ 2 ( )],
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In contrast to the sales price in the open-loop equilibrium, Proposition 7 illustrates 

that the Markovian Nash equilibrium of the sales price decreases over time with a 

relatively higher initial setting, and it converges to a fixed constant. This convergent 
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tendency is observable because Markovian Nash equilibrium takes full consideration 

of the interaction between the sales price and the emissions amount of the manufacturer 

over the time horizon. The result in Proposition 7 is also sub-game perfect and time 

consistent. In addition, the limit value of En(t) is a fixed constant that is negatively 

correlated with carbon tax ω. This further shows that the carbon tax scheme shows a 

cost effective way to curb the carbon emissions. The manufacturer can follow the 

variance of the unit carbon tax to control and adjust its emissions amount and pricing, 

respectively. Based on the outcomes of numerical example 3, the following example is 

presented to describe the pricing trajectory and the trajectory of emissions volume of 

the manufacturer with the variance of ξi and ω when the manufacturer sources from 

three suppliers. 

EXAMPLE 4. Suppose αm = 500, βm = 2, ε1 = 0.9, ε2 = 0.5, ε2 = 0.1, z = -0.05, ω = 12, 

and rm = 0.5. The price trajectory of the manufacturer sourcing from three suppliers 

with the variance of ξi is shown in Figure 4. Using the same data set, the trajectory of 

emission amounts and the profit of the manufacturer are shown in Figure 5 and Figure 

6, respectively, with the variance of ω. The sales price of the manufacturer presents a 

concave trend with the variance of ξi in Figure 4. At the initial period, the sales price is 

lower if the manufacturer sources more from supplier 1 with the lowest sales price and 

the highest emissions rate. Meanwhile, the emissions amount of the manufacturer 

increases by using raw materials from supplier 1. The manufacturer must pay higher 

emissions cost, which is incurred by the carbon tax, and to increase its sales price to 

gain profit, which will reduce the demand of the manufacturer. Over time, the 
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manufacturer should make adjustments to its order profile. Then, as is evident from 

Figure 4, the sales price of the manufacturer shows a decreasing trend by increasing its 

sourcing quantity from a greener supplier (supplier 3) to reduce its emissions cost. On 

one hand, the manufacturer can source from a traditional supplier, such as supplier 1, 

with a lower procurement cost; on the other hand, the manufacturer can source from a 

greener supplier, such as supplier 3, to control its emissions amount. In the same 

situation, Figure 5 implies that the emissions volume of the manufacturer can also be 

controlled effectively under the carbon tax scheme. Figure 6 shows that the profit of the 

manufacturer follows an increasing trend, that is, the manufacturer benefits from 

adopting mixed sourcing strategy from multiple suppliers. In addition, this flexible or 

mixed sourcing strategy can benefit the manufacturer even when facing a higher value 

of the carbon tax. 

<Insert Figure 4, Figure 5, and Figure 6 around here> 

 

4.3 Further Discussions on the Equilibria Outcomes 

In this section, we further discuss the differences and implications of both the open-

loop and the Markovian Nash equilibria. With respect to the open-loop equilibrium, 

both the manufacturer and suppliers are forward looking and plan ex ante their decisions, 

which are dependent only on time. Specifically, at the beginning of the planning horizon, 

the manufacturer announces its decisions regarding the sales price, pm(t), ordering 

probability, ξi, before the supplier makes its production and sales decisions for each 

period t. To obtain the equilibrium outcomes, we start by solving the supplier’s problem, 
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and then recursively solve the manufacturer’s problem. In practice, the outcomes of the 

open-loop equilibrium can be used to assist the manufacturer in designing an original 

best sourcing contract. The manufacturer sticks to the preannounced sourcing contract 

for the entire duration of the game. However, the open-loop equilibrium is time-

inconsistent as mentioned in Section 4. 

Since periodically revisiting (adjusting) the sales price can help the manufacturer 

to exhaust the residual market (Chiang, 2013), that is, an ex post decision, hence making 

reasonable adjustment for both the manufacturer and suppliers is likely to be mutually 

beneficial and to fully capture the strategic interactions. Following the outcomes of the 

Markovian Nash equilibrium, the manufacturer may re-contract if it would bring extra 

profit by updating the state information. Nevertheless, in practice, re-contracting is 

undesirable for two reasons. First, the time value of money may erode because there 

exists processing time to deal with the latest state information and to redesign the 

contract following the Markovian Nash equilibrium strategy. Second, re-contracting 

can derogate the reputation of the manufacturer. Therefore, for a risk-averse 

manufacturer, the open-loop equilibrium strategy is still an excellent choice. Conversely, 

for a strong manufacturer being the leader in a supply chain, the Markovian Nash 

equilibrium strategy can be adopted to exhaust the residual market. 

 

4.4 Manufacturer’s Sub-game Division (A special case for n = 2) 

In this subsection, we focus on analyzing the special case for the manufacturer’s sub-

game model with two types of suppliers: a greener supplier and a traditional supplier. 
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Based on the general case in Section 3.2, the sub-game model of the manufacturer with 

two suppliers can be developed as follows. 

2
1 20( )

1max max [ ( ( ) ( )) ( ) (1 )( ( ) ( )) ( ) ( )]
2
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m

r t
m m m m mp t

e p t p t D t p t p t D t E t dtξ ξ ω
∞ −Π = − + − − −∫ , (24) 

1 2. . ( ) ( ( )) (1 )( ( )) ( )m m m m m ms t E t p t p t zE tε ξ α β ε ξ α β= − + − − + .    (25) 

With respect to the integral function in Equation (24), the first two parts represent 

the revenue using the raw materials from suppliers 1 and 2, respectively. The sourcing 

quantity is determined by ordering probability ξ . The existence of the equilibrium of 

models (24) and (25) is straightforward, it is because the second-order condition of the 

Hamiltonian function with respect to pm is smaller than zero; that is, it is strictly concave 

in pm, and the maximized Hamiltonian function can be achieved. In addition, the 

maximized Hamiltonian function is a concave function with respect to E(t). The optimal 

pricing strategy of the manufacturer is summarized in the following propositions. 

Proposition 8. (Open-Loop Equilibrium). The open-loop sales price and emissions 

amount of the manufacturer are given by 
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and 1 ( ) / 2.mm r K= −  

Proposition 8 presents the equilibrium of the sales price and emissions amount of 

a manufacturer purchasing from two independent suppliers. The sales price of the 

manufacturer is jointly determined by the carbon tax and its procurement cost (the sales 
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prices of suppliers). Facing a specific carbon tax ω, when the manufacturer orders more 

from the greener supplier 2 (ξ is decreasing), its sales price presents the decreasing trend. 

In addition, the emissions volume of the manufacturer shows the decreasing trend with 

the increasing of the carbon tax. Further analysis is conducted when t moves towards 

infinity, the stable states of pm(t) and E(t) (t→∞) and their monotonicity are summarized 

in the following proposition. 

Proposition 9. The stable states of the sales price and emissions amount of the 

manufacturer are given as follows. 

(i) The stable state of sales price of the manufacturer is 

2
2

2
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m m m
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− −
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which is a supermodular function in both (ω, p1) and (ω, p2); 

(ii) the stable state of the emissions amount of the manufacturer is 

2( ) ( )
2

m
m m

r z KE t T G
K

α β − −
= −          (29) 

which is a submodular function in both (ω, p1) and (ω, p2). 

This proposition describes the main results for the manufacturer’s pricing issue. 

The characteristic of the stable price value presents a monotone trend with respect to 

the carbon tax and procurement prices. The increase in pm reduces the demand of the 

manufacturer. That is, the total cost will be transferred to customers. However, the 

amounts of carbon emissions of the manufacturer present a decreasing trend with 

respect to the carbon tax and procurement prices. In addition, the above pricing strategy 

focuses only on the one-shot decision based on the initial setting. The submodularity of 
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( )E t  indicates that the manufacturer would select a greener supplier to reduce the 

emissions amount even when facing a higher procurement price and carbon tax. The 

manufacturer can also adjust its pricing strategy based on the real-time emissions level 

and the value of carbon tax to make a dynamic decision. In the following content, we 

aim to study the time-consistent equilibrium. The Markovian Nash equilibrium for the 

special case is shown as follows. 

Proposition 10. (Markovian Nash Equilibrium) The Markovian Nash equilibrium 

strategies of the sales price and the emissions amount of a manufacturer are given as 
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In contrast to the static outcomes in the open-loop equilibrium, Proposition 10 

characterizes the trajectory of the price with respect to the changing of emissions 

amount. That is, the manufacturer can dynamically adjust the pricing strategy based on 

the observation of the current emissions level. The emissions level of the manufacturer 

shows a decreasing trend with respect to the carbon tax. In addition, in the Markovian 

Nash equilibrium strategy, the sales price of the manufacturer is decreasing with regards 

to reducing of its emissions amount. Furthermore, Equation (31) shows the effect of 

emissions on the long-run values of the manufacturer’s sales price. That is, the carbon 
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tax scheme is an effective way to curb the emissions amount of the manufacturer by 

flexibly sourcing from multiple suppliers. 

 

5. Managerial Implications 

The research results provide meaningful managerial implications for both suppliers and 

the manufacturer. The suppliers can have a better understanding of setting appropriate 

prices in consideration of production planning and inventory control. The manufacturer 

can also understand how to determine a reasonable price to jointly maximize profit and 

minimize emissions-related cost. 

For the manufacturer, the results of the comparative statics analysis for emission 

volumes indicate that the manufacturer would select a greener supplier to reduce the 

emissions amount even when facing a higher procurement price and a carbon tax. In 

addition, the characteristic of the sales price of the manufacturer presents a monotone 

trend with respect to the carbon tax and procurement cost (sourcing prices of raw 

materials). With the increasing sales price, the total cost will be transferred to customers. 

The manufacturer would cooperate with the traditional suppliers in the initial phase of 

implementing the carbon tax scheme. However, this phenomenon will change in the 

long run. The sales price shows a significant convergence trend. This implies that 

cooperating with a greener supplier incurs the lowest sales price, which in turn, 

contributes to expanding the market demand for the manufacturer. Therefore, to avoid 

losing business volumes, the manufacturer needs to adjust its pricing strategy and make 

a dynamic decision based on the real-time emissions level and the price of carbon tax. 
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For both traditional and greener suppliers, increasing the inventory level to meet 

the large-scale market demand is a good choice, even when facing a higher inventory 

holding cost. Nevertheless, each supplier needs to adjust its stock level dynamically if 

the holding cost is continuously increasing, even with a larger market size. This is 

because the increasing inventory holding cost can affect the supplier’s sales revenue 

significantly. As mentioned above, the manufacturer would prefer cooperating with a 

greener supplier in the long run. If a supplier is preparing to transfer its current 

production technology from traditional to environmental, the supplier has to increase 

its sales price, and part of the cost will shift to the manufacturer. The increase in sales 

prices could induce the loss of market share. Nevertheless, the buyers are willing to pay 

higher for the environmentally friendly materials in the future (Agrawal & Lee, 2016). 

A greener supplier takes over the market share from its competitors and also sets up a 

high barrier for new entrants as the technology transition process is lengthy. Therefore, 

to achieve the goal of profit maximization, both types of suppliers should adopt inter-

temporal strategies based on the original best decisions. In addition, to avoid time-

inconsistent, the suppliers should make adjustment dynamically based on the changing 

inventory states which are influenced by the interaction between the production and 

pricing strategies. 

To summarize, the pre-committed or contingent pricing strategies presented in 

this paper can jointly achieve the goals of profit maximization and carbon emissions 

minimization for both suppliers and manufacturers simultaneously, and can facilitate 

sustainable operations of the upstream supply chains. 
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6. Conclusions 

Motivated by the influence of global climate change in recent years and the research 

trend of sustainable supply chain management, this paper formulated a two-stage 

differential game model to study pricing issues between a manufacturer and suppliers 

under the carbon tax scheme. The contributions and managerial insights of this paper 

can be summarized as follows. 

First, a sub-game model for each independent supplier was developed with the 

constraint of inventory capacity. The open-loop strategies for the price, the production, 

and the inventory level were derived. In addition, with respect to the interactions among 

price, production rate, and inventory level, the Markovian Nash equilibrium was 

identified to illustrate the characteristic of time consistency for these strategies. The 

managerial insight of this sub-game is that each individual supplier can adjust its pricing 

and production strategies with respect to the timely information of its inventory level. 

That is, each individual supplier can maximize total profit by controlling the current 

inventory level and can update its price and production rate to enlarge its business 

volume share in a timely manner. 

Second, starting from the view point of the manufacturer that adopts the ATO 

strategy, a sub-game model was developed under the carbon tax scheme. In this model, 

the manufacturer has to consider the constraint of its emissions amount. This factor will 

affect the pricing issue for the manufacturer. The results indicate that the carbon tax 

and the unit procurement price are two predominant factors. The manufacturer might 
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be inclined to allocate the order to those traditional suppliers when facing a lower 

carbon tax at the beginning period. In the long-run, the manufacturer can benefit from 

cooperation with greener suppliers. In addition, the Markovian Nash equilibrium 

further presented the interaction between the price setting of the manufacturer and its 

emissions level. 

Third, the basic pricing model for the manufacturer was extended by cooperation 

with multiple suppliers. Due to the selection preference of the manufacturer, enlarging 

the pool of potential suppliers could benefit the manufacturer and curb its emissions 

amount. The more general setting for both the open-loop equilibrium and the 

Markovian Nash equilibrium were derived. The latter aimed to overcome the time 

inconsistency of the open-loop equilibrium. The Markovian Nash equilibrium indicates 

that the manufacturer can follow the variance of the unit carbon tax to control and adjust 

its emission amounts and pricing, respectively. 

In addition, the outcomes of the open-loop equilibrium and the Markovian Nash 

equilibrium provide managerial implications for both the manufacturer and suppliers. 

First, both players can make reasonable decisions under different states of information. 

The open-loop equilibrium can be used by both players to make reasonable decisions 

only based on their initial information, which generates the static outcomes for the 

entire duration of the game. In order to respond to all possibilities of state information 

and to fully capture strategic interactions, the Markovian Nash equilibrium can be 

adopted. Second, because of the limited information at the beginning of the planning 

horizon, the open-loop equilibrium can be used to design an original best sourcing 
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contract. As the market conditions and the customer demand change over time, the 

manufacturer may make timely adjustment to its sourcing contract based on the 

outcomes of the Markovian Nash equilibrium. Facing the outcomes of two types of 

equilibria, one conceivable way for the manufacturer in designing a reasonable sourcing 

contract is to consider the product characteristics and the duration of a contract 

simultaneously. The following two research questions are worth studying in the future 

research: How can the key turning point be identified for the manufacturer to re-contract 

and re-negotiate with its suppliers? Is compensation to suppliers a cost-effective way 

to solve the re-contracting issue? 

The developed models can be extended in several directions. The manufacturer 

can purchase the components from each supplier with different ratios, which can be 

determined by the bill of material of the final product, i.e., different ratios could affect 

both the inventory level of suppliers and the emissions amount of the manufacturer. In 

addition, the manufacturer also could invest in other technology, such as carbon 

emissions storage, to curb its emissions amount. Adopting other economic means, such 

as the emissions trading scheme, is also an alternative way to optimize the emissions 

amount. We hope that our work can provide a solid foundation for future research in 

this domain. 
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Table 1: Notation 
Variable Description 
n The number of suppliers, n ≥ 1 
t The decision time period, t ∈ [0, ∞) 
Ds(t) The demand of a supplier in period t 
αs The intersection of a supplier’s demand function 
βs The slope of a supplier’s demand function 
ps(t) The sales price of a single supplier in period t 
pi(t) The sales price of supplier i with n ≥ 2 
xs(t) The inventory level of a supplier in period t 
qs(t) The production rate of a supplier in period t 
rs The continuous discount rate of a supplier 
hs The unit holding cost of a supplier 
cs The unit production cost of a supplier 
E(t) The emissions amount of a manufacturer in period t 
ξi The ordering probabilities of a manufacturer from supplier i 
τi The manufacturer’s expected utility of reducing emissions by sourcing from 

supplier i 
ρ The price sensitivity parameter 
Dm(t) The demand of a manufacturer in period t 
αm The intersection of a manufacturer’s demand function 
βm The slope of a manufacturer’s demand function 
pm(t) The unit sales price of a manufacturer in period t 
εi The unit emissions rate by using materials from supplier i 
z The absorption rate of emissions 
rm The continuous discount rate of a manufacturer 
ω The unit carbon tax 
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(a) 

 
(b) 

Figure 1: Inventory trajectory with variances of the unit holding cost of a supplier (hs) and the 
intersection of a supplier’s demand (αs) and its submodularity 
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(a) 

 
(b) 

Figure 2: Production rate trajectory with variances of the unit production cost of a supplier 
(cs) and the intersection of a supplier’s demand (αs) and its submodularity 
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(a) 

 
(b) 

Figure 3: Price trajectory with variances of the unit production cost of a supplier (cs) and the 
unit holding cost of a supplier (hs) and its supermodularity 
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Figure 4: Price trajectory of the manufacturer sourcing from three suppliers 

 
Figure 5: Emission volumes of the manufacturer sourcing from three suppliers with the variances 

of the unit carbon tax (ω) 
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Figure 6: The profit of the manufacturer sourcing from three suppliers with the variance of the 

unit carbon tax (ω) 



APPENDICES

PROOF OF PROPOSITION 1.

Based on the Hamiltonian function of the supplier Equation (6), the Hession matrix for

both ps and qs can be formulated as follows.

HMs =

 ∂2Hs

∂2qs
∂2Hs

∂qs∂ps

∂2Hs

∂ps∂qs
∂2Hs

∂2ps

 =

−cs 0

0 −2βs

 , (A.1)

where cs and βs are nonnegative variables.

The Hamiltonian function of the supplier is concave in (ps, qs), because the Hessian

matrix is negative definite and the Legendre-Clebsch condition (Grass et al., 2008) can

be satisfied.

Q.E.D.

PROOF OF PROPOSITION 2.

Substituting ps and qs into Equation (1), then, the inventory dynamics can be obtained

as

ẋs(t) = (
1

cs
+
βs
2

)λ(t) + x(t)− αs
2
. (A.2)

A non-homogeneous linear system with constant coefficients can be developed as fol-

lows, by combining the co-state equation

λ̇(t) = (rs − 1)λ(t) + hsx(t). (A.3)

Note that

1



λ̇
ẋ

 = A

λ
x

 +B, (A.4)

where A =

rs − 1 hs

b 1

 , B =

 0

−.5αs

, and b = 1
cs

+ βs
2

.

Two eigenvalues of A are denoted by a1, a2, and the eigenvector of A is denoted by H

as follows.

a1 = .5(rs −
√
r2
s − 4rs + 4bhs + 4), (A.5)

a2 = .5(rs +
√
r2
s − 4rs + 4bhs + 4), (A.6)

H =

 rsb−
√
r2−4rs+4bhs+4−2

2b
rsb+

√
r2−4rs+4bhs+4−2

2b

1 1

 . (A.7)

Therefore, λ and x can be specified as

λ
x

 = H

ea1t 0

0 ea2t


k1

k2

− A−1B

=

ea1tw1 ea2tw2

ea1t ea2t


k1

k2

− αs
2(bhs − r + 1)

 −hs
r − 1

 ,
(A.8)

where w1 =
rsb−
√
r2s−4r+4bhs+4−2

2b
, w2 =

rsb+
√
r2s−4r+4bhs+4−2

2b
.

The two boundary conditions x(0) = 0 and lim
t→∞

e−rtλ(t)x(t) = 0 imply k1 = αs(r−1)
2(bhs−r+1)

,

and k2 = 0. Thus, the optimal inventory level path, the production path, and the path of

price can be obtained as follows:

2



x(t) =
(1− rs)αs

2(bhs − rs + 1)
(1− egt), (A.9)

q(t) =
1

cs
(

αshs
2(bhs − rs + 1)

− (1− rs)αsf
2(bhs − rs + 1)

egt), (A.10)

p(t) =
1

2
(
αs
βs

+
αshs

2(bhs − rs + 1)
− (1− rs)αsf

2(bhs − rs + 1)
egt). (A.11)

To avoid confusion, we use f and g to replace w1 and a1. Q.E.D.

PROOF OF PROPOSITION 3.

Limiting the price path, the path of production rate, and the path of inventory level with

respect to time t, enable the stable states of price, production rate, and inventory level,

respectively, to be obtained. In view of Topkis (1998), it is equivalent to verifying that

the cross-partials of ∂2x̃
∂αs∂hs

, ∂2q̃
∂αs∂cs

6 0, and ∂2p̃
∂hs∂cs

> 0, respectively.

(i) The cross partial derivative of x̃ with respect to hs and αs is

∂2x̃

∂αs∂hs
= − 2(1− rs)b

[2(bhs − rs + 1)]2
< 0. (A.12)

Thus, x̃ is submodular in (αs, hs).

(ii) The cross partial derivative of q̃ with respect to αs and cs is

∂2q̃

∂αs∂cs
= − hs/βs + 2(1− rs)

[2cs(bhs − rs + 1)]2
< 0. (A.13)

Thus, q̃ is submodular in (αs, cs).

(iii) The cross partial derivative of p̃ with respect to hs and cs is

3



∂2p̃

∂hs∂cs
=

(1− rs)hs
c2
s(bhs − rs + 1)3

> 0. (A.14)

Thus, p̃(t) is supermodular in (hs, cs).

Q.E.D.

PROOF OF PROPOSITION 4.

The Markov perfect equilibrium is derived by using the Hamilton-Jacobi-Bellman equa-

tions.

rsVs = max
ps,qs
{ps(t)(αs − βsps(t))−

1

2
hs(xx(t))

2 − 1

2
cs(qs(t))

2

+
∂Vs
∂x

[qs(t) + xs(t)− (αs − βsps(t))]}
(A.15)

Taking the first order derivative of Equation A.15 with respect to ps and qs, respectively,

for maximization of Equation A.15, we get

∂Vs
∂ps

= αs − 2βsps +
∂Vs
∂x

βs = 0, (A.16)

∂Vs
∂qs

= −csqs +
∂Vs
∂x

= 0. (A.17)

Then, we can obtain ps = 1
2
(αs

βs
+ ∂Vs

∂x
) and qs = 1

cs
∂Vs
∂x

. Substituting ps and qs into Equation

A.15, gives

rsVs =
α2
s

4βs
− 1

2
hsx

2 + (x− αs
2

)
∂Vs
∂x

+ (
βs
4

+
1

2cs
)(
∂Vs
∂x

)2. (A.18)

Conjecture the functional form for the value function: Vs = A+ Bx+Dx2, where A, B,

and D are determined by A.18. Substituting ∂Vs
∂x

= B + 2Dx into A.18, gives

4



rsVs = rs(A+Bx+Dx2)

=
α2
s

4βs
− 1

2
hsx

2 + (x− αs
2

)(B + 2Dx) + (
βs
4

+
1

2cs
)(B + 2Dx)x2

= [(βs +
2

cs
)D2 + 2D − hs

2
]x2 + [B(1− βsD +

2D

cs
)− αsD]x

+
α2
s

4βs
− αsB

2
+
βsB

2

4
+
B2

2cs
,

(A.19)

which implies

(βs +
2

cs
)D2 + 2D − hs

2
= 0,

B(1− βsD +
2D

cs
)− αsD = 0,

α2
s

4βs
− αsB

2
+
βsB

2

4
+
B2

2cs
− rA = 0.

(A.20)

Giving

D =
(rs − 2)±

√
(2− rs)2 + 2hs(βs + 2/cs)

2(βs + 2/cs)
,

B =
αsD

1 + βsD − rs + 2D/cs
,

A =
1

r
(
α2
s

4βs
− αsB

2
+
βsB

2

4
+
B2

2cs
).

(A.21)

Substituting ps and qs into x(t), the inventory dynamics equation can be specified as

ẋ(t) = (
2D

cs
+ βsD + 1)x+

B

cs
+
βsB − αs

2
, (A.22)

since x(t), which is specified above, has to converge in t, the solution of D must satisfy

D < 0 (Erickson, 2011). Only one of two roots of D is eligible.

The solution of x(t) is

5



x(t) =
cs(αs − βsB)− 2B

4D + 2cs(1 + βsD)
[1− e( 2D

cs
+βsD+1)t]. (A.23)

Therefore, the Markov perfect equilibria can be obtained as follows.

ps(t) =
1

2
[
αs
βs

+B + 2Dx(t)], (A.24)

qs(x(t)) =
1

cs
(B + 2Dx(t)). (A.25)

Q.E.D.

PROOF OF PROPOSITION 5.

The second order derivative of the manufacturer’s Hamiltonian function is −2βm, where

βm is a nonnegative variable because the manufacturer’s Hamiltonian function is strictly

concave in pm. Thus, the existence of the Nash equilibrium is proven.

Q.E.D.

PROOF OF PROPOSITION 6.

The manufacturer’s Hamiltonian function can be developed as

Hn
m = (αm − βmpm)

n∑
i=1

ξi(pm − pi)−
1

2
ωE2 + u[

n∑
i=1

εiξi(αm − βmpm) + zE], (A.26)

The manufacturer’s necessary condition for optimality is

∂Hn
m

∂pm
= αm − 2βmpm + βm

n∑
i=1

piξi − uβm
n∑
i=1

εiξi = 0, (A.27)

6



then

pm =
1

2
(V − uJ), (A.28)

where V = αm

βm
+

n∑
i=1

piξi, and J =
n∑
i=1

eiξi. Substituting pm into Equation (4), the dynamics

of the emission volumes can be obtained as

Ėn(t) =
1

2
βmuJ

2 + zE(t) + (αm −
1

2
βmV )J (A.29)

A non-homogeneous linear system with constant coefficients can be developed as follows

by combining the co-state equations

u̇(t) = rmu−
∂Hn

m

∂E
= (rm − z)u+ wE. (A.30)

Note that  u̇
Ė

 = W

u
E

 +R, (A.31)

where W =

 rm − z w

βmJ
2/2 z

 , R =

 0

Y (αm − 1
2
βmV ).

 , and Y =
n∑
i=1

eiξi. The two eigenval-

ues of W are w1, w2, and the eigenvector of R is I.

w1 =
rm −

√
(rm − 2z)2 + 2ωβmJ2

2
(A.32)

w2 =
rm +

√
(rm − 2z)2 + 2ωβmJ2

2
(A.33)
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I =


rmβmJ2−4z−2

√
(rm−2z)2+2ωβmJ2

2βmJ2

rmβmJ2−4z+2
√

(rm−2z)2+2ωβmJ2

2βmJ2

1 1

 =

y1 y2

1 1

 (A.34)

Therefore, u and En can be expressed as

 u

En

 = I

ew1t 0

0 ew2t


k1

k2

− I−1R

=

y1e
w1t y2e

w2t

ew1t ew2t


k1

k2

− J(αm − βmV )


rm−2z+

√
(rm−2z)2+2ωβmJ2

2
√

(rm−2z)2+2ωβmJ2

rm−2z−
√

(rm−2z)2+2ωβmJ2

2
√

(rm−2z)2+2ωβmJ2


(A.35)

The two boundary conditions E(0) = 0 and lim
t→∞

e−rmtu(t)E(t) = 0 imply that k1 =

J(αm − βmV )
rm−2z−

√
(rm−2z)2+2ωβmJ2

2
√

(rm−2z)2+2ωβmJ2
and k2 = 0. Therefore, the open-loop equilibrium

strategies of the sales price and the emissions amount of the manufacturer can be found

as follows.

pnm =
1

2
V +

(αm − 1
2
βmS)J2

4
√
k̄

[(rm − 2z) +
√
k̄ − [(rm − 2z)−

√
k̄]y1e

āt], (A.36)

En(t) = (αm −
1

2
βmS)J

√
k̄ − (rm − 2z)

2
√
k̄

(1− eāt), (A.37)

where S = αm

βm
+

n∑
i=1

ciξi, J =
n∑
i=1

eiξi, w1 =
rm−
√

(rm−2z)2+2ωβmB

2
, K1 = (rm−2z)2+2βmωB

2,

and y1 =
rmβmJ2−4z−2

√
(rm−2z)2+2ωβmJ2

2βmJ2 . To avoid confusion, we use ā and k̄ to replace w1

and K1.

Q.E.D.

PROOF OF PROPOSITION 7.
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For the case of multiple sourcing, the Hamiltion-Jacobo-Bellman equation can be estab-

lished as follows.

rmV
n
m = max

p̂nm
{(αm−βmp̂m)

n∑
i=1

ξi(p̂−pi)−
1

2
ωÊ2

n+[
n∑
i=1

εiξi(αm−βmp̂m)+zE]
∂V n

m

∂Ên
} (A.38)

Taking the first order derivative of Equation A.66 with respect to p̂m, we can obtain

p̂m =
1

2
(V − J ∂V

n
m

∂Ên
), (A.39)

where V = αm

βm
+

n∑
i=1

piξi and J =
n∑
i=1

eiξi. Substituting p̂m into Equation A.66, rmV
n
m can

be rewritten as

rV n
m = I(

∂V n
m

∂Ên
)2 + U

∂V n
m

∂Ên
+ C, (A.40)

where I = 1
4
βmJ

2, U = 1
2
J(αm − βm

n∑
i=1

ξipi) + zÊn, and C = 1
4
V (2αm − βmV ) − (αm +

1
2
βmV )

n∑
i=1

ξipi. Conjecture the form of V n
m = Mn + NnE + QnÊ

2
n, then, substituting

∂V n
m

∂Ên
= Nn + 2QnÊn into Equation A.38, we can obtain

rmV
n
m = 4IQ2

nÊ
2 + (4NnQnI + 2QnU)E + IN2

n + UNn + C. (A.41)

Then, Mn, Nn, and Qn can be derived by the following equations.

4I1Q2
n − rmQn −

1

2
ω = 0, (A.42)

4NnQnI + 2QnU − rmNn = 0, (A.43)

IN2
n + UNn + C − rmMn = 0, (A.44)

9



That is,

Qn =
rm ±

√
r2
m + 8ωI

8I
(A.45)

Nn =
2QnU

rm − 4QnI
, (A.46)

Mn = (IN2
n + UNn + C)/rm, (A.47)

Because Ên has to converge in t and is larger than zero, thus, Q must satisfy Q < 0, i.e.

Qn =
rm−
√
r2m+8ωI

8I
. Therefore, the Markov perfect equilibrium can be derived.

p̂nm(t) =
1

2
[V − JNn − 2JQnÊ(t)], (A.48)

Ên(t) =
αm − 1

2
βmV + 1

2
βmJNn

βmQnJ
(eβmQnJ2t − 1), (A.49)

where V = αm

βm
+

n∑
i=1

piξi, J =
n∑
i=1

eiξi, Nn = 2QnU
r−4QnI

, Qn =
rm−
√
r2m+8ωI

8I
, I = 1

4
βmJ

2,

U = 1
2
J(αm − βm

n∑
i=1

ξipi) + zÊn.

Q.E.D.

PROOF OF PROPOSITION 8.

The manufacturer’s Hamiltonia function can be developed as

Hm =ξ(pm − p1)(αm − βmpm) + (1− ξ)(pm − p2)(αm − βmpm)

− wE2/2 + µ[ε1ξ(αm − βmpm) + ε2(1− ξ)(αm − βmpm) + zE]

(A.50)

and the necessary condition for optimality is

∂Hm

∂pm
= αm − 2βmpm + p2βm + ξβm(p1 − p2)− µ[ξβm(ε1 − ε2) + ε2] = 0, (A.51)

10



Leading to

pm = [αm + p2βm + βmξ(p1 − p2)]/2βm − µβm[ξ(ε1 − ε2) + ε2]/2 = G− µβmT/2, (A.52)

where G = [αm + p2βm + βmξ(p1 − p2)]/2βm, T = ξ(e1 − e2) + e2. Substituting pm into

Equation (25), the dynamics of the emissions amount can be obtained as

Ė(t) = T (αm − βmG) + uβmT
2/2 + zE, (A.53)

A non-homogeneous linear system with constant coefficients can be developed as follows

by combining the co-state equations.

u̇(t) = rmu−
∂Hm

∂E
= (rm − z)u+ ωE. (A.54)

Note that  u̇
Ė

 = M

u
E

 +N, (A.55)

where M =

 rm − z ω

(βmT )2/2 z

 , N =

 0

T (αm − βmG).

 The two eigenvalues of M (m1 and

m2) and the eigenvector of M (L) are as follows.

m1 =
rm −

√
(rm − 2z)2 + 2ω(βmT )2

2
(A.56)

m2 =
rm +

√
(rm − 2z)2 + 2ω(βmT )2

2
(A.57)
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L =


rm−2z−

√
(rm−2z)2+2ω(βmT )2

2βmT 2

rm+2z+
√

(rm−2z)2+2ω(βmT )2

2βmT 2

1 1

 =

x1 x2

1 1

 (A.58)

Therefore, u and E can be expressed as

u
E

 = L

em1t 0

0 em2t


k1

k2

− L−1N

=

x1e
m1t x2e

m2t

em1t em2t


k1

k2

− T (αm − βmG)


rm−2z+

√
(rm−2z)2+2ω(βmB)2

2
√

(rm−2z)2+2ω(βmT )2

√
(rm−2z)2+2ω(βmT )2−(rm−2z)

2
√

(rm−2z)2+2ω(βmT )2


(A.59)

Two boundary conditions E(0) = 0 and lim
t→∞

e−rtu(t)E(t) = 0 imply that k1 = T (αm −

βmG)
2z−rm+

√
(rm−2z)2+2ω(βmT )2

2
√

(rm−2z)2+2ω(βmT )2
and k2 = 0. Therefore, the open-loop sales price and

emissions amount of the manufacturer can be derived as follows.

pm =G+ T 2(αm − βmG)[
rm − 2z +

√
(rm − 2z)2 + 2ω(βmT )2

2
√

(rm − 2z)2 + 2ω(βmT )2
em1t

+
[
√

(rm − 2z)2 + 2ω(βmB)2 − (rm − 2z)]2

2(βmT )2
√

(rm − 2z)2 + 2ω(βmB)2
],

(A.60)

E(t) = T (αm − βmG)
rm − 2z −

√
(rm − 2z)2 + 2ω(βmB)2

2
√

(rm − 2z)2 + 2ω(βmB)2
(1− em1t), (A.61)

Q.E.D.

PROOF OF PROPOSITION 9.

With limitation of the sales price path, and the path of the emissions amount with re-

spect to time t, we can find the stable states for the sales price and emissions amount,

respectively.
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(i) The cross partial derivatives of p̃m with respect to ω, p1 and p2 are

∂2p̃m
∂ω∂p1

=
β5
mT

4ξ(rm − 2z)

4[(rm − 2z)2 + 2ω(βmT )2]
3
2

> 0, (A.62)

∂2p̃m
∂ω∂p2

=
β5
mB

4(1− ξ)(rm − 2z)

4[(rm − 2z)2 + 2ω(βmT )2]
3
2

> 0, (A.63)

because 0 6 ξ 6 1 and z � r.

Thus, p̃m is a supermodular function in both (ω, p1) and (ω, p2).

(ii) The cross partial derivatives of Ẽ with respect to w, p1 and p2 are

∂2Ẽ

∂ω∂p1

= − β3
mB

2ξ(rm − 2z)

2
√

(rm − 2z)2 + 2ω(βmT )2
6 0, (A.64)

∂2Ẽ

∂ω∂p2

= − β3
mB

2(1− ξ)(rm − 2z)

2
√

(rm − 2z)2 + 2ω(βmB)2
6 0, (A.65)

Thus, Ẽ is a submodular function in both (ω, p1) and (ω, p2).

Q.E.D.

PROOF OF PROPOSITION 10.

The Markov perfect equilibrium is derived by using the Hamilton-Jacobi-Bellman (HJB)

equations.

rmVm = max
pm
{ξ(pm − p1)(αm − βmpm) + (1− ξ)(pm − p2)(αm − βmpm)

− ωE2/2 +
∂Vm
∂E

[T (αm − βmpm) + zE]},
(A.66)

where T = ξ(ε1−ε2)+ε2. Taking the first order derivative of Equation A.66 with respect

to pm for maximization of Equation A.66, we can obtain
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pm = A− T

2

∂Vm
∂E

, (A.67)

where A = [αm + βmp2 + βmξ(p1 − p2)]/2βm. Substituting Equation A.67 into Equation

A.66, rVm can be rewritten as

rmVm =
1

4
βmT

2(
∂Vm
∂E

)2 + (
1

2
αmT + zE)

∂Vm
∂E

+ αmA+ αm[ξ(p2 − p1)− p2]− βmA2 − 1

2
ωE2

(A.68)

Conjecture the functional form for the value function Vm = N +ME+QE2, where M,N,

and Q are determined by Equations A.66 and A.67. Substituting ∂Vm
∂E

= M + 2QE into

Equation A.67, then

rmVm =(βmT
2Q2 + 2Qz − 1

2
ω)E2 + [βmMQT 2 + zM + 2αmTQ]E

+
1

4
βmT

2M2 +
1

2
αmTM + αmA+ αm[ξ(p2 − p1)− p2]− βmA2

(A.69)

Then, Q, N , and X can be derived by the following equations.

βmT
2Q2 + (2z − r)Q− 1

2
w = 0, (A.70)

βmMQT 2 + zM + 2αmTQ− rM = 0, (A.71)

X − rM = 0, (A.72)

where X = 1
4
βmT

2M2+ 1
2
αmTM+αmA+αm[ξ(p2−p1)−p2]−βmA2. Then, we can observe

Q =
rm − 2z ±

√
(rm − 2z)2 + 2ωβmT 2

2βmT 2
, (A.73)
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M =
αmTQ

rm − z − βmQT 2
, (A.74)

M = X/rm, (A.75)

This is because E(t) has to converge in t and is larger than zero, so the solution of Q

must satisfy Q < 0. Only one if the two roots of Q is eligible (Erickson, 2011). That is,

Q =
rm−2z−

√
(rm−2z)2+2ωβmT 2

2βmT 2 . Therefore, the Markov perfect equilibrium can be obtained

as follows.

p̂m(t) = A− 1

2
TM + TQE(t), (A.76)

Ê(t) =
T (αm − βmM)

z − 2βmQT
[e(z−2βmQT )t − 1], (A.77)

where T = ξ(e1 − e2) + e2, and A = [αm + βmp2 + βmξ(p1 − p2)]/2βm.

Q.E.D.
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