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Coordinated Reactive Power Control of a Large Wind
Farm and a STATCOM Using Heuristic

Dynamic Programming
Wei Qiao, Member, IEEE, Ronald G. Harley, Fellow, IEEE,

and Ganesh Kumar Venayagamoorthy, Senior Member, IEEE

Abstract—A novel interface neurocontroller (INC) is proposed
for the coordinated reactive power control between a large wind
farm equipped with doubly fed induction generators (DFIGs) and
a static synchronous compensator (STATCOM). The heuristic dy-
namic programming (HDP) technique and radial basis function
neural networks (RBFNNs) are used to design this INC. It effec-
tively reduces the level of voltage sags as well as the over-currents
in the DFIG rotor circuit during grid faults, and therefore, signifi-
cantly enhances the fault ride-through capability of the wind farm.
The INC also acts as a coordinated external damping controller
for the wind farm and the STATCOM, and therefore, improves
power oscillation damping of the system after grid faults. Simula-
tion studies are carried out in PSCAD/EMTDC and the results are
presented to verify the proposed INC.

Index Terms—Heuristic dynamic programming (HDP), inter-
face neurocontroller (INC), power oscillation damping, reactive
power control, static synchronous compensator (STATCOM), wind
farm.

I. INTRODUCTION

B
ECAUSE of the concern about the environmental pollu-

tion and a possible energy crisis, there has been a rapid

increase in renewable energy sources worldwide in the past

decade. Among various renewable energy sources, wind power

is the most rapidly growing one.

Nowadays, the majority of wind turbines are equipped with

doubly fed induction generators (DFIGs). In the DFIG concept,

the wound-rotor induction generator is grid-connected at the

stator terminals, as well as at the rotor mains via a partially rated

variable frequency ac/dc/ac converter (VFC), which only needs

to handle a fraction (25%–30%) of the total power to achieve

full control of the generator. The VFC consists of a rotor-side

converter (RSC) and a grid-side converter (GSC) connected

back-to-back by a dc-link capacitor.
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In order to meet power factor requirement (e.g., −0.95 to

0.95) at the connection point, most wind farms are equipped

with switched shunt capacitors for static reactive compensa-

tion [1], [2]. Moreover, because many wind farms are connected

to electrically weak power networks, characterized by low short

circuit ratios and under-voltage conditions, dynamic power elec-

tronic devices such as a static var compensator (SVC) and a static

synchronous compensator (STATCOM) [3] have been increas-

ingly used in wind farms to provide rapid and smooth reactive

compensation and voltage control [4].

When connected to the grid and during a grid fault, the volt-

age sags at the connection point of the wind farm can cause

a high current in the rotor circuit and the converter. Since the

power rating of the VFC converter is only 25%–30% of the

induction generator power rating, this over-current can lead to

the destruction of the converter. Therefore, one of the key issues

related to the wind farms equipped with DFIGs is the grid fault

or low voltage ride-through capability. Much research effort has

gone into this issue and several techniques have been proposed.

One technique is blocking the RSC and short circuiting the

rotor circuit by a crow-bar circuit to protect the converter from

over current in the rotor circuit [1], [5], [6]. The wind turbine

generators (WTGs) continue their operation to produce some

active power, and the GSCs can be set to control the reactive

power and voltage. When the fault has been cleared and when

the voltage and the frequency in the power network have been

reestablished, the RSC restarts and the WTG returns to normal

operation. In this uninterrupted operation feature, voltage sta-

bility is a crucial issue. In the case of a weak power network and

during a grid fault, the GSC cannot provide sufficient reactive

power and voltage support due to its small power capacity, and

there can be a risk of voltage collapse. As a result, the RSC

will not restart and the WTG will be disconnected from the net-

work. This problem can be solved by using dynamic reactive

compensation. In [6], the authors investigated the application

of a STATCOM to help with the uninterrupted operation of a

wind farm equipped with DFIGs during grid faults. However,

the focus of [6] was to investigate the DFIG behavior with the

STATCOM for voltage support during grid faults. In addition,

the power network used in [6] is a simple single machine infinite

bus system, and there is no coordination between the wind farm

and the STATCOM for reactive power control.

The second solution to enhance the grid-fault ride-through

capability of the DFIG wind turbines is to improve the con-

trol scheme of the RSC. A nonlinear controller and a fuzzy

0885-8969/$25.00 © 2009 IEEE
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Fig. 1. Single-line diagram of the multimachine benchmark power system that
includes a large wind farm and a STATCOM.

controller have been proposed in [7] and [8], respectively, for

controlling the RSC. Compared with the conventional linear

control schemes, these control schemes reduce the over current

in the rotor circuit during grid faults.

Shunt flexible alternating current transmission system

(FACTS) devices such as the SVC and the STATCOM pro-

vide rapid and smooth reactive compensation, and therefore,

can reduce the level of voltage sags during grid faults. The ap-

plication of a STATCOM to enhance the capability of a wind

farm (equipped with DFIGs) to ride through grid faults in a

multimachine power system has been reported in [9]. However,

the reactive power control of the wind farm and the STATCOM

in [9] are independent without coordination; during grid faults,

the voltage control is only achieved by the STATCOM.

This paper extends the work of [9] by proposing a novel co-

ordinated reactive power control scheme. It acts as an interface

controller between a wind farm and a STATCOM. The heuris-

tic dynamic programming (HDP) [10], [11] method and radial

basis function neural networks (RBFNNs) [12] are employed to

design this nonlinear optimal adaptive interface neurocontroller

(INC). Simulation studies are carried out in PSCAD/EMTDC

to verify the proposed INC.

II. POWER SYSTEM MODEL

The original four-machine 12-bus benchmark power system

in [13] is used as a platform system for studying FACTS device

applications and integration of wind generation. Fig. 1 shows the

single-line diagram of the extended four-machine 12-bus power

system that now includes a large wind farm and a STATCOM.

The system consists of six 230-kV busses, two 345-kV busses,

and four 22-kV busses. It covers three geographical areas. Area 1

is predominantly a generation area with most of its generation

coming from hydro power (represented by G1 and G2). Area 2,

located between the main generation area (area 1) and the main

load center (area 3), has a large 400 MW wind farm (represented

by G4), but this is insufficient to meet local demand. Area 3,

situated about 500 km from area 1, is a load center with some

thermal generation (represented by G3). Furthermore, since the

generation unit in area 2 has limited energy available, the system

demand must often be satisfied through transmission. The trans-

mission system consists of 230-kV transmission lines except for

one 345-kV link between areas 1 and 3 (between busses 7 and 8).

Fig. 2. Configuration of a DFIG wind turbine connected to a power grid.

Areas 2 and 3 have switched shunt capacitors to support the volt-

age. The detailed description of the system is given in [13].

A STATCOM is placed at bus 6 to provide steady state as well

as transient voltage support for the wind farm. This dynamic

reactive compensator provides fast and smooth voltage control

for the wind farm and enhances the capability of the wind farm

to ride through grid disturbances.

G1 is modeled as a three-phase infinite source, while the

other two conventional generators (G2 and G3) are modeled

in detail, with the exciter and turbine governor dynamics taken

into account.

III. WIND FARM MODEL

The wind farm is represented by an aggregated model in

which over 100 individual wind turbines and DFIGs are mod-

eled as one equivalent DFIG driven by a single equivalent wind

turbine [1], [9]. Each individual DFIG wind turbine represents

a 3.6-MW WTG system [6], [14]. The parameters of the equiv-

alent wind turbine and DFIG are given in the Appendix.

The basic configuration of a DFIG wind turbine connected

to a power grid is shown in Fig. 2 [6], [9]. The wind turbine is

connected to the induction generator through a mechanical shaft

system, which consists of a low-speed shaft and a high-speed

shaft and a gearbox in between. The wound-rotor induction ma-

chine in this configuration is fed from both stator and rotor sides.

The stator is directly connected to the grid while the rotor is fed

through a VFC. In order to produce electrical power at constant

voltage and frequency to the utility grid over a wide operat-

ing range from subsynchronous to supersynchronous speed, the

power flow between the rotor circuit and the grid must be con-

trolled both in magnitude and in direction. Therefore, the VFC

consists of two four-quadrant insulated-gate bipolar transistor

(IGBT) pulse-width modulation (PWM) converters connected

back-to-back by a dc-link capacitor. A crow-bar circuit is used

to short circuit the RSC in order to protect the RSC from over

current in the rotor circuit during transient disturbances.

A. Wind Power Model

The mechanical power of the turbine extracting from the wind

is calculated by [1]:

Pm =
1

2
ρArv

3
w CP (λ, β) (1)

where ρ is the air density in kg/m3 , Ar = πR2 is the area swept

by the rotor blades in m2 , vw is the wind speed in m/s, CP is the
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Fig. 3. Overall control scheme of the RSC: vdr 2 = −sωs σLr iq r , vq r 2 =

sωs (σLr idr + L2
m im s /Ls ), σ = 1 − L2

m /Ls Lr .

power coefficient, which is a function of both tip speed ratio λ

and the blade pitch angle β. The CP –λ–β curves depend on the

blade design and are given by the wind turbine manufacturer.

B. Modeling of the Shaft System

In transient stability studies, the WTG shaft system should be

represented by a two-mass model instead of a single lumped-

mass model [1]. In the two-mass model, separate masses are

used to represent the low-speed turbine and the high-speed gen-

erator, and the connecting resilient shaft is modeled as a spring

and a damper. The motion equations are given by

2Htpωt = Tm − Dtωt − Dtg (ωt − ωr ) − Ttg (2)

2Hgpωr = Ttg + Dtg (ωt − ωr ) − Dgωr − Te (3)

pTtg = Ktg (ωt − ωr ) (4)

where p = d/dt; ωt and ωr are the turbine and generator rotor

speed, respectively; Tm and Te are the mechanical torque ap-

plied to the turbine and the electrical torque of the generator,

respectively; Ttg is an internal torque of the model; Ht and Hg

are the inertia constants of the turbine and the generator, respec-

tively; Dt and Dg are the damping coefficients of the turbine

and the generator, respectively; Dtg is the damping coefficient

of the flexible coupling (shaft) between the two masses; and Ktg

is the shaft stiffness.

As discussed in [15], the WTG shaft system described by

(2)–(4) has lightly damped low-frequency torsional oscillation

modes. The natural frequencies of these modes depend on the

mechanical parameters of the WTG systems, e.g., the inertia

constants of the wind turbines and DFIGs, and are less than

several hertz on most practical WTG systems.

C. Control of the DFIG

Control of the DFIG is achieved by control of the VFC, which

includes control of the RSC and control of the GSC [1], [6], [15].

The objective of the RSC is to regulate both the stator active

and reactive powers, Ps and Qs , independently. The reactive

power control using the RSC can be applied to keep the stator

voltage Vs within the desired range, when the DFIG feeds into

a weak power system with insufficient local reactive compen-

sation. When the DFIG feeds into a strong power system, the

command of Qs can be simply set to zero. Fig. 3 shows the

Fig. 4. Overall control scheme of the GSC.

overall vector control scheme of the RSC. In order to achieve

independent control of the stator active power Ps (by means of

speed control) and reactive power Qs (see Fig. 2) by means of

rotor current regulation, the instantaneous three-phase rotor cur-

rents irabc are sampled and transformed to dq components idr

and iqr in the stator-flux oriented reference frame. The reference

values for idr and iqr can be determined directly from Qs and

ωr commands, respectively. The actual dq current signals (idr

and iqr ) are then compared with their reference signals (i∗dr and

i∗qr ) to generate the error signals, which are passed through two

proportional–integral (PI) controllers to form the voltage signals

vdr1 and vqr1 . The two voltage signals (vdr1 and vqr1) are com-

pensated by the corresponding cross coupling terms (vdr2 and

vqr2) to form the dq voltage signals vdr and vqr . They are then

used by the PWM module to generate the IGBT gate control

signals to drive the rotor-side IGBT converter.

The objective of the GSC is to keep the dc-link voltage con-

stant regardless of the magnitude and direction of the rotor

power. In this paper, the GSC control scheme is also designed

to regulate the reactive power, Qg , exchanged between the GSC

and the grid. During normal operation, the GSC is considered

to be reactive neutral by setting Q∗
g = 0. This consideration is

reasonable because the VFC rating is only 25%–30% of the

generator rating and the VFC is primarily used to supply the

active power from the rotor to the power grid. However, the

reactive power controllability of the GSC can be useful during

the process of voltage reestablishment, after a grid fault has

been cleared and the RSC has been blocked. Fig. 4 shows the

overall control scheme of the GSC. The actual signals of the

dc-link voltage and the reactive power (Vdc and Qg ) are com-

pared with their command values (V ∗
dc and Q∗

g ) to form the error

signals, which are passed through the PI controllers to generate

the reference signals for the d-axis and q-axis current com-

ponents (i∗dg and i∗qg ), respectively. The instantaneous ac-side

three-phase currents of the GSC are sampled and transformed

into dq current components idg and iqg by applying the syn-

chronously rotating reference frame transformation. The actual

signals (idg and iqg ) are then compared with the corresponding

reference signals to form the error signals, which are passed

through two PI controllers. The voltage signals (vdg1 and vqg1)

are compensated by the corresponding cross coupling terms to

form the dq voltage signals vdg and vqg . They are then used by
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Fig. 5. Overall control scheme of the STATCOM.

the PWM module to generate the IGBT gate-control signals to

drive the grid-side IGBT converter.

IV. STATCOM MODEL

A STATCOM [3], [16], also known as an advanced SVC, is

a shunt connected FACTS device. It generates a set of balanced

three-phase sinusoidal voltages at the fundamental frequency,

with rapidly controllable amplitude and phase angle. A typical

application of a STATCOM is for voltage support. In this paper,

the STATCOM is modeled as a gate-turn-off thyristor (GTO)

PWM converter with a dc-link capacitor. The overall control

scheme of the STATCOM is shown in Fig. 5. The objective

of the STATCOM is to provide the desired amount of reactive

compensation [with the switch (SW) in position 1 in Fig. 5] or

to directly regulate the voltage at the point of common coupling

(PCC) (bus 6) within the desired range (with SW in position 2

in Fig. 5). This can enhance the capability of the wind farm to

ride through transient disturbances in the grid. The block “grid”

in Fig. 5 denotes the power network (see Fig. 1) to which the

wind farm and the STATCOM are connected.

V. DESIGN OF THE INTERFACE NEUROCONTROLLER

Grid faults, even far away from the location of the wind farm,

can cause voltage sags at the connection point of the wind farm.

This voltage sag will result in an imbalance between the turbine

input power and the generator output power, and therefore, a

high current in the stator windings of the DFIG. Because of

the magnetic coupling between stator and rotor, this current

will also flow in the rotor circuit and the converter. In addition,

the power imbalance during the fault will excite low-frequency

torsional oscillations on the WTG shaft system, which leads

to oscillations of the shaft speed and the output active power.

These oscillations are lightly damped if there is no specifically

designed damping control for the WTG system.

Fig. 6. Schematic diagram of the INC.

In this section, an adaptive critic design (ACD) approach,

the HDP, and RBFNNs are used to design an external interface

controller for the coordinated reactive power control between

the wind farm and the STATCOM, as shown in Fig. 6. The

dashed line block denotes the plant to be controlled by the

INC. The voltage deviation, ∆V6 , at bus 6 and the active power

deviation, ∆Pg4 , of the wind farm are fed into the INC to

produce two supplementary control signals, ∆Qs and ∆QC .

They are then added to the steady-state fixed set-point values,

Qs0 and QC 0 , respectively, to form the total commanded values

of the compensating reactive power, Q∗
s and Q∗

C , at the input of

the RSC and the STATCOM controllers. A basic principle is that

by rapidly varying the amount of reactive power provided by

the DFIG and the STATCOM during grid faults, it is possible to

reduce the level of voltage sags at the PCC, and therefore, control

directly the transient imbalances between the electrical output

power and the mechanical input power that are responsible for

over current in the rotor circuit. Because of the direct coupling

between voltage and reactive power, it is straightforward to

use the voltage deviation, ∆V6 , as an input signal of the INC.

However, the active power deviation, ∆Pg4 , of the wind farm is

also used as an input of the INC because it provides the INC with

additional information of the plant dynamics. In addition, ∆Pg4

contains the information of system oscillations and can therefore

be used by the INC to damp postfault power oscillations of

the system. The fixed set-point value Qs0 of the DFIG can

be determined based on the desired stator side or the net power

factor of the induction machine. The choice of Qs0 is also subject

to the limit of the DFIG MVar rating. The value of QC 0 can be

determined by the results of a power flow calculation at a specific

operating point or to achieve some form of optimal power flow

operation of the network.

The transfer functions from ∆V6 and ∆Pg4 to ∆Qs and ∆QC

are complex, nonlinear, and depend on the network topology.

A neural network can solve this problem and avoids having to

derive such analytical functions.

A. Radial Basis Function Neural Network

The neural networks used in this paper are three-layer

RBFNNs with the Gaussian density function as the activa-

tion function in the hidden layer (see Fig. 7) [12]. The over-

all input–output mapping for the RBFNN, f̂ : X ∈ Rn → Y ∈
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Fig. 7. Three-layer RBFNN.

Rm is

ŷi = bi +

h
∑

j=1

vj i exp

(

−
‖x − Cj‖

2

β2
j

)

(5)

where x is the input vector, Cj ∈ Rn is the center of the jth

radial basis function (RBF) units in the hidden layer, h is the

number of RBF units, bi and vj i are the bias term and the weight

between hidden and output layers, respectively, and ŷi is the ith
output.

The locations of RBF centers are determined offline using a

k-means clustering algorithm [17]. Once the RBF centers are

established, the width βi of the ith RBF unit in the hidden layer

is calculated as follows

βi =





1

h

h
∑

j=1

‖Ci − Cj‖
2





1/2

(6)

where Ci and Cj are the center of the ith and jth RBF units,

respectively. In (5) and (6), ‖ · · · ‖ represents the Euclidean

norm.

B. Adaptive Critic Designs and Heuristic Dynamic

Programming

ACDs, proposed by Werbos [10], is a neural-network-based

optimization and control technique that solves the classical non-

linear optimal control problem by combining concepts of ap-

proximate dynamic programming and reinforcement learning.

Dynamic programming may provide the best approach to

design the optimal control for highly constrained nonlinear sys-

tems [18]. In dynamic programming, such an optimal control is

obtained by solving the Bellman equation that optimizes some

cost-to-go function J of the system, defined as

J(k) =

∞
∑

q=0

γqU(k + q) = γJ(k + 1) + U(k) (7)

where U (·) is the utility function (user-defined function) that

represents the one-stage cost or performance measure function

of the system at each time step, and γ is a discount factor for

finite horizon problems (0 < γ < 1). Equation (7) describes the

basic principle of dynamic programming: optimizing J(·) in the

short term is equivalent to optimizing U (·) in the long term, and

vice versa. This principle can be explained in more details as

Fig. 8. Structure of the model network: TDL denotes time delay lock.

follows. If J(k) is optimal, then J(k + 1) and U (k) are both

optimal; if J(k + 1) is optimal, then J(k + 2) and U (k + 1) are

both optimal; and so on. In other words, if J(k) is optimal, then

U (n), for n = k, k + 1, . . . ,∞, are all optimal, and vice versa.

Therefore, if a control action optimizes the cost-to-go function

J(·) at time step k, then it optimizes the utility function U (·)
from time step k and onward.

The conventional dynamic programming approaches require

an accurate analytical model of the system dynamics, as well

as knowledge of the system comprehensive dynamics known

a priori to develop an appropriate cost function J(·). These

however are normally unavailable for many complex nonlin-

ear systems. Therefore, it is difficult to obtain an accurate so-

lution (i.e., an optimal control) for such systems in dynamic

programming. The ACD method offers an approach to find an

approximate solution to dynamic programming.

The HDP, belonging to the family of ACDs, requires three

neural networks, one for the model, one for the critic, and one for

the action network for its implementation [10], [11]. The model

network is used to provide a dynamical model of the plant for

training the critic and action networks; the critic network esti-

mates the cost function J in (7); the action network provides

the control action for the plant. Based on an accurate model net-

work, the ACD method determines optimal control laws for a

system by successively adapting the critic and action networks.

The adaptation process starts with a nonoptimal control by the

action network; the critic network then guides the action net-

work toward the optimal solution at each successive adaptation.

This adaptation process uses the concept of reinforcement learn-

ing. During the adaptations, neither of the networks needs any

information of the desired control trajectory, only the desired

cost needs to be known.

C. Design of the Model Network

The model network is a three-layer RBFNN with 25 hidden

neurons. The plant inputs A = [∆Qs ,∆QC ] and outputs Y =
[∆V6 ,∆Pg4 ] at time k, k − 1, and k − 2 are fed into the model

network to estimate the plant outputs Ŷ = [∆V̂6 ,∆P̂g4 ] at time

k + 1, as shown in Fig. 8. The sampling period for the RBFNN

implementation is 1 ms.

The model network is pretrained offline using a suitably se-

lected training data set collected from two sets of training. The

first set is called forced training in which the plant is perturbed

by injected small pseudorandom binary signals (PRBSs) (with

S1 and S2 both in position 2 in Fig. 6), given by

PRBS Qs(k) =
0.1|Qs0 |[r0(k) + r1(k) + r2(k)]

3
(8)

PRBS QC (k) =
0.1|QC 0 |[r0(k) + r1(k) + r2(k)]

3
(9)
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TABLE I
OPERATING CONDITIONS SELECTED FOR NATURAL TRAINING

OF THE MODEL NETWORK

where r0, r1, and r2 are uniformly distributed random numbers

in [−1, 1] with frequencies 0.5, 1, and 2 Hz, respectively. The

second set is called natural training in which the PRBS is re-

moved (with S1 and S2 both in position 1 in Fig. 6), and the

system is exposed to natural disturbances and faults in the power

network. The forced training and natural training are carried out

at several different operating points to form the training data set,

given by

A = {X,Y} =







m
⋃

i=1

AFi ,

m
⋃

i=1

n
⋃

j=1

ANij







(10)

where A is the entire training data set selected from m operat-

ing points; X and Y are the input and output data sets of the

model network, respectively; AF i is the subset collected from

the forced training at the operating point i; AN ij is the subset

collected from the natural training caused by the jth natural

disturbance event at the operating point i. Table I shows the se-

lected five operating points for the natural training of the model

network in which vw , ω4 , Pg4 , Qg , Qs , and QC are the wind

speed, DFIG rotor speed, output active power of the wind farm,

reactive power of the GSC, reactive power of the DFIG stator,

and the compensated reactive power from the STATCOM, re-

spectively. In this paper, three different natural disturbances are

applied at each operating point in Table I: 1) a 150-ms tempo-

rary three-phase short circuit at the bus 1 end of line 1–6; 2) a

150-ms temporary phase A to ground short circuit at the bus 4

end of one of the parallel lines 3–4; and 3) wind speed variations

around the mean values in Table I using the wind model in [19],

which causes the variations of Pg4 in the range of ±50 MW at

each operating point.

The selected training data set ensures that the model network

can track the system dynamics over a wide operating range.

After determining the training data set, the weights of the model

network are then calculated by a least mean squares (LMS)

method [20].

D. Design of the Critic Network

The critic network is a three-layer RBFNN with 15 hidden

neurons. The inputs to the critic network are the estimated plant

outputs, Ŷ = [∆V̂6 , ∆P̂g4 ], from the model network and its

two time-delayed values. The output of the critic network is the

estimate of the function J in (7) with respect to the estimated

plant output Ŷ , as shown in Fig. 9.

Fig. 9. Structure of the critic network.

Fig. 10. Adaptation of the critic network in HDP.

The critic network learns to minimize the following error

measure over time [11]:

‖EC ‖ =
1

2

∑

k

ET
C (k)EC (k) (11)

where

EC (k) = J [Ŷ (k)] − γJ [Ŷ (k + 1)] − U(k). (12)

The objective of the INC (see Fig. 6) is to provide an optimal

coordinating control that minimizes the voltage deviations at

bus 6, ∆V6 , as well as the active power oscillations, ∆Pg4 , of

the wind farm. Therefore, the utility function is defined as

U(k) =
1

2

[

∆V 2
6 (k) + 0.5∆V 2

6 (k − 1) + 0.1∆V 2
6 (k − 2)

]

+
1

2

[

∆P 2
g4(k)+0.5∆P 2

g4(k − 1) + 0.1∆P 2
g4(k−2)

]

.

(13)

In (13), it is natural to use time-delayed values of ∆V6 and

∆Pg4 because power systems are causal systems in which an

output depends on the present as well as past input values.

Generally, two critic networks are required in HDP to estimate

the cost-to-go function J arising from the present state Ŷ (k)

and the future state Ŷ (k + 1), respectively. The critic’s output

J(k + 1) is necessary to generate the target signal γJ(k +
1) + U (t), for training the critic network. In the case of mini-

mization in the LMS, the output weights of the critic network

are updated by

∆WC (k)=−ηC {J [Ŷ (k)]−γJ [Ŷ (k+1)] − U(k)}
∂J [Ŷ (k)]

∂WC
(14)

where ηC is a positive learning gain. The adaptation of the critic

network in HDP is shown in Fig. 10.

E. Design of the Action Network

The action network (see Fig. 11) is a three-layer RBFNN

with 20 hidden neurons. The inputs to the action network are

the plant outputs Y = [∆V6 , ∆Pg4 ], at time k − 1, k − 2, and
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Fig. 11. Structure of the action network.

Fig. 12. Adaptation of the action network in HDP.

k − 3. The outputs of the action network are the plant inputs,

A = [∆Qs , ∆QC ], at time k.

The objective of the action network adaptation is to find out

the optimal control trajectory, Aopt , in order to minimize the

cost-to-go function J over time:

Aopt(k) = arg min
A

[J(k)] = arg min
A

[U(k) + γJ(k + 1)].

(15)

Such adaptation, as shown in Fig. 12, is achieved by

training the action network with the error signal, EA (k) =
∂J(k)/∂A(k), which is obtained by propagating the constant,

∂J /∂J = 1, back through the critic and model to the action net-

work [11]. The output weights of the action network are then

updated by

∆WA (k) = −ηA
∂J(k)

∂A(k)

∂

∂WA

[

∂J(k)

∂A(k)

]

. (16)

F. Overall Training Procedure

The training procedure to implement the HDP algorithm con-

sists of two training stages: one for the model network and the

other for the critic/action networks. The model network is first

pretrained offline to learn the plant dynamics before training

the critic and action networks, as described in Section V-C.

During the training of the critic and action networks, the wind

speed is varied over a certain range (e.g., ±2 m/s around the

mean wind speed) using the wind model in [19] to simulate the

real operation of the wind farm. Consequently, the output active

power of the wind farm varies significantly from time to time.

During this time, the model network can be trained further to

adapt to the operating conditions that are not covered by the

pretraining.

The training stage of the critic/action networks contains two

separate training cycles: one for the critic and the other for the

action. The critic network is first pretrained by the procedure

in Fig. 10 to approximate the cost-to-go function J . During

Fig. 13. Comparison of the voltage magnitude at bus 6 with and without the
INC (STATCOM in reactive power control mode in the case of no INC).

the critic’s pretraining, the plant is perturbed by injecting small

PRBS given by (8) and (9) to Qs0 and QC 0 , respectively (with

S1 and S2 both in position 2 in Fig. 6).

Once the critic’s pretraining is over, S1 and S2 switch to po-

sition 1 and the INC is used to provide an external control for

the STATCOM and the RSC of the DFIG. Then, the critic’s

weights are fixed, the action network is trained by the proce-

dure in Fig. 12 for NA cycles. Then, the action’s weights are

fixed, and the critic network is trained further for NC cycles.

This process of training the critic/action networks is repeated

one after the other until an accepted performance is achieved.

Once the critic and action networks’ weights have converged,

the action network with the fixed weights is used to control the

plant during the real-time operation.

VI. SIMULATION RESULTS

Simulation studies are carried out in this section to examine

the proposed INC. The wind farm initially operates at an oper-

ating point with the wind speed vw = 11.0 m/s, generator rotor

speed ω4 = 1.2 pu, output active power Pg4 = 300 MW, and

output reactive power Qg4 = 0. The reactive power command

of the GSC is set at Q∗
g = 0. The steady-state fixed reactive

power commands of the RSC and the STATCOM are set at

Qs0 = 0 and QC 0 = 165 MVar, respectively. The voltage at

bus 6 is regulated at V6 = 1.02 pu. A three-phase short circuit

is applied to the bus 1 end of line 1–6 at 1 s and is cleared after

150 ms. This scenario has been used in the pretraining of the

model network, but has not been used for training the critic and

action networks. The dynamic performance of the wind farm,

reinforced with the INC, is compared with the cases without the

INC.

A. STATCOM in Reactive Power Control Mode in the Case

of No INC

Figs. 13–15 compare the system responses with and without

the INC. In the case of no INC, the reactive power control is

applied to the STATCOM (with SW in position 1 in Fig. 5).

In this case, the reactive power commands of the RSC and the

STATCOM are both constant. This control arrangement cannot
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Fig. 14. Comparison of the output active power of the wind farm with and
without the INC (STATCOM in reactive power control mode in the case of no
INC).

Fig. 15. Comparison of the DFIG rotor current magnitude with and without
the INC (STATCOM in reactive power control mode in the case of no INC).

contribute to improving the transient behavior of the wind farm

or the damping of power oscillations in the system. On the

contrary, the INC provides the RSC and the STATCOM with

supplementary control capability in response to voltage sags

and power oscillations during a transient disturbance. As shown

in Fig. 13, the INC significantly reduces the magnitudes of volt-

age sag and voltage overshot at bus 6 during the three-phase

short circuit. Fig. 14 shows the output active power of the wind

farm. By using the active power deviation signal, ∆Pg4 , as an

input to the INC, the power oscillation damping with the INC

is much better than that without the INC. Finally, the mag-

nitudes of the DFIG rotor current, Ir , are shown in Fig. 15.

In this test, the reference values of the DFIG rotor currents,

i∗dr and i∗qr in Fig. 3, are limited to 6.5 and 16 kA for both

cases with and without the INC. The peak value of the transient

rotor current (from 1.05 s onward) without using the INC is

about 18 kA, while this value reduces to 14 kA when using the

INC. The INC significantly reduces the magnitude of the DFIG

rotor current transient during the 150 ms short circuit. There-

fore, it enhances the fault ride-through capability of the wind

farm.

Fig. 16. Comparison of the voltage magnitude at bus 6 with and without the
INC (STATCOM in voltage control mode in the case of no INC).

Fig. 17. Comparison of the output active power of the wind farm with and
without the INC (STATCOM in voltage control mode in the case of no INC).

B. STATCOM in Voltage Control Model in the Case of No INC

Now the voltage control is applied to the STATCOM (with

SW in position 2 in Fig. 5). In this case, the reactive power com-

mand of the RSC is still constant, but the STATCOM controller

can contribute to improving the transient behavior of the wind

farm during voltage sags. As shown in Figs. 16–18, the voltage

sag at bus 6 (see Fig. 16) and the maximum rotor current (see

Fig. 18) are almost the same for both cases with and without

the INC; however, the voltage overshoot (see Fig. 16) and the

magnitude of active power oscillations (see Fig. 17) in the case

of the INC are much smaller than for no INC. These results

are consistent with the design objectives, namely, the INC is

optimally designed to minimize the voltage deviation at bus 6

as well as the magnitudes of active power oscillations in terms

of the utility function U in (13).

Another important result is shown in Fig. 19. It indicates

that the amount of the compensated reactive power required by

the STATCOM when using the INC is less than half of that

without the INC. Therefore, the size of the STATCOM can

be significantly reduced when using the INC to provide the

coordinated reactive power control for the wind farm and the

STATCOM.
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Fig. 18. Comparison of the DFIG rotor current magnitude with and without
the INC (STATCOM in voltage control mode in the case of no INC).

Fig. 19. Comparison of the compensated reactive power by the STATCOM
with and without the INC (STATCOM in voltage control mode in the case of no
INC).

Fig. 20. Comparison of the compensated reactive power by the STATCOM
with and without the INC (STATCOM in voltage control mode with reactive
power limitation in the case of no INC).

More reactive compensation from the STATCOM in the case

of no INC (see Fig. 19) contributes to the rapid decay of the

rotor current transient (see Fig. 18). On the other hand, in terms

of the utility function (13), the INC actually optimally controls

the reactive compensation from the RSC and the STATCOM

to decay (or damp) the voltage (V6) and active power (Pg4)

transients as fast as possible. In this design, fast decay of the

Fig. 21. Comparison of the output active power of the wind farm with and
without the INC (STATCOM in voltage control mode with reactive power
limitation in the case of no INC).

Fig. 22. Comparison of the DFIG rotor current magnitude with and without
the INC (STATCOM in voltage control mode with reactive power limitation in
the case of no INC).

rotor current (Ir ) transient is not a control objective of the INC,

but the rotor current is always controlled within its limit (e.g.,

16 kA in this application) during the 150 ms grid fault, as shown

in Fig. 18. Moreover, the postfault rotor currents (from 1.15 s)

decay rapidly for both cases with and without the INC.

C. STATCOM in Voltage Control Mode With Reactive Power

Limitation in the Case of No INC

In this test, the STATCOM is still operated in the voltage

control mode (with SW in position 2 in Fig. 5), but now the

compensated reactive power QC of the STATCOM is limited to

250 MVar (by putting suitable limits to the current references

i∗dv and i∗qv in Fig. 5). Fig. 20 indicates that the maximum values

of QC are limited to 250 MVar for both cases with and without

the INC. However, the postfault power oscillations of QC (see

Fig. 20) and Pg4 (see Fig. 21) in the case of the INC are damped

more rapidly than for no INC. In addition, the peak value of the

rotor current transient is reduced when using the INC, as shown

in Fig. 22. These results again confirm that the INC provides a

smart coordinating control for the system. It improves the fault

ride-through capability of the wind farm and power oscillation

damping of the system during this transient disturbance.
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VII. CONCLUSION

A large wind farm equipped with DFIGs connected to a mul-

timachine benchmark power system has been modeled in the

PSCAD/EMTDC environment. A STATCOM has been placed

at the bus where the wind farm is connected to the power network

for steady-state and transient reactive power compensation. The

control schemes of the DFIG RSC, GSC, and the STATCOM

have been suitably designed.

A novel INC, based on the HDP approach and RBFNNs,

has been designed for the coordinated reactive power control

between the wind farm and the STATCOM. Simulation studies

have been carried out to examine the performance of the

proposed INC during grid faults. Results have shown that the

INC effectively reduced the level of voltage sags as well as

the over currents in the DFIG rotor circuit during grid faults,

and therefore, significantly enhanced the fault ride-through

capability of the wind farm. Moreover, the INC acts as a

coordinated external damping controller for the wind farm and

the STATCOM, and therefore, improves the postfault power

oscillation damping of system.

APPENDIX

Equivalent wind turbine: rated capacity = 400 MW, number

of blades = 3, rotor speed (variable) = 8.5–15.3 rpm.

Mechanical shaft system (on 400 MW base): Ht = 4.29 s,

Hg = 0.9 s, Dt = Dg = 0, Dtg = 1.5 pu, Ktg = 296.7 pu.

Equivalent wound rotor induction generator: rated

power = 400 MW, rated stator voltage = 22 kV, power

factor pf = −0.9 to + 0.9, rs = 0.0079 pu, rr = 0.025
pu, Lls = 0.07937 pu, Llr = 0.40 pu, Lm = 4.4 pu, base

frequency f =60 Hz.
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