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A robust hybrid control strategy for a broad class of hybrid nonlinear processes with
actuator constraints and uncertain dynamics is proposed. These ®ariable-structure pro-
cesses comprise a finite family of constrained uncertain continuous nonlinear dynami-
cal subsystems, together with discrete e®ents that trigger the transition between the con-
tinuous subsystems. The proposed control strategy is predicated on the idea of coordi-
nating the hierarchical tasks of lower-le®el feedback-controller synthesis and upper-le®el
switching logic design. Using multiple Lyapuno® functions, a family of bounded robust,
nonlinear feedback controllers are initially designed to robustly stabilize the constituent
modes of the hybrid process, subject to uncertainty and constraints. The region of guar-
anteed closed-loop stability is then explicitly characterized for each mode in terms of the
magnitude of actuator constraints and the size of the uncertainty. A set of stabilizing
switching laws that track the energy e®olution of the constituent modes are then deri®ed
to orchestrate safe transitions between the stability regions of the constituent modes and
their respecti®e controllers, in a way that respects actuator constraints and guarantees
robust stability of the o®erall uncertain hybrid closed-loop system. This hybrid control
method is applied through computer simulations to robustly stabilize an exothermic
chemical reactor with switched dynamics, model uncertainty, and actuator constraints
at an unstable steady-state and to design a fault-tolerant control system for chemical
reactors through switching between multiple constrained control configurations.

Introduction

Traditionally, most of the research work in process control
has been concerned predominantly with the control of con-
tinuous dynamic processes described by ordinary differential
equations. Yet, there are numerous examples in the chemical
process industries where the dynamical properties of the pro-
cess depend rather on an intricate interaction between dis-
crete and continuous variables. These are referred to as hy-
brid processes because they combine both continuous dynam-
ics and discrete events. In many of these applications, the
continuous behavior arises as a manifestation of the underly-
ing physical laws governing the process, such as momentum,
mass, and energy conservation, and is modeled by continu-
ous-time differential equations. Discrete behavior, on the
other hand, is ubiquitously multifaceted and can originate

Ž .from a variety of sources, including 1 inherent physicochem-
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ical discontinuities in the continuous process dynamics, such
Ž .as phase changes, flow reversals, shocks, and transitions; 2

the use of measurement sensors and control actuators with
Ždiscrete settingsrpositions such as binary sensors, onroff

valves, pumps, heatings with constant current, motors with
. Ž .speed control ; and 3 the use of logic-based switching for

supervisory and safety control tasks.
Another common source of hybrid behavior in chemical

processes comes from the interaction of the process with its
operating environment. Changes in raw materials, energy
sources, and product specifications, together with fluctua-
tions in market demands, forecasts, and the concomitant ad-
justments in management decisions, lead invariably to the su-
perposition of discrete events on the basically continuous
process dynamics, in the form of controlled transitions be-
tween different operational regimes. Regardless of whether

Ž .the hybrid combined discrete�continuous behavior arises as
an inherent feature of the process itself, its operation, or its
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control system, the overall process behavior in all of these
instances is characterized by structurally different dynamics

Ž .in different situations modesrregimes , and is, therefore,
more appropriately viewed as intervals of piecewise-continu-

Ž .ous behavior corresponding to material and energy flows
interspersed by discrete transitions governed by a higher-level
decision-making entity.

The traditional approach of dealing with these systems in
many areas of industrial control has been to separate the
continuous control from the discrete control. In recent years,
however, it has become increasingly evident that the interac-
tion of discrete events with even simple continuous dynamics
can lead to complex unpredictable dynamics and, conse-

Žquently, to very undesirable outcomes particularly in safety-
.critical applications if not explicitly accounted for in the con-

trol-system design. As efficient and profitable process opera-
tion becomes more dependent on the control system, the need
to design flexible, reliable, and effective control systems that
can explicitly handle the intermixture of continuous and dis-
crete dynamics, is increasingly apparent. Such flexibility and
responsiveness play a critical role in achieving optimum pro-
duction rates, high-quality products, minimizing waste to the
environment, and operating as efficiently as possible. These
considerations, together with the abundance of hybrid phe-
nomena in chemical processes, provide a strong motivation
for the development of analytical tools and systematic meth-
ods for the analysis and control of these systems in a way that
explicitly captures the combined discrete�continuous interac-
tions and their effects.

Even though tools for the analysis and control of purely
continuous-time processes exist and, to a large extent, are
well developed, similar techniques for combined
discrete�continuous systems are limited at present, primarily
due to the difficulty of extending the available concepts and
tools to account for the hybrid nature of these systems and
their changing dynamics, which makes them more difficult to
describe, analyze, or control. These challenges, coupled with
the abundance of hybrid phenomena in many engineering
systems in general, have fostered a large and growing body of
research work on a diverse array of problems, including the

Žmodeling for example, Barton and Pantelides, 1994; Yamali-
. Ždou and Kantor, 1990 , simulation for example, Barton and

. ŽPantelides, 1994 , optimization for example, Grossmann et
. Žal., 2001 , stability analysis for example, DeCarlo et al., 2001;

. ŽHespanha and Morse, 1999 , and control for example, Bem-
porad and Morari, 1999; Engell et al., 2000; Hu et al., 1999;

.Koutsoukos et al., 2000 , of several classes of hybrid systems.
Continued progress notwithstanding, important theoretical,
and practical problems remain to be addressed in this area,
such as the development of a unified and practical approach
for control, which deals effectively with the copresence of
strong nonlinearities in the continuous dynamics, model un-
certainty, actuator constraints, and combined discrete�con-
tinuous interactions.

Ž .In a previous work El-Farra and Christofides, 2001a, 2002 ,
we developed a hybrid nonlinear control methodology for a
broad class of switched nonlinear systems with input con-
straints. These are systems that consist of a finite family of
continuous nonlinear dynamical modes, subject to hard con-
straints on their manipulated inputs, together with a higher-
level supervisor that governs the transitions between the con-
stituent modes. The key feature of the proposed control

methodology was the integrated synthesis, via multiple Lya-
Ž . Ž .punov functions MLFs , of 1 lower-level feedback con-

trollers that stabilize the constituent constrained modes and
provide, simultaneously, an explicit characterization of the

Ž .stability region for each mode, and 2 upper-level switching
laws that orchestrate the transitions between the continuous
modes and their respective controllers, in a way that ensures
stability of the overall switched closed-loop system despite its
constrained and changing dynamics.

In this article, we extend the scope and methodology of
our previous work to deal with switched nonlinear processes
whose dynamics are both constrained and uncertain. Typical
sources of uncertainty in chemical processes include plant�

Žmodel mismatch such as modeling errors, unknown process
.parameters as well as time-varying exogenous disturbances

which, if not accounted for, can lead to significant deteriora-
tion in performance and even to closed-loop instability. For
hybrid processes, the impact of model uncertainty transcends
the well-known adverse effects on the stability and perfor-

Žmance of purely continuous processes which comprise in this
.case the lower-level modes of the hybrid process , since un-

certainty also impacts on the design of the higher-level
switching logic. Owing to the limitations imposed by actuator
constraints on the stability regions of the constituent modes
of the hybrid process, the design of a stabilizing switching
scheme requires knowledge of these stability regions, in or-

Ž .der to decide when or where, in the state space a particular
mode can be activated. However, when plant�model discrep-
ancies are taken into consideration, the actual stability region
of each mode can be quite different from the one obtained
under nominal conditions. Consequently, nominal characteri-
zations of stability regions can no longer guarantee safe mode
switching, and the switching rules need to be modified. To
address these problems, we propose in this work a robust
nonlinear hybrid control methodology that uses multiple ro-

Ž .bust control Lyapunov functions to 1 synthesize a family of
robust bounded nonlinear feedback controllers that enforce
robust stability in the constituent constrained uncertain

Ž .modes; 2 explicitly characterize the stability region for each
Ž .mode under uncertainty and constraints; and 3 design ro-

bust switching laws that coordinate safe transitions between
the modes in a way that guarantees closed-loop stability of
the overall switched closed-loop system. The proposed hybrid
control method is applied, through computer simulations, to
Ž .1 robustly stabilize an exothermic chemical reactor, with
switched dynamics, model uncertainty, and actuator con-

Ž .straints, at an unstable steady state, and 2 design a fault-
tolerant control system for chemical reactors, through switch-
ing between multiple constrained control configurations.

Switched Nonlinear Processes with Uncertain
Dynamics
State-space description

We consider the class of switched uncertain nonlinear pro-
cesses described by the following state-space representation

x t s f x t qG x t u qW x t � tŽ . Ž . Ž . Ž . Ž .Ž . Ž . Ž .˙ � Ž t . � Ž t . � Ž t . � Ž t . � Ž t .

� 4� t g IIs 1, . . . , N 1Ž . Ž .

Ž . nwhere x t g� denotes the vector of continuous process
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Figure 1. Multimodal hybrid process involving a finite
family of continuous subsystems and discrete
events governing their transitions.

Ž . w 1Ž . mŽ .xT mstate variables, u t s u t ��� u t gUU;� denotes the
vector of control inputs taking values in a nonempty compact
convex subset of � m that contains the origin in its interior,
Ž . w 1Ž . qŽ .xT q� t s � t ���� t g�;� denotes the vector of uncer-

Ž .tain possibly time-varying , but bounded, variables taking
values in a nonempty compact convex subset of � q. The un-

Ž .certain variables � t may describe time-varying parametric
uncertainty andror exogenous disturbances. The switching

w .signal, � : 0,� ™ II is assumed to be a piecewise continuous
Ž .from the right function of time, implying that only a finite
number of switches is allowed on any finite interval of time.

Ž .The variable � t , which takes values in the finite index set
Ž .II, is a discrete state that indexes the vector field f � , the

Ž . Ž . Ž .matrices G � and W � , the control input u � , and the uncer-
Ž .tain variable � � , which altogether determine x. For each˙

value that the discrete state � assumes in II, the temporal
evolution of the continuous state, x, is governed by a differ-
ent set of differential equations. Processes of the form of Eq.
1 are therefore of variable structure; they consist of a finite
family of N continuous-time uncertain nonlinear subsystems
Ž . Žor modes and some rules for switching between them see

.Figure 1 for a graphical representation . These rules define a
switching sequence that describes the temporal evolution of
the discrete state. Note that, by indexing the vector of uncer-

Ž . Ž .tain variables, � t , and the matrix W x in Eq. 1 by � , it is
implied that the constituent modes do not necessarily share
the same uncertain variables, nor are they equally affected by
them. The uncertainty is, therefore, allowed to influence the
dynamics of different modes differently.

Throughout the article, the notation t and t � is used toi ik k

denote the kth times that the ith subsystem is switched in
Ž q. Ž y.�and out, respectively, that is, � t s� t s i, for all kgi ik k

Z . With this notation, it is understood that, when the ithq
mode is active, the continuous state evolves according to xs˙
Ž . Ž . Ž . �f x qG x u qW x � for t F t� t . It is assumed that alli i i i i i ik k

Ž .entries of the vector functions f x , the n � m matricesi
Ž . Ž .G x , the n � q matrices W x are sufficiently smooth oni i

� and, without loss of generality, that the origin is the nomi-
Ž .nal equilibrium point of each mode, that is, f 0 s0 for alli

ig II. We also assume that the state x does not jump at the
Ž .switching instants, that is, the solution x � is everywhere

Ž . Žcontinuous. Note that changes in the discrete state � t that
.is, transitions between the continuous dynamical modes may,

in general, be a function of time, state, or both. When changes
Ž .in � t depend only on inherent process characteristics, the

Ž .switching is referred to as autonomous. However, when � t
is chosen by some higher process such as a controller or hu-
man operator, the switching is referred to as controlled. In
this article, we focus on controlled switching where mode
transitions are decided and executed by some higher-level su-
pervisor. This class of systems arises naturally in the context
of coordinated supervisory and feedback control of

Žchemical-process systems see the illustrative example below
.and the simulation studies toward the end of this article .

Finally, we recall the definition of a robust control Lya-
punov function that will be used in the development of the
main results of this article.

( )Definition 1 Freeman and Kokoto®ic, 1996 . A smooth,
proper, and positive definite function V:� n™� is called aq
robust control Lyapunov function for a system of the form

Ž . Ž . Ž . Ž .xs f x qG x uqW x � when there exist a function, � � ,˙ ®
of class KK, and c �0 such that®

inf sup L V x qL V x uqL V x �q� x �0Ž . Ž . Ž . Ž .f G W ®
ugUU � g�

2Ž .

Ž . Ž . Ž . Ž . Ž .whenever V x �c , where L V x s � Vr� x f x , L V x® f G
Ž . w Ž .and L V x are row vectors of the form L V x ���W g1

Ž .x w Ž . Ž .xL V x , and L V x ��� L V x , respectively, with g andg w1 w km q

w referring to the k th columns of the matrices G and W,k
respectively.

For several classes of nonlinear systems of practical inter-
est, systematic methods are available for the construction of
Lyapunov functions that can be used as control Lyapunov

Žfunctions see the discussion on feedback linearizable pro-
cesses, following Remark 11, and the examples in the simula-

.tion studies .

Stability Analysis of Hybrid Processes via Multiple
Lyapunov Functions

For purely continuous-time nonlinear processes, Lyapunov
techniques provide useful tools for stability analysis as well as

Žnonlinear and robust controller design for example, see El-
.Farra and Christofides, 2001b, 2003 . The basic conceptual

idea behind any Lyapunov design is that of ‘‘energy shaping,’’
Žwhere an appropriate ‘‘energy’’ function called a Lyapunov

.function is chosen for the system, and the controller is de-
signed in a way that enforces the monotonic decay of this

Žfunction along the trajectories of the closed-loop system en-
.ergy dissipation . Given the view of hybrid processes as a fi-

nite collection of continuous-time nonlinear processes with
discrete events that govern the transition between them, it is
quite intuitive to exploit Lyapunov tools to analyze stability
of hybrid processes. In this direction, one of the main tools

Žfor analyzing stability is MLF see, for example, DeCarlo et
.al., 2000 . The MLF framework extends, in many respects,

the classic energy-shaping idea of Lyapunov analysis for con-
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tinuous-time systems to switched systems, but provides, in ad-
dition, the tools necessary to account for the hybrid dynamics
of such systems. Preparatory for its use later in robust con-
trol, we will briefly review in this section the main idea of
MLF analysis. To this end, consider the switched process of
Eq. 1, with u s� �0, is1, ��� , N, and suppose that we cani i

� 4find a family of Lyapunov functions V : ig II such that thei
value of V decreases on each interval when the ith subsys-i
tem is active, that is

V x t � �V x t 3Ž .Ž . Ž .Ž . Ž .i i i ik k

for all ig II, kgZ . The key idea here is that, even if thereq
exists such a Lyapunov function for each subsystem, f , indi-i

Ž .vidually that is, each mode is stable , restrictions must be
placed on the switching logic to guarantee stability of the
overall switched system. The reason is that during the time
periods when a particular mode is inactive, its energy might
be adversely affected by the evolution of the active mode,
such that, the next time that the inactive mode is activated,
its energy already exceeds the level it had attained during its
last period of activity. When this happens, the overall energy
of the system can keep increasing indefinitely, as the process
keeps switching in and out between the various modes, thus
leading to instability. In fact, it is easy to construct examples
of globally asymptotically stable systems and a switching rule

w Ž .that sends all trajectories to infinity see Branicky 1998 , for
xsome classic examples . There are multiple ways of guarding

against such instability due to switching. One possibility is to
require, in addition to Eq. 3, that for every ig II, the value
of V at the beginning of each interval on which the ith modei

Ž .is active exceed or be, at least, equal to the value at the
Ž .beginning of the next such interval see Figure 2 ; more pre-

cisely

V x t FV x t 4Ž .Ž .Ž .� Ž t . i � Ž t . ii i kkq1 kq1 k

Ž . Ž .where � t s� t s i. This guarantees that the switchedi ikq 1 k
w Ž .system is Lyapunov stable see DeCarlo et al. 2000 and the

Figure 2. Temporal evolution of multiple Lyapunov
functions for an asymptotically stable,
two-mode switched system.

Figure 3. Switched nonisothermal continuous stirred-
tank reactor.

xreferences therein for alternative switching rules . In Theo-
rem 1 below, a stronger switching condition than the one given
in Eq. 4 will be invoked to enforce asymptotic stability in the

Žoverall switched closed-loop system that is, to enforce both
.Lyapunov stability and asymptotic convergence to the origin .

Illustrati©e example: A switched nonisothermal chemical
reactor

In this section, we introduce an example of a hybrid non-
linear chemical process with model uncertainty and actuator
constraints that will be used throughout the article to illus-
trate the implementation of the hybrid control strategy. To
this end, consider a continuous stirred-tank reactor where an
irreversible first-order exothermic reaction of the form

k
A™B takes place. As shown in Figure 3, the reactor has two
inlet streams: the first continuously feeds pure A at flow rate
F, concentration C , and temperature T , while the secondA0 A0
has a control valve that can be turned on or off depending on
operational requirements. When the control valve is open,
the second stream feeds pure A at flow rate F�, concentra-
tion C� and temperature T� . Under standard modeling as-A0 A0
sumptions, the mathematical model for the process takes the
form

dCA � �V sF C yC q� t F C yCŽ .Ž . Ž .A0 A A0 Adt
yE

yk exp C V0 Až /RT

dT
� �V sF T yT q� t F T yTŽ .Ž . Ž .A0 A0dt

y	 H yE QŽ .rq k exp C Vq 5Ž .0 A
c RT 
cp p

where C denotes the concentration of A, T denotes theA
reactor temperature; Q denotes the rate of heat inputrre-
moval from the reactor; V denotes the reactor volume; k , E,0
	 H denote the preexponential constant, the activation en-
ergy, and the enthalpy of the reaction; c and 
 denote thep
heat capacity and density of the fluid in the reactor. The pro-
cess parameters and steady-state values are given in Table 1.
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Table 1. Process Parameters and Steady-State Values for the
Chemical Reactor of Eq. 5

3Vs0.1 m
Rs8.314 kJrkmol �K

3C s1.0 kmolrmA0
T s310.0 KA0 s

	 H sy400 kJrkmolnom
7 y1k s2.0�10 s0

4Es8.314�10 kJrkmol
c s0.002 kJrkg �Kp

3
s1000.0 kgrm
y5 3Fs2.77�10 mrs

3Ž .C � s0 s0.577 kmolrmA s
Ž .T � s0 s395.3 Ks

� y5 3F s5.56�10 mrs
� 3C s2.0 kmolrmA0
�T s350.0 KA0 S

Ž .The discrete control variable� t takes a value of zero when
the control valve is closed and a value of one when the valve

Žis open. Initially, we assume that the valve is closed that is,
Ž . .� 0 s0 . During reactor operation, however, it is desired to

open this valve and feed additional reactant material through
Ž .the second inlet stream that is, � s1 in order to enhance

the product concentration leaving the reactor.
This requirement gives rise to two distinct modes of reac-

tor operation, between which switching is desired. These
Ž . Ž .modes correspond to the off � s0 ron � s1 conditions of

the control valve on the second inlet stream. Since the initial
Ž .operating mode � s0 has an open-loop unstable steady-

state that corresponds to T s395.3 K, our control objectives
will be to stabilize the reactor temperature at this point by
manipulating the rate of heat input. However, since switching

Ž .to the second mode � s1 at some later point in time can
potentially destabilize the process, our switching objective will
be to carry out the transition between the two modes at the
earliest time that does not jeopardize process stability. The
control and switching objectives are to be accomplished in

Ž .the presence of 1 hard constraints on the manipulated in-
� � Ž .put, Q F80 KJrh, 2 time-varying external disturbances in

Ž .the feed temperature of both inlet streams, and 3 time-vary-
ing parametric uncertainty in the enthalpy of reaction. Note
that the disturbances in the feed temperature of the second
inlet stream take effect only after switching and, therefore,
impact only the second mode, while the disturbances in the
first stream’s temperature and the parametric uncertainty in
the enthalpy influence both modes.

Coordinating Feedback and Switching for Robust
Hybrid Control
Problem formulation and solution o©er©iew

Consider the switched nonlinear process of Eq. 1 where,
for each ig II, a robust control Lyapunov function, V , isi
available, the vector of manipulated inputs, u , is constrainedi

� � maxby u Fu , and the vector of uncertain variables isi i
� � � �bounded by � F� , where the notation � denotes thei bi

Euclidean norm of a vector. The bounds that capture the size
of the uncertainty can be arbitrarily large. Two control prob-
lems will be considered. In the first problem, the uncertain
variables are assumed to be vanishing, in the sense that

Ž . ŽW 0 � s0 for any � g� note that this does not require thei i i

.variable � itself to vanish in time . Under this assumption,i
the origin, which is an equilibrium point for the nominal
modes of the hybrid process, is an equilibrium point for the
uncertain modes as well. For this case, and given that switch-
ing is controlled by a higher-level supervisor, the problem is
how to coordinate switching between the constituent modes
and their respective controllers in a way that respects the
constraints and guarantees asymptotic stability of the overall
closed-loop system in the presence of uncertainty. To address
the problem, we formulate the following objectives. The first
is to synthesize, using a family of Lyapunov functions, a fam-
ily of N bounded robust nonlinear continuous feedback-con-
trol laws of the general form

Tmaxu syk V , u , � L V , is1, . . . , N 6Ž .Ž . Ž .i i i ii bi G ii

Ž .which 1 enforce robust asymptotic stability, for their respec-
Ž .tive closed-loop subsystems, and 2 provide, for each mode,

an explicit characterization of the set of admissible initial
conditions starting from where a given mode is guaranteed to
be stable in the presence of model uncertainty and input con-

Ž .straints. The scalar gain, k � , of the L V controller in Eq.i G
� � max6 is to be designed so that u Fu and the energy of thei i

ith mode, as captured by V , is monotonically decreasingi
whenever that mode is active. The second objective is to con-
struct a set of robust switching laws that supply the supervi-
sor with the set of switching times that guarantee stability of
the constrained uncertain switched closed-loop system, which

Ž .in turn determines the time course of the discrete state � t .
In the second control problem, the uncertain variables are

Ž .assumed to be nonvanishing, in the sense that W 0 � 	0 fori i
all ig II. In this case, the origin is no longer an equilibrium
point of the uncertain modes or the overall hybrid process,
and, therefore, the objective is to coordinate feedback-con-
troller synthesis and switching in a way that guarantees
boundedness of the states of the hybrid process, with an arbi-
trary degree of attenuation of the effect of uncertainty.

Having formulated the preceding robust hybrid control
problems, we proceed in the following two subsections to
present their solutions. The first result, given in Theorem 1
below, addresses the problem of vanishing uncertainty, while
the second result, given in Theorem 2, deals with the prob-
lem of nonvanishing uncertainty.

Hybrid control strategy under ©anishing uncertainty
Theorem 1 below summarizes the proposed robust hybrid

control strategy for the case when the uncertainty does not
affect the nominal equilibrium point of the hybrid process.
Provided in this theorem are the formulas of the family of
continuous bounded robust feedback controllers, together
with the appropriate switching rules used by the supervisor to
govern the transitions between the various closed-loop modes
in a way that guarantees the desired properties in the con-
strained uncertain hybrid closed-loop system. The proof of
this theorem is given in Appendix A.

Theorem 1. Consider the switched uncertain nonlinear
Ž .process of Eq. 1, where W 0 � s0 for all ig II, under thei i

following family of bounded nonlinear feedback controllers

Tmaxu syk V ,u ,� ,� ,� L V , is1, . . . , N 7Ž .Ž . Ž .i i i ii bi i i G ii
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where

4° ¶2 T� �� maxL V q L V q u I L V I'Ž . Ž .f i f i i G iž /i i i T
, I L V I	0Ž .G ii2 2T T~ •maxk � s 8Ž . Ž .I L V I 1q 1q u I L V I'i Ž . Ž .G i i G iž / ž /i i

T¢ ß0 I L V Is0Ž .G ii

I xIT�L V sL V q 
 I xIq� I L V I�Ž .f i f i i i W i biž /i i i ž /I xIq�i

T��L V sL V q 
 I xIq� I L V I� 9Ž .Ž .f i f i i i W i bii i i

V is a robust control Lyapunov function for the ith subsys-i
tem and 
 , � , � are tunable parameters that satisfy 
 �i i i i

� Ž max .0,� �1 and � �0. Let  u , � be the largest invarianti i i i bi
set embedded within the region described by the inequality

T Tmax� � � � � �L V q 
 x q� L V � Fu L V 10Ž .Ž . Ž .f i i i W i bi i G ii i i

Ž .and assume, without loss of generality, that x 0 s x g0
� Ž max . u ,� for some ig II. If, at any given time T such thati i bi

x T g� umax ,� 11Ž . Ž .Ž .j j b j

V x T �V x t � 12Ž . Ž .Ž . Ž .Ž .j j j

for some jg II, j	 i, where t � is the time when the jth sub-j
Ž q. Ž y.� �system was last switched out, that is, � t 	� t s j, wej j

Ž q. �set � T s j, then there exists a positive real number �j
such that for any � F�� , the origin of the switched closed-j j
loop system is asymptotically stable.

Remark 1. The bounded robust feedback controllers given
in Eqs. 7�9 are synthesized, using MLFs, by reshaping the
scalar nonlinear gain of the L V controller proposed origi-G

Ž . wnally in Lin and Sontag 1991 see also El-Farra and
Ž .xChristofides 2003 , in order to account for the effect of the

uncertain variables. As a result, the control action now de-
pends explicitly on both the magnitude of the input con-
straints, umax, and the size of the uncertainty, � . Note thati bi

Žthe only information about the size of the uncertainty and
.not the uncertainty itself is needed for controller design and

that this size can be arbitrarily large. Each controller in Eqs.
7�9 is a smooth function of the state away from the origin. It
is also continuous at the origin whenever the corresponding
control Lyapunov function satisfies the small control prop-

w Ž . xerty see Lin and Sontag 1991 for details .
Remark 2. Each controller in Eqs. 7�9 possesses two tun-

ing parameters, � and � , responsible for enforcing robusti i
stability and achieving the desired degree of attenuation of
the effect of uncertainty on each of the constituent modes of
the hybrid process. A significant degree of attenuation can be

achieved by selecting the parameter � to be sufficiently smalli
Žandror choosing the parameter � to be sufficiently large seei

.step 1 in the proof of Theorem 1 . Another important fea-
Žture of the uncertainty compensator that is, the term

�Ž .T � .� L V � used in designing the controller gain of Eqs.i W i bii

8�9 is the presence of a scaling function, of the form I x
Ž .Ir I xIq� , which multiplies the compensator. Since � isi i

a small positive number, the scaling function approaches a
� � Ž .value of 1 when x is large far from the equilibrium point

� � Žand a value of zero when x is small close to the equilib-
.rium point . This allows us, as we get closer to the equilib-

rium point, to use smaller control effort to cancel the uncer-
Ž .tainties. The full weight or gain of the uncertainty compen-

sator is used only when the state is far from the equilibrium
point.

Remark 3. The use of bounded nonlinear controllers of
the form of Eqs. 7�9 to robustly stabilize the constituent
modes is motivated by the fact that this class of controllers
provides an explicit characterization of the limitations im-
posed by uncertainty and constraints on the region of closed-
loop stability. Specifically, each controller in Eqs. 7�9 pro-
vides an explicit characterization of the set of admissible ini-
tial conditions, starting from where robust closed-loop stabil-
ity of the corresponding subsystem is guaranteed with the
available control action. This characterization can be ob-
tained from the set of inequalities given in Eq. 10. For each
mode, the corresponding inequality describes a closed region

w Ž max .xin the state space henceforth denoted by � u ,� wherei i bi
the corresponding control law satisfies the constraints and the
associated Lyapunov function, V , decreases monotonicallyi
Ž .see step 1 in the proof of Theorem 1 . Owing to the pres-
ence of uncertainty, the size of � now depends on the sizei
of the uncertainty, in addition to the magnitude of input con-
straints. The larger the uncertainty andror the tighter the
constraints, the smaller � is in size. It is important to notei
that even though a trajectory starting in � will move fromi
one Lyapunov surface to an inner Lyapunov surface with

˙Ž .lower energy because V �0 there is no guarantee that thei
trajectory will remain forever in � , since it is not necessarilyi
a region of invariance. Once the trajectory leaves � , how-i

˙ ˙ever, there is no guarantee that V �0. To guarantee that Vi i
remains negative for all times during which the ith mode is

� Ž max .active, we compute the largest invariant set  u ,�i i bi
Ž max . w Ž .within � u ,� see Khalil 1996 for details on how toi i bi

xconstruct these sets . This set, which is also parameterized by
the constraints and the uncertainty bounds, represents an es-
timate of the stability region associated with each mode. Fi-
nally, note that in the absence of any plant�model mismatch,
that is, � �0, the controllers of Eqs. 7�9, together with thebi
expressions for the stability regions, � , reduce to those de-i
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Ž .veloped in El-Farra and Christofides 2002 under nominal
conditions.

Remark 4. Each of the inequalities in Eq. 10 captures the
trade-off between the size of the stability region and the de-
gree of uncertainty attenuation. To see this, note that the
size of the region of guaranteed closed-loop stability, ob-
tained from Eq. 10, can be enlarged by using small values for
the controller tuning parameters, � and 
 . This enlarge-i i
ment of the stability region, however, comes at the expense
of the controller’s robust performance, since large values for
� and 
 are typically required to achieve a significant de-i i
gree of attenuation of the effect of disturbances and
plant�model mismatch on the closed-loop system. Therefore,
in selecting the controller tuning parameters, one must strike
a balance between the need to stabilize the process from a
given initial condition and the requirement of achieving a sat-
isfactory degree of uncertainty attenuation.

Remark 5. The two switching laws of Eqs. 11�12 deter-
Ž .mine, implicitly, the time s when switching from mode i to

mode j is permissible. The first rule tracks the temporal evo-
lution of the continuous state, x, and requires that, at the
desired time for switching, the continuous state be within the

� Ž max .stability region of the target mode,  u ,� . A pictorialj j b j
representation of this idea is shown in Figure 4. This require-
ment ensures that, once the target mode and its correspond-
ing controller are engaged, the corresponding Lyapunov
function continues to decay for as long as the mode remains
active. Note that this condition must be enforced every time
that the supervisor considers switching between modes. In
contrast, the second switching rule of Eq. 12 is checked only

Ž .if the target mode has been activated at least once in the
past. In this case, Eq. 12 allows reactivation of mode j pro-
vided that its energy at the current ‘‘switch in’’ is less than its
energy at the last ‘‘switch out.’’This condition guarantees that,
whenever a given mode is activated, the closed-loop state is
closer to the origin than it was when the same mode was last
activated. Note that if each of the N modes is activated only

Žonce during the course of operation that is, we never switch

Figure 4. Implementation of the switching law based on
monitoring the evolution of the closed-loop
trajectory with respect to stability regions.

.back to a mode previously activated , the second condition is
automatically satisfied. Furthermore, for the case when only

Ž .a finite number of switches over the infinite time interval is
considered, this condition can be relaxed by allowing switch-
ing to take place even when the value of V , at the desiredj
switching time, is larger than that when mode j was last
switched in, as long as the increase is finite. The reason is

Žthat these finite increases in V resulting from switching backj
.to mode j will be overcome when the process eventually set-

tles in the ‘‘final’’ mode, whose controller, in turn, forces its
Lyapunov function to continue to decay as time tends to in-
finity, thus asymptotically stabilizing the overall hybrid pro-
cess.

Remark 6. It is important to note that the switching
scheme proposed in Theorem 1 is only sufficient to guaran-
tee closed-loop stability. If the conditions in Eqs. 11�12 are
satisfied at a given time instance, then we conclude that it is
‘‘safe’’ to switch from the current modercontroller combina-
tion to the one for which the conditions hold. However, it is
not necessary to switch at this time to maintain closed-loop
stability. The reason is the fact that the initial condition be-
longs to the closed-loop stability region of at least one of the
constituent modes. Therefore, even if switching does not take
place, the closed-loop trajectory will remain in this set and
stabilize at the desired equilibrium point. In many practical
situations, however, changes in operational conditions and
requirements typically motivate switching between various
process modes. Also, in cases of control system failures,
switching between multiple control configurations is typically
necessary to preserve closed-loop stability. In all of these
cases, the result of Theorem 1 provides a strategy for carry-
ing out mode transitions without jeopardizing the stability of

Žthe overall process see the simulation studies below for ex-
.amples .

Remark 7. Note that it is possible for more than one sub-
system, j, to satisfy the switching rules given in Eqs. 11�12.
This occurs when the process state lies within the intersec-
tion of several stability regions. In this case, Theorem 1 guar-
antees only that a transition from the current mode to any of
these modes is safe, but does not suggest which one to choose,
since they all guarantee stability. The decision to choose a
particular mode to activate is typically made by the supervi-
sor based on the particular operational requirements of the
process.

Remark 8. Referring to the practical applications of The-
orem 1, one must initially identify the constituent modes of
the hybrid process. A Lyapunov function is then constructed
for each mode to synthesize, via Eqs. 7�9, a bounded robust
controller and construct, with the aid of Eq. 10, the region of
closed-loop stability associated with each mode. Implementa-
tion of the control strategy then proceeds by initializing the
process within the stability region of the desired initial mode
of operation and implementing the corresponding robust
controller. Then, the switching the laws of Eqs. 11�12 are
checked on-line by the supervisor to determine if it is possi-
ble to switch the operation mode to a particular mode at some
time. If the conditions are satisfied, then a transition to that

Ž .mode and its controller is executed. If the conditions are
not satisfied, then the current operating mode is kept active.
A summary of the proposed robust hybrid control methodol-
ogy is shown in Figure 5.
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Figure 5. Hybrid control strategy based on coordinat-
ing feedback and switching.

Hybrid control strategy under non©anishing uncertainty
In this section, we address the problem of nonvanishing

uncertainty, where the uncertainty changes the nominal equi-
librium point of the hybrid process. Theorem 2 below sum-
marizes the proposed hybrid control strategy for this case and
states, precisely, the resulting closed-loop properties. The
proof of this theorem is given in Appendix B.

Theorem 2. Consider the switched uncertain nonlinear
Ž .process of Eq. 1, where W 0 � 	0 for all ig II, under thei i

family of controllers given in Eqs. 7�9. Assume, without loss
Ž . � Ž max .of generality, that x 0 g u ,� for some ig II andi i bi

Ž q.that, for any given T �0, � T s j only if the conditions of
Eqs. 11�12 hold for some jg II, j	 i. Then, given any arbi-
trarily small real number d�0, there exist a set of positive

� � � 4 �real numbers � , . . . ,� such that if � F� , for all ig II,1 N i i
the trajectories of the switched closed-loop system are

Ž . Žbounded and satisfy lim supI x t IFd, where � s�r � yi i i
t™�

.1 .
Remark 9. Owing to the nonvanishing nature of the un-

certainty influencing each mode, asymptotic convergence to
the origin is not possible, via continuous feedback, for any of
the constituent modes of the hybrid process. However, in lieu

Žof asymptotic stability, one can show see the proof of Theo-
. Žrem 2 in Appendix B that, for every mode i by itself without

.switching , the corresponding controller guarantees conver-
gence of the closed-loop trajectory, in finite time, to a small

Ž .neighborhood of the origin called a residual or terminal set
such that the trajectory, once inside this set, cannot escape
w Ž .see El-Farra and Christofides 2001b, 2003 for further de-

xtails . The size of this set can be made arbitrarily small by
choosing the controller tuning parameter � to be sufficientlyi

small andror selecting the tuning parameter � to be suffi-i
ciently large. In this manner, one can achieve an arbitrary
degree of robust attenuation of the effect of uncertainty on
each mode of the closed-loop system.

Remark 10. Boundedness of the state of the constituent
modes does not, by itself, imply boundedness of the state of
the overall hybrid process. Boundedness of the switched
closed-loop trajectory can be ensured using the switching rules
given in Eqs. 11�12, which automatically impose constraints
on which a mode can be engaged at any given time. These
constraints, similar to the case of the vanishing uncertainty,

Ž .guarantee that, whenever a mode is activated or reactivated ,
Ž .not only is its energy less than what it was before Eq. 12 ,

but also this energy continues to decay for as long as the
Ž .mode remains active Eq. 11 . The only difference in the case

of nonvanishing uncertainty is that these rules need only be
implemented by the supervisor when the state lies outside
the residual set. To understand the rationale for this observa-
tion, we first observe that, since the size of the residual set of

Žeach mode can be tuned by appropriately adjusting � andi
.� , a small common residual set that is completely containedi

within the intersection of the various stability regions can be
chosen for all the modes. Then, starting from any admissible
initial condition, implementation of the switching logic out-
side this residual set ensures that, for every mode, the
closed-loop trajectory moves closer and closer to that set as
we switch in and out of that mode. Since the number of pro-
cess modes is finite, and only a finite number of switches is
allowed over any finite time interval, then at least one of the
constituent modes will converge, in finite time, to the resid-
ual set. From that time onward, the closed-loop trajectory
stays within the common residual set for all times, regardless

Žof any further mode switchings see step 2 in the proof of
.Theorem 2 for the mathematical details .

Remark 11. Theorems 1 and 2 consider, respectively, the
cases when the uncertainties affecting the various modes are
either all vanishing or all nonvanishing. For the general case
when the uncertainty is vanishing for some modes and non-
vanishing for others, one can establish only boundedness of
the closed-loop trajectory. If, however, only a finite number
of switches is allowed over the infinite time interval, then one
can establish asymptotic stability if the uncertainty, influenc-
ing the final mode where the hybrid process eventually set-
tles, is vanishing. If such uncertainty, on the other hand, is
nonvanishing, then the closed-loop trajectory will instead
reach and enter, in finite time, the residual set of the final
mode without ever leaving again.

Application to inputrrrrroutput linearizable processes with
uncertainty

An important class of nonlinear processes that has been
studied extensively within process control is that of
inputroutput feedback linearizable processes. This class arises
frequently in practical problems where the objective is to force
the controlled output to follow some reference-input trajec-

Žtory rather than stabilize the full state at some nominal equi-
.librium point . In this section, we illustrate how the coordi-

nated robust feedback and switching methodology proposed
in the previous section can be applied when the individual
modes of the hybrid process are inputroutput linearizable.
For simplicity, we limit our attention to the single-input sin-
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gle-output case with vanishing uncertainty. Consider the hy-
brid process

w x w x w xx t s f x t q g x t u qw x t �Ž . Ž . Ž . Ž .˙ � Ž t . � Ž t . � Ž t . � Ž t . � Ž t .

ysh xŽ .
� 4� t g IIs 1, . . . , N 13Ž . Ž .

Ž .where yg� is the controlled output and h x is a suffi-
ciently smooth scalar function. Suppose that, for all ig II,

Žthere exists an integer r this assumption is made only to
simplify notation and can be readily relaxed to allow a differ-

.ent relative degree r for each mode and a set of coordinatesi
Ž Ž .see Isidori 1995 for a detailed treatment of feedback lin-

.earizable nonlinear systems

h xŽ .�1
L h xŽ .f� i2 .. .. ..

� ry1� L h xŽ .s s� x s 14Ž . Ž .r f i�
�1 T xŽ .1,i. .. .. .

�nyr T xŽ .nyr , i

Ž . Ž .where T x , . . . , T x are nonlinear scalar functions of x,1 nyr
such that the system of Eq. 13 takes the form

�̇ s�1 2

...

�̇ s�ry1 r

r y1 ry1 y1�̇ sL h � � ,� qL L h � � ,� uŽ . Ž .r f g f ii i i

ry1 y1qL L h � � , � �Ž .w f ii i

� s� � ,�Ž .˙1 1,i

...

� s� � ,�Ž .˙nyr nyr , i

ys� 15Ž .1

ry1 Ž . nwhere L L h x 	0 for all xg� , ig II. Under the as-g f ii
Ž .sumption that the �-subsystem is input-to-state stable ISS

Ž Ž .with respect to � for each ig II see Sontag 1989 for the
.definition of ISS , the controller synthesis task for each mode

can be addressed on the basis of the partially linear �-subsys-
tem. To this end, upon introducing the notation e s� yk k
Žky1. T Ž1. Ž ry1. Žk .w x w x® , es e e ��� e , ®s ® ® ��� ® T , where ® is the1 2 r

kth time derivative of the reference input ®, which is as-
sumed to be a smooth function of time, the �-subsystem of
Eq. 15 can be further transformed into the following more
compact form

es f e,� ,® q g e,� ,® u qw e,� ,® � , is1, . . . , NŽ . Ž . Ž .˙ i i i i i

16Ž .

r y1Ž . Ž Ž .. Ž .where f e,�,® s AeqbL h � e,�,® and g e,�, ® si f ii
ry1 y1 ry1 y1Ž Ž .. Ž . Ž Ž ..bL L h � e,�,® , w e,�,® s bL L h � e,�,®g f i i w fi i i

are r �1 vector functions, and

0 1 0 . . . 0 0
0 0 1 . . . 0 0. . .. . .As , bs 17Ž .. . .
0 0 0 . . . 1
0 0 0 . . . 0 1

are an r � r matrix and r �1 vector, respectively. For systems
of the form of Eqs. 16�17, a simple choice for a robust con-
trol Lyapunov function is a quadratic function of the form

TV s e P e, where the positive definite matrix P is chosen toi i i
Žsatisfy the following Riccati inequality for example, see

Ž ..Sepulchre et al. 1997

ATP qP AyP �0 18Ž .i i i

Using these quadratic functions, a bounded robust controller
can be designed for each mode using Eqs. 7�9 applied to the
system of Eq. 16�17. Using a standard Lyapunov argument, it
can then be shown that each controller robustly asymptoti-
cally stabilizes the e states in each mode. This result together
with the ISS assumption on the � states can then be used to
show, via a small gain argument, that the full closed-loop ey�
interconnection, for each individual mode, is asymptotically
stable.

Remark 12. Note that, since the objective here is output
tracking, rather than full state stabilization, the Lyapunov
functions used in designing the controllers, V , are in generali
different from the Lyapunov functions, V , used in imple-i
menting the switching rules. Owing to the ISS property of the
�-subsystem of each mode, only a Lyapunov function for the
e-subsystem, namely V , is needed and used to design a con-i
troller that robustly stabilizes the full ey� interconnection
for each mode. However, when implementing the switching

Ž � .rules constructing the  and verifying Eq. 12 , we need toi
Žtrack the evolution of x and, hence, the evolution of both e

.and � . Therefore, the Lyapunov functions used in verifying
the switching conditions at any given time, V , are based on x.i
From the asymptotic stability of each mode, the existence of
these Lyapunov functions is guaranteed by converse Lya-

w Ž .punov theorems see Chapter 3 in Khalil 1996 for further
xdetails . For systems with relative degree rsn, the choice

V sV is sufficient.i i

Simulation Studies
Application to a switched nonisothermal chemical reactor

In this section, we revisit the switched chemical reactor ex-
ample, introduced earlier in Eq. 5, to illustrate, through com-
puter simulations, the application of the proposed hybrid
control strategy. Recall that the control objective is to stabi-
lize the reactor temperature at the open-loop unstable steady
state, by manipulating the rate of heat input, while the
switching objective is to carry out the transition between the
two modes at the earliest time possible without jeopardizing
process stability. The control and switching objectives are to
be accomplished in the presence of hard constraints on the

Ž � � .manipulated input Q F80 KJrh , time-varying external dis-
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turbances in the feed temperature of both inlet streams, and
time-varying parametric uncertainty in the enthalpy of reac-
tion. For the purpose of simulating the effect of uncertainty
on the process output, we consider time-varying functions of

Ž . Ž .the form � t s� sin 4 t , where the upper bounds on theb
feed temperature disturbances are taken to be 10 K for both
streams, and the upper bound on the uncertainty in the en-
thalpy is taken to be 15% of the nominal value. We note that
any other bounded and time-varying function can be used to
simulate the effect of uncertainty. This choice does not affect
the results, since it is only the bounds on these functions that
are needed for controller and switching law design.

To accommodate both the control and operational objec-
tives, and since the uncertain variables considered are non-
vanishing, we follow the strategy proposed in Theorem 2. For
this feedback linearizable process, the controlled output has
a relative degree of rs1 and, therefore, using a coordinate
transformation of the form of Eq. 14, a scalar system of the
form of Eq. 16, describing the inputroutput dynamics, can be
obtained for controller design. Two quadratic positive-defi-

2nite functions of the form V s0.5c e , where c �0 is a con-i i i
stant and esTyT , are then used to synthesize, on the basiss

Žof the e-subsystems, two bounded nonlinear controllers one
. Žfor each mode and compute their stability regions note that

these functions are CLFs for the e-subsystem only and not
.for the full system of Eq. 5-see Remark 12 . The following

tuning parameters were used for each controller: c sc s1;1 2
� s� s0.01; � s2, � s1.1; 
 s 
 s0.001, to guaran-1 2 1 2 1 2
tee that the reactor temperature satisfies a relation of the

� Ž . �form lim sup T t yT F0.01.s
t™�

Several closed-loop simulations were performed to evalu-
ate the proposed control strategy. In the first set of simula-

Žtion runs, the reactor is operated in the first mode control
.valve closed, � s0 for all time, with no switching. The feed-

back controller designed for this mode is consequently imple-
mented to robustly stabilize the reactor temperature, starting

Ž .from an admissible initial condition. Figure 6 solid lines de-
Ž .picts the resulting reactor temperature controlled output

Ž .and rate of heat input manipulated input profiles. Also in-
cluded in the figure are the corresponding open-loop profiles

Ž .with no control dashed lines . We observe that the controller
successfully stabilizes the reactor temperature at the desired
steady state and simultaneously attenuates the effect of dis-
turbances and model uncertainty on the reactor temperature.

In the second set of simulation runs, we seek to accommo-
date the operational requirement of increasing the product

Žconcentration by switching to the second mode control valve
.open, � s1 at some point. Note that switching to the sec-

ond mode is accompanied by a switch to the second con-
troller responsible for stabilizing this mode. In the absence of
any explicit switching guidelines, suppose that the switching
time is randomly set to be as early as ts12 min. The result-
ing temperature and heat input profiles in this case are shown
in Figure 7. It is clear from the figure that by switching at this
arbitrarily chosen time, the controller for the � s1 mode is
unable to stabilize the reactor temperature at the desired
steady-state nor attenuate the effect of uncertainty on the
reactor temperature. The reason, which is reflected in the
input profile, is that at this time, the process state lies out-
side the stability region of the � s1 mode, and, therefore,

Figure 6. Reactor temperature and rate of heat input
profiles under the bounded robust controller
of the first mode when the control valve is

( )closed solid lines and under open-loop con-
( )ditions dashed lines .

the available control action is insufficient to stabilize the
temperature.

Now, instead of choosing the switching time arbitrarily,
suppose that the nominal switching laws proposed in El-Farra

Ž .and Christofides 2001a are used. These laws were used to
address a similar switched-reactor control problem under
nominal conditions. This case is considered here to study the
effect of uncertainty on switching. To this end, consider first

Ž .the case where no uncertainty is present that is, � �0 andi
Žinitialize the closed-loop system within the first mode con-

.trol valve closed, � s0 at the same admissible initial condi-
tion, considered previously, using the first controller with 
1
s� s0. By tracking the closed-loop trajectory in time, it is1
found that the process state enters the stability region of the
second mode at ts24 min. Consequently, the mode transi-

Žtion including a switch to the second controller with 
 s�2 2
.s0 is carried out at this time. The resulting controlled out-

put and manipulated input profiles are depicted by the solid
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Figure 7. Reactor temperature and rate of heat input
profiles when the reactor is initially operated

( )in the first mode control valve closed, � s0
using the corresponding robust controller,

( )then the control valve is opened � s1 at t
s12 min, and the robust controller for the
second mode is activated in place of the first
controller.

lines in Figure 8, which show that the reactor temperature
stabilizes at the desired steady state.

Suppose now that the ‘‘nominally safe’’ switching time, ts
24 min, is used when model uncertainty is present. The re-
sulting temperature and heat input profiles are shown by the
dashed lines in Figures 8 and 9, which depict, respectively,
the case when the controllers do not compensate for the ef-

Ž .fect of uncertainty 
 s� s0 and the case when they com-i i
pensate for the effect of uncertainty. It is clear from the un-
stable behavior in both profiles that the effect of uncertainty
is significant and that, even when a robust controller is used

Ž .in each mode, the nominal switching rules or times cannot
guarantee closed-loop stability when uncertainty is present.
As indicated by the input profiles, which remain saturated

Figure 8. Reactor temperature and rate of heat input
profiles for the case when mode switching is
carried out at ts24 min with no uncertainty

( )present solid lines and for the case when
uncertainty is present and mode switching
( )using nominal controllers with � s � s0 isi i

( )carried out at ts24 min dashed lines .

for all times, the state lies outside the stability region of the
second mode at ts24 min.

In the final set of simulation runs, the switching scheme
proposed in Theorem 2, which is based on stability regions
that account for the presence of plant�model mismatch, is
implemented. In this case, the reactor is initialized in the �
s0 mode, using the corresponding robust controller, and

Ž .then a switch to the � s1 mode and its robust controller is
Žcarried out only when the condition in Eq. 11 is satisfied note

that the condition of Eq. 12 is not needed, since the initial
.mode is not reactivated . The controlled output and manipu-

lated input profiles for this case are depicted by the solid
lines in Figure 9, which show that the robust hybrid control
strategy successfully drives the reactor temperature to the de-
sired steady state while attenuating the effect of uncertainty.
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Figure 9. Reactor temperature and rate of heat input
profiles for the cases when uncertainty is pre-

(sent and mode switching using the bounded
)robust controllers is carried out at ts24 min

( ) ( )dashed lines and at ts30 min solid lines .

The transition between the two modes becomes safe after
about 30 min of reactor startup.

Application to fault-tolerant control of a chemical process
Process Description and Problem Formulation. The prob-

lem of designing fault-tolerant control systems that can main-
tain process integrity and stability under the adverse condi-
tions of actuator failure is an important practical problem
within process control. The ability of the control system to
deal with failure situations typically requires consideration of
multiple control configurations and switching between them
to preserve closed-loop stability in the event that the active
control configuration fails. The occurrence of actuator faults,
and the concomitant switching between different control con-
figurations, give rise to hybrid closed-loop dynamics. Our ob-
jective in this section is to demonstrate how the hybrid con-
trol strategy, proposed in this article, can be used to design
and implement fault-tolerant control systems for nonlinear

processes with actuator constraints. To this end, consider a
well-mixed, nonisothermal continuous stirred-tank reactor
where three parallel irreversible elementary exothermic reac-

k k k1 2 3
tions of the form A™B, A™U, and A™ R take place,
where A is the reactant species, B is the desired product,
and U, R are undesired byproducts. The feed to the reactor
consists of pure A at flow rate F, molar concentration C ,A0
and temperature T . Due to the nonisothermal nature ofA0
the reactions, a jacket is used to removerprovide heat to the
reactor. Under standard modeling assumptions, a mathemati-
cal model of the process can be derived from material and
energy balances and takes the following form

3dT F y	 H QŽ .i yE rRTis T yT q k e C qŽ . ÝA0 i0 Adt V 
c 
c Vp pis1

3dC FA yE rRTis C yC y k e CŽ . ÝA0 A i0 Adt V is1

dC FB yE rRT1sy C qk e C 19Ž .B 10 Adt V

where C and C denote the concentrations of the species AA B

and B; T denotes the temperature of the reactor; Q denotes
the rate of heat inputrremoval from the reactor; V denotes
the volume of the reactor; 	 H , k , E , is1, 2, 3, denote thei i i
enthalpies, preexponential constants, and activation energies
of the three reactions, respectively; and c and 
 denote thep
heat capacity and density of the reactor. The values of the
process parameters and the corresponding steady-state val-
ues are given in Table 2. It was verified that, under these
conditions, the process of Eq. 19 has three equilibrium points
Ž .two locally asymptotically stable and one unstable .

The control objective is to stabilize the reactor tempera-
ture, reactant, and desired product concentrations at the
Ž .open-loop unstable steady state. To accomplish this objec-
tive, in the presence of possible control actuator failures, we
consider the following family of manipulated input candi-

Ž .dates see Figure 10 :
Ž .1 Rate of heat input, u sQ, subject to the constraints1

� � maxQ Fu s748 KJrs.1

Table 2. Process Parameters and Steady-State Values for the
Chemical Reactor of Eq. 19

3Vs1.0 m
Rs8.314 kJrkmol �K

3C s4.0 kmolrmA0
T s300.0 KA0

4	 H sy5.0�10 kJrkmol1
4	 H sy5.2�10 kJrkmol2
4	 H sy5.4�10 kJrkmol3 y1k s833.3 s01 y1k s83.3 s02 y1k s83.3 s03

4E s5.0�10 kJrkmol1
4E s7.53�10 kJrkmol2
4E s7.53�10 kJrkmol3

c s0.239 kJrkg �Kp
3
s1000.0 kgrm

y3 3Fs1.38�10 mrs
3C s3.59 kmolrmA s

T s388.57 Ks
3C s0.409 kmolrmD s
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Figure 10. Switching between multiple control configurations, each characterized by a different manipulated input,
provides a mechanism for fault-tolerant control.

Ž .2 Inlet stream temperature, u sT yT , subject to2 A0 A0 s
� � maxthe constraints u Fu s100 K.2 2

Ž .3 Inlet reactant concentration, u sC yC , subject3 A0 A0 s
� � max 3to the constraints u Fu s4 kmolrm .3 3

Each one of the preceding manipulated inputs represents a
separate control configuration that, by itself, can stabilize the
reactor at the desired steady state in the absence of faults.
The first configuration, involving the heat input Q, will be
taken as the primary control configuration. In the event of
some failure in this configuration, however, the plant supervi-
sor will have to activate one of the other two backup configu-
rations in order to maintain closed-loop stability. The main
question, which we use the hybrid control strategy to address,
is how can the supervisor determine the appropriate backup
control configuration to activate once failure is detected in
the primary control configuration.

Controller Synthesis. Having identified the candidate con-
trol configurations that can be used, we outline in this section
the main steps involved in the fault-tolerant control-system

Ž .design procedure. These include 1 the synthesis of a stabi-
Ž .lizing feedback controller for each control configuration, 2

the explicit characterization of the constrained stability re-
Ž .gion associated with each configuration, and 3 the design of

a switching law that orchestrates the reconfiguration of the
control system in a way that guarantees closed-loop stability
in the event of failures in the active control configuration.

ŽThe first task involving the synthesis for each control con-
.figuration of a feedback controller that enforces asymptotic

closed-loop stability in the presence of actuator constraints,
is carried out on the basis of the process inputroutput dy-
namics. While our control objective is to achieve full state

Ž .stabilization and not output tracking , process outputs are
introduced here only to facilitate transforming the system of
Eq. 19 into a form more suitable for explicit controller syn-
thesis. In the case of Eq. 19, a further simplification in con-
troller design can be obtained by noting that the product con-
centration, C , does not influence the evolution of either theB
reactor temperature, T , or the reactant concentration, C ,A
and, therefore, the controller design can be addressed solely
on the basis of the T and C equations. A controller thatA

Ž .stabilizes the T ,C system will automatically stabilize theA
full system.

1. For the primary control configuration with u sQ, we1
consider the output y sC yC . This choice yields a rela-1 A A s
tive degree of r s2 for the output with respect to the ma-1

Žnipulated input. The coordinate transformation in error
.variables form takes the form

C yCA As
e1 3Fs 20Ž .yErRTie C yC y k e CŽ . Ý2 A0 A i0 AV is1

2. For the second configuration with u sT yT , we2 A0 A0s
choose the output y sC yC , which yields the same rela-2 A A s
tive degree as in the first configuration, r s2. The same co-2
ordinate transformation in Eq. 20 is obtained.

3. For the third configuration with u sC yC , we3 A0 A0 s
choose the output y sTyT . This choice yields a relative3 s
degree r s2 of the output with respect to the manipulated3
input. The coordinate transformation in this case takes the
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form

TyTs
e1 3F Q y	 HŽ .is yErRTiT yT q q k e Ce Ž . ÝA0 i0 A2 V 
c V 
cp pis1

21Ž .

Note that since our objective is full state stabilization, the
choice of the output in each of the preceding cases is really
arbitrary. However, to facilitate our controller design and
subsequent stability analysis, we have chosen in each case an
output that produces a system of relative degree 2. For each
configuration, the corresponding state transformation yields
inputroutput dynamics of the following form

es Aeq l e qb� u , ks1, 2, 3Ž .˙ k k k


 f e q g e u 22Ž . Ž . Ž .k k k

0 1 0 2Ž . Ž . Ž .where As , bs , l � s L h x , � � sk f k kk0 0 1
Ž . Ž .L L h x , h x s y is the output associated with the kthg f k k kkk w xTconfiguration, xs x x with x sTyT , x sC yC ,1 2 1 s 2 A A s

Ž . Ž .and the functions f � and g � can be obtained by rewrit-k k
Ž .ing the T , C model equations in Eq. 19 in the form of Eq.A

1 for each configuration. The explicit forms of these func-
tions are omitted for brevity. Using a common quadratic Lya-
punov function of the form Vs eTPe, where

1.7321 1Ps
1 1.7321

is a positive definite symmetric matrix that satisfies the Ric-
cati inequality of Eq. 18, we synthesize, for each control con-
figuration, a bounded nonlinear feedback control law of the

Figure 11. Stability regions for the Q-control configura-
( ) ( )tion I , the T -control configuration II , andA0

( )the C -control configuration III .A0

Figure 12. Evolution of the closed-loop temperature
( ) ( )top , reactant concentration middle , and

( )desired product concentration bottom pro-
files when the primary control configuration

( )operates without failures solid profiles , and
( )when it fails at ts2.0 h dashed profiles

without activating any of the backup control
configurations.
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form

42� � maxL Vq L V q u L V'Ž . Ž .f f k gk k k
u sy L V 23Ž .k gk22 max	 0L V 1q 1q u L V'Ž . Ž .g k gk k

� 2where L VsL Vq 
I eI ,
 �0, ks1, 2, 3. An estimatef fk k

of the constrained stability region, for each configuration, is
then constructed by computing an invariant subset within the

k 2 � maxŽ . � 4set � u s xg� : L V Fu IL V I , which is the setmax f k gk k

where the controller of the k th configurations respects the
associated actuator constraints.

Closed-Loop Simulation Results. In this section, we
demonstrate, through computer simulations, the implementa-
tion of the proposed fault-tolerant control methodology to
the chemical reactor example introduced in Eq. 19. We have
already described in the previous section how the feedback
controllers are designed and the stability regions character-
ized for each of the three control configurations. Figure 11

Ž .depicts the stability region in the T ,C space for each con-A
figuration. The stability region of the primary configuration
Ž .Q-configuration covers the entire area of the plot. The sta-

Ž .bility region of the second configuration T -configurationA0
covers the entire area to the left of the solid line, while the

Ž .stability region of the third configuration C -configurationA0
is the area to the right of the dashed vertical line. The de-
sired steady state to be stabilized is shown with an asterisk
that lies in the intersection of the three stability regions.

In the first set of simulation runs, we demonstrate the ef-
fect of actuator failure by comparing the closed-loop behav-
ior when the control system operates with and without fail-

Ž .ures. To this end, the reactor is initialized at T 0 s327 K,
Ž . 3 Ž . 3C 0 s3.99 kmolrm , C 0 s0.0 kmolrm using the pri-A B

Ž .mary control configuration with Q as the manipulated input .
The solid profiles in Figures 12 and 13 depict the resulting
temperature, reactant concentration, product concentration,
and heat input profiles, respectively, when the control system
operates without failures. It is seen in this case that the con-
troller successfully stabilizes the reactor at the desired steady
state. In contrast, the dashed profiles in the same figures
show, respectively, the closed-loop state and manipulated in-
put profiles, when the primary control configuration fails at

Ž .ts2.0 h simulated by setting Qs0 for all tG2.0 h and
neither of the backup control configurations is activated at
this time. It is clear that, in the absence of switching, the
process reverts to its open-loop mode of operation and, thus,
moves away from the desired steady-state.

To prevent closed-loop instability in the event of actuator
failure, we implement, in the second set of simulation runs,
the proposed hybrid control scheme. To this end, the reactor
is initialized at the same initial condition, using the Q-control
configuration, and the supervisor proceeds to monitor the
evolution of the closed-loop trajectory. As shown by the solid
parts of the closed-loop trajectory in Figure 11, the state pro-
files in Figure 14, and the heat input profile in Figure 15, the
controller proceeds to drive the closed-loop trajectory toward
the desired steady-state up until the Q-configuration fails af-
ter 2.0 h of reactor startup. From the solid part of the trajec-

Ž .tory in the phase plot Figure 11 , it is clear that the failure

Figure 13. Rate of heat input profiles when the primary
control configuration operates without fail-

( )ures solid , and when it fails at ts2.0 h
( )dashed without activating any of the
backup control configurations.

of the primary control configuration occurs when the closed-
loop trajectory is within the stability region of the second
control configuration and outside the stability region of the
third control configuration. Therefore, on the basis of the
switching logic of Eq. 11, the supervisor immediately acti-

Žvates the second configuration with T as the manipulatedA0
.input . The result is shown by the dashed parts of the closed-

loop trajectory in Figure 11, the state profiles in Figure 14,
and the inlet stream temperature profile in Figure 15, where
it is seen that, upon switching to the T -configuration, theA0
corresponding controller continues to drive the closed-loop
trajectory closer to the desired steady state. Before reaching
the steady state, however, we consider the case when a sec-

Ž .ond failure occurs this time in the T -configuration at tsA0
Ž .15.0 h which is simulated by fixing T for all tG15.0 h .A0

From the dashed part of the trajectory in Figure 11, it is clear
that the failure of the second control configuration occurs
when the closed-loop trajectory is within the stability region
of the third configuration. Therefore, the supervisor immedi-

Žately activates the third control configuration with C asA0
.the manipulated input , which finally stabilizes the reactor at

Žthe desired steady state see the dotted parts of the closed-
loop trajectory in Figure 11, the state profiles in Figure 14,

.and the inlet reactant concentration profile in Figure 15 .
It is important to point out here that, if the second actua-

tor failure were to occur outside the stability region of the
third configuration, none of the available control configura-

Žtions would be able to prevent closed-loop instability unless
the Q-configuration could somehow be repaired in time after

.its initial failure and then reactivated later . The resulting
instability in this case would be due to the fundamental limi-
tations imposed by constraints on the stability regions, as well
as the fact that only three control configurations were consid-
ered in our simulations. In general, increasing the number of
backup control configurations, together with increasing the
maximum bounds on actuator capacity if possible, allows for
greater flexibility in enforcing fault-tolerant control. In this
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Figure 14. Evolution of the closed-loop temperature
( ) ( )top , reactant concentration middle , and

( )desired product concentration bottom pro-
files when the primary control configuration
fails and the T -control configuration is ac-A0
tivated at ts2.0 h, and when the T -config-A0
uration fails and the C -control configura-A0
tion is activated at ts15 h.

case, having larger, and more numerous, stability regions to
switch between can reduce the possibility of failure occurring
at a point when the trajectory is outside the stability region of

Figure 15. Manipulated input profiles under the Q-con-
( )trol configuration top , the T -control con-A0

( )figuration middle , and the C -control con-A0
figuration: T starts to vary only after theA0
first configuration fails at ts2.0 h, while CA0
begins to vary after the second configuration
fails at ts15 h.

every backup configuration. Such flexibility, however, is ulti-
mately dependent on the physical limitations imposed by the
process itself, such as the physical capacity of actuators, as
well as the maximum number of control loops that can be
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designed. In all of these cases, the hybrid control scheme,
demonstrated earlier, provides valuable insight into the
fault-tolerance limitations of a given control strategy, by indi-
cating when a given failure can or cannot be tolerated by the
control system.

Conclusions
In this work, a hybrid control strategy for a broad class of

hybrid nonlinear processes with actuator constraints and
model uncertainty was proposed. The control strategy coordi-
nated, via multiple Lyapunov functions, the tasks of feed-
back-controller synthesis and logic-based switching between
the constituent modes. A family of feedback controllers was
designed to enforce robust stability within the constituent
modes and provide an explicit characterization of the con-
strained region of robust stability for each mode. The stabil-
ity regions were then used to derive stabilizing switching rules
that orchestrate the transition between the various modes
Ž .and their controllers in a way that guarantees robust stabil-
ity for the overall hybrid process. The proposed hybrid-con-

Ž .trol method was applied through computer simulations to 1
robustly stabilize an exothermic chemical reactor, with
switched dynamics, model uncertainty, and actuator con-

Ž .straints, at an unstable steady-state, and 2 design a fault-
tolerant control system for chemical reactors through switch-
ing between multiple constrained control configurations.
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Appendix A: Proof of Theorem 1
To prove this theorem, we proceed in two steps. In the

Žfirst step we show that, for each individual mode without
.switching , the control law of Eqs. 7�9 satisfies the con-

straints within the region described by Eq. 10 and that, start-
ing from any initial condition within the set � , the corre-i
sponding feedback-control law robustly asymptotically stabi-
lizes the ith closed-loop subsystem. In the second step, we
use this fact together with MLF stability analysis to show that
the switching laws of Eqs. 11�12 enforce asymptotic stability
in the switched uncertain closed-loop system, starting from
any initial condition that belongs to any of the sets � , ig II.i

Step 1. To prove that the control law of Eqs. 7�9 satisfies
the constraints within the region described by the inequality

�Ž .T �of Eq. 10, we need consider only the case when L V 	G ii
Ž �Ž .T �0 since when L V s0, u s0 and the constraints areG i ii

.trivially satisfied . For this case, we have from Eqs. 7 and 8

TmaxIu x IFIk V , u , � , � , � II L V IŽ . Ž . Ž .i i i i bi i i G ii

42 T� �� maxL V q L V q u I L V I'Ž . Ž .f i f i i Gž /i i i

F
2T TmaxL V 1q 1q u I L V I'Ž . Ž .G i i G iž /i i

A1Ž .

From the definitions of L� V and L��V in Eq. 9 and thef i f ii i
�� max �Ž .T �fact that 
 �0, it is clear that if L V Fu L V , thenf i i G ii i

� max �Ž .T �we also have L V Fu L V . Therefore, for any xf i i G ii i

satisfying Eq. 10, the following estimates hold

22 T�� maxL V F u I L V IŽ . Ž .f i i G iž /i i

T� maxL V Fu I L V I A2Ž .Ž .f i i G ii i
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Substituting the preceding estimates into Eq. A1 yields

Iu x IŽ .i

2T Tmax maxu L V 1q 1q u I L V I'Ž . Ž .i G i i G iž /i i

F
2T TmaxL V 1q 1q u I L V I'Ž . Ž .G i i G iž /i i

sumax A3Ž .i

which shows that the constraints are satisfied. Consider now
the ith subsystem of the switched nonlinear system of Eq. 1.
Substituting the control law of Eqs. 7�9, evaluating the time
derivative of the Lyapunov function along the closed-loop

�Ž .T � 2trajectories, and using the fact that L V sG ii
Ž .Ž .TL V L V , we obtainG i G iii

V̇ sL V qL V u qL V �i f i G i i W i ii i i

sL V qL V � qL Vf i W i i G ii i i

42 T� �� maxL V q L V q u I L V I'Ž . Ž .f i f i i G iž /i i i T
� L VŽ .G ii2T T2 max	 0I L V I 1q 1q u I L V I'Ž . Ž .G i i G iž /i i

FL V q� IL V I�f i i W i bii i

42 T� �� maxL V q L V q u I L V I'Ž . Ž .f i f i i G iž /i i i

y
2T T2 max	 0I L V I 1q 1q u I L V I'Ž . Ž .G i i G iž /i i

A4Ž .

After performing some algebraic manipulations, the preced-
ing inequality can be rewritten as

V̇ F� xŽ .i i

� y � y1 I xI I xI 2Ž .i
� IL V I y 
bi W i ii ž / ž /I xIq� I xIq�i iq

2Tmax1q 1q u I L V I' Ž .	 0i G iž /i

A5Ž .

where

2 4T 2 T��max maxL V q� � IL V I 1q u I L V I y L V q u I L V I' 'Ž . Ž . Ž . Ž .f i i bi W i i G i f i i G iž / ž /i i i i i

� x s A6Ž . Ž .i 2Tmax	 01q 1q u I L V I' Ž .i G iž /i

˙To analyze the sign of V in Eq. A5, we initially study thei
Ž .sign of the term � x , on the righthand side. It is clear thati

the sign of this term depends on the sign of the term L V qf ii
� �� L V � . To this end, we consider the following two cases.i W i bii

� � � � � �Case 1: L V F 0. Since L V s L V q 
 x qf i f i f i ii i i
� �� L V � and 
 is a positive real number, the fact thati W i bi ii�� � �L V F0 implies that L V q� L V � F0. As a result,f i f i i W i bii i i

Ž .we have that � x F0, and the time derivative of V in thisi i
case satisfies the following bound

� y � y1 I xI I xI 2Ž .i iIL V I� y 
W i bi ii ž / ž /I xIq� I xIq�i i
V̇ Fi 2Tmax1q 1q u I L V I' Ž .	 0i G iž /i

� � x A7Ž . Ž .i

�� max �Ž .TCase 2: 0� L V Fu L V I. In this case, we havef i i G ii i

22 T�� max � �L V F u L V A8Ž .Ž . Ž .f i i G iž /i i

and, therefore

42 T�� maxy L V q u I L V I'Ž . Ž .f i i G iž /i i

2 22 T T�� max maxsy L V q u I L V I u I L V I'Ž . Ž . Ž .f i i G i i G iž / ž /i i i

2T�� maxFy L V 1q u I L V I A9Ž .'Ž . Ž .f i i G iž /i i

˙Substituting the estimate of Eq. A9 in the expression for Vi
in Eqs. A5�A6 yields

2Tmax� �y 
 x 1q u I L V I' Ž .i i G iž /i

V̇ s q� xŽ .i i2Tmax1q 1q u I L V I' Ž .i G iž /i

F� x A10Ž . Ž .i

From the preceding analysis, it is clear that whenever L�� Vf iimax �Ž .T �Fu L V , the inequality of Eq. A7 holds. Sincei G ii
� Ž max . u ,� is taken to be the largest invariant set embed-i i bi

ded within the region described by Eq. 10, we have that start-
Ž . �ing from any x 0 g , the inequality of Eq. A7 holds. Re-i

ferring to this inequality, note that since � �1 and 
 �0, iti i
� Ž .is clear that whenever I x ��r � y1 , the first term oni i
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˙the righthand side is strictly negative, and therefore V satis-i
fies

� � 2
 xi
V̇ Fy A11Ž .i 2Tmax� � � �x q� 1q 1q u L V'Ž . Ž .i i G iž /i

˙ � � Ž .To study the behavior of V when x F�r � y1 , we firsti i i
Ž .note that since the entries of the matrix function W x andi

the entries of the row vector � V are smooth and vanish whenx i
xs0, then there exists positive real constants �1, � , � � suchi i i

1 � Ž .� � � � T � �that if � F� , the bounds W x F� x , � V F� I xIi i i i x i i
� � Ž .hold for x F�r � y1 . Using this bound, we obtain thei i

following estimates

IL V I� � y � y1 I xIŽ .Ž .W i bi i ii

FIL V I� �W i bi ii

FIW x II�T V I� �Ž .i x i bi i

�i� 2F� � � � I xI �I xIF A12Ž .i bi i i � y1i

Substituting the estimate of Eq. A12 directly into Eq. A7, we
get

� � � � �y 
 I xI 2Ž .i bi i i i
V̇ Fi 2Tmax	 0I xIq� 1q 1q u I L V I'Ž . Ž .i i G iž /i

�i
�I xIF A13Ž .

� y1i

If � is sufficiently small to satisfy the bound � Fi i
Ž � .� 2
r 2� � � �� , then it is clear from Eqs. A11�A13 thati bi i i i

V̇ �0��	0. In summary, we have that for any initial condi-i
� � � 1 24tion in the invariant set  , there exists � �min � ,� suchi i i i

� ˙that if � F� , V satisfiesi i i

� � � 2y 
 xi
V̇ F �0

2Tmax� � � �x q� 1q 1q u L V'Ž . Ž .i i G iž /i

� x	0, is1, . . . , N A14Ž .

where 
�s 
r2, which implies that the individual closed-loopi i
subsystems are asymptotically stable.

Step 2. Consider now the switched closed-loop system and,
Ž . �without loss of generality, suppose that x 0 g for somei

ig II. Then it follows from Eq. A14 and the invariance of �

i
that the Lyapunov function for this mode, V , decays mono-i
tonically along the trajectories of the closed-loop system for
as long as mode i is to remain active, that is, for all times

Ž . Ž . �such that � t s i. If at any time, T , such that x T g forj
Ž q. Žsome jg II, j	 i, we set � T s j that is, activate mode j
.and its respective controller , then using the same argument,

it is clear that the corresponding Lyapunov function for this
mode, V , will also decay monotonically for as long as we keepj

Ž .� t s j. Note that T , which is the time that mode i is
switched out, is not known a priori, but is rather determined
by the evolution of the closed-loop continuous state. By
tracking the closed-loop trajectory in this manner, we con-

Ž . �clude that, starting from any x 0 g for any ig II and asi
Ž .long as the ith mode and its controller is activated only at a

Ž . �time when x t g , we have that for all ig II, kgZi q

˙ �V �0 � tg t ,t A15Ž ..� Ž t . i ii k kk

where t and t � refer, respectively, to the times that the i-thi ik k

mode is switched in and out for the k th time by the supervi-
sor. Furthermore, from Eq. 12 we have that for any admissi-
ble switching time tik

�V x t �V x t A16Ž .Ž . Ž .i i i ik ky1

which consequently implies that

V x t �V x t A17Ž .Ž . Ž .i i i ik ky1

Ž Ž .. Ž Ž ..�since V x t �V x t from Eq. A15. Using Eqs.i i i iky 1 ky1

A15�A17, a direct application of the MLF result of Theorem
Ž .2.3 in Branicky 1998 can be performed to conclude that the

switched closed-loop system is Lyapunov stable under the
switching laws of Theorem 1. To prove asymptotic stability,
we note that Eq. A16 also implies

V x t � �V x t � A18Ž .Ž . Ž .Ž . Ž .i i i ik ky1

Ž Ž .. Ž Ž ..�since V x t �V x t from Eq. A15. From the strict in-i i k i ik
Ž .equality in Eq. A18, it follows that for every infinite se-

Ž q.� �quence of switching times t , t , . . . such that � t si i i1 2 k
Ž y.� y y� t s i, the sequence V , V , . . . is decreasing and� �i � Ž t . � Ž t .k i i1 2

positive, and, therefore, has a limit LG0. We have

� �y y0sLyLs lim V x t y lim V x tŽ . Ž .� �� Ž t . i � Ž t . ii kq1 ikq1 k kk™� k™�

� �s lim V x t yV x t A19Ž .Ž . Ž .� 4i i i ikq 1 kk™�

Note that the argument of the limit in the preceding equa-
tion is strictly negative for all nonzero x and zero only when

Ž .xs0 from Eq. A18 . Therefore, there exists a function � of
Ž .class KK that is, continuous, increasing, and zero at zero

such that

� �� � �V x t yV x t Fy� x t A20Ž .Ž . Ž . Ž .Ž .i i i i ikq 1 k k

Substituting the preceding estimate into Eq. A19, we have

� �0s lim V x t yV x tŽ . Ž .� 4i i i ikq 1 kk™�

�F lim y� I x t I F0 A21Ž .Ž .Ž .ikk™�

Ž .which implies that x t converges to the origin, which to-
gether with Lyapunov stability, implies that the switched
closed-loop system is asymptotically stable. This concludes the
proof of the theorem.
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Appendix B: Proof of Theorem 2
The proof of this theorem shares several steps with the

proof of Theorem 1. We will highlight only the differences.
Step 1. We have already shown in step 1 of the proof of

Theorem 1 that, for each mode considered separately, the
evolution of the corresponding Lyapunov function, starting

Ž . �from any x 0 g , obeys the growth bound of Eq. A11i
� � Ž .whenever x G�r � y1 . Since the uncertain variables arei i

nonvanishing, the bounds used in Eq. A12 to establish
asymptotic convergence to the origin cannot be invoked here,
and no further conclusion can be made regarding the sign of
˙ � � Ž .V when x ��r � y1 . However, from Eq. A12, we con-i i i

˙clude that V is negative-definite outside a ball of radius � si i
Ž . w�r � y1 , which implies see Theorem 5.1 and its corollar-i i

Ž .x Ž . �ies in Khalil 1996 that, for any x 0 g , there exists ai
finite time t such that the solution to the ith closed-loop1
system satisfies

� � � �x t F� x ,t , � 0F t� tŽ . Ž .i 0 1

� x t IFb � , � tG t B1Ž . Ž . Ž .i i 1

Ž . Ž .where � �,� is a class KKLL function and b � is of class KK .i i �

This implies that the state is ultimately bounded and that the
ultimate bound can be made arbitrarily small by choosing �i
to be sufficiently small.

Step 2. Having established boundedness of the trajectory
of the individual closed-loop modes of the hybrid system, we
proceed in this step to show boundedness of the overall
switched closed-loop trajectory. To this end, given any posi-
tive real number d, it follows, from the properties of class KK�

functions, that there exist a set of positive real numbers,

� � � � 4� ,� , . . . ,� such that1 2 N

b � � sb � � s ��� sb � � Fd B2Ž . Ž . Ž . Ž .1 1 2 2 N N

where ��G� � i� II which ensures that all modes share ai i
common residual set. Since switching occurs only in regions

Žwhere the various stability regions intersect as required by
.Eq. 11 , we need consider only the case when the intersec-

tion, � � , is nonempty and choose d such that the set Dsi i
� n � � 4 �xg� : x Fd ;�  , is1, . . . , N.i i

Ž . �Without loss of generality, assume that x 0 g for somei
ig II. If this mode remains active for all times, then bound-
edness follows directly from the analysis in step 1. If switch-
ing takes place, however, then it follows from the switching
rules of Eqs. 11 and 12 that for every admissible sequence of

Ž q. � Ž .�switching times, t , t , . . . , such that � t s i and x ti i i i1 2 k k

� d, the positive sequence V , V , ��� , is monotonically� Ž t . � Ž t .i i1 2
decreasing. This, together with the fact that the set D is
nonempty and completely contained within � � , implies thei i

� � Ž .� �existence of a finite k such that x t Fd for some kGk ,ik

kgZ . Since N is finite, and only a finite number of switchesq
are allowed over any finite time interval, the preceding analy-
sis implies that, if � F��, � i� II, then there exists finite time,i i
� Ž .t , during which at least one of the modes will converge to

D. Since D was chosen to be a common residual set for all
Ž . � Ž .� �the modes Eq. B2 , it follows that x t Fd for all tG t ,

regardless of which mode is switched in or out for tG t�.
Therefore, the switched closed-loop trajectory is bounded for
all times. This concludes the proof of the theorem.
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