
Occasionally, mature industries
are turned upside down by in-
novations. The years of re-

search on robotics and multia-
gent systems are coming togeth-
er to provide just such a
disruption to the material-han-
dling industry. While au-
tonomous guided vehicles (AGVs)
have been used to move material
within warehouses since the 1950s,
they have been used primarily to trans-
port very large, very heavy objects like rolls of
uncut paper or engine blocks. The confluence of inex-
pensive wireless communications, computational pow-
er, and robotic components are making autonomous
vehicles cheaper, smaller, and more capable.

In recent years, we have seen an increase in the use
of autonomous vehicles in the field. Examples include
teleoperated military devices like iRobot’s Packbot and
the pilotless Predator aircraft, both of which have seen
service in Iraq and Afghanistan. The Mars rovers, Spirit
and Opportunity, exemplify the use of autonomous ro-
bots in scientific exploration. Closer to home, the
Aerosonde autonomous aircraft has been used to
plumb weather systems and recently flew in tropical
storms that are unsafe for piloted aircraft. Commer-
cially, autonomous vehicles are just hitting the market.
ActivMedia‘s PatrolBot is a mobile monitoring system
for buildings, and Aethon’s Tug maneuvers supply carts
around hospitals. Robots have even penetrated the
home in an attempt to relieve homeowners of their
most tiresome chores. iRobot sells the Roomba au-
tonomous vacuum and the Scooba floor washer, and
Friendly Robotics, among others, markets robotic lawn
mowers.

Many more research projects are under way to build
robots for search and rescue, mine exploration, land
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■ The Kiva warehouse-management system
creates a new paradigm for pick-pack-and-
ship warehouses that significantly improves
worker productivity. The Kiva system uses
movable storage shelves that can be lifted by
small, autonomous robots. By bringing the
product to the worker, productivity is in-
creased by a factor of two or more, while si-
multaneously improving accountability and
flexibility. A Kiva installation for a large dis-
tribution center may require 500 or more ve-
hicles. As such, the Kiva system represents
the first commercially available, large-scale
autonomous robot system. The first perma-
nent installation of a Kiva system was de-
ployed in the summer of 2006.
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mine removal, and a wide variety of other intrigu-
ing tasks.

Recent advances in software engineering have
laid the foundation for building large, complex
systems of autonomous vehicles. In particular, the
multiagent programming paradigm has been
shown to be an effective way to build and control
complex systems (Jennings and Bussmann 2003).
A great deal of research has focused on au-
tonomous agents and multiagent systems, with
the expectation that, in the future, environments
will be populated with hundreds or thousands of
autonomous agents. In this article, we will use the
term multiagent system (MAS) to refer to the gener-
al class of systems in which autonomous agents
carry out actions and communicate with each oth-
er through messages and the term multivehicle sys-
tem (MVS) to refer to multiagent systems with au-
tonomous, robotic vehicles. Although systems
with as many as 100 robots have been demon-
strated, like the experimental CentiBot project
(Konolige et al. 2004), the applications—disaster
recovery or terrorist events—thankfully are not
daily occurrences. Real, mundane applications
with more than a few vehicles have been lacking. 

Recently, Kiva Systems announced availability
of an automated material-handling system target-
ed at pick-pack-and-ship warehouses. The key in-
novation in the Kiva system is the application of
inexpensive robots capable of lifting and carrying
three-foot-square shelving units, called inventory
pods. The robots, called drive units, transport the in-
ventory pods from storage locations to stations
where workers can pick items off the shelves and
put them into shipping cartons. Throughout the
day, the picker stays in her station while a contin-
uous stream of robots presents pick-faces. By mov-
ing the inventory to the worker, rather than the
other way around, we typically see worker produc-
tivity at least double. These results have been
borne out in pilot projects and at a permanent in-
stallation that went online in the summer of 2006. 

Unlike the commercial robotic applications
mentioned previously, which consist of a handful
of robots per deployment, a typical installation of
a Kiva system in a large warehouse will involve
hundreds of robots.

Field conditions for MVSs can be characterized
in a variety of dimensions. One is the degree to
which the environment is known or unknown.
The extreme example of an unknown environ-
ment is planetary exploration.1 Search-and-rescue
scenarios and land-mine detection pose such chal-
lenging environments that robots to perform these
tasks are still a long way from being cost effective.
In contrast, the Kiva drive units operate in a con-
trolled, known environment, greatly simplifying
the design problem and making the solution prac-
tical. The business case for installing a Kiva system

usually projects a one- to three-year return on in-
vestment.

Another distinguishing attribute of multiagent
systems is the extent to which agents are coopera-
tive—in the sense that they must coordinate activ-
ities to achieve a system goal—or are self-interested
and have independent, often conflicting, objec-
tives. Although the overall system is cooperative,
the Kiva robots are essentially independent. No ro-
bot depends upon any other robot to accomplish
its task, although the system requires them all to
succeed to complete a customer order. Even in this
cooperative setting, the multiagent paradigm helps
break the system up into manageable components
with clear interfaces, knowledge, and responsibili-
ties (Lesser 1999).

Another common research topic is the resource-
based nature of most multiagent systems. In a pure-
ly computational setting, the resources may be
memory and CPU time. In physical systems, the re-
sources may include space and elements of the en-
vironment that are needed to accomplish tasks. In
the noncooperative setting, the resource allocation
is typically mediated, and therefore a great deal of
the research is focused on economic metaphors
(Boutilier, Shoham, and Wellman 1997; Wellman
and Wurman 1998). With the exception of military
scenario–driven research (Butenko, Murphey, and
Pardos 2003), many fewer papers address resource
allocation when agents are cooperative, and among
most of them, the common theme is task negotia-
tion (Jennings 1996, Malone et al. 1988, Rosen-
schein and Zlotkin 1994). Although task negotia-
tion is an approach that can be applied to the Kiva
system, the issues addressed in the literature capture
only a fraction of the complexity of the allocation
problem. One goal of this article is to present a fer-
tile and interesting nonmilitary cooperative re-
source allocation problem of practical importance.

The Distribution Center
Warehouses and distribution centers (DCs) play a
critical role in the flow of goods from manufactur-
ers to consumers. They serve as giant routing cen-
ters in which pallets of products from different
manufacturers are split, and the items are redirect-
ed into outgoing containers. Figure 1 illustrates a
typical DC in which incoming pallets of products
are first stored in the reserve inventory location. As
needed, cases of product are moved into the for-
ward location where they are opened and individ-
ual items accumulated into shipping cartons. The
cartons may be plastic totes that are sent to a re-
tailer for in-store restocking or boxes sent directly
to the consumer.

Although the tasks at the DC are necessary to
the flow of products, it is generally considered a
cost center in that the work done at the facility
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adds no inherent value to the product. Thus, there
is constant pressure to reduce operational costs
and improve accuracy. However, surprisingly little
has changed in the industry in the last 20 years.
New automation systems have been introduced,
such as carousels and high-speed sorters, but the
majority of these have proven to be inflexible and
costly. Thus, many warehouses still use manual
processes or conveyors to move orders to the pick
locations.

Consider, for example, what happens if you or-
der two books from a highly sophisticated online
book retailer. A large Internet bookstore may carry
a million different book titles. Although it doesn’t
stock all of these products in its warehouses—some
are shipped directly from the publisher—the com-
pany likely stocks hundreds of thousands of differ-
ent products. The majority of the picking done in
this type of warehouse involves what is called
open-case picking; the retailer receives a case of
books and ships them out as individuals. Only oc-
casionally does someone order an entire case of
books, and often that order is filled from a differ-
ent part of the warehouse. 

Naturally, when you order your books, it would
be inefficient for the retailer to send a picker out
into the warehouse to fetch the books for your or-
der, and only your order. Instead, the retailer may
queue up several hours worth of orders and com-
pute the best way to batch work in the warehouse.
Often, multiline orders are split across different
pickers because the elements of the order are stored

in distant locations. Each picker in a zone of the
warehouse fills a tote with books that are part of
several different customers’ orders. The filled tote
is conveyed to a mechanical sorting machine. A
typical sorter is composed of flat trays attached to
a revolving track. An induction worker empties the
tote and puts the items, barcode up, one-at-a-time,
on empty trays as they circulate around the ma-
chine. The sorter has a scanner to identify the
product on the tray, which allows it to dump the
product off the tray at the appropriate moment
and into a chute that serves the pack worker. To
keep her busy, the pack worker is working on sev-
eral orders at a time and thus, on receiving prod-
ucts dumped off the tray, must re-sort them into
the individual orders. When the pack worker has
received all of the products you ordered, she puts
them together into a box, inserts the packing slip,
attaches the shipping label, and sends the com-
pleted box to the shipping dock. 

Thus, the process of filling your order for two
books involved four people: two pickers in differ-
ent zones of the warehouse each picking batches
of products, someone to split the batches back in-
to individual items on the sorter, and a fourth per-
son to collect the products kicked off the sorter in-
to customer orders. Moreover, it involved miles of
expensive conveyor and sorting equipment
(Gilmour 2003), which takes months to install and
cannot be easily moved once set up. 

Myriad automation solutions exist in the indus-
try, including the aforementioned sorters and in-
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telligent conveyors. Automated storage and re-
trieval systems (AS/RSs) can achieve very high
throughput for highly specialized and uniform
products, like CDs. But among the automation so-
lutions that are designed for a broad range of prod-
uct types and sizes, the actual benefits have rarely
lived up to the promises. For example, carousels—
vertical shelves attached to a rotating track—ap-
peared promising but have proven to be bottle-
necks in high throughput situations. The very best
of automation technologies claim to be able to
achieve peak rates of 200 to 400 lines per hour per
picker, but most highly automated warehouses ex-
perience somewhat less than that. In fact, the
high-profile online grocer Webvan burned through

several hundred million dollars in funding to open
a few, highly automated warehouses (with
carousels) but was unable to reduce costs to the
point where it could make money on the orders.

Traditional automation approaches have several
drawbacks. First, they are costly. Price tags for au-
tomated material-handling systems typically run
in the tens of millions of dollars. Second, they in-
volve long design cycles. Most large DC projects
takes 12 to 24 months to bring online, in part due
to the difficulty of installing and tuning the au-
tomation. Third, they are inflexible. Once in-
stalled, conveyors, sorters, carousels, and other sys-
tems are difficult and costly to move. They also
tend to be inflexible to changes in the inventory
mix. Fourth, they are not expandable. Few au-
tomation systems can be incrementally expanded,
which forces companies to buy enough capacity up
front to handle several years worth of anticipated
growth. This results in excessive capital expendi-
tures for automation systems that run under ca-
pacity for several years. Fifth, they rely on batch
processing. Like the bookseller example above, at-
tempts to improve the efficiency of the picking
task lead to aggregating orders. Once the products
are picked in batches, the warehouse employs ex-
pensive automation (sorters) to undo the aggrega-
tion and break the batches back up into individual
orders. Sixth, they require fixed locations. Most of
the automation systems rely on products being
stored in fixed locations, and most warehouse-
management software assumes the pickable prod-
ucts are stored in a single location. Like in a retail
store, a particular width of shelving must be desig-
nated to each product, which makes it difficult to
adjust the shelf space to accommodate changes in
the stocking level. Further, having fixed locations
means that the replenishment worker must move
the incoming product to that specific location in
order to restock the product. Finally, traditional au-
tomation approaches require manual reslotting.
Because of the batch processing and fixed loca-
tions, warehouse managers are constantly evaluat-
ing inventory locations to keep workloads bal-
anced and the most popular products in the choic-
est picking locations. Reslotting requires a lot of
manual movement of product from one storage lo-
cation to another. 

The Kiva solution improves on all of these fac-
tors, and in some cases, eliminates the problem
completely.

The Kiva Solution
Figure 2 shows the physical elements of the Kiva
solution: an inventory pod and a drive unit. The
drive units are small enough to fit under the in-
ventory pod and are outfitted with a mechanical
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lifting mechanism that allows them to lift pods off
the ground. The pods consist of a stack of trays,
each of which is subdivided into bins. A variety of
tray sizes and bin sizes create the mixture of stor-
age locations for the profile of products the ware-
house stores. 

Typically, a Kiva installation is arranged on a
grid with storage zones in the middle and invento-
ry stations spread around the perimeter. Figure 3
shows an exemplary layout, with storage cells in
green, drive units in orange, and station queues on
the left in purple and pink. The drive units are used
to move the inventory pods with the correct bins
from their storage locations to the inventory sta-
tions where a pick worker removes the desired
products from the desired bin. Note that the pod
has four faces, and the drive unit may need to ro-
tate the pod in order to present the correct face.
When a picker is done with a pod, the drive unit
stores it in an empty storage location.

Each station is equipped with a desktop com-
puter that controls pick lights, barcode scanners,
and laser pointers that are used to identify the pick
and put locations. Because every product is
scanned in and out of the system, overall picking
errors go down, which potentially eliminates the
need for postpicking quality control. In general,
every station is capable of being either a picking
station or a replenishment station. In practice, pick
stations will be located near outbound conveyors,

and replenishment stations will be located near
pallet drop-off points.

The power of the Kiva solution comes from the
fact that it allows every worker to have random ac-
cess to any inventory in the warehouse. Moreover,
inventory can be retrieved in parallel. When the
picker is filling several boxes at the same time, the
parallel, random access ensures that she is not
waiting on pods to arrive. In fact, by keeping a
small queue of work at the station, the Kiva system
delivers a new pod face every six seconds, which
sets a baseline picking rate of 600 lines per hour.
Peak rates can exceed 600 lines per hour2 when the
operator can pick more than one item off a pod.3

For a large warehouse, the savings in personnel
can be significant. Consider, for example, what a
Kiva implementation of the book warehouse
would involve. A busy bookseller may ship
100,000 boxes a day. With existing automation,
this level of output would employ perhaps 75
workers picking, sorting, and packing orders over
two 8-hour shifts. Now consider a Kiva solution. At
a conservative 500 lines per worker per hour, and
2 lines per outgoing box, the day’s work would re-
quire 400 hours of picking. Maintaining the 16
hours of picking a day, the warehouse would need
25 Kiva inventory stations to generate the 200,000
outgoing boxes. It would take about 200 drive
units to serve the 25 pickers at the stations, deliv-
ering and storing inventory pods.4 However, the
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Figure 3. A Small Region of a Kiva Layout.

The dark gray cells represent pod storage locations, the gray ovals the robots (with pods not pictured), and the lighter gray regions on the
left represent the queues around the inventory stations.



warehouse can be run with 50 fewer employees, at
$10 per hour for 16 hours a day, which means the
book warehouse is saving $8,000 per day. With 250
workdays, the net savings is $2,000,000 a year.

In addition to the productivity gains, the book-
seller would experience a number of other benefits
by using the Kiva system. One such benefit is
greater accountability. Each order is filled complete-
ly by a single individual, improving accuracy and
accountability by reducing the number of “touch-
es” on the product. In addition, the bookseller
would incur no downstream dependencies, because
no one worker’s productivity depends on the per-
formance of workers earlier in a sequential process.
Instead, each worker’s station is complete and self-
contained. 

The elimination of batch processing is a critical
benefit. In a Kiva warehouse, everything is done in
real time. An order can literally be filled within
minutes of being received. Location-free replenish-
ment is also a feature. Because any station can be
used to put product away, the replenishment
process is greatly simplified. 

Adaptive slotting is yet another benefit. Because
the resolution of the allocation of storage is bins
rather than the faces of static shelves, the system
much more easily adapts to changes in stocking
policies. Every product is automatically given just
enough pick faces.

An important feature of the Kiva solution is that
it has no single point of failure. Unlike a conveyor, if
a drive unit fails, it does not stop the whole floor.

The rest of the system continues to operate, and
most likely there is no noticeable impact on pro-
ductivity. Another benefit is rapid deployment. Be-
cause there is no fixed infrastructure, a 50-station
warehouse can be brought online in a matter of
weeks rather than months. Kiva has set up small, 2-
station systems in a single day.

Kiva systems allow spatial flexibility. Conse-
quently, they can accommodate poles, flow into
multiple rooms, and handle other oddities of the
environment. By incorporating automated lifts, a
Kiva installation can use mezzanines to fill the ver-
tical space. Finally, the system allows for expand-
ability. If a warehouse needs more capacity, one
simply adds more pods, drives, and stations.

The benefits of rapid deployment, spatial flexi-
bility, and expandability combine in possibly
game-changing ways. The ease with which ware-
houses can be brought online and expanded
means that managers do not need to purchase au-
tomation with the capacity to handle the volume
forecast for five years out. Instead, they need only
a big enough building, and they can buy the Kiva
components to handle the growth as it occurs. Fur-
thermore, companies can plan and deploy ware-
houses in months rather than years, enabling a
faster, more accurate response to changing market
conditions.

AI Techniques Used
The Kiva system is highly influenced by AI tech-
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niques, though many of the techniques used are
textbook implementations of well-known algo-
rithms. The software architecture reflects the fact
that the Kiva system is, by its very nature, a multi-
agent system. Each drive unit and each station is a
computational device that can receive requests and
act on them. At the same time, the system embod-
ies a massive, real-time resource allocation prob-
lem. The resources in question include shelf space
at the station, drive units, storage pods, inventory,
and physical space. 

Multiagent System
Each robot is represented in the system by a drive
unit agent (DUA) and each station by an inventory
station agent (ISA). Systemwide resource allocation
is centralized in the Job Manager (JM), which also
communicates with the customer’s existing ware-
house-management system.5 Agents communicate
with each other through XML messages. Well over
100 message types are sent among the agents.

The JM receives customer orders that need to be
filled and assigns drives, pods, and stations to car-
ry out the tasks. Figure 4 illustrates the multiagent
nature of the architecture. The combination of the
resource allocation (in the JM) with task planning,
path planning, and motion planning (in the DUA)
is the control stack with abstraction layers typical-
ly seen in the literature (Simmons et al. 2002). The
ISA on the station computer manages the GUI and
the picking lights and communicates with the oth-
er agents to receive, request, and report accom-
plishment of its tasks. 

We found four rules useful in deciding how to
partition the system into agents: (1) Physical cor-
respondence: in most situations, it makes sense for
there to be one agent for each physically distinct
object. (2) Information encapsulation: each agent
should know just enough information to do its
job. This cuts down on the amount of information
that needs to be communicated or accessed
through the database.  (3) Single-agent ownership:
all of the important data elements are owned by
only one agent. Although multiple agents may
need the information, only one can permanently
change it and write it to the database. (4) Separa-
tion by job: when there is a resource allocation that
needs to be done whose antecedents and effects
can be separated from other tasks, it is a candidate
for encapsulating as a separate agent. 

These rules also guide feature implementation
because the information boundaries force some
types of solutions. The following example illus-
trates some of the above points. Suppose the JM
decides that drive X should deliver pod Y to station
Z so that the worker can pick a product off the A
face of pod Y. The JM tells the station to ask drive
X to fetch pod Y. The station does not need to
know where pod Y is located; if the drive unit does-

n’t already have pod Y, it will look up its location
and go fetch the pod. Similarly, when the station
asks drive X to present the A face of pod Y, it does
not tell the drive what it intends to do with pod Y,
only that it needs to see face A. Once the pick tasks
are complete, the station releases the pod, and the
DUA, if it has no other tasks for the pod, requests
a storage location.

The benefits of the multiagent architecture can
be divided into two classes: computational and or-
ganizational. The computational benefits include
a natural decomposition of the computation that
can be spread across as many servers as necessary.
In addition, the multiagent design makes it clear
where to focus effort when making the system ro-
bust to failures. Every agent must be able to handle
not just error responses but also the outright fail-
ure of the agents it communicates with. The orga-
nizational benefits include code compartmental-
ization, which makes it easier to know where to
put certain functionality. The multiagent design al-
so establishes clear boundaries of ownership
among the software developers. 

Path Planning
The grid constitutes a two-dimensional graph of
paths that may be given weights at design time.
The drive units use a standard implementation of
A* to plan paths to storage locations and invento-
ry stations. The DUAs also maintain a list of high-
level goals and are responsible for prioritizing the
goals and accomplishing them as efficiently as pos-
sible. For instance, more than one station may ask
for the same pod, and a station may ask to see
more than one face of a pod. The DUA decides
which station to visit first and in what sequence to
show the faces to minimize travel time. The DUA
uses a simple AI-style planner to make these deci-
sions.

Resource Allocation
Our overarching design goal is to keep the pickers
and replenishment workers as busy as possible
with the least amount of hardware, warehouse
space, and inventory on hand. One can imagine
keeping everyone busy by having 100 robots and a
complete copy of all of the products per worker,
but it would be unnecessarily expensive. Clearly,
good resource allocation algorithms are critical to
getting the work done with a cost-effective amount
of hardware.

Although one could describe the resource allo-
cation task as one large, global optimization prob-
lem, it is impractical to do so for a variety of rea-
sons. First, the resource allocation decisions must
be made in real time—there is no window in which
to do the offline computation because most cus-
tomers are receiving orders throughout the day for
same-day shipping and are constantly reprioritiz-
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ing jobs to match truck schedules. Second, the
problem descriptions are quite large and may in-
clude tens of thousands of orders and hundreds of
thousands of bin choices. Third, the optimal solu-
tion also depends on the actual paths and interac-
tions of the vehicles, which is dynamic. Fourth,
the system includes constant human interactions,
with their variable, and unpredictable, response
times. The human variability and the dynamic na-
ture of the rest of the system mean that any opti-
mized solution is likely to be fragile. 

Instead of attempting global optimization, we
take the approach of making decisions on the fly
using utility-based heuristics, where the utility is
measured as the cost to the warehouse owner. The
decisions that the system makes using utility met-
rics include job assignment, pick-task assignment,
replenishment-task assignment, and pod storage.

Job assignment is the task of assigning orders to
workers at stations. The system costs go down
when we can pick more than one item off a pod,
which is more likely to happen when the orders at
the station share common products. Thus, the
heuristic looks at the similarity of this job to other
jobs already assigned to the station. The assign-
ment problem is sometimes further constrained by
the fact that some stations or workers may have
specialized capabilities, like gift wrapping, that are
required by the order.

Pick-task assignment involves the following: once
a job is assigned to a station, we pick the pods and
drive units that will be used to bring over the prod-
ucts that go into the carton. The heuristic com-
bines distance and the number of needed products
that are available on the candidate pods when
making this selection decision.

Replenishment-task assignment. When the time
comes to replenish a case of product, the system
decides where to store it. There are obviously bin-
packing issues involved in selecting appropriate
bins based on the dimensions of the case, but there
are other features to consider, like the current lo-
cation of the pod.

Pod storage. When a station is done with a pod,
the system selects an open parking spot for the
pod. The location of the selected storage cell affects
not only the time to free up the current drive unit
but also the time it will take to deliver that pod the
next time it is needed. The heuristic balances these
costs and keeps the pods that are more likely to be
used closer to the stations and the pods with slow
products in the back of the room.

We believe that the utility-based approach gives
an unprecedented amount of flexibility and adapt-
ability to the system. The system runs well through
a wide range of configurations and operational
challenges. At one point during a deployment in a
customer’s warehouse, an electrician needed to
drive a large cherry picker onto the floor to do

some electrical work in the rafters. Using Kiva’s
software tools, we were able to block off a large area
of the floor and give the cherry picker access to the
pole. The system routed the robot traffic around
the keep-out zone and was able to continue to sup-
ply the workers with inventory so that they were
able to continue filling orders.

Fielded Systems
In the preceding sections, we used a hypothetical
warehouse to illustrate some of the drawbacks of
existing automation and contrast them with a Ki-
va implementation. We now present some results
from actual Kiva deployments, to the extent per-
mitted by the customers. In the spring of 2005, Ki-
va set up two small installations and ran each for
three months. Since both systems were pilots, we
did only minimal integration with the existing
warehouse-management systems. More recently,
Kiva installed a permanent system in a warehouse
in Pennsylvania for the office supply company Sta-
ples. 

The first pilot was conducted in a candy ware-
house that supplied samples to salespeople. In the
candy warehouse before the Kiva pilot, the picker
drove around the warehouse with a forklift fetch-
ing the needed products from pallet racks and re-
turned them to a sorting and packing station. With
the Kiva system, the worker remained at the sta-
tion while the candy samples came to her. The
picker did five to six times more orders with Kiva
than with the preexisting, manual system. By the
end of the pilot, the Kiva robots had expanded
through doorways into three different rooms of
the warehouse. The project was very successful,
and the warehouse manager at that facility did not
want the system taken out when the pilot contract
expired.

The second pilot took place in a distribution
center for Staples within the business unit that fills
delivery orders for office supplies. After a success-
ful three-month pilot that proved both the effec-
tiveness and robustness of the Kiva system, Staples
purchased a permanent installation for one of its
warehouses in Pennsylvania. This second system
came online during the summer of 2006 with 30
robots and five stations. Over the next three
months, the office supply company purchased
more Kiva equipment, until the system more than
quadrupled in size and now routinely accounts for
half of the facility’s output each day. At well over
150 robots working 24 hours day, we believe that
this warehouse represents the largest MVS in exis-
tence in a single facility. Most importantly to our
customer, pick workers on the Kiva side fill orders
at more than twice the rate of workers using the
old conveyorized system (West 2007). 

In the spring of 2007, Kiva and Staples brought
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a second facility online near Denver, Colorado.
This facility incorporated a new product from Kiva
called OrderFetch. In the Pennsylvania facility, a
single worker will build a carton, fill it, and then
push it onto the conveyor to be routed around the
building to quality control and shipping. With the
OrderFetch system, the conveyor is completely
eliminated. Instead, the cartons are transported
around the warehouse using the same robots that
move inventory. Figure 5 shows a station at which
the OrderFetch pods arrive at the worker’s left and
the inventory pods arrive in front of the worker.
Using the same laser and pick-to-light technologies
as a regular station, the Kiva system directs the
worker to move products from the inventory pod
to the totes or cartons. The robots are used to move
the OrderFetch pods through their life cycle: at the
induction station the carton is put on the pod, at
the picking station the carton is filled with inven-
tory, at the QC station the carton’s inventory is
verified, and finally at the shipping station the car-
ton is removed and put on a truck. The empty Or-

derFetch pod is now free to return to the induction
station to receive new, empty cartons.

In addition to these installations, Kiva has a per-
manent demonstration facility in Woburn, Massa-
chusetts, to showcase the many features of the
picking system. The demonstration warehouse has
several different station configurations, 250 inven-
tory pods, and 60 drive units. The facility also in-
cludes a vertical lift to demonstrate using the Kiva
system in conjunction with mezzanines. Figure 6
shows the demonstration facility.

Design and Development
The Kiva Material Handling System (MHS), includ-
ing all of the agents mentioned above and several
tools that are used by the warehouse staff to con-
trol the order flow and to manage the hardware,
was written in Java. A MySQL database is used to
persist the data, though the software can use any
SQL database. The vast majority of the software
was designed and written by a team of 13, led by
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Figure 5. An OrderFetch Station in Which the Worker Fills Totes from Inventory Pods. 

The same robots that move inventory move the tote pods.



two Ph.D.’s with AI backgrounds and two more
with expertise in control systems. The hardware
was designed by a similarly sized team of mechan-
ical and electrical engineers.

In addition to the MHS, we have developed an
elaborate simulation of the robotic fulfillment sys-
tem using a discrete event-programming language.
We use this tool to design customer installations
and to explore algorithms and analyze their sys-
temic impacts. The simulation includes detailed
modeling of the drive-unit motion, pod geometry,
and human operations and can be fed simulated
order data or actual customer data. We have simu-
lated installations with as many as 150 picking sta-
tions, 1,500 drive units, and 20,000 storage pods.
Such a facility would have the capacity of the
largest customer site we know of.

Although Kiva has built a working and cost-ef-
fective system for everyday use in warehouses,
there is plenty of room for improvement. To make
it easy for researchers to study MVS problems like
those found in the Kiva system, we have created an
open-source, stylized warehouse environment

called AlphabetSoup (Hazard, Wurman, and D’An-
drea 2006). The AlphabetSoup warehouse must
build words out of letter tiles. The letter tiles are
stored in buckets and moved around the ware-
house by bucketBots.6

Conclusion

So far, the Kiva system has been well received by
the marketplace. As the Kiva approach spreads
through the industry, there are likely to be many
interesting new computational and organization-
al problems that need to be solved. In this article,
we describe some of the interesting aspects of the
system that clearly draw on an AI heritage, while
highlighting some of the very challenging alloca-
tion and design problems. In addition to the is-
sues outlined here, there are a large number of ro-
botic research topics that would benefit systems
like Kiva’s.

We have found the opportunity to work on
systems involving hundreds of robots to be very
energizing, and we hope it will inspire others to
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Figure 6. The Kiva Demonstration Facility.



work on related issues. In the very near future, we
look forward to the opportunity to stand on an
observation platform in a Kiva deployment and
watch several hundred mobile robots busily get-
ting work done.
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Notes
1. It is an extraordinary engineering and scientific ac-
complishment that the Mars rovers are still in operation
three solar years past their expected useful lives.

2. This statistic is based on single-unit picks and has been
reproduced for extended periods in the Kiva test facility.

3. This statistic was verified when a small Kiva demon-
stration system was brought to a drugstore distribution
center where operators picked at nearly 700 lines per
hour.

4. The actual ratio of drive units to workers varies de-
pending on attributes of the products and order profiles.

5. Most of Kiva’s customers have existing warehouse-
management software that passes orders into the Kiva
system.

6. The project details and source code can be found at re-
search.csc.ncsu.edu/alphabetsoup/.
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The Fourth Conference The Fourth Conference 

on Artificial Intelligence on Artificial Intelligence 

and Interactive Digital Entertainmentand Interactive Digital Entertainment

AIIDE’08 — the Fourth Conference on Artificial Intelligence and
Interactive Digital Entertainment — is intended to be the defini-
tive point of interaction between entertainment software develop-
ers interested in AI and academic and industrial AI researchers. AI-
IDE’08 will include invited speakers, research and industry presen-
tations, project demonstrations, and product exhibits. While
traditionally emphasizing commercial computer and video games,
we invite researchers and developers to share their insights and cut-
ting-edge results on all topics at the interface of entertainment and
artificial intelligence, including serious games, entertainment ro-
botics, and beyond. Because AIIDE’08 crosses disciplinary bound-
aries, submissions will be evaluated based on their accessibility to
both commercial game developers and researchers in addition to
their technical merit. 

For details and a complete call for papers, please visit 
www.aaai.org/aiide08.php

AIIDE’08 is sponsored by the Association for the Advancement of Artificial Intelligence (AAAI).

October 22–24, 2008, Stanford University, Stanford, California


