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1. Introduction
Traditional inventory models focus on effective
replenishment strategies and typically assume that
the commodity’s price is exogenously determined.
In recent years, however, a number of industries
have used innovative pricing strategies to manage
their inventory effectively. For example, techniques
such as revenue management have been applied in the
airlines, hotels, and rental car agencies—integrating
price, inventory control, and quality of service, see
Kimes (1989). In the retail industry, to name another
example, dynamically pricing commodities can pro-
vide significant improvements in profitability, see
Gallego and van Ryzin (1994).
These developments call for models that integrate

inventory control and pricing strategies. These mod-
els are clearly important not only in the retail indus-
try, where price-dependent demand plays an impor-
tant role, but also in manufacturing environments
in which production/distribution decisions can be
complemented with pricing strategies to improve the
firm’s bottom line. In particular, the ability to dynam-
ically adjust prices is critical for products facing sea-
sonal demand and short product life cycle. In these
situations, the so-called “dynamic pricing” strategies
may have a huge impact on the performance of the
firm.
Of course, many papers address the coordination of

replenishment strategies and pricing policies, starting
with the work of Whitin (1955) who analyzed the cel-
ebrated newsvendor problem with price-dependent

demand. For a review, the reader is referred to Feder-
gruen and Heching (1999).
To date, the literature has confined itself mainly

to either (i) models with variable ordering costs but
no fixed costs; (ii) models in which inventory can-
not be carried over from one period to the next;
or (iii) models in which replenishment decisions are
made only at the beginning of the planning hori-
zon, see Federgruen and Heching (1999). Recently,
however, Chen and Simchi-Levi (2002a, b) analyzed
a fairly general inventory/pricing model. Specifically,
Chen and Simchi-Levi (2002a, b) consider a periodic
review, single-product model with stochastic demand.
Demands in different periods are independent of each
other, and their distributions depend on the prod-
uct price. Pricing and ordering decisions are made at
the beginning of each period, and all shortages are
backlogged. The ordering cost includes both a fixed
cost and a variable cost proportional to the amount
ordered. Inventory holding and shortage costs are
convex functions of the inventory level carried over
from one period to the next. The objective is to find an
inventory policy and pricing strategy that maximizes
expected profit over the entire planning horizon.
The model is similar to the model analyzed by

Federgruen and Heching (1999), except that the latter
assumes that the ordering cost is proportional to the
amount ordered and thus does not include a fixed-
cost component. In addition, the demand function
is assumed to be a linear function of the price, see
Lemma 1 in Federgruen and Heching (1999).
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The paper by Thomas (1974) also considers a peri-
odic review, finite-horizon model with a fixed order-
ing cost and stochastic, price-dependent demand.
The paper postulates a simple policy, referred to by
Thomas as �s� S�p�, which can be described as fol-
lows. The inventory strategy is an �s� S� policy: If the
inventory level at the beginning of period t is below
the reorder point, st� an order is placed to raise the
inventory level to the order-up-to level, St . Otherwise,
no order is placed. The price, p, depends on the ini-
tial inventory level at the beginning of the period.
Thomas provides a counterexample that shows that
with a “few prices” (i.e., when price is restricted to
a discrete set) this policy may fail to be optimal.
Thomas goes on to say: “If all prices in an inter-
val are under consideration, it is conjectured that a
�s� S�p� policy is optimal under fairly general condi-
tions” (p. 517).
In §2, we review the main assumptions of the

model analyzed by Chen and Simchi-Levi (2002a, b).
In §3 we characterize the optimal inventory and pric-
ing policies for additive demand functions. We show that
in this case the policy proposed by Thomas is indeed
optimal. In §4 we analyze general demand functions
that may be nonadditive. We demonstrate that in this
case the profit-to-go function is not necessarily k-
concave and an �s� S�p� policy is not necessarily opti-
mal. We introduce the concept of symmetric k-convex
functions and apply it to provide a characterization
of the optimal policy. Finally, in §5 we extend the
results obtained by Chen and Simchi-Levi (2002a) for
the finite-horizon model to the infinite-horizon case
under both discounted- and average-cost criteria.

2. The Model
Consider a firm that has to make production and pric-
ing decisions over either a finite-time horizon with
T periods or the infinite horizon. For convenience, in
the finite-horizon case, we index periods from 1 to T �

where 1 is the last period and T is the first period
of the planning horizon. Notice that for the infinite-
horizon case, we assume that all input parameters are
stationary.
Demands in different periods are independent of

each other. For each period t, t = 1�2 
 
 
 � let dt =

demand in period t, pt = selling price in period t, and
p
t
� p̄t = lower and upper bounds on pt , respectively.

We concentrate on demand functions of the following
forms:

Assumption 1. For t= 1�2� 
 
 
 � the demand function
satisfies

dt =Dt�pt� 
t� �= �tDt�pt�+�t� (1)

where 
t = ��t��t�, and �t��t are two random variables
with E��t�= 1 and E��t�= 0. The random perturbations,

t� are independent across time. Furthermore, Dt�pt� is a
strictly decreasing function of pt� and the expected rev-
enue, Rt�d� = dD−1

t �d�, is a concave function of expected
demand d.

Observe that, by scaling and shifting, the assump-
tions E��t� = 1 and E��t� = 0 can be made without
loss of generality. A special case of this demand func-
tion is the additive demand function. In this case,
the demand function is of the form dt = Dt�p�+�t


This implies that only �t is a random variable, while
�t = 1. Another special case of the demand function
(1) is a model with multiplicative demand. In this
case, the demand function is of the form dt = �tDt�p�,
where �t is a random variable. Finally observe that
special cases of the function Dt�p� include Dt�p�= bt−
atp (at > 0� bt > 0) in the additive case and Dt�p� =
atp

−bt (at > 0� bt > 1) in the multiplicative case; both
are common in the economics literature (see Petruzzi
and Dada 1999).
Let xt be the inventory level at the beginning of

period t, just before placing an order. Similarly, yt is
the inventory level at the beginning of period t after
placing an order. The ordering cost function includes
both a fixed cost and a variable cost and is calculated
for every t, t = 1�2� 
 
 
 � as

kt��yt −xt�+ ct�yt −xt��

where ��0� = 0 and ��u� = 1 for u > 0. Leadtime is
assumed to be zero and hence an order placed at
the beginning of period t arrives immediately before
demand for the period is realized.
Unsatisfied demand is backlogged. Let x be the

inventory level carried over from period t to the next
period. Because we allow backlogging, x may be pos-
itive or negative. A cost ht�x� is incurred at the end of
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period t that represents inventory holding cost when
x > 0 and shortage cost if x < 0. As is customary in
classic stochastic inventory problems, ht is assumed
to be convex.
The objective for the joint inventory/pricing prob-

lem is to decide on ordering and pricing policies so
as to maximize total expected discounted profit over
the entire planning horizon or the long-run average
profit for the infinite-horizon case.
To find the optimal strategy for the joint inven-

tory/pricing problem, let vt�x� be the maximum total
expected discounted profit (discounted relative to
period t) when t periods remain in the planning
horizon and the inventory level at the beginning of
period t is x for the finite-horizon problem. A natu-
ral dynamic program that can be applied to find the
policy for the joint inventory/pricing problem is as
follows. For t = 1�2� 
 
 
 � T �

vt�x�= ctx+max
y≥x

−kt��y−x�+ ft�y� pt�y�� (2)

with v0 = 0, where ! is the given discount factor,

ft�y� p� �= −cty+E
{
pDt�p� 
t�−ht�y−Dt�p� 
t��

+!vt−1�y−Dt�p� 
t��
}
�

and

pt�y� ∈ argmax
p̄t≥p≥p

t

ft�y� p�
 (3)

For technical reasons, we need the following
assumption on the fixed ordering cost, as is com-
monly imposed in the traditional stochastic inventory
problems.

Assumption 2. In the finite-horizon model, the fixed
ordering costs satisfy !kt−1 ≤ kt� for t = 2�3� 
 
 
 


3. Finite-Horizon Model with
Additive Demand

To characterize the optimal policy for the finite-
horizon model with additive demand functions, Chen
and Simchi-Levi (2002a) prove the following property.

Lemma 1. Suppose there is a finite value pt�y� that
maximizes (3) for any value of y. Then, y−Dt�pt�y�� is a
nondecreasing function of y.

The lemma thus implies that the higher the inven-
tory level at the beginning of time period t, yt , the
higher the expected inventory level at the end of
period t, yt −Dt�p�yt��. Using this property, together
with the definition of k-convex functions introduced
by Scarf (1960), Chen and Simchi-Levi (2002a) prove,

Theorem 3.1. For any t, t = T �T − 1� 
 
 
 �1� we
have
(a) ft�y� pt�y�� and vt�x� as k-concave.
(b) There exist st and St with st ≤ St such that it is

optimal to order St−xt and set the selling price pt = pt�St�
when xt < st , and not to order anything and set pt = pt�xt�
when xt ≥ st .

The theorem thus implies that the �s� S�p� pol-
icy introduced by Thomas (1974) is indeed optimal
for additive demand processes. An interesting ques-
tion is whether pt�y� is a nonincreasing function of
y. Unfortunately, this property, which holds for the
model with no fixed cost (see Federgruen and Hech-
ing (1999), does not hold for our model.

Proposition 1. The optimal price, pt�y�� is not neces-
sarily a nonincreasing function of y.

4. Finite-Horizon Model with
General Demand

In this section, we focus on the finite-horizon model
with general demand functions (1). Contrary to the
additive demand case, Chen and Simchi-Levi (2002a)
prove that

Lemma 2. There exists an instance of Problem (2) with
a multiplicative demand function and time-independent
parameters such that the functions fT−1�y� pT−1�y�� and
vT−1�x� are not k-concave.

Lemma 3. There exists an instance of Problem (2) with
multiplicative demand functions where an �s� S�p� policy
is not optimal.

To overcome these difficulties, Chen and Simchi-
Levi (2002a) propose a weaker definition of k-
convexity, referred to as symmetric k-convexity:
Definition 4.1. A real-valued function f is called

sym-k-convex for k≥ 0, if for any x0�x1� and "∈ #0�1$,

f
(
�1−"�x0+"x1

) ≤ �1−"�f �x0�+"f �x1�

+max
{
"�1−"

}
k
 (4)
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A function f is called sym-k-concave if −f is sym-k-
convex.
Observe that k-convexity, and hence convexity, is

a special case of sym-k-convexity. Interestingly, our
analysis of sym-k-convex functions reveals that these
functions have properties that are parallel to those
of k-convex functions. Specifically, based on proper-
ties of these functions, Chen and Simchi-Levi (2002a)
prove the following results.

Theorem 4.1. For any t� t = T �T − 1� 
 
 
 �1� we
have
(a) ft�y� pt�y�� and vt�x� as sym-k-concave.
(b) There exists st and St with st ≤ St and a set At ⊂

#st� �st +St�/2$, such that it is optimal to order St −xt and
set pt = pt�St� when xt < st or when xt ∈ At and not to
order anything and set pt = pt�xt� otherwise.

Theorem 4.1 thus implies that an �s� S�A�p� pol-
icy is the optimal policy for Problem (2) under gen-
eral demand processes. In such a policy, the optimal
inventory strategy is characterized by two parame-
ters st and St and a set At ⊂ #st� �st + St�/2$, possibly
empty. When the inventory level, xt� at the beginning
of period t is less than st or if xt ∈At� an order of size
St − xt is made. Otherwise, no order is placed. Thus,
it is possible that an order will be placed when the
inventory level xt ∈ #st� �st +St�/2$� depending on the
problem instance. On the other hand, if xt ≥ �st+St�/2�
no order is placed. Price depends on the initial inven-
tory level at the beginning of the period.

5. The Infinite-Horizon Case
In this section, we consider a model similar to the
one analyzed in the previous sections except that in
the infinite-horizon case all parameters are assumed
to be time independent. Of course, it is tempting to try
and extend the results of Theorem 4.1, which estab-
lishes the optimality of an �s� S�A�p� policy for the
finite-horizon general demand model, to the infinite-
horizon case. Surprisingly, the following theorem,

proved in Chen and Simchi-Levi (2002b), shows that
this intuition can be misleading.

Theorem 5.1. A stationary �s� S�p� policy is optimal
for both the additive demand model and the general demand
model under average- and discounted-cost criteria.

Thus, the theorem suggests that in the infinite-
horizon case, the optimal policy is an �s� S�p� policy,
independent of whether demand is additive or not.
Interestingly, our proof of the optimal policy for the
general demand model is based on two key results:
The first is that the long-run average (or discounted)
profit function is symmetric k-concave, suggesting
that a stationary �s� S�A�p� policy is optimal. Surpris-
ingly, our second result shows that in the infinite-
horizon case the set A is an empty set.

References
Chen, X., D. Simchi-Levi. 2002a. Coordinating inventory control

and pricing strategies with random demand and fixed order-
ing cost: The finite horizon case. Working paper, Operations
Research Center, Massachusetts Institute of Technology, Cam-
bridge, MA.
, . 2002b. Coordinating inventory control and pricing
strategies with random demand and fixed ordering cost: The
infinite horizon case. Working paper, Operations Researach
Center, Massachusetts Institute of Technology, Cambridge,
MA.

Federgruen, A., A. Heching. 1999. Combined pricing and inventory
control under uncertainty. Oper. Res. 47(3) 454–475.

Gallego, G., G. van Ryzin. 1994. Optimal dynamic pricing of inven-
tories with stochastic demand over finite horizons.Management
Sci. 40(8) 999–1020.

Kimes, S. E. 1989. A tool for capacity-constrained service firms.
J. Oper. Management 8(4) 348–363.

Petruzzi, N. C., M. Dada. 1999. Pricing and the newsvendor model:
A review with extensions. Oper. Res. 47 183–194.

Scarf, H. 1960. The optimality of �s� S� policies for the dynamic
inventory problem. Proc. 1st Stanford Sympos. Math. Methods in
the Soc. Sci., Stanford University Press, Stanford, CA.

Thomas, L. J. 1974. Price and production decisions with random
demand. Oper. Res. 26 513–518.

Whitin, T. M. 1955. Inventory control and price theory. Management
Sci. 2 61–80.

62 Manufacturing & Service Operations Management/Vol. 5, No. 1, Winter 2003


