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Abstract—Today’s data centers face two critical challenges. First, various customers need to be assured by meeting their required

service-level agreements such as response time and throughput. Second, server power consumption must be controlled in order to

avoid failures caused by power capacity overload or system overheating due to increasing high server density. However, existing work

controls power and application-level performance separately, and thus, cannot simultaneously provide explicit guarantees on both. In

addition, as power and performance control strategies may come from different hardware/software vendors and coexist at different

layers, it is more feasible to coordinate various strategies to achieve the desired control objectives than relying on a single centralized

control strategy. This paper proposes Co-Con, a novel cluster-level control architecture that coordinates individual power and

performance control loops for virtualized server clusters. To emulate the current practice in data centers, the power control loop

changes hardware power states with no regard to the application-level performance. The performance control loop is then designed for

each virtual machine to achieve the desired performance even when the system model varies significantly due to the impact of power

control. Co-Con configures the two control loops rigorously, based on feedback control theory, for theoretically guaranteed control

accuracy and system stability. Empirical results on a physical testbed demonstrate that Co-Con can simultaneously provide effective

control on both application-level performance and underlying power consumption.

Index Terms—Power control, power management, performance, virtualization, server clusters, data centers, control theory.
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1 INTRODUCTION

IN recent years, power control (also called power capping)
has become a serious challenge for data centers. Precisely

controlling power consumption is an essential way to avoid
system failures caused by power capacity overload or
overheating due to increasing high server density (e.g.,
blade servers). Since a cluster of high-density servers may
share the same power supplies when they locate in the same
rack enclosure, cluster-level power control is of practical
importance because an enclosure may need to reduce its
power budget at runtime in the event of thermal emergency
or a partial power supply failure. In addition, although
power provisioning is commonly used in data centers,
strictly enforcing various physical and contractual power
limits [2] is important because many data centers are
rapidly expanding the number of hosted servers while a
capacity upgrade of their power distribution systems has
lagged far behind. As a result, it can be anticipated that
high-density server enclosures in future data centers may
often need to have their power consumption dynamically
controlled under tight constraints. Furthermore, power
control can also reduce operating costs by having improved
performance/power ratio [3], which is critical to today’s
data centers, as the annual data center energy consumption
in the US is estimated to grow to over 100 billion kWh at a
cost of $7.4 billion by 2011 [4].

An effective way to control server power consumption is
to dynamically transition the hardware components from
high power states to low power states whenever the system
power consumption exceeds a given power budget. How-
ever, the situation is more complicated when we consider
the hosted commercial computing services running on the
servers. An important goal of data centers is to meet the
service-level agreements (SLAs) required by customers,
such as response time and throughput. SLAs are important
to operators of data centers because they are key perfor-
mance indicators for customer service and are part of the
customer commitments. Degrading the performance of the
hardware components solely for the consideration of power
may have a negative impact on the SLAs. For example, the
transition of processor power states in a server can be used
not only to control power consumption, but it also has
significant influence on the response time of a hosted web
service on the server. Therefore, the power consumption
and application-level performance of computing servers
must be controlled in a holistic way so that we can have
explicit guarantees on both of them.

Existing solutions to power and performance control for
enterprise servers approach the problem in two separate
ways. Performance-oriented solutions at the system level
focus on using power as a knob to meet application-level
SLAs while reducing power consumption in a best effort
manner [5], [6], [7], [8], [9]. However, those solutions do not
have any explicit monitoring and control of power con-
sumption. Consequently, they may violate specified power
constraints, and thus, result in undesired server shutdown.
On the other hand, power-oriented solutions treat power as
the first-class control target by adjusting hardware power
states with no regard to the SLAs of the application services
running on the servers [10], [3], [11], [12]. As a result,
existing solutions cannot simultaneously provide explicit
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guarantees on both application-level performance and
underlying power consumption.

Simultaneous power and performance control faces
several major challenges. First, in today’s data centers, a
power control strategy may come directly from a server
vendor (e.g., IBM) and is implemented in the service
processor firmware [3], without any knowledge of the
application software running on the server. On the other
side, a performance controller needs to be implemented in
the application software in order to monitor and control the
desired application-level performance, without direct ac-
cess to the system hardware. Therefore, it may not be
feasible to have a single centralized controller that controls
both application-level SLAs and underlying server power
consumption [13]. Instead, a coordinated control strategy is
more preferable. Second, many existing control strategies in
the system were designed with the assumption that the
system is controlled exclusively by this strategy. For
example, some servers may come with an already im-
plemented power control loop from the vendor. In that case,
other control loops (e.g., performance) need to be designed
accordingly to achieve the desired overall control functions.
Third, multiple high-density servers located within the
same rack enclosure share common power supplies and
may have different workload intensities. As a result,
cluster-level control solutions are needed to allow shifting
of power and workload for optimized system performance.
Fourth, as many data centers start to adopt virtualization
technology for resource sharing, application performance of
each virtual machine (instead of the entire server) needs to
be effectively controlled. Finally, as both power and
performance are critical to data centers, control accuracy
and system stability must be analytically assured.

In this paper, we propose Co-Con, a novel coordinated
control architecture that provides explicit guarantees on
both power and application-level performance for virtua-
lized high-density servers that share the same power
supplies in a cluster (e.g., an enclosure). Co-Con is designed
based on well-established control theory for theoretically
guaranteed control accuracy and system stability. Specifi-
cally, the contributions of this paper are fourfold:

. We design a coordinated control architecture that is
composed of a cluster-level power control loop and a
performance control loop for each virtual machine.
We configure different control loops to achieve the
desired power and performance control objectives.

. We model the application performance of virtual
machines and design the performance controller
based on the model. We analyze the impact of power
control on the performance model, and prove the
control accuracy and system stability of the perfor-
mance controller even in the face of model variations.

. We implement the cluster-level power control loop
and the performance control loops on a physical
testbed and provide the implementation details of
each component in our control architecture.

. We present empirical results to demonstrate that our
control solution can effectively control both the
power consumption of a cluster and the application
performance of all the virtual machines in the cluster.

The rest of the paper is organized as follows: Section 2
introduces the proposed Co-Con control architecture.
Section 3 presents the modeling, design, and analysis of
the performance controller. Section 4 introduces the
cluster-level power controller. Section 5 provides the
implementation details of each component in the control
loops. Section 6 presents our empirical results conducted
on a physical testbed. Section 7 highlights the distinction
of our work by discussing the related work. Finally,
Section 8 concludes the paper.

2 CO-CON: COORDINATED CONTROL

ARCHITECTURE

In this section, we give a high-level description of the Co-
Con coordinated control architecture.

An important feature of Co-Con is that it relies on
feedback control theory as a theoretical foundation. In recent
years, control theory has been identified as an effective tool
for power and performance control due to its analytical
assurance of control accuracy and system stability. Control
theory also provides well-established controller design
approaches, e.g., standard ways to choose the right control
parameters, such that exhaustive iterations of tuning and
testing can be avoided. Furthermore, control theory can be
applied to quantitatively analyze the control performance
(e.g., stability, settling time) even when the system model
changes significantly due to various system uncertainties
such as workload variations. This rigorous design metho-
dology is in sharp contrast to heuristic-based adaptive
solutions that heavily rely on extensive manual tuning.

As shown in Fig. 1, Co-Con is a two-layer control
solution, which includes a cluster-level power control loop
and a performance control loop for each virtual machine.

2.1 Cluster-Level Power Control

The cluster-level power controller dynamically controls the
total power consumption of all the servers in the cluster by
adjusting the CPU frequency of each server with Dynamic
Voltage and Frequency Scaling (DVFS). We choose to have
cluster-level power control because the total power con-
sumption of a cluster (e.g., an enclosure) needs to stay
below the capacity of the shared power supplies. In
addition, as shown in the previous work [11], [14], cluster-
level power shifting among different servers can lead to
better system performance. There are several reasons for us
to use processor DVFS as our actuation method in this
work. First, processors commonly contribute the majority of
total power consumption of a server [15]. As a result, the
processor power difference between the highest and lowest
power states is large enough to compensate for the power
variation of other components, and thus, can provide an
effective way for server power control. Second, DVFS has
small overhead while some other actuation methods like
turning on/off servers may lead to long delays and even
requires human intervention for security check or service
configurations, making them less feasible to be used in a
real data center, especially when application response time
is a concern. Finally, most today’s processors support
frequency scaling by DVFS or clock modulation [3] while
there are still very few real disks or memory devices that are
commercially available and allow power throttling. We plan
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to extend our control architecture to include other actuation
methods in our future work.

The cluster-level power control loop is invoked periodi-
cally as follows: 1) The cluster-level power monitor (e.g., a
power meter) measures the total power consumption of all
the servers in the last control period and sends the value to
the power controller. The total power consumption is the
controlled variable of the control loop. 2) Based on the
difference between the measured power consumption and
the desired power set point, the power controller computes
the new CPU frequency level for the processors of each
server, and then sends the level to the CPU frequency
modulator on each server. The CPU frequency levels are the
manipulated variables of the control loop. 3) The CPU
frequency modulator on each server changes the DVFS
level of the processors accordingly. The power controller
provides an interface to assign weights to different servers.
For example, the CPU allocation ratio of each server (i.e.,
percentage of CPU resource allocated to all the virtual
machines on the server) indicates the CPU utilization of the
server in the last control period, and can be provided to
the controller as weight to give more power to a server
whose ratio is higher than the average.

2.2 Performance Control

In the second layer, for every virtual machine on each
server, we have a performance controller that dynamically
controls the application performance of the virtual machine
by adjusting the CPU resource (i.e., fraction of CPU time)
allocated to it. In this paper, as an example SLA metric, we
control the response time of the web server installed in each
virtual machine, but our control architecture can be
extended to control other SLAs. In addition, we control
the average response time to reduce the impact of the long
delay of any single web request. However, our control
architecture can also be applied to control the worst-case or
90-percentile response time. We assume that the response
time of a web server is independent from that of another
web server, which is usually true because they may belong
to different customers. Hence, we choose to have a
performance control loop for each virtual machine. Our
control solution can be extended to handle multitier web
services by modeling the correlations between different
tiers, which is part of our future work. A cluster-level

resource coordinator is designed to utilize the live migration
[16] function to move a virtual machine from a server with
too much workload to another server for improved
performance guarantees.

The performance (i.e., response time) control loop on

each server is also invoked periodically. The following steps

are executed at the end of every control period:

1. The performance monitor of each virtual machine
measures the average response time of all the web
requests (i.e., controllable variable) in the last control
period, and then sends the value to the correspond-
ing performance controller.

2. The controller of each virtual machine computes the
desired amount of CPU resource (i.e., manipulated
variable) and sends the value to the CPU resource
allocator. Steps 1 and 2 repeat for all the virtual
machines on the server.

3. The CPU allocator calculates the total CPU resource
requested by the performance controllers of all the
virtual machines. If the server can provide the total
requested resource, all the requests are granted in
their exact amounts. Unallocated resource will not be
used by any virtual machines in this control period
and can be used to accept virtual machine migration.
If the requested resource is more than the available
resource, one or more selected virtual machines
(running low-priority web services) will be given less
resource than requested. If this situation continues for
a while, a migration request is sent to the cluster-level
CPU resource coordinator to move the selected
virtual machines to other servers.

4. The cluster-level coordinator tries to find other
servers with enough resource and migrates the
virtual machines.

Note that the focus of our paper is the coordination of the

performance and power controllers. Therefore, we adopt a

simple first-fit algorithm to find the first server with enough

resource for each virtual machine that needs to be migrated.

More advanced algorithms (e.g., [17], [18]) can be easily

integrated into our control architecture to maintain load

balancing among different servers while minimizing migra-

tion overhead. If the coordinator cannot find any servers
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Fig. 1. Coordinated power and performance control architecture for virtualized server clusters. Co-Con controls both power and application-level
performance by coordinating a cluster-level power controller and a performance controller for each virtual machine.



with enough resource, the migration request is declined. In
that case, admission control can be enforced to reject
selected requests for some low-priority virtual machines.
As a result, the desired response times can still be
guaranteed for high-priority virtual machines.

2.3 Coordination of Control Loops

Clearly, without effective coordination, the two control
loops (i.e., power and performance) may conflict with each
other. The CPU frequency manipulated by the power
controller will have a direct impact on the application
performance of all the virtual machines on the server. The
CPU resource allocated by the performance control loops
may influence the system power consumption as well. To
achieve the desired control functions and system stability,
one control loop, i.e., the primary loop, needs to be
configured with a control period that is longer than the
settling time of the other control loop, i.e., the secondary
loop. As a result, the secondary loop can always enter its
steady state within one control period of the primary
control loop. The two control loops are thus decoupled and
can be designed independently. The impact of the primary
loop on the secondary loop can be modeled as variations in
its system model, while the impact of the secondary loop on
the primary loop can be treated as system noise. As long as
the two control loops are stable individually, the whole
system is stable. In our design, we choose the power control
loop as the primary loop for three reasons. First, model
variations may cause the secondary loop to severely violate
its set point, which is less desirable for the power loop
because power limit violations may lead to the shutdown of
an entire cluster. Second, the impact of CPU frequency on
application performance is usually more significant than
the impact of CPU resource allocation on power consump-
tion, and thus, is more appropriate to be modeled as model
variations than system noise. Finally, the secondary control
loop needs to be designed based on the primary loop. In
this paper, the response time control loop is designed based
on the power control loop. In Co-Con, the control period of
the response time control loop is determined based on the
estimated execution time of typical web requests such that
multiple requests can be processed in a control period. The
control period of the power control loop is determined
based on the settling time of the response time control loop,
as analyzed in Section 3.3. The concrete values of the control
periods used in our experiments are provided in Section 5.

Since the core of each control loop is its controller, we
introduce the design and analysis of the two controllers in
the next two sections, respectively. The implementation
details of other components are provided in Section 5.

3 RESPONSE TIME CONTROLLER

In this section, we first introduce the system modeling and
design of the response time controller. We then present
control analysis to configure the response time control loop
to coordinate with the power control loop.

3.1 System Modeling

We first introduce some notations. Tr, the control period, is
selected to include multiple web requests. rðkÞ is the

average response time of all the web requests of the virtual
machine in the kth control period. Rs is the set point, i.e., the
desired response time for the virtual machine. aðkÞ is the
amount of CPU resource allocated to the virtual machine in
the kth control period. The virtual machine hypervisor uses
aðkÞ (e.g., the cap parameter in Xen [19]) to assign CPU
resource to the virtual machine. In the kth control period,
given the current average response time rðkÞ, the control
goal is to dynamically choose a CPU resource amount aðkÞ
such that rðkþ 1Þ can converge to the set point Rs after a
finite number of control periods.

The relationship between rðkÞ and aðkÞ is normally
nonlinear due to the complexity of computer systems. Since
nonlinear control can lead to unacceptable runtime over-
head, a standard way in control theory to handle such
systems is to linearize the system model by considering the
deviations of those variables from their respective operating
points [20]. Therefore, instead of directly using rðkÞ and aðkÞ
to model the system, we build a linear model by using their
differences with their operating points, r and a, which are
defined as the typical values of rðkÞ and aðkÞ, respectively.
Specifically, the controlled variable in the system model is
�rðkÞ ¼ rðkÞ � r. The desired set point is �Rs ¼ Rs � r. The
control error is eðkÞ ¼ �Rs ��rðkÞ. The manipulated
variable is �aðkÞ ¼ aðkÞ � a. An example way to choose
operating points in the system is to select the middle value
of a typical range of CPU resource amount as a, and then
measure the resultant average response time as r. To model
the dynamics of the controlled system, namely the relation-
ship between the controlled variable (i.e., �rðkÞ) and the
manipulated variable (i.e., �aðkÞ), we use a standard
approach to this problem called system identification [21].
Instead of trying to build a physical equation that is usually
unavailable for computer systems, we infer the relationship
by collecting data in experiments and establish a statistical
model based on the measured data.

Based on control theory, we use the following standard
difference equation to model the controlled system:

�rðkÞ ¼
X

m1

i¼1

bi�rðk� iÞ þ
X

m2

i¼1

ci�aðk� iÞ; ð1Þ

where m1 and m2 are the orders of the control output (i.e.,
�rðkÞ) and control input (i.e., �aðkÞ), respectively. bi and ci
are control parameters whose values need to be determined
by system identification.

For system identification, we need to first determine the
right orders for the system, i.e., the values of m1 and m2 in
the difference equation (1). The order values are normally a
compromise between model simplicity and modeling
accuracy. In this paper, we test different system orders as
listed in Table 1. For each combination of m1 and m2, we
generate a series of control inputs to stimulate the system
and then measure the control output in each control period.
Our experiments are conducted on the testbed introduced
in detail in Section 5. Based on the collected data, we use the
Least Squares Method (LSM) to iteratively estimate the values
of parameters bi and ci. The values in Table 1 are the
estimated accuracy of the models in terms of Root Mean
Squared Error (RMSE). We choose to have the orders of
m1 ¼ 1 and m2 ¼ 1 because this combination has a reason-
ably small error while keeping the orders low, as shown in
Table 1. We then use white noise to generate control inputs
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in a random fashion to validate the results of system
identification by comparing the actual system outputs and
the estimated outputs based on the model from system
identification. Fig. 2 demonstrates that the estimated out-
puts of the selected model are sufficiently close to the
measured actual system outputs. Therefore, the nominal
system model resulted from our system identification is

�rðkÞ ¼ b1�rðk� 1Þ � c1�aðk� 1Þ; ð2Þ

where b1 ¼ 0:71 and c1 ¼ 6:57 are control parameters

resulted from our experiments with the relative CPU

frequency (i.e., the CPU frequency relative to the highest

frequency) as 0.73. Note that the real model of the system

may be different from the nominal model at runtime due to

CPU frequency changes caused by the power control loop.

In Section 3.3, we analyze the impact and prove that the

system controlled by the controller designed based on the

nominal model can remain stable as long as the CPU

frequency change is within a certain range.

3.2 Controller Design

The goal of the controller design is to achieve system

stability, zero steady-state error, and short settling time

when the nominal system model (2) is accurate. Control

performance such as system stability can be quantitatively

analyzed when the system model varies due to the impact

of CPU frequency changes. The analysis is presented in

Section 3.3. Following standard control theory [21], we

design a Proportional-Integral-Derivative (PID) controller to

achieve the desired control performance such as system

stability and zero steady-state error. The PID controller

function in the Z-domain is

F ðzÞ ¼
K1z

2 �K2zþK3

zðz� 1Þ
; ð3Þ

where K1 ¼ �0:1312, K2 ¼ �0:0948, and K3 ¼ �0:0139 are

control parameters that are analytically chosen based on the

pole placement method [21] to achieve the desired control
performance. The time-domain form of the controller (3) is

�aðkÞ ¼ �aðk� 1Þ þK1eðkÞ �K2eðk� 1Þ þK3eðk� 2Þ:

ð4Þ

As shown in (4), the computational overhead of the designed
response time controller is just several multiplications and
additions. In a server cluster where each virtual machine has
a controller, the overhead of response time control is a linear
function of the number of virtual machines.

3.3 Control Analysis for Coordination with Power
Control Loop

A major contribution of this work is to coordinate different
control loops for achieving the desired power and perfor-
mance control objectives. As introduced before, we assume
that the power control loop is designed with no regard to the
application performance. Therefore, the design of perfor-
mance controller needs to account for the impact of the CPU
frequency changes caused by the power control loop.

Although the controlled system is guaranteed to be
stable when the system model (2) is accurate, stability has to
be guaranteed even when the model varies due to CPU
frequency changes. We first quantitatively investigate the
impact of CPU frequency on the system model by
conducting system identification under different CPU
frequencies. In our experiments, we find that parameter c1
in the nominal model (2) changes significantly when the
CPU frequency changes, while parameter b1 remains almost
the same with only negligible variations. This can be
explained from the systems perspective. Since aðkÞ is the
amount of CPU resource (i.e., fraction of CPU time)
allocated to the virtual machine, its contribution to response
time change�rðkÞ is affected by the current CPU frequency.
When the processors are running at a lower CPU frequency,
more CPU time is needed to achieve the same application
performance. Fig. 3 plots the relationship between the
parameter c1 and the relative CPU frequency. The linear
regression fits well (with R2 ¼ 0:961) with the curve.
Therefore, the actual system model under different CPU
frequencies is as follows:

�rðkÞ ¼ b1�rðk� 1Þ � c01�aðk� 1Þ; ð5Þ

where c01 ¼ 1=ð0:155f þ 0:041Þ is the actual control para-
meter and f is the current relative CPU frequency. f can be
treated as a constant for the performance control loop
because its settling time is designed to be shorter than the
control period of the power control loop.

WANG AND WANG: COORDINATING POWER CONTROL AND PERFORMANCE MANAGEMENT FOR VIRTUALIZED SERVER CLUSTERS 249
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Estimated Errors for Different Model Orders (Smaller Is Better)



There are three steps to analyze the stability of the
closed-loop system controlled by the response time con-
troller. First, we derive the controller function F ðzÞ
presented in (3), which represents the control decision
made based on the nominal model (2). Second, we derive
the closed-loop system transfer function by plugging the
controller F ðzÞ into the actual system (5). The closed-loop
transfer function represents the system response when the
controller is applied to a system whose model is different
from the one used to design the controller. Finally, we
derive the stability condition of the closed-loop system by
computing the poles of the closed-loop transfer function. If
all the poles are inside the unit circle, the system is stable
when it is controlled by the designed response time
controller, even when the real CPU frequency is different
from the frequency used to design the controller. We have
developed a Matlab program to perform the above analysis
automatically. Our results show that the system is guaran-
teed to be stable as long as the relative CPU frequency is
within the range of ½0:19; 1�. The details are presented in
Appendix A.1.2.

We now analyze the variation of system settling time
caused by the impact of CPU frequency changes. This
analysis is important because we need to select the control
period of the power control loop to be longer than the
settling time of the performance (i.e., response time) control
loop. As a result of control period configuration, the two
control loops can be decoupled and designed individually
to achieve global system stability. Note that the configura-
tion is a sufficient but not necessary condition for achieving
global stability for the coordinated control architecture.
The settling time analysis shares the first two steps in the
stability analysis presented above. After we derive the
closed-loop model, we test the closed-loop system with a
step input and compute the output. We then derive
the minimum m such that 8i > m; �rðiÞ ��Rsj j < s�Rs,
where s is a threshold used to define the system steady
state. In this paper, we use s ¼ 10%. The value of m is the
number of control periods for the system to enter the range
of �10 percent around the set point Rs (i.e., the steady
state). The number can then be multiplied with the control
period used by the performance control loop (6s in this
paper) to get absolute settling time. Fig. 4 plots the resultant
settling time when the controlled system is running under
different relative CPU frequencies. The controller is de-
signed to have a settling time of 12 s (two control periods)
when the relative CPU frequency is 0.73 (the middle vertical

dashed line). Fig. 4 shows that the settling time is within
24 s (i.e., four control periods) when the relative CPU
frequency is between 0.32 and 1. Therefore, we choose the
control period of the power control loop to be 24 s for a
trade-off between system response speed and allowed CPU
frequency range. To guarantee that the performance control
loop always enters the steady state within 24 s, the CPU
frequency must be limited within ½0:32; 1�. The intersection
range between this range and the range derived for system
stability is used as the frequency constraints for the power
control loop. The constraints are used by the power
controller to determine the CPU frequency of each server
in the cluster.

In our analysis, we have also proved that the controlled
system has zero steady-state error (i.e., the response time
converges to the desired set point) even when the system
model varies due to the impact of CPU frequency changes.
Similar analysis has also been applied to model the system
variations caused by different workload intensities. The
analysis is provided in Appendix A.1.1.

4 CLUSTER-LEVEL POWER CONTROLLER

In this section, we introduce the cluster-level power
controller that is designed without considering applica-
tion-level performance. The controller provides some
configuration interfaces including power set point, control
period, control weights, and CPU frequency constraints.
Our controller is designed based on the control algorithm
presented in [11].

4.1 System Modeling

We first introduce some notations. N is the total number of
servers in the cluster. Tp is the control period. piðkÞ is the
power consumption of Server i in the kth control period.
cpðkÞ is the total power consumption of all the servers in the
cluster, i.e., cpðkÞ ¼

PN
i¼1 piðkÞ. Ps is the power set point, i.e.,

the desired power constraint of the cluster. fiðkÞ is the
relative CPU frequency of the processors of Server i in the
kth control period. �fiðkÞ is the frequency change, i.e.,
�fiðkÞ ¼ fiðkþ 1Þ � fiðkÞ. The control goal is to guarantee
that cpðkÞ converges to Ps within a certain settling time.

Using the system identification approach [21], the power
consumption of Server i is modeled as

piðkþ 1Þ ¼ piðkÞ þ ai�fiðkÞ; ð6Þ

where ai is a generalized parameter whose concrete value
may vary for different servers and workloads.
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The system model (6) has been validated with pseudor-
andom digital white noise inputs [21]. The total power
consumption, cpðkþ 1Þ, is the sum of the power consumed
by each individual server:

cpðkþ 1Þ ¼ cpðkÞ þA�fðkÞ; ð7Þ

where A ¼ ½a1 . . . aN � and
�fðkÞ ¼ ½�f1ðkÞ . . . �fNðkÞ�

T .

4.2 Controller Design

We apply the Model Predictive Control (MPC) theory [22] to
design the controller. MPC is an advanced control techni-
que that can deal with coupled Multi-Input Multi-Output
(MIMO) control problems with constraints on the plant and
the actuators. This characteristic makes MPC well suited for
power control in a cluster.

An MPC controller optimizes a cost function defined over
a time interval in the future. The controller uses a system
model to predict the control behavior over P control
periods, called the prediction horizon. The control objective
is to select an input trajectory that minimizes the cost
function while satisfying the constraints. An input trajectory
includes the control inputs in the following M control
periods, �fðkÞ, �fðkþ 1jkÞ, . . .�fðkþM� 1jkÞ, where
M is called the control horizon. The notation xðkþ ijkÞmeans
that the value of variable x at time ðkþ iÞTp depends on the
conditions at time kTp, where Tp is the control period. Once
the input trajectory is computed, only the first element
�fðkÞ is applied as the control input to the system. At the
end of the next control period, the prediction horizon slides
one control period and the input is computed again based
on the feedback cpðkÞ from the power monitor. Note that it
is important to recompute the control input because the
original prediction may be incorrect due to uncertainties
and inaccuracies in the system model used by the controller.

At the end of every control period, the controller
computes the control input �fðkÞ that minimizes the
following cost function:

V ðkÞ ¼
X

P

i¼1

kcpðkþ ijkÞ � refðkþ ijkÞk2QðiÞ

þ
X

M�1

i¼0

k�fðkþ ijkÞ þ fðkþ ijkÞ � Fmaxk
2

RðiÞ;

ð8Þ

where P is the prediction horizon, M is the control horizon,
QðiÞ is the tracking error weight, andRðiÞ is the control penalty
weight vector.

The first term in the cost function (8) represents the
tracking error, i.e., the difference between the total power
cpðkþ ijkÞ and a reference trajectory refðkþ ijkÞ. The
reference trajectory defines an ideal trajectory along which
the total power cpðkþ ijkÞ should change from the current
value cpðkÞ to the set point Ps (i.e., power budget of the
cluster). The controller is designed to track an exponential
reference trajectory [22] so that the closed-loop system
behaves like a linear system. By minimizing the tracking
error, the closed-loop system will converge to the power set
point Ps if the system is stable.

The second term in (8), i.e., the control penalty term,
causes the controller to optimize system performance by

minimizing the difference between the highest frequency
levels, Fmax, and the new frequency levels, fðkþ iþ 1jkÞ ¼
�fðkþ ijkÞ þ fðkþ ijkÞ, along the control horizon. The
control weight vector, RðiÞ, is commonly configurable and
can be tuned to represent preference among servers. A
major difference between our work and the algorithm
presented in [11] is that we set the weight of Server i as
ariðkÞ, the CPU allocation ratio of Server i in the kth control
period. Specifically, ariðkÞ ¼

PNi

j¼1 ajðkÞ, where Ni is the
number of virtual machines on Server i and ajðkÞ is the
amount of CPU resource allocated to the jth virtual
machine on Server i. The rationale is that ariðkÞ is the total
requested CPU resource to achieve the desired response
times for all the virtual machines on Server i. A large ariðkÞ
means that the server has already allocated most of its CPU
resource (i.e., CPU time), and thus, needs a higher power
budget such that the server can run at a higher CPU
frequency. If the server is already running at the highest
CPU frequency and the available CPU resource is still not
enough to achieve the desired response times for all the
virtual machines on the server, one or more virtual
machines will be moved to other servers by the cluster-
level CPU resource coordinator, as introduced in Section 2.

This control problem is subject to two constraints. First,
the relative CPU frequency of each server should be within
an allowed range. This range is a configurable parameter
provided to consider the available hardware frequency
range of the specific processors used in each server. In
this paper, different from [11], we also need to consider
the CPU frequency range derived in Section 3.3 to achieve
system stability and the desired settling time for the
response time controller. The intersection of the two ranges
is used as the CPU frequency constraint for each server.
Second, the total power consumption should not be higher
than the desired power constraint. The two constraints are
modeled as follows:

Fmin;j � �fjðkÞ þ fjðkÞ � Fmax;j ð1 � j � NrÞ

cpðkþ 1Þ � Ps:

This control problem can be transformed to a standard
constrained least-squares problem [22]. The transformation
is similar to that of [11] and not shown due to the space
limitations. The controller can then use a standard least-
squares solver to solve the optimization problem online. In
our system, we implement the controller based on the
lsqlin solver in Matlab. The computational complexity of
lsqlin is polynomial in the number of servers and the
control and prediction horizons. The overhead measure-
ment of lsqlin can be found in [23].

The controller is designed based on the nominal system
model (7), where the value of each ai is the result of system
identification using a typical workload. The actual value of ai
in a real system may change for different workloads and is
unknown at design time. Similar to that of the response time
controller, system stability needs to be reevaluated when the
power controller is used to control a system with a different
model. Stability analysis can be conducted by following the
steps presented in Section 3.3. As presented inAppendixA.2,
our results show that the system can remain stable as long as
the variation of ai is within the range: ð0; 8:8ai�.

WANG AND WANG: COORDINATING POWER CONTROL AND PERFORMANCE MANAGEMENT FOR VIRTUALIZED SERVER CLUSTERS 251



5 SYSTEM IMPLEMENTATION

In this section, we introduce our testbed and the imple-
mentation details of the two control loops.

5.1 Testbed

Our testbed includes a cluster of four physical computers
that are named Server1 to Server4. A fifth computer named
Storage is used as the storage server for the Network File
System (NFS). Storage is not part of the cluster. All the
computers run Fedora Core 8 with Linux kernel 2.6.21.
Server1 and Server 3 are each equipped with 4 GB RAM
and an AMD Opteron 2222SE processor, which supports
eight frequency levels from 1 GHz to 3 GHz. Server2 and
Server4 are each equipped with 4 GB RAM and an Intel
Xeon X5160 processor, which has four frequency levels
from 2 GHz to 3 GHz. All the servers are connected via an
Ethernet switch.

Xen 3.1 is used as the virtual machine monitor on all the
four servers in the cluster. Each virtual machine (VM) is
configured with two virtual CPUs and is allocated 512 MB
of RAM. An Apache server is installed in each VM and runs
as a virtualized web server. The Apache servers respond to
the incoming HTTP requests with a dynamic webpage
written in PHP. This example PHP file runs a set of
mathematical operations. On each server, Xen is configured
to allow and accept VM live migration [16], which is used to
move VMs from one server to another without stopping the
web services. To support live migration, the VMs are
configured to have their virtual hard disks on Storage via
NFS. This configuration allows a VM to find its virtual hard
disk in the same place before and after a live migration.
Initially, Server1 is configured to have three VMs. Server2 is
idling with no VMs. In our live VM migration experiment, a
VM on Server1 is dynamically moved to Server2, when
there is no enough CPU resource on Server1 to meet the
response time requirements of all the three VMs.

The client-side workload generator is the Apache HTTP
server benchmarking tool (ab), which is designed to stress
test the capability of a particular Apache installation. This
tool allows users to change the concurrency level, which is
the number of requests to perform in a very short time to
emulate multiple clients. A concurrency level of 60 is used
to do system identification while various concurrency levels
(detailed in Section 6) are used in our experiments to stress
test our system. The workload generator runs on Storage.

5.2 Control Components

We now introduce the implementation details of each
component in our two control loops.

Response time monitor. To eliminate the impact of
network delays, we focus on controlling the server-side
response time in this paper. The response time monitor is
implemented as a small daemon program that runs in each
VM. The monitor periodically inserts multiple sample
requests into the HTTP requests that are received from the
client-side workload generator. Two time stamps are used
when a sample request is inserted andwhen the correspond-
ing response is received. The average time difference is used
as the server-side response time, which is sent to the
corresponding response time controller.

Response time controller. As introduced in Section 2,
there is a response time controller for every VM. The
controller implements the control algorithm presented in
Section 3. A server-level daemon program written in Perl
sequentially runs the controller of every VM on the physical
server and computes the total CPU resource requested by
all the VMs. If the total requested resource keeps exceeding
the available resource of the server for a while, a migration
request is sent to the cluster-level resource coordinator.
Otherwise, the daemon program calls the CPU resource
allocator to enforce the desired CPU allocation based on
the CPU resource requests. The control period of the
response time controller is selected to be 6 seconds such
that multiple HTTP requests can be processed. The
maximum allowed response time is 800 ms. To give some
leeway to the Apache web servers, the set point of
the response time controller (i.e., the desired response time)
is selected to be 700 ms.

CPU resource allocator. We use Credit Scheduler [19],
Xen’s proportional share scheduler, to allocate the available
CPU resource. In Credit Scheduler, each VM is assigned a
cap and a weight. The value of cap represents the upper limit
of CPU time (in percentage) that can be allocated to the VM.
A cap of 40 means that the VM is allowed to consume at
most 40 percent time of a core of a dual-core CPU, while a
cap of 200 means 100 percent time of both the two cores.
The value of weight is used to give preference among
different VMs. In this paper, we use cap to allocate CPU
resource and use the same fixed weight for all the VMs.

Power monitor. The power consumption of the entire
cluster is measured with a WattsUp Pro power meter,
which has an accuracy of 1.5 percent of the measured value.
The power meter samples the power data every second and
then sends the reading to the cluster-level power controller
through a system file /dev/ttyUSB0.

Power controller. In our experiments, the cluster-level
power controller is a C program running on Storage. It
receives the total power consumption of the cluster from the
power monitor and runs the power control algorithm
presented in Section 4. The controller parameters include
the prediction horizon as 8 and the control horizon as 2.
Based on the analysis in Section 3.3, the longest settling time
of the response time control loop is 24 secondswhen the CPU
frequency varies within a wide range. The control period of
the power controller is therefore selected to be 24 seconds.
Various power set points are used in our experiments.

CPU frequency modulator. In this paper, we use AMD’s
Cool‘n’Quiet technology and Intel’s SpeedStep technology
to enforce the desired CPU DVFS level. In Linux systems, to
change CPU DVFS level, one needs to install the cpufreq
package and then use the root privilege to write the new
level into the system file /sys/devices/system/cpu/cpu0/cpufreq/
scaling_setspeed. However, this is more complicated with the
Xen virtual machine monitor because Xen lies between
the Linux kernel and the hardware, and thus, prevents the
kernel from directly modifying the hardware register. In
this work, the source code of Xen 3.1 has been hacked to
allow the modification.1
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1. A recently released version of Xen already has built-in support for
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The Intel and AMD CPUs used in our experiments
support only several discrete frequency levels. However,
the new CPU frequency level periodically received from the
power controller could be any value that is not exactly one
of the supported frequency levels. Therefore, the modulator
code must resolve the output value of the controller to a
series of supported frequency levels to approximate the
desired value. For example, to approximate 2.89 GHz
during a control period, the modulator would output a
sequence of supported levels: 2.67, 3, 3, 2.67, 3, 3, etc., on a
smaller timescale. The detailed modulator algorithm can be
found in [3].

6 EMPIRICAL RESULTS

In this section, we present our empirical results. We first
evaluate the response time controller. We then examine the
simultaneous power and response time control provided by
Co-Con. Finally, we stress test Co-Con in two important
scenarios: power budget reduction at runtime (e.g., due to
thermal emergency) and live VM migration.

6.1 Response Time Control

In this experiment, we disable the power controller to
evaluate the response time controllers of the three VMs on
Server1. Fig. 5 shows a typical run of the response time
control loops. At the beginning of the run, the controllers of
the three VMs all achieve the desired response time set
point, i.e., 700 ms, after a short settling time. At time 600 s,
the workload of VM2 increases significantly. This is
common in many web applications. For example, breaking
news on a major newspaper website may incur a huge
number of accesses in a short time. To stress test the
performance of our controller in such an important scenario,

we increase the concurrency level of VM2 from 60 to 90
between time 600 s and time 1,200 s to emulate the workload
increase. The suddenly increased workload causes VM2 to
violate its response time limit at time 600 s. The response
time controller of VM2 responds to the violation by
allocating more CPU resource to VM2. As shown in
Fig. 5b, the CPU resource allocated to VM2 is increased
from around 35 (i.e., 35 percent CPU time) to around 55. As a
result, the response time of VM2 converges to 700 ms again.
Without the controller, the response time of VM2 would
increase to approximately 1,000 ms, which is significantly
longer than the maximum allowed response time (i.e.,
800 ms). At time 1,200 s, the concurrency level of VM2
returns to 60, leading to an unnecessarily short response
time. The controller of VM2 then reduces the CPU resource
allocated to VM2. Note that reducing VM2’s resource is
necessary because the CPU resource could be allocated to
other VMs if they have increased workloads. In Fig. 5, we
can see that the response times of VM1 and VM3 are not
influenced by the workload variations occurred to VM2,
which validates our design choice of having a response time
controller for each virtual machine.

As discussed in Section 3.3, our response timemodel is the
result of system identification with a CPU frequency of 0.73
and a concurrency level of 60. To test the robustness of the
response time controller when it is applied to a system that is
different from the one used to do system identification, we
conduct two sets of experiments with wide ranges of CPU
frequency and concurrency level, respectively. Fig. 6a shows
the average response times (with standard deviations)
achieved by the controllers when the CPU frequency varies
from 0.63 to 0.93. Fig. 6b shows that less CPU resource is
needed to achieve the same response times when CPU
frequency is higher. Fig. 7 is the result when the concurrency
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Fig. 5. A typical run of the response time controllers under a workload increase to VM2 from time 600 to 1,200 s. Response time of VM2 is controlled
to 700 ms by increasing its CPU resource allocation. (a) Response times. (b) CPU allocation.

Fig. 6. (a) Response times and (b) CPU allocation of the VMs under different CPU frequencies. The controllers can effectively achieve the set point
(700 ms) even when the CPU frequency is changed for power control.



level varies from 50 to 75. The controllers also achieve the
desired response times and usemoreCPU resourcewhen the
concurrency level is higher. The two sets of experiments

demonstrate that the response time controllers work effec-
tively to achieve the desired response times for all the VMs
even when the actual system model is different from the
nominal model used to design the controller.

6.2 Coordinated Power and Response Time Control

An important contribution of Co-Con is that it can provide
simultaneous control of power and application-level re-
sponse time forvirtualized server clusters. In this experiment,
we enable both the response time controllers and the power
controller to examine Co-Con’s control functions. Fig. 8
shows a typical run of Co-Con. At the beginning of the run,
power is lower than the 640W set point while response times
are longer than the 700 ms set point. Co-Con increases the

power consumption of the cluster by running the servers at
higher CPU frequencies for improved performance. As a
result, the response times are reduced significantly and
become lower than the set point. Co-Con then adjusts CPU
resourceallocationof theVMs toachieve thedesired response
times. Fig. 8a shows the response times of the three VMs on

Server1.VMsonother servers have similar results and arenot
shown due to the space limitations. After the transient state,
both the power consumption of the cluster and the response
timesofall theVMsareprecisely controlled to their respective
set points.

In a data center, a server cluster may be given different
power budgets at different times. For example, a cluster
with multiple power supplies may need to reduce its power
budget in the case of a partial failure of its power supply
subsystem. Therefore, it is important for Co-Con to
precisely control power for different power set points and
achieve the desired application-level performance at the
same time. We test Co-Con under a wide range of power set
points (from 550 to 650 W). Fig. 9a plots the average
response times of the three VMs on Server1 with standard
deviations, while Fig. 9b shows the average power con-
sumption of the cluster with standard deviations. This
experiment demonstrates that Co-Con can simultaneously
provide explicit guarantees on both power (with very small
deviations) and application-level response times.

6.3 Power Budget Reduction at Runtime

In this experiment, we stress test Co-Con in a scenario that
is important to data centers. In this scenario, the power
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Fig. 7. (a) Response times and (b) CPU allocation of the VMs under different workloads. The controllers can effectively achieve the desired set point
(700 ms) even when the workload concurrency level changes.

Fig. 8. A typical run of Co-Con. Both power and response times have been successfully controlled to their respective desired set points (700 ms for
response times and 640 W for power consumption). (a) Response times. (b) Power consumption of the cluster.

Fig. 9. Response times and power consumption of Co-Con under different power budgets. Co-Con successfully controls both power and response
times to the desired set points. (a) Response times. (b) Power consumption of the cluster.



budget of the cluster needs to be reduced at runtime due to

various reasons such as failures of its cooling systems or its

power supply systems. The power budget is then raised

back after the problem is fixed.
For comparison, we first run a baseline called PowerOnly,

which has only the power controller used in Co-Con,

without the response time controllers. In PowerOnly, each

VM has a fixed amount of CPU resource that is configured to

achieve the desired response time initially. PowerOnly

represents a typical power-oriented solution that is designed

with no regard to application-level performance. Fig. 10a

shows that PowerOnly can effectively reduce power by

lowering the CPU frequencies of the servers, when the

budget is reduced from 640 to 560W at time 600 s. However,

without explicit performance control, lowering CPU fre-

quency has a negative impact on the application-level

response times. As shown in Fig. 10b, PowerOnly has

unnecessary short response times before the power budget

reduction and violates the maximum allowed limit (i.e.,

800 ms) afterward. Note that a solution with only perfor-

mance control would also fail because it could not effectively

reduce power during the budget reduction and so would

result in undesired server shutdown.
We then test Co-Con in the same scenario. Fig. 10c shows

that Co-Con can effectively control power even though the

budget is reduced and raised back. In the meantime, Co-

Con dynamically adjusts CPU resource allocated to the VMs

to control the application-level response times. As a result,

all the VMs achieve the desired response time (i.e., 700 ms),

on average, and stay below the maximum allowed limit

most of the time, as shown in Fig. 10d. This experiment

demonstrates that Co-Con can simultaneously provide

robust power and response time guarantees despite power

budget reduction at runtime.

6.4 Power and Performance Control during Live
Migration of Virtual Machine

As introduced in Section 2, if the total requested CPU
resource from all the VMs on a server keeps exceeding the
available resource of the server for a certain period of time,
the cluster-level resource coordinator will move selected
VMs to other servers that have enough CPU resource. In
this experiment, we test Co-Con in this scenario. At the
beginning of the run, Server1 has three VMs while Server2
has no VMs. At time 600 s, the power budget of the cluster
is reduced from 620 to 550 W, which causes all the servers
to have lower CPU frequencies, and thus, longer response
times. The response time controllers on Server1 try to
allocate more CPU resource to their respective VMs to
achieve the desired set point. However, due to the lowered
CPU frequency, the available CPU resource is no longer
enough for all the three VMs. VM3 has the lowest priority
web services and is thus selected to receive less resource
than requested. Fig. 11a shows that VM3’s response time
becomes much longer than the set point (700 ms) and also
violates the maximum allowed limit (800 ms) after the
budget reduction at time 600 s. After the violation continues
for 600 seconds, a migration request is sent to the cluster-
level CPU resource coordinator at time 1,200 s. The
coordinator then moves VM3 to Server2. Fig. 11b shows
that VM3 achieves its desired set point after the migration.
This experiment demonstrates that Co-Con, as a cluster-
level control solution, can distribute workload among
virtualized servers in the cluster to effectively control the
response times of the VMs even when the CPU resource of
a single server is not enough to provide the desired
performance guarantee. Previous work [11] has also
demonstrated that cluster-level power control can lead to
improved application performance by shifting power
among servers.
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Fig. 10. Comparison between PowerOnly and Co-Con in terms of response times and power consumption, when power budget is reduced at runtime
(e.g., due to failures) between time 600 and 1,200 s. PowerOnly violates the response time limit (800 ms) while Co-Con successfully controls both
power and response times. (a) Power consumption of the cluster under PowerOnly. (b) Response times under PowerOnly. (c) Power consumption of
the cluster under Co-Con. (d) Response times under Co-Con.



7 RELATED WORK

Control theory has been successfully applied to control
power or cooling for enterprise servers [10], [24]. For
example, Lefurgy et al. [3] have shown that a control-
theoretic solution outperforms a commonly used heuristic-
based solution by having more accurate power control and
better performance. Wu et al. [12] manage power by
controlling the synchronizing queues in multiclock-domain
processors. Wang and Chen [11] develop a MIMO control
algorithm for cluster-level power control. Several research
projects have also proposed algorithms to control power
consumption of mainmemory [25] and chipmultiprocessors
[26]. Those projects are different from our work because they
control power consumption only, and thus, cannot provide
guarantees for application-level performance.

Some prior work has proposed control-theoretic ap-
proaches to controlling application-level SLAs by using
power as a knob. For example, Horvath et al. [27] use
dynamic voltage scaling (DVS) to control end-to-end delay in
multitier web servers. Sharma et al. [8] apply control theory
to control application-level quality of service requirements.
Chen et al. [6] also present a feedback controller to manage
the response time in a server cluster. Wang et al. [9] control
response times for virtualized servers. Although they all use
control theory to manage system performance and reduce
power consumption, they do not provide any absolute
guarantee on power consumption. Some recent works [28],
[29], [30] present heuristic solutions to manage power in
virtualized environments. In contrast, we develop control
strategies based on rigorous control theory.

Recently, Kephart et al. have proposed a coordinated
management strategy to achieve trade-offs between power
and performance for a single nonvirtualized server [13].
Kusic et al. present a power and performance management
strategy based on lookahead control [31]. In contrast, our
coordinated architecture is a cluster-level solution that
provides explicit guarantees on both power and perfor-
mance for virtualized server clusters. Raghavendra et al.
[32] present a multilevel coordinated power management
framework at the cluster level. In contrast to their work that
focuses only on power and system-level resource utiliza-
tions, we explicitly control application-level SLAs, i.e., the
response time of web requests. In addition, while their work
is evaluated only based on simulations, we present
extensive empirical results to demonstrate the efficacy of
our control architecture.

Feedback control theory has also been applied to other
computing systems. A survey of feedback performance
control in various computing systems is presented in [33].
Control techniques have been applied to operating systems
[34], real-time systems [35], storage systems [36], networks
[37], Internet servers [20], and virtualized computing
systems [38]. While all the aforementioned works are
designed to control certain performance metrics, our
coordinated control architecture can simultaneously pro-
vide explicit guarantees on both application-level perfor-
mance and power consumption.

8 CONCLUSIONS

Existing solutions to power and performance control for
enterprise servers approach the problem in two separate
ways. Performance-oriented solutions at the system level
focus on meeting application-level performance require-
ments while reducing power consumption in a best effort
manner. On the other hand, power-oriented solutions treat
power as the first-class control target while trying to
maximize the system performance. As a result, these
solutions cannot simultaneously provide explicit guarantees
onbothapplication-level performanceandunderlyingpower
consumption. In this paper, we have presented Co-Con, a
cluster-level control architecture that coordinates individual
power and performance control loops to explicitly control
both power and application-level performance for virtua-
lized server clusters. To emulate the current practice in
today’s data centers, the power control loop changes hard-
ware power states with no regard to the application-level
performance. The performance control loop is then designed
for each virtual machine to achieve the desired performance
even when the system model varies significantly due to the
impact of power control. The two control loops are config-
ured rigorously, based on feedback control theory, for
theoretically guaranteed control accuracy and system stabi-
lity. Empirical results demonstrate that Co-Con can simulta-
neously provide effective control on both application-level
performance and underlying power consumption.

APPENDIX

A.1 STABILITY ANALYSIS FOR RESPONSE TIME

CONTROL LOOP

A fundamental benefit of the control-theoretic approach is
that it gives us theoretical confidence for system stability,
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Fig. 11. Response times of the VMs during the live migration of VM3. Co-Con migrates the lowest priority VM (VM3) from Server1 to Server2, when a
runtime power budget reduction makes it infeasible to achieve the desired response times for all the VMs on Server1 solely by CPU resource
allocation. (a) Response times of the VMs on Server1. (b) Response times of the VMs on Server2.



even when the system model may change at runtime. In this
appendix, we evaluate the system stability of the response
time controller when the nominal system model (i.e., (2))
varies due to two reasons: 1) workload variations and
2) CPU frequency change caused by the power control loop.

A.1.1 Stability Analysis for Workload Variations

We now outline the detailed steps to analyze the stability
when the system model changes due to workload variations
(e.g., varying concurrency levels).

1. We first get the actual system model by conducting
automated system identification on the web server
in the target virtual machine. The actual system
model is in the following format:

�rðkÞ ¼ b01�rðk� 1Þ � c01�aðk� 1Þ; ð9Þ

where b01 and c01 are the actual parameters that may be
different from b1 and c1 in the nominal model (2). The
Z-domain form of the actual system model is

GðzÞ ¼
�RðzÞ

�AðzÞ
¼

�c01
z� b01

; ð10Þ

where �RðzÞ and �AðzÞ are the Z-transform of
�rðkÞ and �aðkÞ, respectively.

2. The controller function F ðzÞ presented in (3) in
Section 3.3 represents the control decisionmadebased
on the nominal model (2). We then derive the closed-
loop system transfer function by plugging the
controller into the actual system. The closed-loop
transfer function represents the system response
when the controller is applied to a system whose
model is different from the one used to design the
controller. The closed-loop transfer function is

HðzÞ ¼
F ðzÞGðzÞ

1þ F ðzÞGðzÞ

¼
�c01K1z

2 þ c01K2z� c01K3

z3 � ðc01K1 þ b01 þ 1Þz2 þ ðc01K2 þ b01Þz� c01K3

:

ð11Þ

3. Finally, we derive the stability condition of the
closed-loop system (11). According to control theory,
the closed-loop system is stable if all the poles of (11)
locate inside the unit circle in the complex space. The
poles are calculated as the roots of the denominator
in (11), i.e., the following equation:

z3 � ðc01K1 þ b01 þ 1Þz2 þ ðc01K2 þ b01Þz� c01K3 ¼ 0:

ð12Þ

The stability condition of applying the controller de-
signed based on the nominal model (2) to the actual system
with a different system model can be stated as: if the roots
of (12) all locate inside the unit circle in the complex space,
the controlled system is stable.

Example. In our experiments, our controller is designed
based on a nominal workload with a concurrency level
of 60. Therefore, our controller function is (3) with

parameters as K1 ¼ �0:1312, K2 ¼ �0:0948, and K3 ¼
�0:0139. We now analyze the system stability when the
controller is used to control a different workload with a
50 percent higher concurrency level. By following Step 1
given above, we get the actual system model with the
real workload as (9) with parameters as b01 ¼ 0:3124 and
c01 ¼ 14:0992, which are significantly different from b1
and c1 (in (2)) used to design the controller. By following
Step 2, we derive the closed-loop transfer function of the
actual system as

GðzÞ ¼
�14:0992

z� 0:3124
: ð13Þ

By following Step 3, we substitute b01, c
0
1, K1, K2, and K3

into (12) and get the closed-loop poles as �0:2736,
0:1882� 0:0920i. Since all the poles locate inside the unit
circle, the closed-loop system has been proved to be stable
even the real workload has a 50 percent higher concurrency
level. We have developed a script to analyze system
stability automatically using numerical methods.

A.1.2 Stability Analysis for CPU Frequency Variations

In Section 3.3, we have outlined the three general steps used
to evaluate the system stability when the CPU frequency
varies due to power control. The detailed steps are similar
to the three steps in Appendix A.1.1, except that CPU
frequency variation leads to a different actual system
model. As analyzed in Section 3.3, the actual system model
under CPU frequency variation is in the following format:

�rðkÞ ¼ b1�rðk� 1Þ � c01�aðk� 1Þ; ð14Þ

where c01 ¼ 1=ð0:155f þ 0:041Þ is the actual control para-
meter and f is the current relative CPU frequency. f can be
treated as a constant for the performance control loop
because its settling time is designed to be shorter than the
control period of the power control loop. By following the
three steps in Appendix A.1.1, we derive the closed-loop
system poles as the roots of the following equation:

z3 � ðc01K1 þ b1 þ 1Þz2 þ ðc01K2 þ b1Þz� c01K3 ¼ 0: ð15Þ

We then substitute c01 into (15) and get the following
equation:

z3 �

�

K1

0:155f þ 0:041
þ b1 þ 1

�

z2

þ

�

K2

0:155f þ 0:041
þ b1

�

z�
K3

0:155f þ 0:041
¼ 0:

ð16Þ

Since b1,K1,K2, andK3 all are constants,we canderive the
roots of the equation as a function of the relative CPU
frequency f . As long as all the roots locate inside the unit
circle in the complex space, the controlled system is stable.
Therefore, the stability condition of the controlled system is
now a function of f . Considering that we have 0 < f � 1 in
real computer systems,weuse a numericalmethod as a script
to automatically examine all the possible frequencies in the
rangeof (0, 1]witha small step. In eachstep, the scriptuses the
frequency value to compute the roots of (16) and then checks
whether they locate inside the unit circle. By doing that, we
have derived the stability range as 0:19 � f � 1.
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A.2 STABILITY ANALYSIS FOR POWER CONTROL

LOOP

In this section, we analyze the stability of the cluster-level
power controller when the system model (i.e., system
parameter ai) may change due to different workloads and
server configurations. In model predictive control, we say
that a system is stable if the total power cpðkÞ converges to
the desired set point Ps, that is, limk!1 cpðkÞ ¼ Ps. Our MPC
controller solves a finite horizon optimal tracking problem.
Based on optimal control theory, the control decision is a
linear function of the current power value, the power set
point of the cluster, and the previous decisions for CPU
frequency levels.

An important observation from our experiments is that
the system has an approximately linear relationship
between the power consumption and the CPU frequency
within a feasible range, even when the system is running
different workloads or on different servers. This has
confirmed the same observation reported in [3]. Based on
this observation, we mathematically analyze the impact of
model variations on system stability. Without loss of
generality, we model the real system as

cpðkþ 1Þ ¼ cpðkÞ þ ½g1a1 . . . gNaN �

�f1ðkÞ

..

.

�fNðkÞ

2

6

4

3

7

5
; ð17Þ

where g1, g2, . . . , gN are system gains and are used to model
the variations between the actual system model (17) and
the nominal model (7). We investigate system stability
when a controller designed based on the nominal model (7)
is used to control the real system (17). The steps are similar
to the three steps in Appendix A.1.1 and skipped due to the
space limitations.

Example.Wenowapply the stability analysis approach to the
server cluster used in our experiments,which is composed
of four servers.We design theMPC controller by using the
nominal parameters A ¼ diag½56:1; 66:9; 66:9; 66:9�. To
analyze the system stability when the designed controller
is used to control a different workload with a different
systemmodel, we derive the range ofG in which all of the
poles of the composite system are within the unit circle.

We use two example ways to conduct this proof. First,
we can assume that all servers in the cluster have a uniform
workload variation, i.e., G ¼ gI. By following the steps
stated above, we derive the range of g as 0 < g � 8:8. It
means that a system controlled by the MPC controller
designed in our experiments can remain stable as long as its
system parameters (i.e., ai; . . . ; aN ) are smaller than 8.8
times of the values used to design the controller.

In the case that servers in a cluster havedifferentworkload
variations, our secondwayof analyzing the systemstability is
to assume that only one server has workload variations at a
certain time. We conduct the analysis for each server and
compute the range of gi as follows:

0 < g1 � 42:1; ð18Þ

0 < g2; g3; g4 � 29:9: ð19Þ

Therefore, we have proved that a system controlled by
our designed controller can remain stable even it has two
kinds of workload variations. The system stability with
other workload variation patterns can be proved in a similar
way. In our stability analysis, we assume that the con-
strained optimization problem is feasible, i.e., there exists a
set of CPU frequency levels within the acceptable ranges
that can make the total power consumption equal to its set
point. If the problem is infeasible, no control algorithm can
guarantee the set point through CPU frequency adaptation.
In that case, the system may need to integrate with other
adaptation mechanisms (e.g., disk or memory throttling),
which is part of our future work.
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