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Abstract

We consider a firm (e.g., retailer) selling a single nonperishable product over a finite-period

planning horizon. Demand in each period is stochastic and price-dependent, and unsatisfied

demands are backlogged. At the beginning of each period, the firm determines its selling price

and inventory replenishment quantity, but it knows neither the form of demand dependency on

selling price nor the distribution of demand uncertainty a priori, hence it has to make pricing and

ordering decisions based on historical demand data. We propose a nonparametric data-driven

policy that learns about the demand on the fly and, concurrently, applies learned information

to determine replenishment and pricing decisions. The policy integrates learning and action in

a sense that the firm actively experiments on pricing and inventory levels to collect demand

information with the least possible profit loss. Besides convergence of optimal policies, we show

that the regret, defined as the average profit loss compared with that of the optimal solution

when the firm has complete information about the underlying demand, vanishes at the fastest

possible rate as the planning horizon increases.
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1 Introduction

Balancing supply and demand is a challenge for all firms, and failure to do so can directly affect

the bottom-line of a company. From the supply side, firms can use operational levers such as

production and inventory decisions to adjust inventory level in pace of uncertain demand. From

the demand side, firms can deploy marketing levers such as pricing and promotional decisions

to shape the demand to better allocate the limited (or excess) inventory in the most profitable

way. With the increasing availability of demand data and new technologies, e.g., electronic data

interchange, point of sale devices, click stream data etc., deploying both operational and marketing

levers simultaneously is now possible. Indeed, both academics and practitioners have recognized

that substantial benefits can be obtained from coordinating operational and pricing decisions. As

a result, the research literature on joint pricing and inventory decisions has rapidly grown in recent

years, see, e.g., the survey papers by Petruzzi and Dada (1999), Elmaghraby and Keskinocak (2003),

Yano and Gilbert (2003), and Chen and Simchi-Levi (2012).

Despite the voluminous literature, the majority of the papers on joint optimization of pricing

and inventory control have assumed that the firm knows how the market responds to its selling

prices and the exact distribution of uncertainty in customer demand for any given price. This is

not true in many applications, particularly with demand of new products. In such settings, the

firm needs to learn about demand information during the dynamic decision making process and

simultaneously tries to maximize its profit.

In this paper, we consider a firm selling a nonperishable product over a finite-period planning

horizon in a make-to-stock setting that allows backlogs. In each period, the firm sets its price and

inventory level in anticipation of price-sensitive and uncertain demand. If the firm had complete

information about the underlying demand distribution, this problem has been studied by, e.g.,

Federgruen and Heching (1999), among others. The point of departure this paper takes is that the

firm possesses limited or even no prior knowledge about customer demand such as its dependency on

selling price or the distribution of uncertainty in demand fluctuation. We develop a nonparametric

data-driven algorithm that learns the demand-price relationship and the random error distribution

on the fly. We also establish the convergence rate of the regret, defined as the average profit loss

per period of time compared with that of the optimal solution had the firm known the random

demand information, and that is fastest possible for any learning algorithm. This work is the first

to present a nonparametric data-driven algorithm for the classic joint pricing and inventory control

problem that not only shows the convergence of the proposed policies but also the convergence rate

for regret.
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1.1 Related literature

Almost all early papers in joint pricing and inventory control, e.g., Whitin (1955), Federgruen and

Heching (1999), and Chen and Simchi-Levi (2004), among others, assume that a firm has com-

plete knowledge about the distribution of underlying stochastic demand for any given selling price.

The complete information assumption provides analytic tractability necessary for characterizing

the optimal policy. The extension to the parametric case (the firm knows the class of distribu-

tion but not the parameters) has been studied by, for example, Subrahmanyan and Shoemaker

(1996), Petruzzi and Dada (2002), and Zhang and Chen (2006). Chung et al. (2011) also consider

the problem of dynamic pricing and inventory planning with demand learning, and they develop

learning algorithms using Bayesian method and Markov chain Monte Carlo (MCMC) algorithms,

and numerically evaluate the importance of dynamic pricing. An alternative to the parametric ap-

proach is to model the firm’s problem in a nonparametric setting. Under this framework, the firm

does not make specific assumptions about underlying demand. Instead, the firm makes decisions

solely based on the collected demand data, see Burnetas and Smith (2000). Our work falls into this

category.

To our best knowledge, Burnetas and Smith (2000) is the only paper that considers the joint

pricing and inventory control problem in a nonparametric setting. The authors consider a make-

to-stock system for a perishable product with lost sales and linear costs, and propose an adaptive

policy to maximize average profit. They assume that the price is chosen from a finite set and

formulate the pricing problem as a multi-armed bandit problem, and show that the average profit

under their approximation policy converges in probability. No convergence rate or performance

bound is obtained for their algorithm.

Other approaches in the literature on developing nonparametric data-driven algorithms include

online convex optimization (Agarwal et al. 2011, Zinkevich 2003, Hazan et al. 2006), continuum-

armed bandit problems (Auer et al. 2007, Kleinberg 2005, Cope 2009), and stochastic approxima-

tion (Kiefer and Wolfowitz 1952, Lai and Robbins 1981, and Robbins and Monro 1951). In fact,

Burnetas and Smith (2000) is an example of implementing such algorithms to the joint pricing and

inventory control problem. However, these methodologies require that the proposed solution be

reachable in each and every period, which is not the case with our problem. This is because, in a

demand learning algorithm of joint pricing/inventory control problem, in each period the algorithm

utilizes the past demand data to prescribe a pricing decision and an order up-to level. However, if

the starting inventory level of the period is already higher than the prescribed order up-to level,

then the prescribed inventory level for the period cannot be reached. Actually, that is precisely

the reason that Burnetas and Smith (2000) focused on the case of perishable product (hence the
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firm has no carry-over inventory and the inventory decision obtained by Burnetas and Smith (2000)

based on multi-armed bandit process can be implemented in each period). Agarwal et al. (2011),

Auer et al. (2007), and Kleinberg (2005) propose learning algorithms and obtain regrets that are

not as good as ours in this paper. Zinkevich (2003) and Hazan et al. (2007) present machine learn-

ing algorithms in which the the exact gradient of the unknown objective function at the current

decision can be computed, and their results have been applied to dynamic inventory control in Huh

and Rusmevichientong (2009). However, in the joint pricing and inventory control problem with

unknown demand response, the gradient of the unknown objective function cannot be obtained

thus the method cannot be applied.

1.2 Positioning of this paper

The closest related research works to ours are Besbes and Zeevi (2015), Levi et al. (2007) and Levi

et al. (2010), offering nonparametric approaches to pure pricing problem (with no inventory) and

pure inventory control problem (with no pricing), respectively.

Besbes and Zeevi (2015) consider a dynamic pricing problem in which a firm chooses its selling

price to maximize expected revenue. The firm does not know the deterministic demand curve (i.e.,

how the average demand changes in price) and learns it through noisy demand realizations, and the

authors establish the sufficiency of linear approximations in maximizing revenue. They assume that

the firm has infinite supply of inventory, or, alternatively, the seller has no inventory constraint.

In this case, since the expected revenue in each period depends only on its mean demand, the

distribution of random error is immaterial in their learning algorithm and analysis. On the other

hand, in the dynamic newsvendor problem considered in Levi et al. (2007, 2010), the essence for

effective inventory management is to strike a balance between overage cost and underage cost,

for which the distribution of uncertain demand plays a key role. Levi et al. (2007) and Levi et

al. (2010) apply Sample Average Approximation (SAA) to estimate the demand distribution and

average cost function, and they analyze the relationship between sample sizes and accuracy of

estimations and inventory decisions.

Our problem has both dynamic pricing and inventory control, and the firm knows neither the

relationship between demand and selling price nor the distribution of demand uncertainty. In

Besbes and Zeevi (2015), the authors only need to estimate the average demand curve in order

to maximize revenue, and demand distribution information is irrelevant. In a remark, Besbes and

Zeevi (2015) state that their method of learning the demand curve can be applied to maximizing

more general forms of objective functions beyond the expected revenue which, however, does not

apply to our setting. This is because, in the general form presented in Besbes and Zeevi (2015),
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the objective function still has to be a known function in terms of price and the demand curve

for a given price and a given demand curve. Thus the firm must know the exact expression of

the objective function when the estimate of a demand curve is given. In our problem, even with a

given price and inventory level and a given demand curve, the objective function cannot be written

as a known deterministic function. Indeed, this function contains the expected inventory holding

and backorder costs that depend on the distribution of demand fluctuation, which is also unknown

to the firm. In fact, the latter is a major technical challenge encountered in this paper because,

as we will explain below, the estimation of the demand uncertainty, therefore also of the expected

holding/shortage cost, cannot be decoupled with the estimation of the average demand curve, which

is gathered through price experimentation.

Standard SAA method is implemented to the newsvendor problem by Levi et al. (2007) and

Levi et al. (2010) which, however, cannot be applied to our setting for determining inventory

decisions. In Levi et al. (2007) and Levi et al. (2010), dynamic inventory control is studied in

which pricing is not a decision and it is assumed (implicitly) to be given. The only information the

firm is uncertain about is the distribution of random fluctuation. Therefore, the firm can observe

true realizations of demand fluctuation which are used to build an empirical distribution. In our

model, however, the firm knows neither how average demand responds to the selling price (demand

curve) nor the distribution of fluctuating demand, but both of them affect demand realizations.

For any estimation of average demand curve, the error of this estimate will affect the estimation of

distribution of random demand fluctuation. Hence, through the realization of random demand we

are unable to obtain a true realization of random demand error without knowing the exact average

demand function. As a result, the standard SAA analysis is not applicable in our setting because

unbiased samples of the random error cannot be obtained.

Because the firm does not know the exact demand curve a priori, its estimate of error distribu-

tion using demand data is inevitably biased, and as a result, the data-driven optimization problem

constructed to compute the pricing and ordering strategies is also biased. Because of this bias, it is

no longer true that the solution of the data-driven problem using SAA must converge to the true

optimal solution. Fortunately, we are able to show that as the learning algorithm proceeds, the

biases will be gradually diminishing and that allows us to prove that our learning algorithm still

converges to the true optimal solution. This is done by establishing several important properties

of the newsvendor problem that bound the errors of biased samples. One main contribution of

this paper is to explicitly prove that the solution obtained from a biased data-driven optimization

problem still converges to the true optimal solution.

Finally, we highlight on the result of the convergence rate of regret. Besbes and Zeevi (2015) ob-

tain a convergence rate of T−1/2(log T )2 for their dynamic pricing problem, where T is the length of
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the planning horizon. For the pure dynamic inventory control problem, Huh and Rusmevichientong

(2009) present a machine learning algorithm with convergence rate T−1/2. For the joint pricing

and inventory problem, we show that the regret of our learning algorithm converges to zero at rate

T−1/2, which is also the theoretical lower bound. Thus, this paper strengthens and extends the

existing work by achieving the tightest convergence rate for the problem with joint pricing and

inventory control. One important implication of our finding is that the linear demand approxi-

mation scheme of Besbes and Zeevi (2015) actually achieves the best possible convergence rate of

regret, which further improves the result of Besbes and Zeevi (2015). That is, nothing is lost in

the learning algorithm in approximating the demand curve by a linear model.

1.3 Organization

The rest of this paper is organized as follows. Section 2 formulates the problem and describes

the data-driven learning algorithm for pricing and inventory control decisions. The following two

sections (Sections 3 and 4) present our major theoretical results together with a numerical study,

and the main steps of the technical proofs, respectively. The paper concludes with a few remarks

in Section 5. Finally, the details of the mathematical proofs are given in the Appendix.

2 Formulation and Learning Algorithm

We consider an inventory system in which a firm (e.g., a retailer) sells a nonperishable product over

a planning horizon of T periods. At the beginning of each period t, the firm makes a replenishment

decision, denoted by the order-up-to level, yt, and a pricing decision, denoted by pt, where yt ∈ Y =

[yl, yh] and pt ∈ P = [pl, ph] for some known lower and upper bounds of inventory level and selling

price, respectively. We assume ph > pl since otherwise, the problem is the pure inventory control

problem and learning algorithms have been developed in Huh and Rusmevichientong (2009), Levi

et al. (2007), and Levi et al. (2010). During period t and when the selling price is set to pt, a

random demand, denoted by D̃t(pt), is realized and fulfilled from on-hand inventory. Any leftover

inventory is carried over to the next period, and in case the demand exceeds yt, the unsatisfied

demand is backlogged. The replenishment leadtime is zero, i.e., an order placed at the beginning

of a period can be used to satisfy demand in the same period. Let h and b be the unit holding and

backlog costs per period, and the unit purchasing cost is assumed, without loss of generality, to be

zero.

The model as described above is the well-known joint inventory and pricing decision problem

studied in Federgruen and Heching (1999), in which it is assumed that the firm has complete
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information about the distribution of D̃t(pt). In this paper we consider a setting where the firm

does not have prior knowledge about the demand distribution.

In general, the demand in period t is a function of selling price pt in that period and some

random variable ε̃t, and it is stochastically decreasing in pt. The most popular demand models in

the literature are the additive demand model D̃t(pt) = λ̃(pt) + ε̃t and multiplicative demand model

D̃t(pt) = λ̃(pt) ε̃t, where λ̃(·) is a strictly decreasing deterministic function and ε̃t, t = 1, 2, . . . , T,

are independent and identically distributed random variables. In this paper, we shall study both

additive and the multiplicative demand models. However, the firm knows neither the function λ̃(pt)

nor the distribution function of random variable ε̃t. The firm has to learn from historical demand

data, that are the realizations of market responses to offered prices, and use that information

as a basis for decision making. Suppose ε̃t has finite support [l, u], with l ≥ 0 for the case of

multiplicative demand.

To define the firm’s problem, we let xt denote the inventory level at the beginning of period

t before replenishment decision. We assume that the system is initially empty, i.e., x1 = 0. The

system dynamics are xt+1 = yt− D̃t(pt) for all t = 1, . . . , T . An admissible policy is represented by

a sequence of prices and order-up-to levels, {(pt, yt), t ≥ 1}, where (pt, yt) depends only on realized

demand and decisions made prior to period t, and yt ≥ xt, i.e., (pt, yt) is adapted to the filtration

generated by {(ps, ys), D̃s(ps); s = 1, . . . , t− 1}. The firm’s objective is to find an admissible policy

to maximize its total profit.

If both the function of λ̃(·) and the distribution of ε̃t are known a priori to the firm (complete

information scenario), then the optimization problem the firm wishes to solve is

max
(pt, yt) ∈ P × Y

yt ≥ xt

T∑
t=1

(
ptE[D̃t(pt)]− hE[yt − D̃t(pt)]

+ − bE[D̃t(pt)− yt]+
)
, (1)

where E stands for mathematical expectation with respect to random demand D̃t(pt), and x+ =

max{x, 0} for any real number x. However, since in our setting the firm does not know the demand

distribution, the firm is unable to evaluate the objective function of this optimization problem.

We develop a data-driven learning algorithm to compute the inventory control and pricing

policy. It will be shown in Section 3 that the average profit of the algorithm converges to that of

the case when complete demand distribution information is known a priori, and that the pricing

and inventory control parameters also converge to that of the optimal control policy for the case

with complete information as the planning horizon becomes long. To save space we shall only

present the algorithm and analytical results for the multiplicative demand model. The results and

analyses for the additive demand case are analogous, and we only highlight the main differences at

the end of this section.
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Remark 1. For ease of exposition, in this paper we assume the support of uncertainty ε̃t is bounded.

This can be relaxed, and all the results hold as long as we assume the moment generating functions

of the relevant random variables are finite in a small neighborhood of 0, or light tailed.

Case of complete information about demand. In the case of complete information in

which the firm knows λ̃(·) and the distribution of ε̃t, it follows from (1) that, if (p∗, y∗) is the

optimal solution of each individual term

max
p∈P,y∈Y

{
pE[D̃t(p)]− hE[y − D̃t(p)]

+ − bE[D̃t(p)− y]+
}
. (2)

and that this solution is reachable in every period, i.e., xt ≤ y∗ for all t, then (p∗, y∗) is the optimal

policy for each period. We refer to p∗ and y∗ as the optimal price and optimal order up-to level (or

optimal base-stock level), respectively. It is clear that the reachability condition is satisfied if the

system is initially empty, which we assume.

We find it convenient to analyze (2) using a slightly different but equivalent form. Taking

logarithm on both sides of D̃t(pt) = λ̃(pt)ε̃t, we obtain

log D̃t(pt) = log λ̃(pt) + log ε̃t, t = 1, . . . , T.

Denote Dt(pt) = log D̃t(pt), λ(pt) = log λ̃(pt) and εt = log ε̃t. Then, the logarithm of demand can

be written as

Dt(pt) = λ(pt) + εt, t = 1, . . . , T. (3)

We shall refer to λ(·) as the demand-price function (or demand-price curve) and εt as random error

(or random shock). Clearly, λ(·) is also strictly decreasing in p ∈ P. Hence, in the case of complete

information, the firm knows the function λ(·) and the distribution of εt, and when the firm does

not know function λ(·) and the distribution of εt, which is our case, the firm will need to learn

about them. Without loss of generality, we assume E[εt] = E[log ε̃t] = 0. If this is not the case,

i.e., E[log ε̃t] = a 6= 0, then E[log(e−αε̃t)] = 0, thus if we let λ̂(·) = eaλ̃(·) and ε̂t = e−aε̃t, then

D̃t(pt) = λ̂(pt)ε̂t, and λ̂(·) and ε̂t satisfy the desired properties.

For convenience, let ε be a random variable distributed as ε1. In terms of λ(·) and ε, we define

G(p, y) = peλ(p)E
[
eε
]
−
{
hE
[
y − eλ(p)eε

]+
+ bE

[
eλ(p)eε − y

]+}
.

Then problem (2) can be re-written as

Problem CI: max
p∈P,y∈Y

G(p, y) (4)

= max
p∈P

{
peλ(p)E

[
eε
]
−min

y∈Y

{
hE
[
y − eλ(p)eε

]+
+ bE

[
eλ(p)eε − y

]+}}
.
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The inner optimization problem (minimization) determines the optimal order-up-to level that min-

imizes the expected inventory and backlog cost for given price p, and we denote it by y
(
eλ(p)

)
. The

outer optimization solves for the optimal price p. Let the optimal solution for (4) be denoted by

p∗ and y∗, then they satisfy y∗ = y(eλ(p∗)).

The analysis above stipulates that the firm knows the demand-price curve λ(p) and the distri-

bution of ε, thus we refer to it as problem CI (complete information).

Learning algorithm. In the absence of the prior knowledge about the demand process,

the firm needs to collect the demand information necessary to estimate λ(p) and the empirical

distribution of random error ε, thus price and inventory decisions not only affect the profit but also

the demand information realized. The major difficulty lies in that, the estimations of demand-price

curve λ(p) and the distribution of random error cannot be decoupled. This is because, the firm

only observes realized demands, hence with any estimation of demand-price curve, the estimation

error transfers to the estimation of the random error distribution. Indeed, we are not even able to

obtain unbiased samples of the random error εt.

In our algorithm below we approximate λ(p) by an affine function, and construct an empirical

(but biased) error distribution using the collected data. We divide the planning horizon into stages

whose lengths are exponentially increasing (in the stage index). At the start of each stage, the firm

sets two pairs of prices and order-up-to levels based on its current linear estimation of demand-price

curve and (biased) empirical distribution of random error, and the collected demand data from this

stage are used to update the linear estimation of demand-price curve and the biased empirical

distribution of random error. These are then utilized to find the pricing and inventory decision for

the next stage.

The algorithm requires some input parameters v, ρ and I0, with v > 1, I0 > 0, and 0 < ρ ≤
2−3/4(ph − pl)I1/4

0 . To initiate the algorithm, it sets {p̂1, ŷ11, ŷ12}, where p̂1 ∈ P, ŷ11 ∈ Y, ŷ12 ∈ Y
are the starting pricing and order-up-to levels. For i ≥1, let

Ii = bI0v
ic, δi = ρ(2Ii−1)−

1
4 , and ti =

i−1∑
k=1

2Ik with t1 = 0, (5)

where bI0v
ic is the largest integer less than or equal to I0v

i.

The following is the detailed procedure of the algorithm. Recall that xt is the starting inventory

level at the beginning of period t, pt is the selling price set for period t, and yt (≥ xt) is the order-up-

to inventory level for period t, t = 1, . . . , T . The number of learning stages is n =
⌈

logv

(
v−1
2I0v

T+1
)⌉
,

where dxe denotes the smallest integer greater than or equal to x.

Data-Driven Algorithm (DDA)
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Step 0. Initialization. Choose v > 1, ρ > 0 and I0 > 0, and p̂1, ŷ11, ŷ12. Compute I1 = bI0vc,
δ1 = ρ(2I0)−

1
4 , and p̂1 + δ1.

Step 1. Setting prices and order-up-to levels for stage i. For i = 1, . . . , n, set prices pt,

t = ti + 1, . . . , ti + 2Ii, to

pt = p̂i, t = ti + 1, . . . , ti + Ii,

pt = p̂i + δi, t = ti + Ii + 1, . . . , ti + 2Ii;

and for t = ti + 1, . . . , ti + 2Ii, raise the inventory levels to

yt = max {ŷi1, xt}, t = ti + 1, . . . , ti + Ii,

yt = max {ŷi2, xt}, t = ti + Ii + 1, . . . , ti + 2Ii.

Step 2. Estimating the demand-price function and random errors using data from

stage i. Let Dt = log D̃t(pt) be the logarithm of demand realizations for t = ti + 1, . . . , ti +

2Ii, and compute

(α̂i+1, β̂i+1) = argmin
α,β

{ ti+2Ii∑
t=ti+1

(
Dt − (α− βpt)

)2
}
, (6)

ηt = Dt − (α̂i+1 − β̂i+1pt), for t = ti + 1, . . . , ti + 2Ii. (7)

Step 3. Defining and maximizing the proxy profit function, denoted by GDDi+1(p, y).

Define

GDDi+1(p, y) = peα̂i+1−β̂i+1p
1

2Ii

ti+2Ii∑
t=ti+1

eηt −
{

1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − eα̂i+1−β̂i+1peηt

)+

+b
(
eα̂i+1−β̂i+1peηt − y

)+
)}

.

Then the data-driven optimization is defined by

Problem DD:

max
(p,y)∈P×Y

GDDi+1(p, y) = max
p∈P

{
peα̂i+1−β̂i+1p

1

2Ii

ti+2Ii∑
t=ti+1

eηt (8)

−min
y∈Y

{
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − eα̂i+1−β̂i+1peηt

)+
+ b

(
eα̂i+1−β̂i+1peηt − y

)+
)}}

.

Solve problem DD and set the first pair of price and inventory level to

(p̂i+1, ŷi+1,1) = arg max
(p,y)∈P×Y

GDDi+1(p, y),
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and set the second price to p̂i+1 + δi+1 and the second order-up-to level to

ŷi+1,2 = arg max
y∈Y

GDDi+1(p̂i+1 + δi+1, y).

In case p̂i+1 + δi+1 6∈ P, set the second price to p̂i+1 − δi+1.

Remark 2. When β̂i+1 > 0, the objective function in (8) after minimizing over y ∈ Y is unimodal

in p. To see why this is true, let d = eα̂i+1−β̂i+1p and thus p = α̂i+1−log d

β̂i+1
with d ∈ D = [dl, dh],

where dl = eα̂i+1−β̂i+1p
h

and dh = eα̂i+1−β̂i+1p
l
. Then the optimization problem (8) is equivalent to

max
d∈D

{
d
α̂i+1 − log d

β̂i+1

(
1

2Ii

ti+2Ii∑
t=t1+1

eηt

)
−min

y∈Y

{
1

2Ii

ti+2Ii∑
t=ti+1

(
h(y − deηt)+ + b(deηt − y)+

)}}
.

The objective function of this optimization problem is jointly concave in (y, d) hence it is concave

in d after minimizing over y ∈ Y. Thus, it follows from p = α̂i+1−log d

β̂i+1
is strictly decreasing in d

that the objective function in (8) (after minimization over y) is unimodal in p ∈ P.

Remark 3. In Step 3 of DDA, the second price is set to p̂i+1− δi+1 when p̂i+1 + δi+1 > ph. In this

case our condition ρ ≤ 2−3/4(ph − pl)I1/4
0 ensures that p̂i+1 − δi+1 ≥ pl, thus p̂i+1 − δi+1 ∈ P. This

is because, when p̂i+1 > ph − δi+1, we have

p̂i+1 − δi+1 > ph − 2δi+1 ≥ ph − 2δ1 = ph − 2ρ(2I0)−1/4 ≥ pl,

where the last inequality follows from the condition on ρ.

Discussion of algorithm and its connections with the literature. In our algorithm

above, iteration i focuses on stage i that consists of 2Ii periods. In Step 1, the algorithm sets

the ordering quantity and selling price for each period in stage i, and they are derived from the

previous iteration. In Step 2, the algorithm uses the realized demand data and least-squares method

to update the linear approximation, α̂i+1−β̂i+1p, of λ(p) and computes a biased sample ηt of random

error εt, for t = ti + 1, . . . , ti + 2Ii. Note that ηt is not a sample of the random error εt. This is

because εt = Dt(pt)− λ(pt) and the (logarithm of) observed demand is Dt(pt). However as we do

not know λ(p), it is approximated by α̂i+1 − β̂i+1p, therefore

ηt = Dt(pt)− (α̂i+1 − β̂i+1pt) 6= Dt(pt)− λ(pt) = εt.

For the same reason, the constructed objective function for holding and shortage costs is not a

sample average of the newsvendor problem.

In the traditional SAA, mathematical expectations are replaced by sample means, see e.g.,

Kleywegt et al. 2001). Levi et al. (2007) and Levi et al. (2010)) apply SAA method in dynamic
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newsvendor problems. The argument above shows that the traditional analyses that show SAA

leads to the optimal solution is not applicable to our setting. Indeed, in our inner layer optimization,

we face a newsvendor problem for which the firm needs to balance holding and shortage cost, and

the knowledge about demand distribution is critical. However, the lack of samples of random error

εt makes the inner loop optimization problem significantly different from Levi et al. (2007) and

Levi et al. (2010)), which consider pure inventory control problems and samples of random errors

are available for applications of SAA result and analysis. Because of this, it is not guaranteed that

the SAA method will lead to a true optimal solution.

The DDA algorithm integrates a process of earning (exploitation) and learning (exploration)

in each stage. The earning phase consists of the first Ii periods starting at ti + 1, during which

the algorithm implements the optimal strategy for the proxy problem GDDi (p, y). In the next Ii

periods of learning phase that starts from ti + Ii + 1, the algorithm uses a different price p̂i + δi

and its corresponding order-up-to level. The purpose of this phase is to allow the firm to obtain

demand data to estimate the rate of change of the demand with respect to the selling price. Note

that, even though the firm deviates from the optimal strategy of the proxy problem in the second

phase, the policies, (p̂i + δi, ŷi,2) and (p̂i, ŷi,1), will be very close to each other as δi diminishes to

zero. We will show that they both converge to the true optimal solution and the loss of profit from

this deviation converges to zero.

The pricing part of our algorithm is similar to the pure pricing problem considered by Besbes

and Zeevi (2015) as we also use linear approximation to estimate the demand-price function then

maximize the resulting proxy profit function. Although our algorithm is heavily influenced by their

work, there is a key difference. Besbes and Zeevi (2015) consider a revenue management problem

and they only need to estimate the deterministic demand-price function, and the distribution of

random errors is immaterial in their analysis. In our model, however, due to the holding and

backlogging costs, the distribution of the random error is critical and that has to be learned during

the decision process, but it cannot be separated from the estimation of demand-price curve, as

discussed above.

Therefore, due to the lack of unbiased samples of random error and that the learning of demand-

price curve and the random error distribution cannot be decoupld, we are not able to prove that

the DDA algorithm converges to the true optimal solution by using the approaches developed in

Besbes and Zeevi (2015) for the pricing problem and in Levi et al. (2007) for the newsvendor

problem. To overcome this difficulty, we construct several intermediate bridging problems between

the data-driven problem and the complete information problem, and perform a series of convergence

analyses to establish the main results.
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Performance Metrics. To measure the performance of a policy, we use two metrics proposed

in Besbes and Zeevi (2015): consistency and regret. An admissible policy π = ((pt, yt), t ≥ 1) is

said to be consistent if (pt, yt)→ (p∗, y∗) in probability as t→∞. The average (per-period) regret

of a policy π, denoted by R(π, T ), is defined as the average profit loss per period, given by

R(π, T ) = G(p∗, y∗)− 1

T
E

[
T∑
t=1

G(pt, yt)

]
. (9)

Obviously, the faster the regret converges to 0 as T →∞, the better the policy.

In the next section, we will show that the DDA policy is consistent, and we will also characterize

the rate at which the regret converges to zero.

3 Main Results

In this section, we analyze the performance of the DDA policy proposed in the previous section.

We will show that under a fairly general assumption on the underlying demand process, which

covers a number of well-known demand models including logit and exponential demand functions,

the regret of DDA policy converges to 0 at rate O(T−1/2). We also present a numerical study to

illustrate its effectiveness.

Recall that the demand in period t is D̃t(pt) = λ̃(pt)ε̃t. As λ̃(p) is strictly decreasing, it has

strictly decreasing inverse function. Let λ̃−1(d) be the inverse function of λ̃(p), which is defined on

d ∈ [dl, dh] =
[
λ̃(ph), λ̃(pl)

]
. We make the following assumption.

Assumption 1. The function λ̃(p) satisfies the following conditions:

(i) The revenue function dλ̃−1(d) is concave in d ∈
[
dl, dh

]
.

(ii) 0 <
λ̃′′(p)λ̃(p)

(λ̃′(p))2
< 2 for p ∈

[
pl, ph

]
.

The first condition is a standard assumption in the literature on joint optimization of pricing

and inventory control (see e.g., Federgruen and Heching 1999, and Chen and Simchi-Levi 2004),

and it guarantees that the objective function in problem CI after minimizing over y is unimodal

in p. The second assumption imposes some shape restriction on the underlying demand function,

and similar assumption has been made in Besbes and Zeevi (2015). Technically, this condition

assures that the prices converge to a fixed point through a contraction mapping. Some examples

that satisfy both conditions of Assumption 1 are given below.

Example 1. The following functions satisfy Assumption 1.
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i) Exponential models: λ̃(p) = ek−mp,m > 0.

ii) Logit models: λ̃(p) = a ek−mp

1+ek−mp
for a > 0,m > 0, and k −mp < 0 for p ∈ P.

iii) Iso-elastic (constant elasticity) models: λ̃(p) = kp−m for k > 0 and m > 1.

We now present the main results of this paper. Recall that p∗ and y∗ are the optimal pricing

and inventory decisions for the case with complete information.

Theorem 1 (Policy Convergence) Under Assumption 1, the DDA policy is consistent, i.e.,

(pt, yt)→ (p∗, y∗) in probability as t→∞.

Theorem 1 states that both pricing and ordering decisions from the DDA algorithm converge

to the true optimal solution (p∗, y∗) in probability. Note that the convergence of inventory decision

yt → y∗ is stronger than the convergence of order up-to levels ŷi,1 → y∗ and ŷi,2 → y∗. This is

because, the order up-to levels may or may not be achievable for each period, thus the resulting

inventory levels may “overshoot” the targeting order up-to levels. Theorem 1 shows that, despite

these overshoots, the realized inventory levels converge to the true optimal solution in probability.

Convergence of inventory and pricing decisions alone does not guarantee the performance of

DDA policy is close to optimal. Our next result shows that DDA is asymptotically optimal in

terms of maximizing the expected profit.

Theorem 2 (Regret Convergence Rate) Under Assumption 1, the DDA policy is asymptoti-

cally optimal. More specifically, there exists some constant K > 0 such that

R(DDA,T ) = G(p∗, y∗)− 1

T
E

[
T∑
t=1

G(pt, yt)

]
≤ KT−

1
2 . (10)

Theorem 2 shows that as the length of planning horizon, T , grows, the regret of DDA policy

vanishes at the rate of O
(
T−1/2

)
, hence DDA policy is asymptotically optimal as T goes to infinity.

Thus, even though the firm does not have prior knowledge about the demand process, the perfor-

mance of the data-driven algorithm approaches the theoretical maximum as the planning horizon

becomes long. In Keskin and Zeevi (2014), the authors consider a parametric data-driven pricing

problem (with no inventory decision) where the demand error term is additive and the average

demand function is linear, and they prove that no learning algorithm can achieve a convergence

rate better than O(T−1/2). Our problem involves both pricing and inventory decisions, and the firm

does not have prior knowledge about the parametric form of the underlying demand-price function
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or the distribution of the random error, and our algorithm achieves O
(
T−1/2

)
, which is the the-

oretical lower bound. One interesting implication of this finding is that, linear model in demand

learning achieves the best regret rate one can hope for, thus our result offers further evidence for

the sufficiency of Besbes and Zeevi’s linear model.

A numerical Study. We perform a numerical study on the performance of the DDA algorithm,

and present our numerical results on the regret. We consider two demand curve environments for

λ̃(p):

1) exponential ek−mp: k ∈ [k, k],m ∈ [m,m], where [k, k] = [0.1, 1.7], [m,m] = [0.3, 2],

2) logit ek−mp

1+ek−mp
: k ∈ [k, k],m ∈ [m,m], where [k, k] = [−0.3, 1], [m,m] = [2, 2.5].

And we consider five error distributions for ε̃t:

i) truncated normal on [0.5, 1.5] with mean 1 and variance 0.1,

ii) truncated normal on [0.5, 1.5] with mean 1 and variance 0.25,

iii) truncated normal on [0.5, 1.5] with mean 1 and variance 0.35,

iv) truncated normal on [0.5, 1.5] with mean 1 and variance 0.5,

v) uniform on [0.5, 1.5].

Here truncated normal on [a, b] with mean µ and variance σ2 is defined as random variable X

conditioning on X ∈ [a, b], where X is normally distributed with mean µ and variance σ2.

Following Besbes and Zeevi (2015), for each combination of the above demand curve-error

distribution specifications, we randomly draw 500 instances from the parameters k and m according

to a uniform distribution on [k, k] and [m,m]. For each draw, we compute the percentage of profit

loss per period defined by
R(π, T )

G(p∗, y∗)
× 100%.

Then we compute the average profit loss per period over the 500 draws and report them in Table

1. In all the experiments, we set pl = 0.51, ph = 4, yl = 0, yh = 3, b = 1, h = 0.1, I0 = 1, and initial

price p̂1 = 1, initial inventory order up-to level ŷ11 = 1, ŷ12 = 0.3. We test two values of ρ, ρ = 0.5

and ρ = 0.75, and two values of v, namely, v = 1.3 and v = 2.

Table 1 summarizes the results when the underlying demand curve is exponential, and Table 2

displays the results when the underlying demand curve is logit. Combining both tables, one sees

that when T = 100 periods, on average the profit loss from the DDA algorithm falls between 11%
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Table 1: Exponential Demand

Time Periods T = 100 T = 500 T = 1000 T = 5000 T = 10000

ρ v = 1.3 v = 2 v = 1.3 v = 2 v = 1.3 v = 2 v = 1.3 v = 2 v = 1.3 v = 2

Normal

σ = 0.1

0.5 6.83 6.21 3.39 2.46 2.54 1.71 1.25 0.86 0.87 0.62

0.75 6.84 6.31 3.65 2.59 2.89 1.84 1.39 1.06 0.95 0.76

Normal

σ = 0.25

0.5 15.36 12.75 8.73 6.55 6.74 4.76 3.48 2.31 2.67 1.69

0.75 11.70 9.74 6.48 4.58 5.12 3.39 2.60 1.78 1.82 1.27

Normal

σ = 0.35

0.5 18.20 15.12 11.04 8.09 8.65 5.77 4.55 3.03 3.39 2.24

0.75 13.62 10.83 7.64 5.18 5.91 3.76 3.08 2.03 2.26 1.51

Normal

σ = 0.5

0.5 20.03 16.55 12.07 9.47 9.40 6.87 5.11 3.54 3.88 2.64

0.75 14.84 12.15 8.41 6.12 6.59 4.44 3.51 2.41 2.54 1.76

Uniform
0.5 18.53 15.02 9.98 7.18 7.59 5.39 3.69 2.62 2.58 1.86

0.75 14.08 11.11 8.12 5.57 6.49 4.22 3.41 2.54 2.40 1.85

Maximum 20.03 16.55 12.07 9.47 9.40 6.87 5.11 3.54 3.88 2.64

Average 14.00 11.58 7.95 5.78 6.19 4.22 3.21 2.22 2.34 1.62

and 14% compared to the optimal profit under complete information, in which DDA starts with no

prior knowledge about the underlying demand. When T = 500, the profit loss is further reduced

to between 5% and 8%. The performance gets better and better when T becomes larger. Also, it

is seen from the table that the overall performance of algorithm is better when the variance of the

demand is smaller, which is intuitive.

As mentioned earlier, Theorems 1 and 2 continue to hold for the additive demand model

D̃t(pt) = λ̃(pt) + ε̃t with minor modifications. Specifically, we need to modify Assumption 1 to

Assumption 1A below.

Assumption 1A. The demand-price function λ̃(p) satisfy the following conditions:

(i′) pλ̃(p) is unimodal in p on p ∈ P.

(ii′) −1 < λ̃′′(p)λ̃(p)

2(λ̃′(p))2
< 1, for all p ∈ P.

Note that these are exactly the same assumptions made in Besbes and Zeevi (2015) for the

revenue management problem, and examples that satisfy Assumption 1A include (a) linear with

λ(p) = k − mp, m > 0, (b) exponential with λ(p) = ek−mp,m > 0, and (c) logit with λ(p) =
ek−mp

1+ek−mp
,m > 0, ek−mp < 3 for all p ∈ P.

The learning algorithm for the additive demand model is similar to that of the multiplicative
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Table 2: Logit Demand

Time Periods T = 100 T = 500 T = 1000 T = 5000 T = 10000

ρ v = 1.3 v = 2 v = 1.3 v = 2 v = 1.3 v = 2 v = 1.3 v = 2 v = 1.3 v = 2

Normal

σ = 0.1

0.5 6.80 5.62 4.35 2.30 2.63 1.63 1.26 0.89 0.85 0.63

0.75 10.09 8.34 3.42 3.67 4.42 2.67 2.15 1.60 1.45 1.15

Normal

σ = 0.25

0.5 13.72 9.57 6.83 4.44 4.98 3.17 2.34 1.56 1.66 1.10

0.75 12.58 9.86 6.89 4.51 5.42 3.30 2.67 1.87 1.81 1.35

Normal

σ = 0.35

0.5 17.13 12.52 8.65 6.01 6.52 4.10 3.04 1.98 2.12 1.41

0.75 13.84 10.49 7.49 4.85 5.82 3.55 2.85 2.00 1.96 1.43

Normal

σ = 0.5

0.5 19.38 13.75 9.99 6.52 7.31 4.57 3.35 2.18 2.34 1.57

0.75 14.49 11.30 7.84 5.24 6.07 3.79 3.00 2.11 2.05 1.51

Uniform
0.5 21.20 15.29 9.51 6.20 7.16 4.46 3.36 2.39 2.29 1.72

0.75 17.46 14.63 10.44 6.97 8.74 5.35 4.81 3.63 3.38 2.73

Maximum 21.20 15.29 10.44 6.97 8.74 5.35 4.81 3.63 3.38 2.73

Average 14.67 11.14 7.54 5.07 5.91 3.66 2.88 2.02 1.99 1.46

demand case, except that there is no need to transform it using the logarithm of the deterministic

portion of demand and the logarithm of random demand error. Instead, the algorithm directly

estimates λ̃(p) using affine function and computes the biased samples of the random demand error

in each iteration.

4 Sketches of the Proof

In this section, we present the main ideas and steps in proving the main results of this paper. In

the first subsection, we elaborate on the technical issues encountered in the proofs. The key ideas

of the proofs are discussed in Subsection 4.2, and the major steps for the proofs of Theorems 1 and

2 are given in Subsections 4.3 and 4.4, respectively.

4.1 Technical issues encountered

To prove Theorem 1, we will need to show

E
[
(p̂i+1 − p∗)2

]
→ 0, E

[
(p̂i+1 + δi+1 − p∗)2

]
→ 0, as i→∞; (11)

E[(y∗ − ŷi+1,1)2]→ 0, E[(y∗ − ŷi+1,2)2]→ 0, as i→∞, (12)
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where p∗ is the optimal solution of

max
p∈P

Q(p, λ(p)) = max
p∈P

{
peλ(p)E

[
eε
]
− J(λ(p))

}
,

where J(λ(p)) is defined as

J(λ(p)) = min
y∈Y

{
hE
[
y − eλ(p)eε

]+
+ bE

[
eλ(p)eε − y

]+}
.

However, both Q(·, ·) and J(·) are unknown to the firm because all the expectations cannot be com-

puted. To estimate J(·), in (8) of the learning algorithm we use the data-driven biased estimation

of

JDDi+1 (α̂i+1 − β̂i+1p) = min
y∈Y

{
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − eα̂i+1−β̂i+1peηt

)+
+ b

(
eα̂i+1−β̂i+1peηt − y

)+
)}

,

and p̂i+1 is the optimal solution of

max
p∈P

QDDi+1(p, α̂i+1 − β̂i+1p) = max
p∈P

{
peα̂i+1−β̂i+1p

1

2Ii

ti+2Ii∑
t=ti+1

eηt − JDDi+1 (α̂i+1 − β̂i+1p)

}
,

in which QDDi+1(·, ·) is random and is constructed based on biased random samples ηt.

To prove the convergence of the data-driven solutions to the true optimal solution, we face

two major challenges. The first one is the comparison between JDDi+1 (α̂i+1 − β̂i+1p) and J(λ(p)) as

functions of p. In JDDi+1 , the true demand-price function is replaced by a linear estimation and, due to

lack of knowledge about distribution of random error, the expectation is replaced by an arithmetic

average from biased samples ηt not true samples of random error εt. To put it differently, the

objective function for JDDi+1 is not a sample average approximation, but a biased-sample average

approximation. The second challenge lies in the comparison of QDDi+1(p, α̂i+1−β̂i+1p) and Q(p, λ(p)).

Since QDDi+1 is a function of JDDi+1 that is minimum of a biased-sample average approximation, the

errors in replacing εt by ηt carry over to QDDi+1 , making it difficult to compare (p̂i+1, ŷi+1,1) and

(p̂i+1 + δi+1, ŷi+1,2) with (p∗, y∗). To overcome the first difficulty, we establish several important

properties of the newsvendor problem and bound the errors of biased samples (Lemmas A2, A3,

A4, A8 in the Appendix). For the second, we identify high probability events in which uniform

convergence of the data-driven objective functions can be obtained (Lemmas A1, A5, A6, and A7

in the Appendix).

We note that in the revenue management problem setting, Besbes and Zeevi (2015) also

prove the convergence result (11). In Besbes and Zeevi (2015), p∗ is the optimal solution of

maxp∈P Q(p, λ(p)), and p̂i+1 is the optimal solution of maxp∈P Q(p, α̂i+1 − β̂i+1p), where Q(·, ·)
is a known and deterministic function Q(p, λ(p)) = pλ(p). As Besbes and Zeevi (2015) point out,
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their analysis extends to more general function Q(p, λ(p)) in which Q(·, ·) is a known deterministic

function. This, however, is not true in our setting as Q(·, ·) is not known, and as a matter of fact,

one cannot even find an unbiased sample average to estimate Q(·, ·). Therefore, the challenges

discussed above were not present in Besbes and Zeevi (2015).

4.2 Main ideas of the proof

To compare the policy and the resultant profit of DDA algorithm with that of the optimal solution,

we first note that these two problems differ along several dimensions. For example, in DDA we

approximate λ(p) by an affine function and estimate the parameters of the affine function in each

iteration, and we approximate the expected revenue and the expected holding and shortage costs

using biased sample averages. These differences make the direct comparison of the two problems

difficult. Therefore, we introduce several “intermediate” bridging problems, and in each step we

compare two “adjacent” problems that differ just in one dimension.

For convenience, we follow Besbes and Zeevi (2015) to introduce notation

ᾰ(z) = λ(z)− λ′(z)z, β̆(z) = −λ′(z), z ∈ P. (13)

We proceed to prove (11) as follows:

E
[
(p∗ − p̂i+1)2

]
≤ E

[( ∣∣∣p∗ − p(ᾰ(p̂i), β̆(p̂i)
)∣∣∣︸ ︷︷ ︸

Comparison of problems CI and B1
Lemma A1

(14)

+
∣∣∣p(ᾰ(p̂i), β̆(p̂i)

)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣︸ ︷︷ ︸
Comparison of problems B1 and B2

Lemma A5

+
∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣︸ ︷︷ ︸
Comparison of problems B2 and DD

Lemma A6 and Lemma A7

)2
]
,

where the two new prices p
(
·, ·) and p̃i+1 (·, ·) are the optimal solutions of two bridging problems.

Specifically, we let p
(
α, β

)
denote the optimal solution for the first bridging problem B1 defined by

Bridging Problem B1:

max
p∈P

{
peα−βpE

[
eε
]
−min

y∈Y

{
hE
[
y − eα−βpeε

]+
+ bE

[
eα−βpeε − y

]+
}}

, (15)

while p̃i+1 (α, β) denotes the optimal solution for the second bridging problem B2 defined by

Bridging Problem B2:

max
p∈P

{
peα−βp

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt

)
(16)

−min
y∈Y

{
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − eα−βpeεt

)+
+ b
(
eα−βpeεt − y

)+)}}
.
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Moreover, for given p ∈ P, we let y(eα−βp) denote the optimal order-up-to level for problem B1, and

ỹi+1(eα−βp) denote the optimal order-up-to level for problem B2. By Lemma A2 in the Appendix,

the objective functions for problems B1 and B2 are unimodal in p after minimizing over y ∈ Y
when β > 0.

Comparing (15) with (4), it is seen that problem B1 simplifies problem CI by replacing the

demand-price function λ(p) by a linear function α−βp, while problem B2 is obtained from problem

B1 after replacing the mathematical expectations in problem B1 by their sample averages, i.e.,

problem B2 is the SAA of problem B1. Comparing (16) with (8), it is noted that problems B2

and DD differ in the coefficients of the linear function as well as the arithmetic averages. More

specifically, in B2 the real random error samples εt, t = ti + 1, . . . , ti + 2Ii, are used, while in

problem DD, biased error samples ηt are used in place of εt, t = ti + 1, . . . , ti + 2Ii. Furthermore,

note that the optimal prices for problems CI and B1, p∗ and p
(
ᾰ(p̂i), β̆(p̂i)

)
, are deterministic, but

the optimal solutions of problems B2 and DD, p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
and p̂i+1, are random. Specifically,

p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
is random because εt is random, while p̂i+1 is random due to demand uncertainty

from periods 1 to ti+1. Hence, to show the right hand side of (14) converges to 0, we will first

develop an upper bound for
∣∣p∗−p(ᾰ(p̂i), β̆(p̂i)

)∣∣ by comparing problems CI and B1, and the result

is presented in Lemma A1. Since p̃i+1(ᾰ(p̂i), β̆(p̂i) is random, we compare the two problems B1 and

B2 and show the probability that
∣∣p(ᾰ(p̂i), β̆(p̂i)

)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣ exceeds some small number

diminishes to 0 in Lemma A5. Similarly, in Lemma A6 and Lemma A7 we compare problems B2

and DD and show the probability that
∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣ exceeds some small number also

diminishes to 0. Finally, we combine these several results to complete the proof of (11). The idea

for proving (12) is similar, and that also relies heavily on the two bridging problems (Lemmas A6,

A7, and A8). The detailed proofs for Theorem 1 and Theorem 2 are given in Subsections 4.3 and

4.4.

In the subsequent analysis, we assume that the space for feasible price, P, and the space for

order-up-to level, Y, are large enough so that the optimal solutions p∗ and optimal y(eλ(p)) over

R+ for given p ∈ P for problem CI fall into P and Y, respectively; and for given q ∈ P, the optimal

solutions p
(
ᾰ(q), β̆(q)

)
and y

(
eᾰ(q)−β̆(q)p

)
for given p ∈ P over R+ for problem B1 fall into P and

Y, respectively. Note that both problem CI and problem B1 depend only on primitive data and

do not depend on random samples, hence these are mild assumptions. We remark that our results

and analyses continue to hold even if these assumptions are not satisfied as long as we modify

Assumption 1(ii) to
∣∣∂p(ᾰ(z), β̆(z)

)
/∂z

∣∣ < 1 for z ∈ P. This condition reduces to Assumption 1(ii)

if the optimal solutions for problem CI and problem B1 satisfy the feasibility conditions described

above.

We end this subsection by listing some regularity conditions needed to prove the main theoretical
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results.

Regularity Conditions:

(i) y(eλ(q)) and y
(
eᾰ(q)−β̆(q)p

)
are Lipschitz continuous on q for given p ∈ P, i.e., there exists

some constant K1 > 0 such that for any q1, q2 ∈ P,∣∣∣y(eλ(q1))− y(eλ(q2))
∣∣∣ ≤ K1 |q1 − q2| , (17)∣∣∣y(eᾰ(q1)−β̆(q1)p

)
− y
(
eᾰ(q2)−β̆(q2)p

)∣∣∣ ≤ K1 |q1 − q2| . (18)

(ii) G(p, ȳ(eλ(p))) has bounded second order derivative with respect to p ∈ P.

(iii) E[Dt(p)] > 0 for any price p ∈ P.

(iv) λ(p) is twice differentiable with bounded first and second order derivatives on p ∈ P.

(v) The probability density function f(·) of ε̃t satisfies min{f(x), x ∈ [l, u]} > 0.

It can be seen that all the functions in Example 1 satisfy the regularity conditions above with

appropriate choices of pl and ph.

4.3 Proof of Theorem 1

The proofs for the convergence results are technical and rely on several lemmas that are provided

in the Appendix. In this subsection, we outline the main steps in establishing the first main result,

Theorem 1.

Convergence of pricing decisions. To prove the convergence of pricing decisions, we continue

the development in (14) as follows:

E
[
(p∗ − p̂i+1)2

]
≤ E

[( ∣∣∣p∗ − p(ᾰ(p̂i), β̆(p̂i)
)∣∣∣+

∣∣∣p(ᾰ(p̂i), β̆(p̂i)
)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣+
∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣ )2]
≤ E

[(
γ|p∗ − p̂i|+

∣∣∣p(ᾰ(p̂i), β̆(p̂i)
)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣+
∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣ )2]
≤

(
1 + γ2

2

)
E
[
(p∗ − p̂i)2

]
+K2E

[(∣∣∣p(ᾰ(p̂i), β̆(p̂i)
)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣+
∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣)2
]

≤
(

1 + γ2

2

)
E
[
(p∗ − p̂i)2

]
+K3E

[∣∣∣p(ᾰ(p̂i), β̆(p̂i)
)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣2]+K3E
[∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣2] , (19)
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where the first inequality follows from the expansion in (14), the second inequality follows from

Lemma A1, and the third inequality is justified by γ < 1 in Lemma A1 and some constant K2,

and the last inequality holds for some appropriately chosen K3 because of the inequality (a+ b)2 ≤
2(a2 + b2) for any real numbers a and b.

To bound E
[∣∣p(ᾰ(p̂i), β̆(p̂i)

)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣2] in (19), by Lemma A5 one has, for some

constant K4,

E
[∣∣∣p(ᾰ(p̂i), β̆(p̂i)

)
− p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣2] ≤ K2
4

∫ +∞

0
5e−4Iiξ

2
dξ =

5π
1
2K2

4

4I
1
2
i

. (20)

And to bound E
[∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣2] in (19), by Lemma A6 and Lemma A7, when i is

large enough (greater than or equal to i∗ defined in the proof of Lemma A7), for some positive

constants K5, K6, and K7 one has

E
[∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣2]
≤ E

[
K2

5

(∣∣ᾰ(p̂i)− α̂i+1

∣∣+
∣∣β̆(p̂i)− β̂i+1

∣∣+
∣∣ᾰ(p̂i + δi)− α̂i+1

∣∣+
∣∣β̆(p̂i + δi)− β̂i+1

∣∣)2]
+

8

Ii

(
ph − pl

)2
≤ E

[
K6

(
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2 + |ᾰ(p̂i + δi)− α̂i+1|2 + |β̆(p̂i + δi)− β̂i+1|2

)]
+

8

Ii

(
ph − pl

)2
≤ K7I

− 1
2

i . (21)

Substituting (20) and (21) into (19), one has

E
[
(p∗ − p̂i+1)2

]
≤
(

1 + γ2

2

)
E
[
(p∗ − p̂i)2

]
+K8I

− 1
2

i .

Letting 1+γ2

2 = θ, we further obtain

E
[
(p̂i+1 − p∗)2

]
≤ θi(p̂1 − p∗)2 +K8

i−1∑
j=0

θjI
− 1

2
i−j ≤ K9(v−

1
2 )i

i−1∑
j=0

θj(v
1
2 )j . (22)

We choose v > 1 that satisfies θv
1
2 < 1, then there exists a positive constant K10 such that∑i−1

j=0 θ
j(v

1
2 )j ≤ K10, therefore, for some constants K11 and K12,

E
[
(p̂i+1 − p∗)2

]
≤ K11(v−

1
2 )i ≤ K12I

− 1
2

i . (23)

Moreover, we have, for some positive constant K13,

E
[
(p̂i+1 + δi+1 − p∗)2

]
≤ 2E

[
(p̂i+1 − p∗)2

]
+ 2δ2

i+1 ≤ K13I
− 1

2
i → 0, as i→∞. (24)
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This completes the proof of (11). Because mean-square convergence implies convergence in

probability, this shows that the pricing decisions from DDA converge to p∗ in probability.

Convergence of inventory decisions. To prove yt converges to y∗ in probability, we first

prove the convergence of order up-to levels (12). For some constant K14, we have

E
[∣∣y∗ − ŷi+1,1

∣∣2]
≤ E

[(∣∣∣y(eλ(p∗)
)
− y(eλ(p̂i+1))

∣∣∣+
∣∣∣y(eλ(p̂i+1)

)
− y
(
eᾰ(p̂i+1)−β̆(p̂i+1)p̂i+1)

∣∣∣
+
∣∣∣y(eᾰ(p̂i+1

)
−β̆(p̂i+1)p̂i+1)− y

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)∣∣∣
+
∣∣∣y(eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
− ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)∣∣∣+
∣∣∣ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
− ŷi+1,1

∣∣∣)2]
≤ K14E

[( ∣∣∣y(eλ(p∗)
)
− y(eλ(p̂i+1))

∣∣∣2︸ ︷︷ ︸
Difference between p∗ and p̂i+1

+
∣∣∣y(eλ(p̂i+1)

)
− y
(
eᾰ(p̂i+1)−β̆(p̂i+1)p̂i+1)

∣∣∣2︸ ︷︷ ︸
Zero

(25)

+
∣∣∣y(eᾰ(p̂i+1)−β̆(p̂i+1)p̂i+1

)
− y
(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)∣∣∣2︸ ︷︷ ︸
Difference between p̂i+1 and p̂i

+
∣∣∣y(eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
− ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)∣∣∣2︸ ︷︷ ︸
Comparison of problems B1 and B2

Lemma A8

+
∣∣∣ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
− ŷi+1,1

∣∣∣2︸ ︷︷ ︸
Comparison of problems B2 and DD

Lemma A6 and Lemma A7

)]
.

We want to upper bound each term on the right hand side of (25). First, it follows from (17)

that, for some constant K15 it holds

E
[∣∣∣y(eλ(p∗)

)
− y
(
eλ(p̂i+1)

)∣∣∣2] ≤ K15E
[
| p∗ − p̂i+1 |2

]
.

By definition of ᾰ(p) and β̆(p) in (13) one has ᾰ(p̂i+1) − β̆(p̂i+1)p̂i+1 = λ(p̂i+1), thus the second

term on the right hand side of (25) vanishes. For the third term, we apply the Lipschitz condition

on y
(
eᾰ(q)−β̆(q)p

)
in (18) to obtain, for some constants K16 and K17,

E
[∣∣∣y(eᾰ(p̂i+1)−β̆(p̂i+1)p̂i+1

)
− y
(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)∣∣∣2] ≤ K16E
[
| p̂i+1 − p̂i |2

]
≤ K17E

[(
| p∗ − p̂i |2 + | p∗ − p̂i+1 |2

)]
.

By Lemma A8, we have, for some constants K18 and K19,

E
[∣∣∣y(eᾰ(p̂i)−β̆(p̂i)p̂i+1)− ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)∣∣∣2] ≤ K2
18

∫ +∞

0
2e−4Iiξdξ ≤ K19

Ii
, (26)
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and by Lemma A6 and Lemma A7 one has, for some constant K20,

E
[∣∣∣ỹi+1(eᾰ(p̂i)−β̆(p̂i)p̂i+1)− ŷi+1,1

∣∣∣2]
≤ K20E

[
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2 + |ᾰ(p̂i + δi)− α̂i+1|2 + |β̆(p̂i + δi)− β̂i+1|2

]
≤ K20I

− 1
2

i .

Summarizing the analyses above we obtain, for some constants K21 and K22,

E
[(
y∗ − ŷi+1,1

)2]
≤ K21E

[
| p∗ − p̂i+1 |2 + | p∗ − p̂i |2

]
+K21I

− 1
2

i

≤ K22I
− 1

2
i (27)

→ 0 as i→∞,

where the second inequality follows from the convergence rate of the pricing decisions. Similarly,

we obtain

E
[(
y∗ − ŷi+1,2

)2] ≤ K22I
− 1

2
i → 0, as i→∞.

We next show that E[(y∗ − yt)2] → 0 as t → ∞. It suffices to prove this for (a) t ∈ {ti+1 +

1, . . . , ti+1 + Ii+1}, i = 1, 2, . . ., and for (b) t ∈ {ti+1 + Ii+1 + 1, . . . , ti+1 + 2Ii+1}, i = 1, 2, . . .. We

will only provide the proof for (a).

The inventory order up-to level prescribed from DDA for periods t ∈ {ti+1 + 1, . . . , ti+1 + Ii+1}
is ŷi+1,1. This, however, may not be achievable for some period t. Consider the event that the

second order up-to level of learning stage i, ŷi,2, is achieved during periods {ti+Ii+1, . . . , ti+2Ii}.
Since λ̃(ph)l ≤ Dt ≤ λ̃(pl)u, it follows from Hoeffding inequality4 that for any ζ > 0,

P


ti+2Ii∑

t=ti+Ii+1

Dt ≥ E

 ti+2Ii∑
t=ti+Ii+1

Dt

− ζ
 ≥ 1− exp

(
− 2ζ2

Ii(λ̃(pl)u− λ̃(ph)l)2

)
. (28)

Let ζ =
(
λ̃(pl)u− λ̃(ph)l

)
(Ii)

1
2 (log Ii)

1
2 in (28), then one has

P


ti+2Ii∑

t=ti+Ii+1

Dt ≥ IiE [Dti+Ii+1]−
(
λ̃(pl)u− λ̃(ph)l

)
(Ii)

1
2 (log Ii)

1
2

 ≥ 1− 1

I2
i

. (29)

By regularity condition (iii), E [Dti+Ii+1] > 0, thus when i is large enough, we will have

1

2
IiE [Dti+Ii+1] ≥

(
λ̃(pl)u− λ̃(ph)l

)
(Ii)

1
2 (log Ii)

1
2 .

4If the random demand is not bounded, then the same result is obtained under the condition that the moment

generating function of random demand is finite around 0.
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Hence it follows from (29) that, when i is large enough, we will have

P


ti+2Ii∑

t=ti+Ii+1

Dt ≥
1

2
IiE [Dti+Ii+1]

 ≥ 1− 1

I2
i

. (30)

Define event

A1 =

ω :

ti+2Ii∑
t=ti+Ii+1

Dt ≥
1

2
IiE [Dti+Ii+1]

 ,

then (30) can be rewritten as

P(A1) ≥ 1− 1

I2
i

.

Note that when i is large enough, 1
2IiE [Dti+Ii+1] > yh− yl, which means that on the event A1, the

accumulative demand during {ti+Ii+1, . . . , ti+2Ii} is high enough to consume the initial on-hand

inventory of period ti+Ii+1 and ŷi,2 will be achieved. Therefore, for t ∈ {ti+1 +1, . . . , ti+1 +Ii+1},
yt will satisfy yt ∈ [ŷi,2, ŷi+1,1] if ŷi+1,1 ≥ ŷi,2, and yt ∈ [ŷi+1,1, ŷi,2] otherwise. Thus,

E[(y∗ − yt)2] = P(A1)E[(y∗ − yt)2
∣∣A1] + P(Ac1)E[(y∗ − yt)2

∣∣Ac1]

≤ max
{
E
[
(y∗ − ŷi,2)2

]
,E
[
(y∗ − ŷi+1,1)2

]}
+

1

I2
i

(
yh − yl

)2
.

As shown above, E
[
(y∗ − ŷi,2)2

]
→ 0 and E

[
(y∗ − ŷi+1,1)2

]
→ 0 as i → ∞. Hence it follows from

1/I2
i → 0 as i→∞ that E

[
(y∗ − yt)2

]
→ 0 for t ∈ {ti+1 + 1, . . . , ti+1 + Ii+1} as i→∞.

Similarly one can prove that E
[
(y∗ − yt)2

]
→ 0 for t ∈ {ti+1 + Ii+1 + 1, . . . , ti+1 + 2Ii+1} as

i→∞. This proves E[(y∗ − yt)2]→ 0 when t→∞. And again, since convergence in probability is

implied by mean-square convergence, we conclude that inventory decisions yt of DDA also converge

to y∗ in probability as t→∞. This completes the proof of Theorem 1.

4.4 Proof of Theorem 2

We next prove the second main result, the convergence rate of regret. By definition, the regret for

the DDA policy is

R(DDA,T ) =
1

T
E

[
T∑
t=1

(
G(p∗, y∗)−G(pt, yt)

)]
.
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We have

E

[
T∑
t=1

(
G(p∗, y∗)−G(pt, yt)

)]

≤ E

[
n∑
i=1

(
ti+Ii∑
t=ti+1

(
G(p∗, y∗)−G(p̂i, ŷi,1) +G(p̂i, ŷi,1)−G(pt, yt)

)
+

ti+2Ii∑
t=ti+Ii+1

(
G(p∗, y∗)−G(p̂i + δi, ŷi,2) +G(p̂i + δi, ŷi,2)−G(pt, yt)

))]

= E

[
n∑
i=1

Ii
(
G(p∗, y∗)−G(p̂i, ŷi,1) +G(p∗, y∗)−G(p̂i + δi, ŷi,2)

)]

+E

 n∑
i=1

 ti+Ii∑
t=ti+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)
+

ti+2Ii∑
t=ti+Ii+1

(
G(p̂i + δi, ŷi,2)−G(pt, yt)

) , (31)

where n is the smallest number of stages that cover T , i.e., n is the smallest integer such that

2I0
∑n

i=1 v
i ≥ T , and it satisfies logv

(
v−1
2I0v

T +1
)
≤ n < logv

(
v−1
2I0v

T +1
)

+1. The inequality in (31)

follows from that the right hand side includes 2I0
∑n

i=1 v
i periods which is greater than or equal to

T .

The first expectation on the right hand side of (31) is with respect to the sum of the difference

between profit values of DDA decisions and the optimal solution, hence its analysis relies on the

convergence rate of DDA policies; these are demonstrated in (23), (24), and (27). The second

expectation on the right hand side of (31) stems from the fact that in the process of implementing

DDA, it may happen that the inventory decisions from DDA are not implementable. This issue

arises in learning algorithms for nonperishable inventory systems and it presents additional chal-

lenges in evaluating the regret. We note that in Huh and Rusmevichientong (2009), a queueing

approach is employed to resolve this issue for a pure inventory system with no pricing decisions.

To develop an upper bound for G(p∗, y∗) − G(p̂i, ŷi,1) in (31), we first apply Taylor expansion

on G(p, y(eλ(p)) at point p∗. Using the fact that the first order derivative vanishes at p = p∗ and

the assumption that the second order derivative is bounded (regularity condition (ii)), we obtain,

for some constant K23 > 0, that

G
(
p∗, y

(
eλ(p∗)

))
−G

(
p̂i, y

(
eλ(p̂i)

))
≤ K23(p∗ − p̂i)2. (32)

Noticing that y
(
eλ(p̂i)

)
maximizes the concave function G

(
p̂i, y) for given p̂i, we apply Taylor

expansion with respect to y at point y = y
(
eλ(p̂i)

)
to yield that, for some constant K24,

G
(
p̂i, y

(
eλ(p̂i)

))
−G(p̂i, ŷi,1) ≤ K24

(
y
(
eλ(p̂i)

)
− ŷi,1

)2
. (33)
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In addition, we have

E
[
(y(eλ(p̂i))− ŷi,1)2

]
≤ E

[(∣∣∣y(eλ(p̂i))− y(eᾰ(p̂i)−β̆(p̂i)p̂i)
∣∣∣+
∣∣∣y(eᾰ(p̂i)−β̆(p̂i)p̂i)− y(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)

∣∣∣
+
∣∣∣y(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)− ỹi(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)

∣∣∣+
∣∣∣ỹi(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)− ŷi,1

∣∣∣)2]
≤ K25E

[∣∣∣y(eλ(p̂i))− y(eᾰ(p̂i)−β̆(p̂i)p̂i)
∣∣∣2 +

∣∣∣y(eᾰ(p̂i)−β̆(p̂i)p̂i)− y(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)
∣∣∣2

+
∣∣∣y(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)− ỹi(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)

∣∣∣2 +
∣∣∣ỹi(eᾰ(p̂i−1)−β̆(p̂i−1)p̂i)− ŷi,1

∣∣∣2].
This is similar to the right hand side of (25) except that i + 1 is replaced by i. Thus, using the

same analysis as that for (25), we obtain

E
[
(y(eλ(p̂i))− ŷi,1)2

]
≤ K26I

− 1
2

i−1 (34)

for some constant K26.

Applying the results above, we obtain, for some constants K27, K28, and K29, that

E [G(p∗, y∗)−G(p̂i, ŷi,1)]

= E
[(
G
(
p∗, y

(
eλ(p∗)

))
−G

(
p̂i, y

(
eλ(p̂i)

)))
+
(
G
(
p̂i, y

(
eλ(p̂i)

))
−G(p̂i, ŷi,1)

)]
≤ K27

(
E
[
(p∗ − p̂i)2

]
+ E

[(
y(eλ(p̂i))− ŷi,1

)2])
≤ K28

(
K10I

− 1
2

i−1 +K37I
− 1

2
i−1

)
= K29I

− 1
2

i−1,

where the first inequality follows from (32) and (33), and the second inequality follows from the

convergence rate of pricing decisions (23) and (34).

Similarly, we establish for some constants K30,K31 and K32, that

E [G(p∗, y∗)−G(p̂i + δi, ŷi,2)] ≤ K30

(
E
[
(p∗ − p̂i − δi)2

]
+ E

[
(y(eλ(p̂i+δi))− ŷi,2)2

])
≤ K30

(
E
[
2(p∗ − p̂i)2 + 2δ2

i

]
+K31I

− 1
2

i−1

)
≤ K32I

− 1
2

i−1.

Note that, as seen from Lemma A7 in the Appendix, these results hold when i is greater than or

equal to some number i∗.
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Consequently, we have, for some constants K33,K34 and K35,

E

[
n∑
i=1

(
G(p∗, y∗)−G(p̂i, ŷi,1) +G(p∗, y∗)−G(p̂i + δi, ŷi,2)

)
Ii

]

=
n∑

i=i∗+1

K33I
− 1

2
i−1Ii +

i∗∑
i=1

(
G(p∗, y∗)−G(p̂i, ŷi,1) +G(p∗, y∗)−G(p̂i + δi, ŷi,2)

)
Ii

=

n∑
i=i∗+1

K33I
1
2
i−1 +K34

≤ K33

n∑
i=2

I
1
2
i−1 +K34

= K33
(2I0)

1
2 v

1
2

v
1
2 − 1

(
v
n−1
2 − 1

)
+K34

≤ K33
(2I0)

1
2 v

1
2

v
1
2 − 1

(v
logv( v−1

2I0v
T+1)+1−1

)
1
2 +K34

≤ K35T
1
2 , (35)

where K34 =
∑i∗

i=1

(
G(p∗, y∗)−G(p̂i, ŷi,1) +G(p∗, y∗)−G(p̂i + δi, ŷi,2)

)
Ii.

We next evaluate the second term of (31), i.e.,

E

 n∑
i=1

 ti+Ii∑
t=ti+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)
+

ti+2Ii∑
t=ti+Ii+1

(
G(p̂i + δi, ŷi,2)−G(pt, yt)

) . (36)

Recall from DDA that pt = p̂i for t = ti+1, . . . , ti+Ii and pt = p̂i+δi for t = ti+Ii+1, . . . , ti+2Ii,

and DDA sets two order-up-to levels for stage i, ŷi1 and ŷi2, for the first and second Ii periods,

respectively. The order-up-to levels may not be achievable, which happens when xt > ŷi,1 for some

t = ti + 1, . . . , ti + Ii, or xt > ŷi,2 for some t = ti + Ii + 1, . . . , ti + 2Ii. In such cases, yt = xt. If

the inventory level before ordering at the beginning of the first Ii periods (in period ti + 1) or at

the beginning of the second Ii periods (in period ti + Ii + 1) of stage i is higher than the DDA

order-up-to level, then the inventory level will gradually decrease during the Ii periods until it

drops to or below the order up-to level.

We start with the analysis of the first Ii periods of state i, i.e.,

E

[
ti+Ii∑
t=ti+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)]
.

A main issue with the analysis of this part is that, if xti+1 > ŷi, then ŷi is not achievable. To

resolve this issue, we apply a similar argument as that in the proof of the second part of Theorem

1 to show that, if this is the case, then with very high probability, after a (relatively) small number

of periods, the prescribed inventory order up-to level will become achievable .
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Consider the accumulative demands during periods ti + 1 to ti +

⌊
I

1
2
i

⌋
. If these accumulative

demands consume at least xti+1 − ŷi, then at period ti +

⌊
I

1
2
i

⌋
, ŷi will be surely achieved. Since

λ̃(ph)l ≤ Dt ≤ λ̃(pl)u for t = 1, . . . , T , by Hoeffding inequality, for any ζ > 0 one has

P


ti+

⌊
I
1
2
i

⌋
∑
t=ti+1

Dt ≥ E


ti+

⌊
I
1
2
i

⌋
∑
t=ti+1

Dt

− ζ
 ≥ 1− exp

− 2ζ2⌊
I

1
2
i

⌋
(λ̃(pl)u− λ̃(ph)l)2

 . (37)

Let ζ =
(
λ̃(pl)u− λ̃(ph)l

)(⌊
I

1
2
i

⌋) 1
2
(

log

⌊
I

1
2
i

⌋) 1
2

, then it follows from (37) that

P


ti+

⌊
I
1
2
i

⌋
∑
t=ti+1

Dt ≥
⌊
I

1
2
i

⌋
E [Dti+1]−

(
λ̃(pl)u− λ̃(ph)l

)(⌊
I

1
2
i

⌋) 1
2
(

log

⌊
I

1
2
i

⌋) 1
2


≥ 1− 1⌊

I
1
2
i

⌋2 . (38)

By regularity condition (iii), E [Dti+1] > 0. Thus, when i is large enough, say greater than or

equal to some number i∗∗, we will have⌊
I

1
2
i

⌋
E [Dti+1]−

(
λ̃(pl)u− λ̃(ph)l

)(⌊
I

1
2
i

⌋) 1
2
(

log

⌊
I

1
2
i

⌋) 1
2

≥ 1

2

⌊
I

1
2
i

⌋
E [Dti+1] ≥ yh − yl ≥ xti+1 − ŷi.

Based on (38), we define event A2 as

A2 =


ti+

⌊
I
1
2
i

⌋
∑
t=ti+1

Dt ≥
⌊
I

1
2
i

⌋
E [Dti+1]− (λ̃(pl)u− λ̃(ph)l)

(⌊
I

1
2
i

⌋) 1
2
(

log

⌊
I

1
2
i

⌋) 1
2

 . (39)

Then (38) can be restated as

P(A2) ≥ 1− 1⌊
I

1
2
i

⌋2 . (40)

On the event A2, the inventory order up-to level ŷi will be achieved after periods
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{
ti + 1, . . . , ti +

⌊
I

1
2
i

⌋}
. By (40), we have

E

[
ti+Ii∑
t=ti+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)]

= P(A2)E

[
ti+Ii∑
t=ti+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)∣∣∣∣A2

]
+ P(Ac2)E

[
ti+Ii∑
t=ti+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)∣∣∣∣Ac2
]

≤ max{h, b}(yh − yl)
⌊
I

1
2
i

⌋
+

1⌊
I

1
2
i

⌋2 max{h, b}(yh − yl)Ii

≤ 2 max{h, b}(yh − yl)I
1
2
i ,

where the first inequality follows from, for periods t = ti + 1, . . . , ti + Ii, that

|G(p̂i, ŷi,1)−G(pt, yt)| = |G(p̂i, ŷi,1)−G(p̂i, yt)| ≤ max{h, b}(yh − yl),

and P(Ac2) ≤ 1
/⌊

I
1/2
i

⌋2
. Similarly, for large enough i that is greater than or equal to i∗∗, we can

establish

E

 ti+2Ii∑
t=ti+Ii+1

(
G(p̂i + δi, ŷi,2)−G(pt, yt)

) ≤ 2 max{h, b}(yh − yl)I
1
2
i .

Based on the analysis above, we upper bound (36). Let K36 =
∑i∗∗

i=1 max{h, b}(yh − yl)Ii, it

can be seen that there exist some constants K37 and K38 such that

E

 n∑
i=1

 ti+Ii∑
t=ti+1

(
G(p̂i, ŷi,1)−G(pt, yt)

)
+

ti+2Ii∑
t=ti+Ii+1

(
G(p̂i + δi, ŷi,2)−G(pt, yt)

)
≤

i∗∗∑
i=1

max{h, b}(yh − yl)Ii +

n∑
i=i∗∗+1

4 max{h, b}(yh − yl)I
1
2
i

≤ K36 + 4 max{h, b}(yh − yl)I
1
2
0

v
1
2 (1− (v

1
2 )
n
)

1− v
1
2

≤ K36 +K37(v
1
2 )
n+1

≤ K36 +K37v
logv( v−1

2I0v
T+1)

1
2

≤ K38T
1
2 . (41)

By combining (35) and (41), we conclude

R(DDA,T ) ≤ 1

T

(
K35T

1
2 +K38T

1
2

)
≤ K39T

− 1
2

for some constant K39. The proof of Theorem 2 is thus complete.
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5 Conclusion

In this paper, we consider a joint pricing and inventory control problem when the firm does not

have prior knowledge about the demand distribution and customer response to selling prices. We

impose virtually no explicit assumption about how the average demand changes in price (other

than the fact that it is decreasing) and on the distribution of uncertainty in demand. This paper

is the first to design a nonparametric algorithm data-driven learning algorithm for dynamic joint

pricing and inventory control problem and present the convergence rate of policies and profits to

those of the optimal ones. The regret of the learning algorithm converges to zero at a rate that is

the theoretical lower bound O(T−1/2).

There are a number of follow-up research topics. One is to develop an asymptotically optimal

algorithm for the problem with lost-sales and censored data. In the lost-sales case, the DDA

algorithm proposed here cannot be directly applied and the estimation and optimization problems

are more challenging as the profit function of the data-driven problem is neither concave nor

unimodal, and the demand data is censored. Another interesting direction for research is to develop

a data-driven learning algorithm for dynamic pricing and stocking decisions for multiple products

in an assortment.
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References

[1] Agarwal A, Foster DP, Hsu DJ, Kakade SM, Rakhlin A (2011) Stochastic convex optimization with

bandit feedback. Advances in Neural Information Processing Systems1035-1043.

[2] Auer P, Ortner R, Szepesvari C (2007) Improved rates for the stochastic continuum-armed bandit prob-

lem. Proceedings of the 20th International Conference on Learning Theory (COLT) 454-468.

[3] Besbes O, Zeevi A (2015) On the (surprising) sufficiency of linear models for dynamic pricing with

demand learning. Management Sci. 61(4): 723-739.

[4] Burnetas AN, Smith CE (2000) Adaptive ordering and pricing for perishable products. Oper. Res.

48(3):436-443.

[5] Chen X, Simchi-Levi D (2004) Coordinating inventory control and pricing strategies with random demand

and fixed ordering cost: the finite horizon case. Oper. Res. 52(6):887-896.

31



[6] Chen X, Simchi-Levi D (2012) Pricing and inventory management. Philips R and Ozalp O, eds. The

Handbook of Pricing Management. Oxford University Press, 784-822.

[7] Chung BD, Li J, Yao T (2011) Dynamic Pricing and Inventory Control with Nonparametric Demand

Learning. Int. J. Services Operations and Informatics 6(3): 259-271.

[8] Cope EW(2009) Regret and convergence bounds for a class of continuum-armed bandit problems. Auto-

matic Control, IEEE Transactions 54(6):1243-1253.

[9] Elmaghraby W, Keskinocak P (2003) Dynamic pricing in the presence of inventory considerations: re-

search overview, current practices, and future directions. Management Sci. 49(10):1287-1309.

[10] Federgruen A, Heching A (1999) Combined pricing and inventory control under uncertainty. Oper. Res.

47(3):454-475.

[11] Hazan E, Kalai A, Kale S, Agarwal A (2006) Logarithmic regret algorithms for online convex optimiza-

tion. Learning Theory. Springer Berlin Heidelberg, 499-513.

[12] Heyman D, Sobel M (1984) Stochastic Models in Operations Research, Vol. II: Stochastic Optimization.

McGraw-Hill, New York.

[13] Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J. Amer. Statist.

Assoc. 58:13-30.

[14] Huh WT, Rusmevichientong P (2009) A nonparametric asymptotic analysis of inventory planning with

censored demand. Math. Oper. Res. 34(1):103-123.

[15] Keskin NB, Zeevi A (2014) Dynamic pricing with an unknown demand model: asymptotically optimal

semi-myopic policies, Oper. Res. 62(5):1142-1167.

[16] Kiefer J, Wolfowitz J (1952) Stochastic estimation of the maximum of a regression function. Ann. Math.

Statist. (23):462-466.

[17] Kleinberg R (2005) Nearly tight bounds for the continuum-armed bandit problem. Advances in Neural

Information Processing Systems: 697-704.

[18] Kleywegt AJ, Shapiro A, Homem-de-mello T. (2001) The sample average approximation method for

stochastic discrete optimization. SIAM Journal on Optimization 12(2):479-502.

[19] Lai TL, Robbins H (1981) Consistency and asymptotic efficiency of slope estimates in stochastic ap-

proximation schemes. Probability Theory and Related Fields 56(3):329-360.

[20] Levi R, Perakis G, Uichanco J (2010) The data-driven newsvendor problem: new bounds and insights.

Working Paper. Massachusetts Institute of Technology, Cambridge, MA.

[21] Levi R, Roundy RO, Shmoys DB (2007) Provably near-optimal sampling-based policies for stochastic

inventory control models. Math. Oper. Res. 32(4):821-839.

32



[22] Petruzzi NC, Dada M (1999) Pricing and the newsvendor problem: A review with extensions. Operations

Research 47(2):183-194.

[23] Petruzzi NC, Dada M (2002) Dynamic pricing and inventory control with learning. Naval Res. Logist.

49:303-325.

[24] Robbins H, Monro S (1951) A stochastic approximation method. Ann. Math. Statist. (22):400-407.

[25] Subrahmanyan S, Shoemaker R (1996) Developing optimal pricing and inventory policies for retailers

who face uncertain demand. Journal of Retailing 72(1):7-30.

[26] Whitin TM (1955) Inventory control and price theory. Management Sci. 2(1):61-68.

[27] Yano CA and Gilbert SM (2003) Coordinated pricing and production/procurement decisions: A re-

view. J. Eliashberg, A. Chakravarty, eds. Managing Business Interfaces: Marketing, Engineering, and

Manufacturing Perspectives. Kluwer, Norwell, MA.

[28] Zhang L, Chen J (2006) Bayesian solution to pricing and inventory control under unknown demand

distribution. Oper. Res. Lett. 34(5):517-524.

[29] Zinkevich M (2003) Online convex programming and generalized infinitesimal gradient ascent. Proc.

20th Internat. Conf. Machine Learn. (ICML-2003) Washington, D.C.

33



Appendix

In this Appendix, we provide the technical lemmas and proofs omitted in the main context.

Lemma A1 compares the optimal solutions of problem CI and bridging problem B1, i.e., p∗ and

p
(
ᾰ(p̂i), β̆(p̂i)

)
.

Lemma A1. Under Assumption 1, there exists some number γ ∈ [0, 1) such that for any p̂i ∈ P,

we have ∣∣∣p∗ − p(ᾰ(p̂i), β̆(p̂i)
)∣∣∣ ≤ γ |p∗ − p̂i| .

Proof. First we make the observation that

p∗ = p
(
ᾰ(p∗), β̆(p∗)

)
. (42)

This result links the optimal solutions of CI and B1 with parameters ᾰ(p∗), β̆(p∗), and it shows

that p∗ is a fixed point of p
(
ᾰ(z), β̆(z)

)
= z. To see why it is true, let

G(p, λ(p)) = peλ(p)E[eε]−min
y∈Y

{
hE
[
y − eλ(p)eε

]+
+ bE

[
eλ(p)eε − y

]+}
. (43)

Then Assumption 1(i) implies that G(p, λ(p)) is unimodal in p. Assuming that G has a unique

maximizer and that p(ᾰ(z), β̆(z)) is the unique optimal solution for problem B1 with parameters(
ᾰ(z), β̆(z)

)
, then (42) follows from Lemma A1 of Besbes and Zeevi (2015) by letting their function

G be (43).

When the optimal solution y over R+ for problem CI for a given p falls in Y, p(α, β) is the

maximizer of peα−βpE[eε] − Aeα−βp, where A = minz
{
hE[z − eε]+ + bE[eε − z]+

}
is a constant.

Thus p(α, β) satisfies (
1− βp(α, β)

)
E[eε] +Aβ = 0.

Letting α = ᾰ(z), β = β̆(z) and taking derivative of p
(
ᾰ(z), β̆(z)

)
with respect to z yield

dp
(
ᾰ(z), β̆(z)

)
dz

=
λ′′(z)

(λ′(z))2
=
λ̃′′(z)λ̃(z)

(λ̃′(z))2
− 1.

By Assumption 1(ii), we have

∣∣∣∣dp(ᾰ(z),β̆(z)
)

dz

∣∣∣∣ < 1 for any z ∈ P. This shows that

∣∣∣p(ᾰ(p∗), β̆(p∗)
)
− p
(
ᾰ(p̂i), β̆(p̂i)

)∣∣∣ ≤ γ |p∗ − p̂i| ,
where γ = maxz∈P

∣∣∣∣dp(ᾰ(z),β̆(z)
)

dz

∣∣∣∣ < 1. This proves Lemma A1. �
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To compare the optimal solutions of Problems B1 and B2, we need several technical Lemmas.

To that end, we change the decision variables in B1 and B2. For given parameters α and β > 0,

define d = eα−βp, d ∈ D = [dl, dh] where dl = eα−βp
h

and dh = eα−βp
l
. Then problem B1 can be

rewritten as

max
d∈D

{
d
α− log d

β
E
[
eε
]
−min

y∈Y

{
hE
[
y − deε

]+
+ bE

[
deε − y

]+}}
.

Define

W (d, y) = hE
(
y − deε

)+
+ bE

(
deε − y

)+
(44)

and

G(α, β, d) = d
α− log d

β
E
[
eε
]
−min

y∈Y
W (d, y) = d

α− log d

β
E
[
eε
]
−W (d, y(d)), (45)

where y(d) is the optimal solution of (44) in Y for given d. Let F (·) be the cumulative distribution

function (CDF) of eε, then it can be verified that

y(d) = dF−1

(
b

b+ h

)
, (46)

where F−1(·) is the inverse function of F (·). Also, we let d (α, β) denote the optimal solution of

maximizing (45) in D.

Similarly, we reformulate problem B2 with decision variables d and y as

max
d∈D

{
d
α− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt

)
−min

y∈Y

{
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − deεt

)+
+ b
(
deεt − y

)+)}}

Let

W̃i+1(d, y) =
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − deεt

)+
+ b
(
deεt − y

)+)
, (47)

and

G̃i+1(α, β, d) = d
α− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt

)
−min

y∈Y
W̃i+1(d, y)

= d
α− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt

)
− W̃i+1(d, ỹ(d)), (48)

where ỹi+1 (d) denotes the optimal solution of W̃i+1(d, y) in (47) on Y. Let d̃i+1 (α, β) be the

optimal solution for G̃i+1(·, ·, d) in (48) on D. Also, let ỹui+1 (d) denote the optimal order-up-to
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level for problem B2 on R+ for given p ∈ P (here the superscript “u” stands for “unconstrained”).

Then

ỹui+1 (d) = min

{
deεj :

1

2Ii

ti+2Ii∑
t=ti+1

1 {eεt ≤ eεj} ≥ b

b+ h

}
, (49)

where 1{A} is the indicator function taking value 1 if “A” is true and 0 otherwise. It can be

checked that

ỹi+1(d) = min
{

max
{
ỹui+1 (d) , yl

}
, yh
}
. (50)

Since ỹi+1(d) is random, it is possible for ỹi+1(d) to take value at the boundary, yh or yl.

We first compare the profit functions defined for the two problems (44), (45), and (47), (48).

To this end, we need the following properties.

Lemma A2. If β > 0, then both G(α, β, d) and G̃i+1(α, β, d) are concave in d ∈ D, and both

G(α, β, eα−βp) and G̃i+1(α, β, eα−βp) are unimodal in p ∈ P.

Proof. It is easily seen that W (d, y) and W̃i+1(d, y) are both jointly convex in (d, y), hence

miny∈YW (d, y) and miny∈Y W̃i+1(d, y) are convex in d (Proposition B4 of Heyman and Sobel

(1984)). Therefore, the results follow from that the first term of G (and G̃i+1) is concave when

β > 0.

The unimodality of G(α, β, eα−βp) and G̃i+1(α, β, eα−βp) follows from the concavity of G and

G̃i+1, and the fact that eα−βp is strictly decreasing in p when β > 0. �

The following important result shows that, for any given d, W (d, y(d)) and W̃i+1(d, ỹi+1(d)) are

close to each other with high probability.

Lemma A3. There exists a positive constant K40 such that, for any ξ > 0,

P
{

max
d∈D

∣∣∣W (d, y(d))− W̃i+1(d, ỹi+1(d))
∣∣∣ ≤ K40ξ

}
≥ 1− 4e−2Iiξ

2
.

Proof. By triangle inequality, we have

max
d∈D

∣∣∣W (d, y(d))− W̃i+1(d, ỹi+1(d))
∣∣∣

≤ max
d∈D

∣∣∣W (d, y(d)
)
− W̃i+1

(
d, y(d)

)∣∣∣+ max
d∈D

∣∣∣W̃i+1

(
d, y(d)

)
− W̃i+1

(
d, ỹi+1(d)

)∣∣∣ . (51)

In what follows we develop upper bounds for maxd∈D |W (d, y(d))− W̃i+1(d, y(d))| and

maxd∈D |W̃i+1(d, y(d))− W̃i+1(d, ỹi+1(d))| separately.

For any d ∈ D and y ∈ Y, we define z = y/d. Then, from (46), the optimal z to minimize

W (d, dz) is

z =
y(d)

d
= F−1

(
b

b+ h

)
.
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Moreover, we have

W (d, y(d)) = W (d, dz) = d
(
hE
(
z − eε

)+
+ bE

(
eε − z

)+)
,

and

W̃i+1(d, y(d)) = W̃i+1(d, dz) = d

(
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
z − eεt

)+
+ b
(
eεt − z

)+))
. (52)

For t ∈ {ti + 1, . . . , ti + 2Ii}, denote

∆t =
(
hE[z − eεt ]+ + bE[eεt − z]+

)
−
(
h(z − eεt)+ + b(eεt − z)+

)
.

Then E [∆t] = 0. Since εt is bounded, so is ∆t, thus we apply Hoeffding inequality (see Theorem 1

in Hoeffding 1963, and Levi et al. 2007 for its application in newsvendor problems) to obtain, for

any ξ > 0,

P

{
dh

∣∣∣∣∣ 1

2Ii

ti+2Ii∑
t=ti+1

∆t

∣∣∣∣∣ > dhξ

}
= P

{∣∣∣∣∣ 1

2Ii

ti+2Ii∑
t=ti+1

∆t

∣∣∣∣∣ > ξ

}
≤ 2e−4Iiξ

2
, (53)

which deduces to

P
{

max
d∈D

∣∣∣W (d, y(d))− W̃i+1(d, y(d))
∣∣∣ > dhξ

}
≤ 2e−4Iiξ

2
. (54)

This bounds the first term on the right hand side of (51).

To bound the second term in (51), we use

F̂ (x) =
1

2Ii

2Ii∑
t=1

1 {eεt ≤ x} , x ∈ [l, u]

to denote the empirical distribution of eεt . For θ > 0, we call F̂ (z) a θ-estimate of F (z) (= b/(b+h)),

or simply a θ-estimate, if ∣∣∣∣F̂ (z)− b

b+ h

∣∣∣∣ ≤ θ. (55)

It can be verified that

P
{
F̂ (z) <

b

b+ h
− θ
}

= P
{
F̂ (z) < F (z)− θ

}
= P

{
F̂ (z)− F (z) < −θ

}
≤ e−2Iiθ

2
,

where the last inequality follows from Hoeffding inequality. Similarly, we have

P
{
F̂ (z) >

b

b+ h
+ θ

}
≤ e−2Iiθ

2
.
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Combining the two results above we obtain

P
{∣∣∣∣F̂ (z)− b

b+ h

∣∣∣∣ ≤ θ} ≥ 1− 2e−2Iiθ
2
.

Let A3(θ) represent the event that F̂ (z̄) is a θ-estimate, then the result above states that

P(A3(θ)) ≥ 1− 2e−2Iiθ
2
. (56)

For d ∈ D, let z̃i+1(d) = ỹi+1(d)
d and z̃ui+1 =

ỹui+1(d)

d , then it follows from (49) that

z̃ui+1 = min

{
eεj :

1

2Ii

ti+2Ii∑
t=ti+1

1 {eεt ≤ eεj} ≥ b

b+ h

}
.

And it follows from (50) that

z̃i+1(d) = min

{
max

{
z̃ui+1,

yl

d

}
,
yh

d

}
.

By ỹui+1(d) = d z̃ui+1, we have W̃i+1(d, ỹui+1(d)) = W̃i+1(d, d z̃ui+1). In the following, we develop

an upper bound for W̃i+1(d, dz)− W̃i+1(d, dz̃ui+1) when F̂ (·) is a θ-estimate.

First, for any given d ∈ D, if z ≤ z̃ui+1, then it follows from (52) that

W̃i+1(d, dz) =
d

2Ii

2Ii∑
t=1

[
b
(
eεt − z

)
1
{
z̃ui+1 < eεt

}
+b
(
eεt − z

)
1
{
z < eεt ≤ z̃ui+1

}
+ h
(
z − eεt

)
1
{
eεt ≤ z

}]
≤ d

2Ii

2Ii∑
t=1

[
b
(
eεt − z

)
1
{
z̃ui+1 < eεt

}
+b
(
z̃ui+1 − z

)
1
{
z < eεt ≤ z̃ui+1

}
+ h
(
z − eεt

)
1
{
eεt ≤ z

}]
, (57)

where the inequality follows from replacing eεt in the second term by its upper bound z̃ui+1, and

W̃i+1(d, dz̃ui+1) =
d

2Ii

2Ii∑
t=1

[
b(eεt − z̃ui+1))1{z̃ui+1 < eεt}

+h(z̃ui+1 − eεt)1{z < eεt ≤ z̃ui+1}+ h(z̃ui+1 − eεt)1{eεt ≤ z}
]

≥ d

2Ii

2Ii∑
t=1

[
b(eεt − z̃ui+1))1{z̃ui+1 < eεt}+ h(z̃ui+1 − eεt)1{eεt ≤ z}

]
, (58)

with the inequality obtained by dropping the nonnegative middle term. Consequently when z ≤ z̃ui+1
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we subtract (58) from (57) to obtain

W̃i+1(d, dz)− W̃i+1(d, dz̃ui+1)

≤ d
(
b(z̃ui+1 − z)(1− F̂ (z̃ui+1)) + b(z̃ui+1 − z)(F̂ (z̃ui+1)− F̂ (z)) + h(z − z̃ui+1)F̂ (z)

)
= d(z̃ui+1 − z)

(
−(h+ b)F̂ (z) + b

)
≤ d

(
z̃ui+1 − z

)
(b+ h)θ, (59)

where the second inequality follows from F̂ (z) ≥ b
b+h − θ when F̂ (·) is a θ-estimate.

Similarly, if z > z̃ui+1, then

W̃i+1(d, dz) =
d

2Ii

2Ii∑
t=1

[
b(eεt − z)1{z < eεt}

+h(z − eεt)1{z̃ui+1 < eεt ≤ z}+ h(z − eεt)1{eεt ≤ z̃ui+1}
]

≤ d

2Ii

2Ii∑
t=1

[
b(eεt − z)1{z < eεt}

+h(z − z̃ui+1)1{z̃ui+1 < eεt ≤ z}+ h(z − eεt)1{eεt ≤ z̃ui+1}
]
, (60)

where the inequality follows replacing eεt in the second term by its lower bound z̃ui+1, and

W̃i+1(d, dz̃ui+1) =
d

2Ii

2Ii∑
t=1

[
b(eεt − z̃ui+1)1{z < eεt}

+b(eεt − z̃ui+1)1{z̃ui+1 < eεt ≤ z}+ h(z̃ui+1 − eεt)1{eεt ≤ z̃ui+1}
]

≥ d

2Ii

2Ii∑
t=1

[
b(eεt − z̃ui+1)1{z < eεt}+ h(z̃ui+1 − eεt)1{eεt ≤ z̃ui+1}

]
, (61)

again the inequality follows from dropping the nonnegative second term. Subtracting (61) from

(60), we obtain

W̃i+1(d, dz)− W̃i+1(d, dz̃ui+1)

≤ d
(
b(z̃ui+1 − z)(1− F̂ (z)) + h(z − z̃ui+1)(F̂ (z)− F̂ (z̃ui+1)) + h(z − z̃ui+1)F̂ (z̃ui+1)

)
= d(z − z̃ui+1)((h+ b)F̂ (z)− b)

≤ d(z − z̃ui+1)(b+ h)θ, (62)

where the last inequality follows from F̂ (z) ≤ b
b+h + θ when F̂ (·) is a θ-estimate.

The results (59) and (62) imply that, when F̂ (·) is a θ-estimate, or (55) is satisfied, it holds

that

W̃i+1(d, dz)− W̃i+1(d, dz̃ui+1) ≤ d
∣∣z − z̃ui+1

∣∣(b+ h)θ.
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As demand is bounded, dz̃ui+1 is bounded too, hence it follows from dz ∈ Y that there exists some

constant K41 > 0 such that d
∣∣z − z̃ui+1

∣∣ ≤ K41. Thus

W̃i+1(d, dz)− W̃i+1(d, dz̃ui+1) ≤ K41(b+ h)θ.

Since z̃ui+1 is the unconstrained minimizer of W̃i+1(d, dz), it follows that

W̃i+1(d, dz)− W̃i+1(d, dz̃i+1(d)) ≤ W̃i+1(d, dz)− W̃i+1(d, dz̃ui+1) ≤ K41(b+ h)θ.

As this inequality holds for any d ∈ D, it implies that, when F̂ (·) is a θ-estimate, or on the event

A3(θ),

max
d∈D

{
W̃i+1(d, dz)− W̃i+1(d, dz̃i+1(d))

}
≤ K41(b+ h)θ. (63)

Letting θ = ξ in (63) we obtain

P
{

max
d∈D

(
W̃i+1(d, dz)− W̃i+1(d, dz̃i+1(d))

)
≤ K41(b+ h)ξ

}
≥ P(A3(ξ))

≥ 1− 2e−2Iiξ
2
,

where the last inequality follows from (56). This proves, by noting W̃i+1(d, y(d))−W̃i+1(d, ỹi+1(d)) ≥
0 as ỹi+1(d) is the minimizer of W̃i+1 on Y, that

P
{

max
d∈D

∣∣∣(W̃i+1(d, y(d))− W̃i+1(d, ỹi+1(d))
)∣∣∣ ≤ K41(b+ h)ξ

}
≥ 1− 2e−2Iiξ

2
. (64)

Applying (54) and (64) in (51), we conclude that there exist a constant K40 > 0 such that for any

ξ > 0, when Ii is sufficiently large,

P
{

max
d∈D

∣∣∣W (d, y(d))− W̃i+1(d, ỹi+1(d))
∣∣∣ ≤ K40ξ

}
≥ 1− 2e−2Iiξ

2 − 2e−4Iiξ
2 ≥ 1− 4e−2Iiξ

2
.

This completes the proof of Lemma A3. �

Having compared functions W and W̃i+1, we next compare G with G̃i+1.

Lemma A4. Given parameters α and β, there exist a positive constant K42 such that, for any

ξ > 0,

P
{

max
d∈D

∣∣∣G (α, β, d)− G̃i+1 (α, β, d)
∣∣∣ ≥ K42ξ

}
≤ 5e−2Iiξ

2
.

Proof. For any d ∈ D, similar argument as that used in proving (53) of Lemma A2 shows that,

for any ξ > 0,

P

{∣∣∣∣∣E[eεt ]−

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt

)∣∣∣∣∣ ≤ ξ
}
≥ 1− e−4Iiξ

2
,
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where σ =
√

Var(eεt). Let r∗ = maxd∈D
|α−log d|

β d, then we have

P

{
max
d∈D

∣∣∣∣∣dα− log d

β
E[eεt ]− dα− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt

)∣∣∣∣∣ ≤ r∗ξ
}

= P

{
r∗

∣∣∣∣∣E[eεt ]−

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt

)∣∣∣∣∣ ≤ r∗ξ
}

≥ 1− e−4Iiξ
2
. (65)

Hence, it follows from (45) and (48) that, for any d ∈ D and ξ > 0,

P
{

max
d∈D

∣∣∣G(α, β, d)− G̃i+1(α, β, d)
∣∣∣ ≤ (K40 + r∗)ξ

}
= P

{
max
d∈D

∣∣∣∣(dα− log d

β
E
[
eε
]
−W (d, y(d))

)
−
(
d
α− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt
)
− W̃i+1(d, ỹi+1(d))

)∣∣∣∣
≤ (K40 + r∗)ξ

}
≥ P

{
max
d∈D

∣∣∣∣dα− log d

β
E
[
eε
]
− dα− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt
)∣∣∣∣+ max

d∈D

∣∣∣∣W (d, y(d)− W̃i+1(d, ỹi+1(d))

∣∣∣∣
≤ (K40 + r∗)ξ

}
≥ P

{
max
d∈D

∣∣∣∣dα− log d

β
E
[
eε
]
− dα− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt
)∣∣∣∣ ≤ r∗ξ,

and max
d∈D

∣∣∣∣W (d, y(d)− W̃i+1(d, ỹi+1(d))

∣∣∣∣ ≤ K40ξ

}
= 1− P

{
max
d∈D

∣∣∣∣dα− log d

β
E
[
eε
]
− dα− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt
)∣∣∣∣ > r∗ξ,

or max
d∈D

∣∣∣∣W (d, y(d))− W̃i+1(d, ỹi+1(d))

∣∣∣∣ > K40ξ

}
≥ 1− P

{
max
d∈D

∣∣∣∣dα− log d

β
E
[
eε
]
− dα− log d

β

(
1

2Ii

ti+2Ii∑
t=ti+1

eεt
)∣∣∣∣ > r∗ξ

}
−P
{

max
d∈D

∣∣∣∣W (d, y(d)− W̃i+1(d, ỹi+1(d))

∣∣∣∣ > K40ξ

}
≥ 1− e−4Iiξ

2 − 4e−2Iiξ
2

≥ 1− 5e−2Iiξ
2
,

where the last inequality follows from (65) and Lemma A2. Letting K42 = K40 + 2r∗σ completes

the proof of Lemma A4. �
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For any ξ > 0, we define event

A4(ξ) =

{
ω : max

d∈D

∣∣∣G(α, β, d)− G̃i+1(α, β, d)
∣∣∣ ≤ K42ξ

}
. (66)

Then Lemma A4 can be reiterated as P(A4(ξ)) ≥ 1− 5e−2Iiξ
2
.

With the preparations above, we are now ready to compare the optimal solutions of problems

B1 and B2. Different from B1, in problem B2 the distribution of ε in the objective function is

unknown, hence the expectations are replaced by their sample averages, giving rise to the SAA

problem. Lemma A5 below presents a useful result that bounds the probability for the optimal

solution of problem B2 to be away from that of problem B1. Since Ii tends to infinity as t goes to

infinity, this shows that the probability that the two solutions, p
(
ᾰ(p̂i), β̆(p̂i)

)
and p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
,

are significantly different converges to zero when the length of the planning horizon T increases.

Lemma A5. For any p ∈ P and any ξ > 0,

P
{∣∣∣p(ᾰ(p), β̆(p)

)
− p̃i+1

(
ᾰ(p), β̆(p)

)∣∣∣ ≥ K43ξ
1
2

}
≤ 5e−4Iiξ

2

for some positive constant K43.

Proof. To slightly simplify the notation, for given parameters α and β, in this proof we let

G(d) = G(α, β, d), G̃(d) = G̃i+1(α, β, d), d = d(α, β), d̃ = d̃i+1 (α, β) .

By Taylor’s expansion,

G(d̃) = G(d) +G
′
(d)(d̃− d) +

G
′′
(q)

2
(d̃− d)2, (67)

where q ∈ [d, d̃] if d ≤ d̃ and q ∈ [d̃, d] if d > d̃. Since we assume the minimizer of W (d, y) over R+

falls into Y, it follows from (45) that G(d) = dα−log d
β E[eε] − Ad, where A = minz

{
hE
(
z − eε

)+
+

bE
(
eε − z

)+}
> 0 is a constant. Thus, we have

G
′′
(d) = −E[eε]

βd
.

Since λ(·) is assumed to be strictly decreasing, it follows that β̆(·) is bounded below by a positive

number, say ā > 0. On β ≥ ā, let mind∈D
E[eε]
βd = m and it holds that m > 0, then it follows from

(67) that

G(d̃) ≤ G(d)− m

2
(d̃− d)2. (68)

Now we prove, on event A4(ξ), that

G(d̃)−G(d) ≥ −2K42ξ. (69)
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We prove this by contradiction. Suppose it is not true, i.e., G(d) − G(d̃) > 2K42ξ, then it follows

from (66) that

G̃(d)− G̃(d̃)

=
(
G̃(d)−G(d)

)
+
(
G(d)−G(d̃)

)
+
(
G(d̃)− G̃(d̃)

)
> −K42ξ + 2K42ξ −K42ξ

= 0.

This leads to G̃(d) > G̃(d̃), contradicting with d̃ being optimal for problem B2. Thus, (69) is

satisfied on A4(ξ).

Using (68) and (69), we obtain that, on event A4(ξ),∣∣d̃− d∣∣2 ≤ 4K42

m
ξ,

or equivalently, for some constant K44, ∣∣d̃− d∣∣ ≤ K44ξ
1
2 .

Let g(d) = α−log d
β , then p(α, β) = g(d) and p̃i+1(α, β) = g(d̃). Since the first order derivative of

g(d) with respect to d ∈ D is bounded, there exist constant K45 > 0, such that on A4(ξ), it holds

that

|p(α, β)− p̃i+1(α, β)| = |g(d)− g(d̃)| ≤ K45|d− d̃| ≤ K44 ×K45ξ
1
2 .

Letting K43 = K44 ×K45, this shows that for any values of α and β ≥ ā,

P
{
|p(α, β)− p̃i+1(α, β)| ≤ K43ξ

1
2

}
≥ P(A4(ξ)) ≥ 1− 5e−2Iiξ

2
.

Substituting α = ᾰ(p) and β = β̆(p), we obtain the desired result in Lemma A5. �

Lemma A6 shows that (α̂i+1, β̂i+1), (ᾰ(p̂i), β̆(p̂i)) and (ᾰ(p̂i+δi), β̆(p̂i+δi)) approach each other

when i gets large.

Lemma A6. There exists a positive constant K46 such that

E
[
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2 + |ᾰ(p̂i + δi)− α̂i+1|2 + |β̆(p̂i + δi)− β̂i+1|2

]
≤ K46I

− 1
2

i .

Proof. The proof of this result bears similarity with that of Besbes and Zeevi (2015), hence here

we only present the differences. For convenience we define

B1
i+1 =

1

Ii

ti+Ii∑
t=ti+1

εt, B2
i+1 =

1

Ii

ti+2Ii∑
t=ti+Ii+1

εt.
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Recall that α̂i+1 and β̂i+1 are derived from the least-square method, and they are given by

α̂i+1 =
λ(p̂i) + λ(p̂i + δi)

2
+
B1
i+1 +B2

i+1

2
+ β̂i+1

2p̂i + δi
2

, (70)

β̂i+1 = −λ(p̂i + δi)− λ(p̂i)

δi
− 1

δi
(−B1

i+1 +B2
i+1). (71)

Applying Taylor’s expansion on λ(p̂i + δi) at point p̂i to the second order for (71), we obtain

β̂i+1 = −
(
λ′(p̂i) +

1

2
λ′′(qi)δi

)
− 1

δi
(−B1

i+1 +B2
i+1)

= β̆(p̂i)−
1

2
λ′′(qi)δi −

1

δi
(−B1

i+1 +B2
i+1), (72)

where qi ∈ [p̂i, p̂i + δi]. Substituting β̂i+1 in (70) by (72), and applying Taylor’s expansion on

λ(p̂i + δi) at point p̂i to the first order, we have

α̂i+1 = λ(p̂i) +
1

2
λ′(q′i)δi +

B1
i+1 +B2

i+1

2
− λ′(p̂i)

(
p̂i +

δi
2

)
+

(
−1

2
λ′′(qi)δi −

1

δi
(−B1

i+1 +B2
i+1)

)(
p̂i +

δi
2

)
= ᾰ(p̂i) +

1

2
λ′(q′i)δi +

B1
i+1 +B2

i+1

2
− 1

2
λ′(p̂i)δi

+

(
−1

2
λ′′(qi)δi −

1

δi
(−B1

i+1 +B2
i+1)

)(
p̂i +

δi
2

)
, (73)

where q′i ∈ [p̂i, p̂i + δi].

Since the error terms εt are assumed to be bounded, we apply Hoeffding inequality to obtain

P
{∣∣−B1

i+1

∣∣ > ξ
}
≤ 2e−2Iiξ

2
, P

{∣∣B2
i+1

∣∣ > ξ
}
≤ 2e−2Iiξ

2
.

Hence,

P
{∣∣−B1

i+1

∣∣+
∣∣B2

i+1

∣∣ > 2ξ
}
≤ P

{∣∣−B1
i+1

∣∣ > ξ
}

+ P
{∣∣B2

i+1

∣∣ > ξ
}
≤ 4e−2Iiξ

2
.

Therefore,

P
{∣∣−B1

i+1 +B2
i+1

∣∣ ≤ 2ξ
}
≥ P

{∣∣−B1
i+1

∣∣+
∣∣B2

i+1

∣∣ ≤ 2ξ
}
≥ 1− 4e−2Iiξ

2
.

Similar argument shows

P
{∣∣B1

i+1 +B2
i+1

∣∣ ≤ 2ξ
}
≥ 1− 4e−2Iiξ

2
.

Since λ′(·) and λ′′(·) are bounded and δi converges to 0, from (73) we conclude that there must

exist a constant K47 such that, on the event
∣∣B1

i+1 +B2
i+1

∣∣ ≤ 2ξ and
∣∣−B1

i+1 +B2
i+1

∣∣ ≤ 2ξ, it holds

that

|α̂i+1 − ᾰ(p̂i)| ≤ K47

(
δi +

ξ

δi
+ ξ

)
.
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Therefore,

P
{
|α̂i+1 − ᾰ(p̂i)| ≤ K47

(
δi +

ξ

δi
+ ξ

)}
≥ P

{∣∣B1
i+1 +B2

i+1

∣∣ ≤ 2ξ,
∣∣−B1

i+1

∣∣+
∣∣B2

i+1

∣∣ ≤ 2ξ
}

≥ 1− 8e−2Iiξ
2
,

which implies

P
{
|α̂i+1 − ᾰ(p̂i)|2 ≤ K48

(
δ2
i +

ξ2

δ2
i

+ ξ2

)}
≥ 1− 8e−2Iiξ

2
. (74)

From (72) we have

P
{∣∣β̂i+1 − β̆(p̂i)

∣∣ ≤ K49

(
δi +

ξ

δi

)}
≥ 1− 4e−2Iiξ

2
,

which implies

P
{∣∣β̂i+1 − β̆(p̂i)

∣∣2 ≤ K50

(
δ2
i +

ξ2

δ2
i

)}
≥ 1− 4e−2Iiξ

2
. (75)

Following the development of (74) and (75), we have

P
{
|α̂i+1 − λ(p̂i + δi)|2 ≤ K51

(
δ2
i +

ξ2

δ2
i

+ ξ2

)}
≥ 1− 8e−2Iiξ

2
. (76)

and

P
{∣∣β̂i+1 − β̆(p̂i + δi)

∣∣2 ≤ K52

(
δ2
i +

ξ2

δ2
i

)}
≥ 1− 4e−2Iiξ

2
. (77)

Combining(74), (75), (76), and (77), we obtain

P
{
|α̂i+1 − λ(p̂i)|2 +

∣∣β̂i+1 − β̆(p̂i)
∣∣2 + |α̂i+1 − λ(p̂i + δi)|2 +

∣∣β̂i+1 − β̆(p̂i + δi)
∣∣2 (78)

≤ K53

(
δ2
i +

ξ2

δ2
i

+ ξ2

)}
≥ 1− 24e−2Iiξ

2
,

which is

P
{(

K54

δ2
i

+K55

)−1 (
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2

+|ᾰ(p̂i + δi)− α̂i+1|2 + |β̆(p̂i + δi)− β̂i+1|2 −K53δ
2
i

)
≥ ξ2

}
< 24e−2Iiξ

2
.
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Therefore,

E
[(

K54

δ2
i

+K55

)−1 (
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2 + |ᾰ(p̂i + δi)− α̂i+1|2 + |β̆(p̂i + δi)− β̂i+1|2

−K53δ
2
i

)]
=

(
K54

δ2
i

+K55

)−1

E
[
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2 + |ᾰ(p̂i + δi)− α̂i+1|2 + |β̆(p̂i + δi)− β̂i+1|2

]
−
(
K54

δ2
i

+K55

)−1

K53δ
2
i

≤
∫ +∞

0
24e−2Iiξdξ

=
12

Ii
.

Hence one has

E
[
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2 + |ᾰ(p̂i + δi)− α̂i+1|2 + |β̆(p̂i + δi)− β̂i+1|2

]
≤

(
12

Ii
+

(
K54

δ2
i

+K55

)−1

K53δ
2
i

)(
K54

δ2
i

+K55

)
≤ K46I

− 1
2

i . (79)

This completes the proof of Lemma A6. �

Lemma A7 bounds the difference between the solution for problem B2, p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
, and

the solution for problem DD, p̂i+1. Comparing the two problems, we note that there are two

main differences: First, problem DD has an affine function with coefficients α̂i+1 and β̂i+1 , while

problem B2 has an affine function with coefficients ᾰ(p̂i) and β̆(p̂i); second, in problem DD, the

biased sample of demand uncertainty, ηt, is used, while in problem B2, an unbiased sample εt is

used. Despite those differences, we have the following result.

Lemma A7. There exists some positive constants K56 and i∗ such that for any i ≥ i∗ one has

P
{ ∣∣∣p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
− p̂i+1

∣∣∣ ≥ K56

(∣∣ᾰ(p̂i)− α̂i+1

∣∣+
∣∣β̆(p̂i)− β̂i+1

∣∣
+
∣∣ᾰ(p̂i + δi)− α̂i+1

∣∣+
∣∣β̆(p̂i + δi)− β̂i+1

∣∣)} ≤ 8

Ii
,

P
{ ∣∣∣ỹi+1

(
ᾰ(p̂i), β̆(p̂i)

)
− ŷi+1

∣∣∣ ≥ K56

(∣∣ᾰ(p̂i)− α̂i+1

∣∣+
∣∣β̆(p̂i)− β̂i+1

∣∣
+
∣∣ᾰ(p̂i + δi)− α̂i+1

∣∣+
∣∣β̆(p̂i + δi)− β̂i+1

∣∣)} ≤ 8

Ii
.

Proof. To compare the solutions of these two problems, we introduce a general function based on

the data-driven problem DD and problem B2: Given selling price pt = p̂i for t = ti + 1, . . . , ti + Ii
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and pt = p̂i + δi for t = ti + Ii + 1, . . . , ti + 2Ii, logarithm demand data Dt, t = ti + 1, . . . , ti +

2Ii, and two sets of parameters (α1, β1), (α2, β2), define ζt1+Ii
t=ti+1(α1, β1) = (ζti+1, . . . , ζti+Ii) and

ζti+2Ii
t=ti+Ii+1(α2, β2) = (ζti+Ii+1, . . . , ζti+2Ii) by

ζt = Dt − (α1 − β1pt) = λ(p̂i) + εt − (α1 − β1p̂i), t = ti + 1, . . . , ti + Ii,

ζt = Dt − (α2 − β2pt) = λ(p̂i + δi) + εt − (α2 − β2(p̂i + δi)), t = ti + Ii + 1, . . . , ti + 2Ii.

Then, we define a function Hi+1 by

Hi+1

(
p, eα1−β1p, ζt1+Ii

t=ti+1(α1, β1), ζti+2Ii
t=ti+Ii+1(α2, β2)

)
(80)

= peα1−β1p 1

2Ii

ti+2Ii∑
t=ti+1

eζt −min
y∈Y

{
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − eα1−β1peζt

)+
+ b
(
eα1−β1peζt − y

)+)}
.

Consider the optimization of Hi+1, and let its optimal price be denoted by

p
(
(α1, β1), (α2, β2)

)
= arg max

p∈P
Hi+1

(
p, eα1−β1p, ζt1+Ii

t=ti+1(α1, β1), ζti+2Ii
t=ti+Ii+1(α2, β2)

)
(81)

and its optimal order-up-to level, for given price p, be denoted by

y
(
eα1−β1p, (α1, β1), (α2, β2)

)
= arg min

y∈Y

{
1

2Ii

ti+2Ii∑
t=ti+1

(
h
(
y − eα1−β1peζt

)+
+ b
(
eα1−β1peζt − y

)+)}
.(82)

Similar to Besbes and Zeevi (2015), we make the assumption that the optimal solutions

p
(
(α1, β1), (α2, β2)

)
and y

(
eα1−β1p, (α1, β1), (α2, β2)

)
are differentiable with respect to α1, α2 and

β1, β2 with bounded first order derivatives. Then, p
(
(α1, β1)(α2, β2)

)
and y

(
eα1−β1p, (α1, β1), (α2, β2)

)
are both Lipschitz and in particular, there exists a constant K57 > 0 such that for any α1, α2, α

′
1, α
′
2

and β1, β2, β
′
1, β
′
2, it holds that∣∣∣p((α1, β1)(α2, β2)

)
− p
(
(α′1, β

′
1)(α′2, β

′
2)
)∣∣∣ (83)

≤ K57

(
|α1 − α′1|+ |β1 − β′1|+ |α2 − α′2|+ |β2 − β′2|

)
,∣∣∣y(eα1−β1p, (α1, β1), (α2, β2)

)
− y
(
eα
′
1−β′1p, (α′1, β

′
1), (α′2, β

′
2)
)∣∣∣ (84)

≤ K57

(
|α1 − α′1|+ |β1 − β′1|+ |α2 − α′2|+ |β2 − β′2|

)
.

The optimization problem (80) will serve as yet another bridging problem between DD and B2.

To see that, observe that when α1 = α2 = α̂i+1 and β1 = β2 = β̂i+1, problem (81) is reduced to

the data-driven problem DD. That is,

p̂i+1 = p
(
(α̂i+1, β̂i+1), (α̂i+1, β̂i+1)

)
. (85)
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On the other hand, when α1 = ᾰ(p̂i), β1 = β̆(p̂i), α2 = ᾰ(p̂i + δi), β2 = β̆(p̂i + δi), we deduce from

the definition of ᾰ(·) and β̆(·) that for t = ti + 1, . . . , ti + Ii, we have

ζt = Dt − (α1 − β1pt) = λ(p̂i) + εt − (ᾰ(p̂i)− β̆(p̂i)p̂i) = εt, (86)

and for t = ti + Ii + 1, . . . , ti + 2Ii, it holds that

ζt = Dt − (α2 − β2pt) = λ(p̂i + δi) + εt − (ᾰ(p̂i + δi)− β̆(p̂i + δi)(p̂i + δi)) = εt. (87)

This shows that when the parameters are
(
ᾰ(p̂i), β̆(p̂i)

)
and

(
ᾰ(p̂i + δi), β̆(p̂i + δi)

)
, problem (81)

is reduced to bridging problem B2. This gives us

p̃i+1

(
ᾰ(p̂i), β̆(p̂i)

)
= p
((
ᾰ(p̂i), β̆(p̂i)

)
,
(
ᾰ(p̂i + δi), β̆(p̂i + δi)

))
. (88)

The two results (85) and (88) will enable us to compare the optimal solutions of the data-driven

optimization problem DD and bridging problem B2 through one optimization problem (81).

In Lemma A6, letting ξ = (2Ii)
− 1

2 (log 2Ii)
1
2 in (78), we obtain

P
{
|ᾰ(p̂i)− α̂i+1|2 + |β̆(p̂i)− β̂i+1|2 + |ᾰ(p̂i + δi)− α̂i+1|2 + |β̆(p̂i + δi)− β̂i+1|2 (89)

≤ K53

(
I
− 1

2
i + (2Ii)

− 1
2 (log 2Ii) + (2Ii)

−1(log 2Ii)

)}
≥ 1− 8

Ii
.

This implies

P
{
|ᾰ(p̂i)− α̂i+1| ≤ (3K53)

1
2 (2Ii)

− 1
4 (log 2Ii)

1
2 , |β̆(p̂i)− β̂i+1| ≤ (3K53)

1
2 (2Ii)

− 1
4 (log 2Ii)

1
2 , (90)

|ᾰ(p̂i + δi)− α̂i+1| ≤ (3K53)
1
2 (2Ii)

− 1
4 (log 2Ii)

1
2 , |β̆(p̂i + δi)− β̂i+1| ≤ (3K53)

1
2 (2Ii)

− 1
4 (log 2Ii)

1
2

}
≥ 1− 8

Ii
.

For convenience, we define the event A5 by

A5 =
{
ω : |ᾰ(p̂i)− α̂i+1| ≤ (3K53)

1
2 (2Ii)

− 1
4 (log 2Ii)

1
2 , |β̆(p̂i)− β̂i+1| ≤ (3K53)

1
2 (2Ii)

− 1
4 (log 2Ii)

1
2 , (91)

|ᾰ(p̂i + δi)− α̂i+1| ≤ (3K53)
1
2 (2Ii)

− 1
4 (log 2Ii)

1
2 , |β̆(p̂i + δi)− β̂i+1| ≤ (3K53)

1
2 (2Ii)

− 1
4 (log 2Ii)

1
2

}
.

Then by (91) one has

P(Ac5) ≤ 8

Ii
. (92)

When β1 > 0, similar to Remark 2 and Lemma A2, one can verify that Hi+1(·, ·, ·, ·) of (80) is

unimodal in p thus its optimal solution is well-defined. Define

i∗ = max
{

logv
e

2I0
, min

{
i
∣∣∣ (3K53)

1
2 (2Ii)

− 1
4 (log 2Ii)

1
2 < min

p∈P
β̆(p)

}}
, (93)
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where we need i∗ to be no less than logv
e

2I0
to ensure that (2Ii)

− 1
4 (log 2Ii)

1
2 is decreasing on i ≥ i∗.

When i ≥ i∗, it follows that β̂i+1 > 0 on A5, hence on event A5, problem DD is unimodal in p

after minimizing over y, and the optimal pricing is well-defined. These properties will enable us to

prove that the convergence of parameters translates to convergence of the optimal solutions. Then

the first part in Lemma A7 on p follows directly from (85), (88) and (83). From equations (82),

(86), and (87), we conclude

ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
= y
(
eᾰ(p̂i)−β̆(p̂i)p̂i+1 ,

(
ᾰ(p̂i), β̆(p̂i)

)
,
(
ᾰ(p̂i + δi), β̆(p̂i + δi)

))
,

and it follows from the DDA policy that

ŷi+1,1 = y
(
eα̂i+1−β̂i+1p̂i+1 , (α̂i+1, β̂i+1), (α̂i+1, β̂i+1)

)
.

Then, similar analysis as that in the proof of (83) can be used to prove (84). �

To prepare for the convergence proof of order-up-to levels in Theorem 1, we need another

result. Recall that y
(
eα−βp

)
and ỹi+1

(
eα−βp

)
are the optimal y on Y for problem B1 and problem

B2 respectively for given p ∈ P. We have the following result.

Lemma A8. There exists some constant K58 such that, for any p ∈ P and p̂i ∈ P, for any ξ > 0,

it holds that

P
{ ∣∣∣y(eᾰ(p̂i)−β̆(p̂i)p

)
− ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p

)∣∣∣ ≥ K58ξ
}
≤ 2e−4Iiξ

2
.

Proof. For p ∈ P, the optimal solution for bridging problem B1 is the same as (46), y
(
eᾰ(p̂i)−β̆(p̂i)p

)
.

Thus

y
(
eᾰ(p̂i)−β̆(p̂i)p

)
= eᾰ(p̂i)−β̆(p̂i)pF−1

(
b

b+ h

)
. (94)

For given p ∈ P, we follow (49) to define ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p

)
as the unconstrained optimal order-up-

to level for problem B2 on R+, then it can be verified that

ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p

)
= eᾰ(p̂i)−β̆(p̂i)p min

{
eεj :

1

2Ii

ti+2Ii∑
t=ti+1

1 {eεt ≤ eεj} ≥ b

b+ h

}
, (95)

and, similar to (50), we have

ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p

)
= min

{
max

{
ỹui+1(eᾰ(p̂i)−β̆(p̂i)p), yl

}
yh
}
.

It is seen that∣∣∣y (eᾰ(p̂i)−β̆(p̂i)p
)
− ỹi+1

(
eᾰ(p̂i)−β̆(p̂i)p

)∣∣∣ ≤ ∣∣∣y (eᾰ(p̂i)−β̆(p̂i)p
)
− ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p

)∣∣∣ . (96)
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Now, for any z > 0, we have

P
{
F

(
ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

)
− b

b+ h
≤ −z

}
(97)

= P
{
ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1) ≤ F−1

(
b

b+ h
− z
)}

≤ P

{
1

2Ii

ti+2Ii∑
t=ti+1

1

{
eεt ≤ F−1

(
b

b+ h
− z
)}
≥ b

b+ h

}

= P

{
1

2Ii

ti+2Ii∑
t=ti+1

1

{
eεt ≤ F−1

(
b

b+ h
− z
)}
−
(

b

b+ h
− z
)
≥ z

}
,

where the first inequality follows from (95). Since E
[
1

{
eεt ≤ F−1

(
b

b+h − z
)}]

= b
b+h − z, we

apply Hoeffding inequality to obtain

P

{
1

2Ii

ti+2Ii∑
t=ti+1

1

{
eεt ≤ F−1

(
b

b+ h
− z
)}
−
(

b

b+ h
− z
)
≥ z

}
≤ e−4Iiz

2
.

Combining this with (94) and (97), we obtain

P
{
F

(
ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

)
−F
(
y
(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

)
≤ −z

}
≤ e−4Iiz

2
.

(98)

Similarly, we have

P
{
F

(
ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

)
−F
(
y
(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

)
≥ z
}

≤ e−4Iiz
2
.

(99)

From regularity condition (v), the probability density function f(·) of eεt satisfies r = min{f(x), x ∈
[l, u]} > 0. From calculus, it is known that, for any x < y, there exists a number z ∈ [x, y] such

that F (y)− F (x) = f(z)(y − x) ≥ r(y − x). Applying (98) and (99), for any ξ > 0, we obtain

2e−4Iiξ
2

≥ P
{∣∣∣∣F(ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

)
−F
(
y
(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

)∣∣∣∣ ≥ ξ}
≥ P

{
r

∣∣∣∣ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1) − y

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
e−(ᾰ(p̂i)−β̆(p̂i)p̂i+1)

∣∣∣∣ ≥ ξ}
= P

{∣∣∣∣ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
− y

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

) ∣∣∣∣ ≥ 1

r
eᾰ(p̂i)−β̆(p̂i)p̂i+1ξ

}
.
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Let K58 = maxp̂i∈P,p̂i+1∈P
1
re
ᾰ(p̂i)−β̆(p̂i)p̂i+1 , then K58 > 0. We have

P
{∣∣∣∣ỹui+1

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

)
− y

(
eᾰ(p̂i)−β̆(p̂i)p̂i+1

) ∣∣∣∣ ≥ K58ξ

}
≤ 2e−4Iiξ

2
,

and Lemma A8 follows from the inequality above and (96). �
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