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Abstract Intelligent Tutoring Systems authoring tools are highly complex educational

software applications used to produce highly complex software applications (i.e. ITSs).

How should our assumptions about the target users (authors) impact the design of

authoring tools? In this article I first reflect on the factors leading to my original 1999

article on the state of the art in ITS authoring tools and consider some challenges facing

authoring tool researchers today. Then, in the bulk of the paper, I propose some

principled foundations for future authoring tool design, focusing on operationalizing

the construct of complexity—for tool, task, and user. ITS authoring tools are major

undertakings and to redeem this investment it is important to anticipate actual user

needs and capacities. I propose that one way to do this is to match the complexity of

tool design to the complexity of authoring tasks and the complexity capacity of users

and user communities. Doing so entails estimating the complexity of the mental models

that a user is expected to build in order to use a tool as intended. The goal is not so

much to support the design of more powerful authoring tools as it is to design tools that

meet the needs of realistic user audiences. This paper presents some exploratory ideas

on how to operationalize the concept of complexity for tool, task, and user. The paper

draws from the following theories and frameworks to weave this narrative: Complexity

Science, Activity Theory, Epistemic Forms and Games, and adult cognitive develop-

mental theory (Hierarchical Complexity Theory). This exploration of usability and

complexity is applicable to the design of any type of complex authoring application,

though the application area that motivated the exploration is ITS authoring.
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Introduction

In 1999 I wrote an article on the “state of the art” in ITS authoring tools R&D, and in

2003 I co-edited a book on that subject with Sharon Ainsworth and Stephen Blessing.

Apparently the state of the art paper (Murray 1999, and its update in Murray 2003a) has

been cited many times, prompting the managing editors of this journal to ask me, along

with authors of other “classic” IJAIED papers, to write a reflective piece about that paper

and its topic for a special issue of the journal. I baulked at first because, though I have

continued to build in-house authoring tools for all of my projects over succeeding years

(it adds up to about 10 of them), it has been some time since I considered myself doing

research on that subject and have not been keeping up with the associated literature. I was

assured by the editors that the purpose was not to create a revised updated analysis of the

state of the art, but rather was invited to be somewhat of a storyteller about my journey to

and after the original paper and to reflect in any way that seemed fit on the topic in the

contemporary context (for more recent work in the field, see Aleven and Sewall 2010;

Cristea 2005; Olsen et al. 2013; Specht 2012; Suraweera et al. 2010; Mitrovic et al. 2009;

Sottilare et al. 2012, 2014; Razzaq et al. 2009; Aleven et al. 2015; Ritter 2015).

As I thought about it realized that I did indeed have some thoughts on the subject

that reflect what I have learned on my winding interdisciplinary scholarly path over the

last decade. The authoring tools I have been building of late are for myself and research

collaborators for specific purposes (to visualize, edit, verify, and analyze complex

information in data-driven instructional systems), but for “real” authoring tool projects

the question that seems to perpetually haunt is “who are going to use these tools and

how do we ensure that the tools meet end user needs?” My approach to answering this

question spirals around the theme of complexity. It turns out complexity is a complex

topic, especially for one with an interdisciplinary lens, and my musings are rather

longer than the Editors in Chief might have expected in a retrospective article. They

will think twice before asking me again in another 10 yeas. But before going any

further I will start with a short introduction to the field of ITS authoring systems.

ITS Authoring Tool Design Tradeoffs Intelligent Tutoring Systems (ITSs) are

highly complex educational software applications (or learning environments) that

can include these components: User Interface (which might include a simulated

phenomena or task environment), Expert Knowledge Model (of the task and/or

knowledge), Learner Knowledge Model, Pedagogical Model, and Curriculum

Model (also collaborative learning environments may include group-level aspects

of any of these) (see Woolf 2010). For several decades developers and researchers

have been investigating the possibilities for creating ITS authoring tools because

these are hoped to (1) reduce the effort and cost of building or customizing ITSs,

and (2) allow non-programmers, including teachers and domain experts (and even

students) to participate fully or partly in building or customizing ITSs (Murray et al.

2003; Aleven et al. 2006; Suraweera et al. 2010; Constantin et al. 2013; Ainsworth

et al. 2003; Ritter and Blessing 1998).
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There are many design tradeoffs involved—the primary one being that in general the

easier or more efficient a tool is to use, the more simplistic or constrained are the ITSs

that can be built from it.1 Trivial examples at two extremes are: a tool that allows the

author to select among checkboxes and lists to order and toggle and sequence features

and curriculum items in an otherwise fixed system; vs. a tool that is so complicated and

multi-featured that building an ITS with it is not much easier than traditional software

programming. One can imagine a design tradeoff space among usability, depth, and

flexibility (see Murray 2004). Depth, which refers to the structural or casual depth of

any of the ITS sub-models, is usually at odds with flexibility, which is the ability to

author a diversity of types of ITSs. Usability is usually at odds with both depth and

flexibility, i.e. a system that facilitates building deep models or many types of models

tends to be more powerful yet less usable. A main theme of this article will be to

provide some rough metrics to help with these design tradeoffs.

Towards Theoretical Foundations Unlike educational software, whose user audience is

relatively well defined and known, target users of authoring tools are less well defined and

understood (unless the tool is intended for in-house use by a few specialized personnel).We

can draw from the standard literature on usability and Human-Computer Interaction

(including user-participatory design), for tool design principles, but in addition there are

some issues specific to authoring tools (of any sort, not just for ITSs) that I find quite

interesting. Influenced by topics I have studied since my early papers on the subject, I have

come to believe that a key issue is in how one matches the complexity of the authoring task

to the complexity of a tool and the complexity-capacity of the target user. Thus, in the bulk

of this paper I will sketch some preliminary considerations and principles that are intended

to initiate inquiry in this direction. The suggestions are speculative, and are motivated by

my belief that the set of theoretical frameworks I will weave together are useful, unexplored

within the ITS community, and have not been integrated in any prior work.

Taking a theoretical approach to ITS (or any) authoring tool usability is rarely done,

and risks being too theoretical for a field with such practical goals, but my aim here is to

point toward possible theoretical foundations for the (sub-) field. “Theory” can some-

times refer to a mere conceptual framework (without any underlying causal theory), but

here I mean cognitive, social, epistemological, and/or information science theories that

provide theoretical underpinnings. Foundational theories (especially the Learning and

Cognitive Sciences) are now routinely considered in the design of ITSs and other

educational software, but are rarely brought into discussions about the design or use of

authoring tools. Note however that the goal is not to produce a unified “theory” of

authoring tool usability, but to take a novel look at how one can base design usability

principles upon several theoretical frameworks that seem relevant but have not been

linked with ITS authoring as yet.2

1 These are generic tradeoffs, all other things begin equal. But note that complex systems can be constructed

using relatively simple tools, as in the CTAT system (Aleven et al., in submission). Representational

formalisms that well match the domain and task needs will go a long way towards making authoring easier

without compromising the complexity or scope of the resulting ITSs.
2 Learning theories can and should be brought to bear on ITS authoring tool design, for example to constrain

the design of ITSs to adhere to known principles of learning (thanks to comments from Vincent Aleven and

Steve Ritter for pointing this out). My focus here is on the more general theme of tool complexity and

usability, which is not concerned with the content or model used by the tutoring system.
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Design Science and Usability Theory draw on socio-cognitive theories to

explore the relationships between the design of artifacts and the needs, capa-

bilities, and limitations of intended users (and other stakeholders) (see Oja

2010; Norman 1988; Nielsen 1993). Originally these theories were in response

to the (now more accepted) realization that domain experts (those who are not

instructors), traditional software architects, and academics all historically have

difficulty predicting or imagining the needs and limitations of the average

software user and the average real-life task scenario (or difficulty predicting

the range of users and task scenarios). Thus software design, and artifact design

in general, is increasingly understood as needing (1) empirical trial-and-error

development, (2) the skills of rigorous empathy and imagination to put oneself

in the shoes of a range of types of users and situations, and (3) some basis in

underlying psycho-socio-technical theory (Brown and Campione 1996; Cobb

et al. 2003).

The notion of assessing and coordinating complexity among tool, task, and user is a

central theme in this particular theoretical exploration. In what follows, I will first

reflect on the factors leading to my 1999 article on authoring tools. I will then consider

some challenges facing authoring tool researchers today. Then, in the bulk of the paper,

I will propose some theoretical foundations for future authoring tool design. I will draw

from the following theories and frameworks to weave this particular theoretical

narrative:

& Complexity in software design

& Activity Theory

& Epistemic Forms and Games, and

& Adult cognitive developmental theory (i.e. Hierarchical Complexity Theory).

Theories of complex software design will be used to emphasize some of the

issues, because ITS authoring tools are complex artifacts designed to produce

complex artifacts. Complexity Science will also help us operationalize what is

meant by complexity in general. Activity Theory, which highlights the relationships

between an artifact and its usage-tasks, usage-rules, and community of practice, will

provide an orientation and basic vocabulary for the task of ITS design by various

types of users in an authoring role. We can ask whether a tool and its “rules” of use

afford the accomplishment of a particular task for a particular class of users. Much

of the process of matching tool/task complexity to user (and community) complex-

ity capacity revolves around the complexity of the mental models that a user is

expected to build in order to use a tool as intended. Collins’s work on Epistemic

Forms and Games provides a highly useful framework for talking about this

tool-rule-user match in holistic terms at the right level of granularity (Collins and

Ferguson 1993). At this point we will have a framework for describing many

sources of complexity in tools, tasks, and users (cognition or mental models), but

no good way to order or coordinate these types of complexity. For that we will draw

on Hierarchical Complexity Theory and related theories of adult cognitive devel-

opment to suggest this order as a final step in matching the complexity of an

authoring tool to the complexity capacity of its target users (Commons and

Richards 1984; Fischer 1980).
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Overview Following is an extended overview of the narrative arc of the paper.

Framing the context:

& As a prelude I describe my history with the subject of authoring tools, and then

outline some challenges facing authoring tool designers and researchers today.

& How can we decide whether it is advantageous to build an authoring tool (vs.

building ITSs from scratch) and what features to include in an authoring tool? I

frame questions about ITS authoring tool design in terms of design decisions and

tradeoffs.

& In designing ITS authoring tools there are a number of design tradeoffs that can be

summarized in terms of finding the right balance between usability (simplicity and

efficiency of use) and power (flexibility/breadth and depth) for the intended author

community and the end-product educational software systems.

& Authoring tools are quite labor-intensive to build, and yet the realistic demand (in

terms of markets or needs for building many ITSs) and the realistic availability of

ITS authors and designers (e.g. the time-availability of teachers and experts to learn

and use complex tools) is limited. Authoring tools may be practical only for

domains with high demand and reasonably established pedagogy (such as mathe-

matics).3 (However, increasingly learning and instruction are happening online,

which argues for an increasing demand in general.) We can speak of finding the

sweet spot that balances the cost of investing in authoring tool construction vs. the

“risk” that the investment will not be worth it. This is also about matching the

vision of a powerful and useful tool with the likely reality awaiting its release.

& Classical design and usability theory applies to all of the tradeoffs mentioned above.

Specifically, the principle to “match between system and the real world” speaks to

using vocabulary, mental models, and task-demands that users already have (or can

easily learn). ITS authoring tools are complex systems created to build complex

systems. Though there are many design decisions to make, I propose that the

overall lens of “complexity” is most useful, and informs the principles given in

classical usability theory. In a very general sense, complexity tends to increase with

power and decrease with usability—and we are concerned with balancing com-

plexity (which supports more power) with usability. That is, for tradeoffs related to

usability, power, cost, risk, mental models, etc., we can speak in general of

matching the level of complexity of the tool with the “complexity capacity” of

those expected to use the tool.

& The bulk of the paper explores a diverse collection of frameworks that are woven

together to answer the question of how one might go about specifying the

complexity of the system and the complexity capacity of intended users. This

ensemble of frameworks is only a beginning step pointing to additional work that

would need to be done to operationalize their implementation.

& Complexity Science (including Information Theory) can be used to characterize

the complexity of software artifacts (i.e. authoring tools) in terms of the quantity

3 There is of course much controversy about how to teach mathematics, and no consensus on pedagogy in any

area. However, it seems more likely for mathematics (and perhaps physical sciences and basic computer

programming), vs. many other domains, that content map and a pedagogical approach can be created that is

acceptable to many.
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and variety of parts and interactions within a system. Similar methods can be used

to characterize the complexity of a task in terms of the quantity and variety of steps

and decisions involved. “Dynamic complexity” must also be taken into account in

authoring tools, as authors are tasked with building and debugging systems that run

or “behave” according to a specification. ITS authors are not only “constructing”

artifacts but debugging them, which is much more challenging, and thus the

usability principle to “help users recognize, diagnose, and recover from errors”

may be the greatest limiting factor in matching the authoring tool and task to the

skill set of intended users.

Drawing insights from existing theories:

& Complexity Science provided principles for characterizing systems, artifacts, and

procedures for using them, but says little about measuring complexity from the

human and cognitive perspectives. For this we first bring in Activity Theory,

which provides a robust vocabulary and theoretical framework for coordinating

tools, tasks, users, and user communities. We can layer our focus on complexity on

top of this framework, and speak about coordinating the complexity of tools, tasks,

users (mental models and skills), and the communities of practice that support

users. This provides an opportunity to speak not only to authors as individuals, but

as members of knowledge building, design, or practice communities.

& Focusing in on the user, we look at approaches for specifying the level of “cogni-

tive complexity” in terms of the complexity of the mental model that the user

needs to understand or construct in order to use a tool. A useful framework for

doing this is Epistemic Forms (and Epistemic Games), which allows us to classify

features (interface components and procedures) into epistemic classes. These clas-

ses can roughly be ordered in terms of complexity. For example, filling in a text

form or setting a slider level are examples of simple tasks, while filling in a table or

hierarchy have medium complexity, and creating and debugging formal procedures

has much complexity.

& The complexity of both the user/cognitive factors (mental models and task proce-

dures) and various dimensions of system/tool properties could be measured quan-

titatively through systematic analysis of all of the parts, relationships, etc. (as

indicated from Complexity Theory). One of the challenges here is the “dimension-

ality issue” of how to combine what we determine about the complexity of each

dimension into a holistic impression of overall complexity. For example, we might

qualitatively analyze the complexity of the number of components, but how to we

combine that with the number of types of components, and with the level of

dynamic complexity—is it possible to “compare apples with oranges,” so to speak,

in a holistic assessment?

& We suggest that the effortful detail of quantitative complexity analysis is not

necessary for our goals (though it may be useful for some applications), and that

a more qualitative and comparative approach will suffice. That is, we can catego-

rize system complexity and cognitive capacity qualitatively roughly into types or

groupings that will provide sufficient insight into the design questions about

matching the complexity of tools to the complexity capacity of users. We began

doing this with the categories of epistemic forms above, which partially address the
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dimensionality issue because they provide a more holistic assessment of the

structure of a system.

& We can thus construct rough categories of low, medium, and high complexity for

matching tools to users. When more detail or specificity is needed, the frameworks

mentioned in this paper can be employed to place tools and users into more precise

categories.

& Using Epistemic Forms only partially solves the dimensionality (apples vs. or-

anges) challenge of integrating various types of complexity into a holistic picture.

To further address this I draw from theories ofHierarchical Complexity (including

Skill Theory, from neo-Piagetian developmental research). Hierarchical complexity

theories give research-based support for the idea of content-general and holistic

methods of specifying cognitive and task complexity (we use them here quantita-

tively but are also applicable for precise quantitative metrics of complexity). I use

the principles of Complexity Theory to suggest a complexity ordering from simple

objects, to abstractions/mappings, to formal systems, to dynamic systems, to

systems of dynamic systems (architectures and ecosystems) that gives a theoretical

basis for ordering epistemic forms (and thus mental models and tasks) in terms of

complexity.

In the end we have (1) a rough model showing one example of what a mapping from

authoring system features to user characteristics (complexity capacity) might look

like—which describes low, medium and high complexity levels; and (2) a framework

for creating more valid, tailored, or detailed models that accomplish the same goal.

Such models can help authoring tool designers (A) assess the complexity capacity of

intended author tool users, (B) weigh the risk involved in investing various levels of

effort in authoring tool design; and (C) make design tradeoffs in usability and power

such that tools are appropriate to realistic use contexts.

The (MY) Story So Far

Because authors for this special issue were invited to include some personal retrospec-

tive narrative, I will describe how it was that I ended up working on ITS authoring tools

in the first place. After graduating from college with an undergraduate degree in

Physics (and a minor in Philosophy) I worked in industry in an “advanced prototyping”

R&D unit in a leading semiconductor manufacturer. At the end of three years I found

the corporate life to be unpalatable and I bid it goodbye for a time. After a year of soul

searching and travel, in 1983, I found myself at UMass in a radical “create your own

degree” graduate program called the Future Studies Program (a department in the

School of Education that had close links to Buckminster Fuller and other luminaries).

The doctoral program I wanted to create involved a study of Physics and Philosophy,

with a goal of becoming a writer who would further enlighten the masses about the

deep themes I was excited about in popular books such as The Dancing Wu Li Masters

and The Tao of Physics. Having had some experience with the early days of computing

(in the punch-card days), I also took up with faculty and students in the Instructional

Technology program, which had ever-closer links with Future Studies because the

future was looking very digital. Looking back, I never really had the skills to
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accomplish my original goal, and was therefor quite lucky to have been drawn to the

courses on Intelligent and Adaptive Tutoring and Learning Systems taught by Beverly

Woolf. Before long this was my new academic focus and I was spending more time in

the Computer Science Department than in the Future Studies department. I dove into

classes in Artificial Intelligence, Cognitive/Learning Science, and constructivist edu-

cational theories, in addition to slogging through course requirements for a degree in

Computer Science.

The penchant for taking an ever wider system’s perspective that drew me to Physics

and Philosophy eventually caught up with me in my work in instructional systems. After

some time doing research assistant work on a couple of ed-tech projects I began to form

the plan for my dissertation research.4 Woolf’s dissertation work, and, at the point, her

main scholarly “claim to fame” was a formalism for representing tutoring strategies

called Discourse Action Transition Networks.My studies in Instructional Design Theory,

Learning Theory, and my work with Clement had introduced me to the wide variety and

complexity of strategies that were being proposed for teaching/learning specific types of

knowledge (facts, concepts, principles, skills, analogies, mental models, problem solv-

ing, scientific inquiry, etc.—and numerous sub-classes of all of these). Woolf’s formal

DACTN framework (Woolf and McDonald 1984) had only been implemented in

prototype domains, and I was interested in what it would take to represent multiple

strategies and meta-strategies in an intelligent tutor. I wanted the research to be general,

grounded, and extensible by working with real instructors in several domains. I wanted

the system to be usable—to have real instructors be able to create, modify, or at least

inspect and select, among a library of theoretically grounded teaching strategies.

As is often the case for dissertation plans, the scope of my work was reduced by half,

and half again, before I completed. I realized that the first thing I needed to do to be

able to work flexibly with a wide range of tutoring strategies and domains was to build

an authoring tool so that strategies and domain knowledge could be visually represent-

ed clearly enough for domain experts and teachers to understand them; and for the

researcher to easily modify and experiment with alternative strategies. Creating a

domain-independent ITS authoring tool was to be the first step; researching and

representing a wide variety of strategies was to be the second; and working with

instructors to represent domain knowledge and test and improve the teaching strategies

was the final planned step. Looking back of course, the plan was amusingly over-am-

bitious, as dissertation proposals can be. The task of just creating the authoring tool

occupied the entire project, and continued to be extended in grant-funded research for

many years (with the KAFITS and Eon systems).5 Results of Encoding Knowledge

with Tutor Construction Tools. In the Proc. of the Tenth National Conference on

Artificial Intelligence (AAAI-92). San Jose, July 1992, pp. 17–23.). We did represent

a number of domains and teaching strategies in our ITS authoring tools, but the vision

of having an overarching system for knowledge types and teaching strategies was

elusive (and, I now know, may always be elusive, though the team working on the

4 My first major research project was with Clement, who was a senior member in a novel program called the

Scientific Reasoning Research Institute housed in the Physics department. The department was known as a

hotbed of radical constructivists, including Ernst Von Glasersfeld, and sponsored leading-edge research and

applied programs in constructivist approaches to math and science.
5 KAFITS: Murray and Woolf 1992; Murray 1996; Eon: Murray 2003b and www.tommurray.us/eon_www/

eon.html.
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GIFT authoring system has come the furthest thus far; see Kumar et al. 2010; Sottilare

et al. 2012).

The topic of authoring tools within the ITS community was relatively new and fast

expanding. I am the kind of person who hates the thought of “reinventing the wheel” or

of missing some important relevant corner of the R&D literature. As I continued my

work I kept up an interdisciplinary overview of related work. It seems that I was the

only researcher at the time motivated to write a full overview of the state of the art.

From my later studies in “Hierarchical Complexity Theory” (Commons and Richards

1984; Commons et al. 1998) I now know that what I accomplished was a

“meta-systematic” or perhaps “paradigmatic” overview the field. That is, in addition

to describing the authoring system projects and theoretical frameworks in existence, I

organized and coordinated these perspectives into a coherent whole, and, so to speak,

organized perspectives on perspectives in my overview publication(s). One could say

that the design of authoring tools is “ITS-complete” (a play on the term NP-complete),

in that to design a generic software tool one needs to create a generic representational

framework that anticipates both practical and theoretical issues. Therefor, a full treat-

ment on authoring tools will tend to include a type of overview of ITS theory in

general. My 1999 Overview paper included sections on:

& Types of ITSs and domains that have been authored—a categorization of 29

existing ITS authoring tools into 7 primary categories for analysis;6

& Methods for authoring the Interface, Domain, Teaching, and Student Models

& General authoring/knowledge acquisition methods

& Design tradeoffs—including Power/flexibility (=Breadth x Depth); Usability

(=Learnability x Productivity); Fidelity; and Cost. These tradeoffs exists for all

ITS components individually (domain, tutoring, and student models; and learning

environment).

& An outline of 5 ITS authoring roles and their related skill-sets, with an analysis of

what types tool features should exist for each role (similar to Table 1 shown later).

& Case studies and pragmatics (actual use scenarios and descriptive statistics, effi-

ciency estimations, evaluations performed)

Though authoring tool R&D has progressed, the categories and frameworks I

suggested seem just as relevant today as then, which may explain why the paper is

still cited.

The focus of my work has moved away from research per-se on ITS authoring,

but I have continued to build special-purpose authoring tools for almost every

computer-mediated learning project I have been involved with (MetaLinks, Rashi,

SETS, Wayang, and Simforest-G—see descriptions at www.tommurray.us).

Though these projects did not aim for as much generalizability as the Eon or

KAFITS frameworks, I continued to face and learn from the issues highlighted in

the earlier work.

6 The paper described the Strengths, Limits, and Variations among ITSs with these areas of strength or

specialization: Curriculum Sequencing and Planning, Tutoring Strategies, Device Simulation and Equipment

Training, Domain Expert System, Multiple Knowledge Types, Special Purpose, Intelligent/Adaptive

Hypermedia.
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Challenges Facing Authoring Tool Research Today

Predicting Future Flying Machines ITS authoring tool research is in an interesting

socio-techno–historical position. Intelligent Tutors, despite 30 years of R&D, are not

yet common in mainstream education or training, though a few notable systems have

achieved wide-spread use (Koedinger et al. 1997; Heffernan and Heffernan 2014;

Graesser et al. 2005; Vanlehn et al. 2005; Mitrovic 2012; Johnson and Valente 2008;

Sitaram and Mostow 2012). This may be a completely appropriate development and

adoption arc for a technology this complex and innovative, and we have every reason to

believe that the results of advanced technology learning systems (ATLS) research will

continue to influence on-the-ground computer-mediated learning. However, authoring

tool researchers are in the awkward position of developing the cart before the horse. Or,

worse yet, developing the cart-factory before the horse. It is as if, as the Wright brothers

were experimenting with the first airplanes, a group of researchers and academics were

observing on the side, working out how to design airplane factories that would make

airplane production efficient and flexible. As those first manned flight contraptions

were being developed, it would have been difficult to predict what future flying

machines would look like, never mind what the market would be like or how to best

mass-produce and easily customize them for typical users.

Of course, ITS work is well beyond its first prototypes, so this analogy is stretched.

Still, authoring tool designers work under considerable uncertainty as to what types of

systems will find their way to substantial use and benefit from the scale and flexibility

that authoring tools enable. However, we are talking about software here, not equip-

ment manufacturing. Building abstractions and design tools is a natural impulse in

software design (procedural-, data-, and knowledge-abstraction are basic computer

science principles—see Abelson and Sussman 1983). As indicated in the history of

my own projects, it can be beneficial to build authoring tools merely to facilitate local

or small scale R&D projects. A company that makes a decent profit on one single piece

of widely used software (say an ITS) would benefit from building authoring tools to

customize and enter content for the ITS. However, for systems built for in-house use it

is more difficult to frame scholarly research questions and findings.

Old vs. New Conceptions of What an ITS is The original understanding of compu-

tational “intelligence” in ITS’s involved mostly modeling and knowledge representa-

tion tasks—learner, domain, and instructional models. The more deeply Cognitive

Science understands knowledge and learning the more difficult these modeling tasks

appear for authentic situated tasks. In general the most successful ITS’s are those

focusing on knowledge that is the easiest to represent, including declarative facts and

procedural steps. Yet developments in Learning Theory increasingly emphasize the

importance of forms of knowledge that are more difficult to formalize, such as

metacognition, conceptual understanding, problems solving, open ended inquiry, col-

laboration, communication, argumentation, hypothetical and analogical thinking, etc.

The more basic forms of knowledge (fact, skills, and concept-map-like relationships)

continue to have fundamental importance as building blocks for more sophisticated

skills, but the more exciting work in ITS/ATLS has been moving into a wide variety of

areas that do not involve “deep modeling” of knowledge or expertise. These new

research trends include: recognizing and responding to affect; using big data to classify
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and predict learner behavior, wearable gadgets, immersive experiences, natural lan-

guage understanding and production, game-ification and social-media-ification. For a

project to be considered “ITS” research it no longer requires computational intelligence

per se, but only the inclusion of some state-of-the-art computational technology (or

leading edge techno-socio-psycho theory). While the idea of a generic ITS framework

requires some commonality of basic components and/or representational frameworks,

the scope of ITS’s is becoming increasingly diverse, and overarching frameworks are

increasingly difficult to envision. However, once could counter that as diversity

increases, so does the number of projects, so that the actual impact of designing generic

frameworks still serves a significant (if smaller percentage-wise) potential user base.

Authoring tools are still essential for scale-up, wide adoption, and easy customiza-

tion of learning systems, though each may need to be specific to a very specific genre of

instructional systems. If so, authoring tool design may become more of an engineering

challenge than a research area. However, there are still important theoretical issues that

can be investigated, which we explore next.

Software Usability and Complexity

Usability and Managing Software Development Risks Bracketing the above con-

cerns, let us assume that ITSs of some sort will indeed become mainstream and that

authoring tools will become increasingly important—a safe bet I think. Other than tools

designed for in-house use by highly trained specialists, authoring tools, by their nature,

must be usable by some anticipated user audience. As mentioned, with any tool there

are context-specific usability concerns that can be worked out through good design and

HCI practices (prototyping, early feedback from authentic users, etc.), but here I would

like to look at very general usability concerns, having to do with the complexity of

these systems.

ITSs are complex software applications and full-featured ITS authoring tools can be

an order of magnitude larger and more complex—just as a machine designed to build

many types of lamps is much more complex than a lamp (though the machine itself

may be relatively easy for the end user/author to use, its interiors will be more

complex). Next we will look to the literature on the design and usability of complex

software systems for advice relevant to ITS authoring tool design.

Design tasks such as authoring ITSs fall under the “ill-defined” and “wicked”

problems characteristic of real-world projects (Conklin 2005; Mirel 2004). In his

treatment of usability of complex systems Oja (2010) defines complex software

development in terms of Mirel’s definition of complex problem-solving, which in-

volves “ill-defined situations; vague or broad goals; large volumes of data from many

sources...; nonlinear, often uncharted analytical paths; no pre-set entry or stopping

points; many contending legitimate options; collaborators with different priorities;

[and] ‘good enough’ solutions with no one right answer.” Chilana et al. (2010) give

three additional factors that contribute to the complexity of designing usable software:

domain-specific terminology, every situation is unique, and limited access to domain

experts. ITS/ATLSs and their authoring tools certainly have all these characteristics.

Oja contends that Nielson’s classic usability heuristics are even more critical for

complex software development (Nielsen 1994). Nielson’s usability heuristics include:
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reification (visualization of key abstractions and relationships; minimize working

memory load), user control and freedom (not constraining user actions any more than

is necessary), flexibility in outcomes (to allow for variations in style and needs), match

between system and the real world (using the vocabulary and mental models users

already have); help users recognize, diagnose, and recover from errors, user control and

freedom and flexibility and efficiency of use.

Echoing the heuristic to “match between system and the real world,” Johnson (2006)

analyzed software usability failures in the Healthcare sector that imposed significant

financial and acceptance burdens within that sector, and found that “many usability

problems stem from the inability of suppliers and manufacturers to anticipate [user]

requirements.” The educational technology R&D community is poised to create ITS

authoring tools that could be used on a large scale. As the investment in authoring tools

increases, there is a corresponding increased “risk” that investment in design, outreach,

etc., will outweigh the benefits if the tools do not directly meet the needs of a wide

variety of users (or if the ITS that is built with the tools does not reach a large number of

learners).

Figure 1 illustrates the type of risk management and risk reduction principles

increasingly being used in software and other industries.7 Additional investments in

software can follow the “80/20” rule where perfecting the last 10 % or 20 % can take a

disproportionate amount of effort. Meanwhile, the return on user value gets propor-

tionately less. The goal is to find the sweet spot where risk is acceptably low and

expected value is relatively high (“optimum” in the Figure). To mitigate this risk

usability principles recommend both empirical and theoretical grounding: i.e. usability

evaluation and user-feedback from authentic contexts done “early and often;” and a

good theoretical understanding of the user and task. Complexity is a useful construct

for operationalizing Johnson’s “[ability] of suppliers and manufacturers to anticipate

[user] requirements,” but the construct needs better definition for this to happen—

which is what we hope to contribute to here.

Complexity Science and Information Theory Next we branch away from com-

plexity in software and usability theory to consider how complexity is theorized in

more general terms. Complexity Science points to various methods for measuring

complexity which are all related to the amount of information contained in an

object, system, or process, with “information” being closely related to the con-

cepts of difference, discernibility, and degrees of freedom. Information and com-

munication theories also quantify information (and “meaning”) in terms of entro-

py, randomness, chaos, “surprise,” and “shortest possible description” (Grünwald

and Vitányi 2003). There are many individual metrics that contribute to overall

complexity, including the number and diversity of components and their structural

or functional relationships (Benbya and McKelvey 2006). Complexity Science

also deals with time-based phenomena: change, feedback loops, self-organization,

evolution, and emergence in dynamic systems—so-called “complex adaptive

systems.”

7 Image adapted from http://www.labcompliance.com/tutorial/risk/default.aspx?sm=d_a, “Risk Management

in the (Bio)Pharmaceutical and Device Industry,” L Huber & Labcompliance Inc., http://www.labcompliance.

com/tutorial/risk/default.aspx?sm=d_a.
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Campbell (1988) describes three sources of complexity: number of dimensions of

information, the rate of information change, and the number of alternatives associated

with each dimension (i.e., information diversity). We will modify and generalize this

scheme as in Fig. 2, using the categories of structural, dynamic, and perspectival

complexity.

For structural complexity, other things being equal, systems are more complex if

they have: more parts (e.g. an ant colony or huge Lego project); more types of parts

(e.g. a car or human anatomy); more properties in each part; more relationships or

constraints among the components; and more types of relationships. In part relation-

ships, one-to-one mappings (relationships) are the simplest, one-to-many mappings are

more difficult, and many-to-many mappings are most complex to manage and

conceptualize.

In addition to these structural dimensions (which are metaphorically space-like),

systems whose properties, relationships, and objects change over time are more

complex (the dynamic or temporal dimension). Dynamic complexity is represented

Fig. 1 Cost vs. value in software risk assessment

Fig. 2 Sources of system complexity
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using laws, rules, mechanisms, or influences. Feedback loops and nonlinear dynamics,

all outside our scope to elaborate on, come into play.

As indicated above, complexity is related to information intricacy, space of

possibility, and even “meaning,” and is thus not simply an objective property of

systems, but it has a quasi-subjective component that involves human context,

activity, and the reasons for doing the complexity analysis. In software, information

systems, and usability analysis there are cognitive and epistemic considerations.

Byström & Järvelin’s analysis of task complexity includes factors such as: repeti-

tiveness, analyzability, a-priori determinability, number of alternative paths, out-

come novelty, number of goals and conflicting dependencies, uncertainties between

performance and goals, number of inputs, and time-varying conditions of task

performance (Byström and Järvelin 1995, p. 5). Zhang et al.’s (2009) “epistemic

complexity” measures complexity in terms of the movement from facts to expla-

nations and from unelaborated to elaborated knowledge—both of which indicate

increasing depth and complexity. Epistemic complexity includes measurement of

the “diversity” and “messiness” one encounters in a situation (Bereiter and

Scardamalia 2006). Thus concepts of nuance/subtlety, abstraction/generalization,

uncertainty/ambiguity must be considered.

Therefore, in Fig. 2 we have the third category “perspectival” complexity, which is

complexity due to multiplicity and uncertainty, including conflicting goals or subtasks;

diverse perspectives among stakeholders; stochastic randomness and indeterminacy;

and vagueness and uncertainty in any of the structural or dynamic elements (measuring

these would be more heuristic than the other two complexity factor types). Perspectival

factors relate as much to subjectivity and the nature of cognition as to the objective

nature of the artifact.

Usability Complexity and Runnable Artifacts In terms of software systems, specif-

ically authoring tools, the factors mentioned above can be applied to the software

artifacts (code and interface), development (programming or authoring) or the com-

plexity of use (the user interface understanding and the mental model a user must

acquire to understand a system). Theoretically each of the sources of complexity in

Fig. 2 could be enumerated or estimated and combined to measure the complexity of a

system toward the goal of comparative analysis of the complexity of systems.

Artifacts that ‘run’ or behave dynamically are of course more difficult to author.

With authoring tools and educational software such as Scratch and StarLogo, and

scripting languages in Office applications, the line between programming and using

software is increasingly blurred. ITS authoring can fall anywhere along a spectrum of

complexity from customizing parameters and choosing content to creating teaching

strategies, which is closer to software programming.

ITSs are dynamic systems that must be run to test them. They have multiple learning

paths and it is intractable to test every possible student behavior. Unpredictable

behaviors inevitably occur in complex software. The simplest systems have predicable

paths with little interaction or parameterization, such as Scripts and story-board type

procedural flows. If an authoring tool allows branches, if/then rules, procedures, loops,

parameterized subroutines, or recursion (in rough order of difficulty) the level of

authoring complexity jumps dramatically. The author is essentially doing software

programming. Writing and debugging computer programs is a complex task requiring
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special skill and tools. Without these skills, and even with them, it can be quite difficult

to determine the source of a run-time software bug.

Creators of authoring tools that allow authors to enter into this level of task

complexity must (1) not underestimate the complexity of the task or overestimate the

skill of the typical user, and (2) provide real debugging and tracing tools—for the

systems to be viable. One of Nielsen (1994) “Top 10″ recommendation for usability is

to “help users [authors in this case] recognize, diagnose, and recover from errors.” This

can be as simple as providing an Undo feature for authored content, but for systems

with dynamic complexity special tools are needed to trace and debug procedural

representations.

Like most software systems, ITSs should be designed in user-participatory feedback

loops, where, as Benbya & McKelvey note, “the critical factor in all information

systems is continual change” (from “Toward a complexity theory of information

systems development”, 2006, p. 20). This might even imply that viable authoring tools

should have some sort of “version control” subsystem.

The above discussion suggests factors that could be considered in characterizing the

complexity of software tasks and interfaces. It is implied that for some tasks, such as

version control and debugging, there is a need for special skill such as knowledge

engineering. Thus it is also important to consider the “complexity capacity” of users

and communities of practice—and for this we turn next to Activity Theory.

Activity Theory—Users, Tasks, Tools, and Communities

We borrow concepts from Activity Theory, set of principles about socio-technical

human action and design, which stresses the mediating role of tools (artifacts) and their

usage rules in collective human activity and development (Jonassen and

Rohrer-Murphy 1999; Stahl 2006; Engestrom et al. 1999). Here rules indicate the

(sometimes implicit) skills, understandings, and habits held by a community of practice.

Thus we can frame our exploration of authoring tool usability in terms of the interaction

between users, tools, rules, and tasks. We can ask whether a tool and its “rules” of use

afford the accomplishment of a particular task for a particular class of users. Clearly our

users are authoring tool users and the task is to design or customize an ITS; and later we

will introduce “epistemic forms/games” as a way to describe the rules of use.

Figure 3 illustrates these factors in Activity Theory terms (adapted from Jonassen

and Rohrer-Murphy 1999; Engestrom et al. 1999). Thus, from our focus on the concept

of complexity, we must consider:

& Task and Rule complexity (user activity methods and goals)

& Tool (artifact) complexity

& Socio-cognitive complexity (community of practice and division of labor)

We are concerned with the match between:

& User vs. Tool complexity

& Task vs. User complexity

& Community of Practice vs. Tool complexity
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When we speak of users we are really speaking of users in particular roles. This

distinction is important when we begin to speak of the complexity capacity of a user (or

type of user)—we are not referring to a person’s general ability to handle complexity,

but to one’s ability within a certain role (ITS author, content developer, tester, etc.),

which might depend more on training and experience than on innate intellectual

sophistication).

Campbell notes that there are several approaches to assessing complexity: as a

subjective psychological experience of the user, as an objective measure of the task,

and as an interaction between subjective and objective elements (1988, pg. 44).

While measuring complexity in terms of user (author) experience is important,

methods for doing so are outside our scope here. However, we will describe

methods for describing user capacity, and we assume that on average complexity

capacity is closely related to the complexity experience of the user (they will be

frustrated or confused if their complexity capacity in a particular role is mismatched

for the task). In the prior section we sketched heuristic frameworks for assessing

task and tool complexity objectively. Our eventual goal is to assess the match (or

interaction) between user capacities and the measures of tool/task complexity (user

capacities will be roughly estimated, while tool/task complexity affords more

objective measurement).

Note that in the prior section tool and task complexity were treated together. Unlike

simple tools such as a hammer, for which the task a tool is used for (e.g. building a

barn) is usually much more complex than the tool itself, for most software tools the

complexity of the tool features can stand as a fair indication of the complexity of the

task. This is of course not strictly true, as building an ITS involves much more than

using an authoring tool (e.g. applying learning theory, paper mock-up design, etc.), but

for simplicity we will assume that the complexity analysis given above of artifacts

(tools) maps well to complexity analysis of tasks. Task-related issues of how the tool is

used and learned will be categorized in Rules or COP (community of practice) elements

of Activity Theory, rather than with the artifact.

Fig. 3 Activity theory
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Epistemic Complexity and Complexity Capacity Oja quotes Haynes and

Kannampallil (2004) who say that “complex software applications require great cog-

nitive skill, integration of knowledge from various areas, and advanced instruction and

learning; thus, it is not surprising that ‘screen deep’ interfaces to such systems may not

yield the best results in terms of usability.” This is one reason why understanding the

intended user is so important—because making a tool more easy to use, i.e. “usable,”

may dumb it down too much for some users or tasks, and decrease “user control and

freedom” and “flexibility and efficiency of use” (from Nielson’s model) for those

contexts. Oja (2010): “As Mirel (2004) points out, most current HCI practices concen-

trate on ease of use or simplifying the work, and this may lead to ‘producing good

designs but for the wrong problems”’“(p. 3800). The design goal is thus to make tools

“operationally simple, while intellectually sophisticated and nuanced” (ibid).

“Cognitive complexity” is one term used to describe a person’s capacity to perform

complex mental or behavioral tasks. Cognitive complexity involves not only the

number and complexity of the objects and relationships as described above, but also

the ability to perceive nuances and subtle differences—i.e. it can involve both integra-

tive and differentiating capacities (Mirel 2004). Jordan uses the term “complexity

awareness” for “a person’s propensity to notice...that phenomena are compounded

and variable, depend on varying conditions, are results of causal processes that may

be...multivariate and systemic, and are embedded in processes [that involve non-simple

information feedback loops]” (Jordan et al. 2013, p. 41). As mentioned above, Zhang

et al. (2009) use the term “epistemic complexity” which includes an understanding of

underlying reasons, theoretical explanations, or hidden mechanisms within phenomena.

Below will use the term “complexity capacity” to remind us that cognitive complexity

required for a task is about the context and role a person is in, and depends on

experience in addition to any general complexity “intelligence” they may have.8

In our exploratory discussion of software usability and complexity we enumerated

many factors and it remains for future work to determine how these factors are

operationalized, weighted, and combined in any overall complexity metric (a process

that may be quite context-specific, as complexity components will have different

weights for different situations). As we move from characterizing the complexity of

tools (software) and tasks (authoring) to that of users, the approach will continue to be

preliminary and suggestive, with many details remaining to be worked out beyond this

paper. Lets assume, for simplicity, that we have worked out the details of a scheme such

as the one described in prior sections of this paper, and have devised a method to

characterize task/tool complexity level, and that we have collapsed the dimensionality

of analysis to rate tasks/tools on a scale of low...medium...high complexity. How might

we map this to user (or community of practice) complexity capacity? Table 1 illustrates

what such a mapping might look like, showing types of authors, benefits and problems

typical of each author type, and the level of design complexity one can typically expect

in the authoring task.

Teachers have on-the-ground experience of the needs of students and classroom

situations, and, while their input should be included in the iterative design process, they

8 Cognitive complexity might be used as an informal construct useful to differentiate different potential users,

but it may also be possible to measure it in a way relevant to ITS authoring. A Google Scholar search of

“measuring cognitive complexity” yields pointers to many attempts to do so.
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cannot be expected to have the skill, nor the time, to use or learn how to use complex

authoring tools. Domain experts and content developers are more typically used to

define knowledge and expertise, though they may have little practical or theoretical

knowledge of pedagogy. Instructional designers and learning theorists bring different

sources of pedagogical knowledge and epistemological knowledge (understanding how

knowledge is structured), though they may not have the time to dedicate to a steep tool

learning curve.

For all of the above user types, the task of representing knowledge in a computa-

tionally usable fashion may be foreign—while knowledge engineers are trained in

exactly that task. It is only with this level of skill and higher that we can expect

sophisticated authoring tasks to be managed.9 Most user communities will not have

people with knowledge engineering (or ITS design) skills, meaning that users at this

level will usually be part of a dedicated ITS design team, which would only exist in an

academic lab, a company dedicated to building learning systems, or an educational

organization large enough to form such a team to be shared widely (e.g. a university or

city school district).10

The final category of users in Table 1 is computer scientists and software developers.

This category connotes the unfortunate yet understandable fact that many ITS authoring

tools never see a robust user community and are only used within the confines of the

team or organization that built the tool. This stakeholder group tends to be the most

sophisticated in terms of designing complex structural and procedural models. The

benefit is that more powerful ITSs can be built, but the drawback is that without

usability input from “real” users, the tools may be too complex to expect many others to

pick up, and the tool designers may be out of touch with the needs of intended users.

In authentic contexts the actual “capacity” of a user to use a tool to accomplish a task

depends on “community of practice” considerations as well as the potential complexity

capacity level of the individual (Fig. 3). These considerations include: (1) opportunities,

investment and incentives in training; (2) community of practice peer and mentor

support; and (3) time available to author. Thus, even if a user, say an unusual teacher,

has a high level of generic complexity capacity, in order to successfully make use of an

ITS authoring tool they would need to be able to invest time in the learning curve, have

the support of peers and superiors in adopting this new technology, and have the

ongoing time available to do the authoring. Contexts satisfying these conditions are

indeed rare. It should also be noted that actually it is the capacity and skill set of the

design/authoring team, not of any individual, that is important.

In addition, for newly introduced artifacts there is a dynamic, often evolutionary,

interplay between artifacts (their design), the standard and novel ways that artifacts are

put to use, and the human capacities enabled by artifacts. That is, new tools create new

capacities, which create new possibilities and new goals/tasks; around which new (or

improved) communities of practice develop—all of which in turn prompt new

9 Here “sophisticated” refers to the complexity of the authoring task, not the domain knowledge of, say a

teacher, which may be sophisticated in another way.
10 Note that this specific scheme is suggestive and meant to illustrate a framework rather than the “content” of

the framework—i.e. I do not need to make a strong argument here that, e.g. “Domain Experts & Content

Developers” have a limited or “fixed” understanding of instructional methods, as is given in the Table. Of

course, the roles in the Table can be combined in any individual, but it would be rare that, for example, a

classroom instructor would also be a learning theorist or knowledge engineer.

Int J Artif Intell Educ (2016) 26:37–71 55



innovations (tools) to continue the cycle. Benbya &McKelvey (2006, p. 14) refer to the

“co-evolutionary” aspects and “adaptive tension” of the “complex adaptive”

socio-technological systems, and discuss the problem of “accumulating requirements”.

So, an important community-of-practice question is: How effective are the feedback

and development learning loops between users, trainers, and designers?

Thus far we have described what a tool/task/user complexity mapping scheme might

look like, without saying much about the nature of user cognitive complexity. A user’s

understanding of tools, tasks, and methods can be described in terms of the mental

models one has of these things (Gentner and Stevens 1983; Johnson-Laird 1983).

Mental models are cognitive representations of external systems that include structures

and processes that a person simulates (runs or visualizes) mentally. One task of the

authoring tool is to help the user maintain a valid mental model of the ITS building

blocks, range of configurations, and design steps that the authoring tool affords.

Oja notes that “Cognitive engineering (Gersh et al. 2005) and learner-centered

design (Soloway et al. 1994) focus on improving system-human cognitive fit and

allowing users to construct better mental models (knowledge) of the system” (p.

3801), and that “reification is the basis for successful communication and the estab-

lishment of a shared goal in human-computer collaboration” (p. 3803). Thus it is

important that the authoring tool interface accurately and powerfully reify the struc-

tures, objects, constraints, decision rules, and procedures involved in authoring, so that

authors can build correct mental models, and can use these mental models to coordinate

the various steps and roles within a design process. The complexity of mental model

that is supported in the authoring tool should match the complexity capacity of the user.

Collins and Ferguson’s work on “epistemic forms” provides a valuable link between

task/tool complexity and the user’s complexity capacity in terms of the mental models

that the user must construct and maintain. In its concept of “epistemic games” it also

anticipates the community-of-practice element of Activity Theory. We discuss episte-

mic forms and games next.

Epistemic Forms and Games

Collins and Ferguson first articulated the concepts of epistemic games and epistemic

forms (Collins and Ferguson 1993; and Morrison and Collins 1995; Shaffer 2006).

Epistemic forms are “target structures, like mental models, that guide inquiry” and are

“recurring forms that are found among theories in science and history.” Epistemic

games are “general purpose strategies for analysing phenomena in order to fill out a

particular epistemic form” that are shared within a community of practice (p. 25).

Example epistemic forms include lists, hierarchy or tree structures, tables, networks,

if-then rules, and constraint-based systems. They are “generative frameworks with slots

and constraints on filling in those slots,” and in this sense are like domain-independent

scripts, templates, or grammars that specify the structural properties of a phenomena.

They serve as commonly understood mental models for understanding tasks and tools.

The theory of Epistemic Forms/Games considers not only the structure of informa-

tion, but also the ways (i.e. games) communities use, understand, and build knowledge

using that structure. For example, perhaps the simplest epistemic form is the list.

Knowing how to play an epistemic game includes knowing its constraints, strategies,

56 Int J Artif Intell Educ (2016) 26:37–71



and moves. For the “list game” this includes knowing how to add, remove, combine,

split, and arrange (classify, filter or sort) items, and knowing when the “list form” is

most appropriate for a particular problem or inquiry. This framing is compatible with

Activity Theory, which highlights the interplay between cognition, artifact design, and

communities of practice.

Morrison and Collins coined the term “epistemic fluency” to refer to the ability

to use and choose appropriately among the repertoire or ecology of epistemic games

available within a community of practice. Epistemic games are rarely used in

isolation, and are combined with other games as well as transformed into other

games, as when one representation (a concept network) is seen as more appropriate

than another (a table). Tables can be seen as composed of lists; even more complex

forms might combine tables with networks (e.g. a network of tables, or a table of

networks). Table 2 lists some Epistemic Forms/Games mentioned by Collins &

Ferguson.

Epistemic games can be framed in terms of the key questions driving an inquiry.

Knowing an epistemic game includes knowing how to evaluate whether it is being

played well. Example quality/validity criteria for the list game include coverage (is

anything missing?), similarity (do the items belong together, or should it be split into

two lists—apples and oranges?), distinctness (are the items actually different?), and

perspicuity (is it sufficiently short, simple, efficient, and understandable?). Vibrant

communities of practice will be creating, tweaking, and evolving, and mashing up

their epistemic games.

Authoring Tool Epistemic Forms Epistemic forms/games allow for a compact meth-

od of classifying tool/task complexity. In our original discussion of artifact complexity

we suggested that one could enumerate the number and types of parts, properties,

relationships, etc. in a system. This may be useful to do but also quite cumbersome.

Meanwhile, epistemic forms serve well as a first-pass description of the complexity of

end-user software systems. Epistemic forms also address one difficult issue in the

characterization of an artifact, which we will call the “dimension compression prob-

lem”: it may not be difficult to classify and compare artifacts along any single

dimension (in Fig. 2), but we have little guidance thus far on how to combine and

prioritize the many dimensions into a single (or simple) complexity characterization.

Epistemic forms are holistic and representationally efficient in that they incorporate

many of these dimensions into each category.

Table 2 Epistemic forms and

games (mental models) (from

Collins and Ferguson 1993)

• list • street map

• matrix or table • org. chart

• molecular model • musical score

• periodic table • timeline

• web page menu • cause/effect diagram

• x-y graph • network

• pert chart • relational database

• binary tree • sentence diagram

• floor plan • term paper outline
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In discussing authoring tools we are interested specifically in design activities or

design games (a term not used by Collins and colleagues). In all epistemic games one

of the evaluation criteria is whether one’s product is understandable or meaningful to

others within one’s community, while design games are distinguished by the additional

need to assess how understandable and useable the product will be to users (who

belong to a community related to but different than the designer community). Thus, the

set of design game quality/validity criteria is extended to a group that requires some

cognitive empathy (and design/test iterations) to serve well.

In surveying a set of 14 authoring tools mentioned in Murray et al. (2003) one can

clearly see a set of epistemic forms that are repeated numerous times throughout most

of these systems. This list of forms will not be surprising—they are seen in most

software tools, as shown in Fig. 4. The basic elements include: check boxes and choice

lists; sliders, dials, and meters; graphical networks and trees; and interactive hierarchi-

cal and tabular textual representations. As discussed, to compare across and within any

class of epistemic forms (say a hierarchical menu system) we can use the elements

suggested in the earlier discussion of Complexity Science—i.e. the complexity of an

interface and task includes the number and diversity of such elements and the degree of

their inter-relationship or coupling in an overall system.

Intuitively one can roughly compare or rate the complexity of epistemic forms. Lists,

sliders, and checkboxes are simpler than hierarchies, tables, and concept networks,

which are in turn simpler than the complex systems/mental models that are composed

of dynamic the interactions among many simple sub-components. Hierarchical

Complexity Theory offers a more rigorous and more theory-based foundation for rating

and comparing complexity components, and it was developed to apply to human tasks

and skills. Next we explore HCT next as the last theoretical territory of exploration in

our journey to link several interdisciplinary fields.

Fig. 4 Epistemic forms in authoring tools
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Hierarchical Complexity and Skill/Task Development

Above we drew from information/systems theories and socio-technology theories

(Activity Theory and usability theory) to suggest ways to characterize the complexity

of systems in general terms. Epistemic Forms suggest a way of ameliorating the

“dimensionality issue” by enumerating common forms that are more intuitive and

ready-to-hand than a list of low level complexity dimensions. But we are still far from

a quantitative or semi-quantitative method for combining the factors involved to be able

to make comparative complexity judgments. To move in this direction I will draw from

an area of cognitive/learning science that has significant implications for learning

theory and ATLS design in general, yet, curiously, is rarely referenced in these fields:

Neo-Piagetian developmental theories. Cognitive developmentalists (Neo-Piagetian

theorists) have undertaken a deep study of complexity, because human development

and learning can be described in terms of “qualitative differences in mental complexity”

relative to various tasks, skills, or life contexts (Kegan 1994, p. 152).

Because these theories have untapped value for the ATLS/ITS community I

include an extended description in the Appendix but here I will only mention the

features of these theories that are relevant to our authoring tool complexity analysis.

The key insight is that development, and complexity in general, advance through

both horizontal and vertical (“hierarchical”) movement, and do so through a partic-

ular alternating or spiraling pattern.11 The structure and nature of horizontal growth

is different than the structure and nature of vertical growth. Vertical growth is more

quantized or punctuated, and the vertical leaps involve particular challenges. If we

frame authoring tool features, authoring tasks, and epistemic games in terms of

vertical and horizontal differences in complexity we have additional tools for

comparing complexity, and we gain insight into why certain forms may be partic-

ularly difficult for users to learn.

Neo-Piagetian (adult) developmental theories go beyond early developmental work

(E.g. Piaget, Perry, Kohlberg) to add a hierarchical “structural perspective in analyzing

changes in the organization of …actions and thought” (Fischer and Yan 2002, p. 283).

These theories propose underlying representations for skills and suggest rules for the

transformation of skills to higher level skills.12 These theories apply principles from

Complexity Science to human cognition and behavior, which can be easily mapped onto

artifacts (tools). As stated by Commons & Pekker: “Theories of difficulty have generally

not addressed the hierarchical complexity of tasks. Within developmental psychology,

notions of hierarchical complexity have come into being in the last 20 years. [...] a model

of hierarchical complexity, which assigns an order of hierarchical complexity to every

task regardless of domain, may help account for difficulty” (2009; p. 2).

Horizontal increases in complexity involve adding more of what already exists to an

object, process, or structure (more parts, relationships, steps, etc.—adding more “bits”

11 These models have been empirically demonstrated in many hundreds of studies. For example Commons

and Pekker (2009) states: “Using [Rasch analysis we have] found that hierarchical complexity of a given task

predicts task performance with the correlation being r = 0.92. [which] has been shown to account for

performance in a variety of different domains” (p. 4).
12 Fischer’s Skill Theory (Fischer 1980; Fischer and Yan 2002) and other Neo-Piagetian models, including

Commons’ Hierarchical Complexity Model (Commons and Richards 1984, Commons and Pekker 2008),

Kegan’s stage model (1994, 1982); and Cook-Greuter’s ego development model (2000, 2005).
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of information without adding new structural emergence). Commons suggests that

increases in the horizontal complexity of tasks (which he calls the “classical” model

of information complexity) are analogous to increases in cognitive load (Commons and

Pekker 2009 unpublished). Horizontal growth can also be roughly compared to Piaget’s

assimilation, as it adds new knowledge in the form of existing structures (Piaget 1972).

Vertical growth related to accommodation, in which new structures are created to

understand the world in new ways. Horizontal growth tends to be continuous, while

vertical growth follows a more discrete model, and occurs after a sufficient amount of

horizontal growth allows for a reorganization at the next higher level.

Vertical increases in complexity lead to a new level or stage by applying an

operation upon, or “coordinating and transforming,” the objects of the lower layer.

Each artifact or skill at a given hierarchical level consolidates a set of items at the lower

level into a single whole, transcending and yet including them. Completely new

properties and concerns arise at each level (a phenomena called emergence).

Examples of increasing levels of hierarchical complexity include the development (or

evolution) from: words to sentences; addition to multiplication; single celled to

multi-celled organisms; concrete to formal operational concepts; from using to design-

ing an artifact; and from doing a task to managing others doing it.

There are numerous operations that can produce the next hierarchical level. Examples

include: abstraction and generalization operate on lower level objects to create higher

level ones; compilation or aggregation can create higher level units; steps are combined

together to create processes; going “meta” is in “thinking about thinking,”moving from

static to dynamic systems or linear dependency to mutual dependency also involve

hierarchical transformations. Kegan notes that increasing complexity and sophistication

moves (vertically) from entities to processes, from static to dynamic systems, and from

dichotomous to dialectical relationships (Kegan 1994, p. 13).

Horizontal growth also follows a pattern in natural systems including human

learning. The sequence is from single objects, to multiple independent objects, to

multiple interacting objects, to massively interconnected object, and finally to an

emergent whole that transitions to the next hierarchical level (see more in the

Appendix). It makes intuitive sense that it is easy to learn a few more words

(horizontal) but the leap to speaking sentences is comparatively momentous (which

is not to say that it comes on line all of a sudden, i.e. children produce quasi-sentences

first). And this difference is quantitative. If we wanted to measure language complexity

we can count the size of vocabulary and the length of words, but no amount of increase

in vocabulary will “equal” the shift from words to sentences.

Hierarchical Complexity (which is Commons’ term, while other developmentalists

use different terms) contributes to our analysis of authoring tool complexity in several

ways. First, it ameliorates the “dimensionality issue” by providing another tool for

organizing the plethora of complexity dimensions, i.e. according to horizontal and

vertical differences in complexity, toward our goal of coordinating the complexities of

tool vs. task vs. user; and in our goal to compare two (or more) tools (or tasks, or types

of users). Second, because it is primarily a learning or developmental theory, it provides

important insights into the effort and prerequisite knowledge a new user needs to use an

authoring tool. Vertical growth is typically more difficult than horizontal growth, and

the emergence of a new level of organization can come with some disequilibrium or

dissonance, which in turn means there can be resistance or hesitancy.
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We can begin with a rough characterization of the level of software tool complexity that

a hypothetical user already has, and then ask whether the features and tasks of an authoring

tool represent horizontal or vertical types of learning for the skill acquisition learning

curve.Wemust not assume that new user skill level can be increased in any sort amount of

time with something like a training intervention if vertical learning is involved.

Hierarchical Complexity and Epistemic Forms The analysis of tool/task/user com-

plexity can proceed in two directions: more rigorous quantitative analysis, and more

heuristic qualitative analysis. For our purposes we will focus on heuristic estimations.

Our goal is to either start with a particular authoring tool/task and identify the commu-

nities of practice and training needs that will match the tool/task; or, starting with a target

user group, to design the tool/task to match the estimated complexity of a community of

practice. One can use the concepts introduced in this paper, including the dimensions of

complexity, types of Epistemic Forms, and the distinction between horizontal and

vertical differences in complexity, to make subjective shoot-from-the-hip assessments

and inform design discussions as is usually done in software design. Alternatively, and

left for others to carry forward, one can use these concepts to construct detailed

quantitative metrics and formulas for calculating task/tool/knowledge complexity—

but such in not necessary to make solid progress in matching tools/tasks to users.

Morrison and Collins mention the “epistemic complexity” of epistemic forms and

games, but they do not define it precisely. What we contribute here is an attempt to link

epistemic games to cognitive developmental theory in an attempt to create a grounded

framework for assessing the relative complexity of epistemic forms/games, which will

then provide a framework for describing the complexity of authoring tool features. These

epistemic forms can be sequenced according to complexity level modeled on the levels

mentioned in Hierarchical Complexity Theory (see Appendix), as shown in Table 3.

Figures 5 and 6 contain a series of figures illustrating these five complexity levels.

Figure 5 summarizes the five levels of epistemic forms detailed in Fig. 6. In Fig. 5 we

Table 3 Epistemic forms organized by complexity level

Epistemic Form for Tool/Task/Mental Model Complexity Level

• Text information fill-in boxes

• Lists, choices, sliders, and check boxes

Simple Objects

• Forms, schemas, or templates

• Tables and matrices

• Hierarchies and trees

Abstractions & Mappings

• Scripts (with branches)

• Equations and Boolean logic

• Structural models: concept networks, boxology diagrams

Formal Systems

• Causal and constraint models (and using variables)

• Behavioral/procedural models: If/then and rule-based

procedural representations

• (Authoring of) Decision trees, Bayesian Nets, etc.

Dynamic Systems

• Coordination of dynamic modules, e.g. complex interactions

between expert, student, teaching modules, and dynamic

use scenarios.

• Design that takes into account emergent and chaotic interactions.

Architectures and Ecosystems

(systems of dynamic systems)

Int J Artif Intell Educ (2016) 26:37–71 61



link these complexity levels to the low/medium/high level of complexity associated

with different categories of users from Table 2. Again, this mapping is a heuristic

estimation that is intended to illustrate the type of analysis; no strong claims are made

for the specific mappings.

Discussion

Beginningwith a summary of my article on ITS authoring tool design, I described some of

the challenges facing authoring tool designers and researchers today. Consonant with this

Special Issue’s theme of personal retrospectives on classic papers, I also included a

narrative look at what brought me to authoring tools work, and mentioned that my

academic journey since then has included interdisciplinary tributaries outside of ITS and

educational technology per-se. The invitation to write this article has given me the happy

opportunity to apply new frames of reference to an old topic. The reader hoping for

definitive answers to questions about software complexity may have been disappointed—

what I have done is exploratory theorizing to help frame important questions by suggest-

ing certain theories, principles, and concepts amenable to ITS authoring tool R&D.

In this article I have explored some theoretical bases for assessing the appropriate-

ness of ITS authoring tools, and any type of software artifact, to intended user

communities. The analysis is based on general notions of complexity from

Complexity Science and Hierarchical Complexity Theory. The importance of consid-

ering tools, tasks, user capacity, and community of practice in an integrated way was

supported through the inclusion of the models of Activity Theory and Epistemic Forms.

Matching tool/task complexity to user/community complexity capacity is important

because authoring tools are complex and expensive to build, and, using a “risk analysis”

Fig. 5 Complexity levels of epistemic forms (overview)
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framework, we can say that the more expensive a system is to build, the larger the risk if

user needs and capacities are not understood and anticipated. The design goal is to find

the sweet spot where risk is acceptably low and expected value is relatively high. Oja’s

Fig. 6 Complexity levels of epistemic forms (details)
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(2010) study of improving usability in complex software systems concludes that systems

should anticipate that projects usually involve a variety of roles and areas of expertise,

and that interfaces should allow for the “distribution of tasks according to participant

strengths” (p. 3800). Thus, the goal is not so much to match the affordances of an

authoring tool to an intended user type, but to anticipate the range of user types involved

in an ITS design and build tools that clearly meet the needs of each design role. Also, any

plans for large scale adoption of authoring tools should include plans for learning and

peer-mentoring within specific communication pathways in communities of learning.

The inclusion of Complexity Science and theories of dynamic systems in our narrative

supports a bigger picture consideration of authoring that considers, not only how tools

should be build to match user capacities, but the reciprocal evolution of tools and human

capacities over longer periods of time. As JeromeBruner notes “through using tools, man

changes himself and his culture...human evolution is altered by man-made tools” (Bruner

1987). Thus tools can not only support the construction of advanced learning systems,

but might also be designed to help users (especially instructors) more deeply understand

and incorporate leading edge learning theories and mental models of the learning process

(or build more adequate mental models of their content domain). We can move beyond

seeing authoring tools primarily in terms of time and effort savings and consider their role

in empowering content and pedagogy experts, including teachers; and in terms of

propelling the evolution of computer-mediated learning in general.

Appendix: Neo-Piagetian Developmental Models: Skill Theory
and Hierarchical Complexity Theory

In terms of this article as a personal retrospective, one question is “what have I learned

since my seminal work on authoring tools that is applicable to the field?” Some of what

I have learned is from my interdisciplinary dabbling in the areas of usability, Activity

Theory, and Complexity Science, as discussed in this paper. But the most significant

field that I have been exposed to in the last decade is adult developmental theories in

the Neo_Piagetian tradition (from Fischer, Commons, Kegan, Cook-Greuter, and

others, as discussed below). This literature could have significant impact in learning

theory and educational technology R&D, and yet is hardly cited or known in these

academic communities. These theories come from rigorous empirical studies and

deeply inform questions about knowledge, learning and development, transfer, meta-

cognition, reflective reasoning, socialization, and even motivation and ethics.13 Thus I

take pleasure in the opportunity to support a bit more familiarity to Neo_Piagetian

theories within the ILS/CSCL/ITS communities. In this paper I focus on how these

theories can inform the analysis of tool, task, and cognitive complexity, but in this

Appendix I will say a bit more about these developmental theories, extending the

description found in the section “Human Development and Hierarchical Complexity.”

13 Commons notes that “The Model of Hierarchical Complexity and Skill Theory...have ordered

problem-solving tasks of various kinds, including”: Social perspective-taking, Workplace organization,

Political development, Political development, Writing, Epistemology, Algebra, Music, Animal intelligence,

Counseling, and many more. See Commons and Richards 1984.
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Neo-Piagetian developmental theories deepen and generalize early work by Piaget,

Kohlberg, Perry and others. They are more nuanced and flexible than the original stage

theories and, developmental scholars would say, adequately address problems earlier

theories had with rigid stages, domain-specific learning, not accounting for individual

differences, and the potential for cultural and other biases. They extend earlier work on

childhood development into adult development in to post-formal-operational levels. They

are also more compatible with contemporary dynamic systems, information science, and

social-constructivist theories vs. earlier developmental theories. They also address the

integration of bio/neuro/psycho/social/eco factors in human development more fully than

prior theories (Knight and Sutton 2004; Demetrio et al. 2005; Dawson and Stein 2011).

As mentioned in the body of the paper, Neo-Piagetian developmental theories (hence-

forth “developmental theories”) describe two general types of growth or learning, and thus

two directions for increasing complexity, which can be called horizontal and vertical.

Horizontal learning involves learning more of the same type of thing, for example,

learning more plant species or violin concertos. Horizontal learning includes increasing

differentiation among exemplars, for example, as one learns about more types of wine one

becomes facile in the manyways that they differ, and gains nuance in noticing differences.

At some point, after many exemplars and much practice, learning takes a vertical leap

to a new level of abstraction, integration, or consolidation. Just as biological cells and

information networks tend to self-organize into larger wholes, ideas or knowledge itself

appears to do something similar. This creates a qualitatively different form of under-

standing or skill with each vertical reintegration. In learning the component notes of a

song, or the component actions of riding a bicycle, at some point the song or the action

of riding emerges cognitively and is understood as a whole. The move from speaking

individual words to sentences is a similar jump, as is the jump from learning addition

and subtraction (horizontally related skills) to learning multiplication and division.

Cook-Greuter (2005) explains it this way: “most growth in adults is of the horizontal,

expansion kind. People learn new skills, new methods, new facts, even new ways of

organizing knowledge, but their current stage or mental model of the world remains the

same…Developmental Theory, on the other hand, describes a sequence of how mental

models themselves evolve over time. Each new level contains the previous ones as subsets.

Each new level is both a new whole logic with its own coherence, and – at the same time –

also a part of a larger, more complex meaning system.” Robert Kegan describes develop-

ment in terms of an evolving sequence of “distinctly different ways of making meaning”

(1994, p. 90). Research has shown that such reorganizations or consolidations of horizontal

knowledge are indeed non-linear events indicated by a sharp “spurts” (and then leveling off

to another gradual increase) in skill level (Fischer andYan 2002; Dawson-Tunik et al. 2005).

Neo-Piagetian (adult) developmental theories posit generalized developmental levels

or tiers that grow over the lifespan but are also useful for the analysis of any specific

human task, knowledge, or skill. The sequence of “complexity orders,” which extends

and refines the original work by Piaget, goes roughly: sensory-motor schema, conceptual

categories and preoperational thinking, concrete operational thinking (representational);

formal operational thinking (a. abstract objects, b. formal rules, c. systematic structures);

and meta-principles and post-formal thinking (metasystematic principles and paradig-

matic frames) (I have combined terms used in Skill Theory and Hierarchical Complexity

Theory here). Development (in adults) happens in response to specific life demands, and

skills in different domain or task areas evolve at different rates.
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In vertical growth a new level of understanding is created through applying an operation

upon, or “coordinating and transforming,” the objects of the hierarchically lower layer.

Each skill or knowledge at a given level consolidates a set of items at the prior level into a

single whole, transcending and yet including them. In addition to the vertical growth

mechanism of hierarchical inclusion, horizontal growth also follows a pattern. It starts with

being able to recognize (or enact) a new type of object—you “see” or have a concept of

something you have never known before. In seeing more of them one notices how they

relate and begins to notice simple relationships between pairs, then to coordinate multiple

objects (or actions). Interrelationships progress from individual and linear to interdependent

and non-linear. At the final stage within a level objects are experienced in a dense network

of elaborated interrelationships which takes on the wholeness of a new object at the next

higher level. There is also a temporal element to the learning sequence within a level. We

progress from engaging with a construct through afterthought and retrospective reflection,

to increasingly being able to operate with it in real time. We also increasingly improve our

ability to respond rapidly to dynamic and evolving contexts (until eventually our responses

become automatic and unconscious). (These ideas are not unique to developmental

theorists, and are reflected in other learning theories, such as Anderson’s ACTmodel 1983).

Figure 7 shows the sequence of developmental levels in Fisher’s skill theory (the

most widely cited framework; and one that is compatible with Commons’, Kegan’s,

and Dawson’s frameworks). It shows a number of “tiers” representing the hierarchical

level of the task or mental construct. Each builds upon the prior as mentioned above.

Within each tier, or class of objects-to-be-operated upon, is the same sequence of

operations: (1) single objects, (2) mappings (linear relationships) of objects, (3) systems

(and non-leaner relationships) of objects; (4) systems of systems which organize (or

chunk) into a single object at the next higher level.14

As an example, a child might first learn what a “lunch” is (a concrete tier object). They

can recognize lunch and name it. As understanding progresses they coordinate lunch with

other concrete constructs, perhaps soups and sandwiches, lunch times and locations such

as school cafeterias, and are also learning what breakfast and dinner is (representational

mappings). At the level of representational systems they understand and can talk about

the system of breakfast-lunch-dinner, perhaps why certain foods or certain rules apply for

each one, and can imagine related possibilities in the concrete realm (“what if we always

ate at midnight—what would that be like?”). As a system is understood it is chunked into

a schema at the next higher level, which is this case includes abstractions such as meal,

etiquette, nutrition, etc. (e.g. concrete systems of systems become single abstractions).

This framework is generic to all human tasks and skills (knowledge), and has been

applied to algebra, reading, piano playing, tennis, parenting, leadership development, etc.

For Fischer and other developmentalists, mental growth is closely tied in to

goal-directed activity in life. Skills are acquired only in response to “tasks” that one

is challenged to succeed at as one interacts with artifacts and other individuals in

authentic contexts. In this sense contemporary developmental theory is compatible with

Activity Theory and socio-constructivist theories of learning (see section on Activity

Theory).

14 Within each tier are 4 numbered levels, but the highest level “systems” in any tier is equivalent to the most

basic unit (“single”) at the next tier—thus indicators such as “R4/A1” in the Figure.
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Table 4 illustrates a series of children’s verbalizations from different ages illustrating

how the concept of “fun” develops through single (concrete) representations, represen-

tational mappings, representational systems, single abstractions, and abstract mappings.

These illustrations are for verbal/cognitive domains. Commons and Pekker (2008)

shows how these ideas can be applied generally to complex systems and artifacts.

My goal in this paper is to apply these ideas to the design of interfaces and software-use

tasks. What is important then is that the development of skills (and tasks) has a

semantic/conceptual aspect, i.e. the types of objects in each successively more complex

tier; and a syntactic/structural aspect, i.e. the four phases within each tier that describe

how the elements are combined from simple to increasingly complex ways.

Developmental theory makes use of and parallels many aspects of Complexity

Science. Developmental progressions in the horizontal direction include increase in

these forms of complexity that have been mentioned: single to multiple items; inde-

pendent to interacting items; static to dynamic contexts; linear to non-linear relation-

ships; predicable/definitive to more unpredictable and fuzzy. Structural, dynamic, and

perspectival modes of complexity increase, often in parallel.

Fischer’s Skill Theory (1980) establishes a solid theoretical link between cognitive

science and models from socio-technical fields such as Activity Theory.15 Skill Theory

frames the development (i.e. learning) of all human capacities, including intellectual,

emotional, physical, musical, etc., in terms of “skills.” Skills develop in response to,

and only in response to, actual life “tasks” (i.e. situations calling for a response). In this

framework, it does not make sense to describe a skill without describing the task, or

general type of task, it is meant to address. In this model the analysis of cognitive

capacities (learning, knowledge, etc.) is always coordinated with the analysis of tasks.16

15 Fischer is one of the leading developmental theorists following the long lineage of neo-Piagetian theorists.

His status within certain academic communities is on par with John Anderson’s status in the Learning

Sciences. Related and compatible frameworks include those from Commons (Commons and Richards

1984) and Dawson (Dawson and Stein 2011).
16 Fischer is not a behaviorist. He does not deny the usefulness or realty of cognitive capacities that can not be

directly measured. He merely grounds them in actual tasks. The tasks need not be physical and can be mental

tasks, as they must be in moving from concrete to formal operational thinking (e.g. planning or mathematics).

Fig. 7 Fisher’s skill theory
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This is compatible with Activity Theory and situated and Vygotsky-inspired learning

theories that critique the separating cognition from activity in empirical or theoretical

analysis.
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