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Abstract velocity profile, or have desired wait times at critical points.

Coordinating th . ¢ multiole rob .. Alternative approaches to minimizing the completion time,
oordinating the motions of multiple robots operating in g,y 55 velocity tuning of the robots, may be inappropriate;

a shgred workspace without CO"'S'On_S IS an important ca-¢, example, a painting robot must follow a given trajectory
pability. We address the task of coordinating the motions o{o spray paint uniformly

multiple robots when their trajectories (defined by both the We identify sufficient and necessary conditions for
path and velocity along the path) are specified. This prob-jision_free coordination of multiple robots and formulate

lem of collision-free trajectory coordination arises in weld- the task as an optimization problem using a mixed integer

Ing a_nd pal_nt_lng workeells in the autqr_notwe mdu_st_ry. Weprogramming formulation that can be solved using commer-
identify sufficient and necessary conditions for collision-free

dinati ¢ th b h v th b . cial solvers. We use collision detection software to iden-
coordination of the robots when only the robot start tlmestify potential collision conditions. The primary advantage of

can be varied, and define corresponding optimization prOb'this method is its ability to handle many robots, each with

lems. We develop mixed integer programming formulationgg, e degrees of freedom. We place no restrictions on the
of these problems to automatically generate minimum time, , o of degrees of freedom of the robots. This approach

solutions. This method is applicable to both mobile robotsaISO applies to mobile robots and Automated Guided Vehi-

and articulated arms, and places no restrictions on the numoo (AGVs) moving along fixed paths with specified trajec-

ber of degfees of fre'ed.om o.f.the robots.' The prlmary.advant—oriesy and can also incorporate the motions of manipulator
tage of this method is its ability to coordinate the motions of rms on mobile robots

several robots, with as many as 20 ropots b_eing considgr_e " The paper is organized as follows. Section 2 briefly dis-
We show that, even when the robot trajectories are S|oF"C'ﬂe‘il:usses related work. Section 3 defines the problem, formu-

minimum time coordination of multiple robots is NP-hard. 5405 5 set of optimization problems, and describes sufficient
conditions for collision-free motion of multiple robots. Sec-

1 Introduction tion 4 presents a mixed integer programming formulation

for coordinating the motions of multiple robots with spec-

Coordinating the motions of multiple robots without col- ified trajectories. Section 5 discusses necessary conditions

:Iriloonrstaist égeégﬁ{foweigij: é)nn i;:r?jri?\gt;’r\]lorrrfg?ﬁoetilosn&s%r collision-free motion and describes a follow-the-leader
P P Y- g strategy. Section 6 describes useful extensions to the basic

of multiple robots constrained to follow specified trajecto- . : . .
: . : . problem. Section 7 discusses the computational complexity
ries. Bytrajectory, we mean both the geometric specifica- o X .

of the coordination problem. Section 8 describes our pre-

tion of the path and the velocity at which the robot traverses. . . . :
: o S iminary implementation of the planner and experimental re-
the path. We outline thigrajectory coordinationproblem ; . "
) . L sults. Section 9 outlines directions for future work.
and define corresponding optimization problems where thée

goal is to find the minimum-time collision-free robot coor-
dinations when only the robot start times can be changed. 2 Related Work
There are a number of applications in which this trajectory Motion planning for multiple robots is a broad research
coordination task is the exact problem to be solved. Conarea (see [11] for an overview). In the most general case,
sider scheduling the motions of multiple robots in a welding,the problem is to have each robot move from its initial to its
spray painting, or assembly workcell to minimize the cyclegoal configuration, while avoiding collisions with static ob-
time. Since the robots have overlapping workspaces, wetacles or with other robots. This problem is highly under-
must coordinate their motions to avoid collisions betweenconstrained, and very few researchers have attempted to deal
robots. We assume that the given trajectory of each indiwith it directly. Hopcroft, Schwartz, and Sharir [7] showed
vidual robot should not be modified since it may take intothat even a simplified two-dimensional case of the problem
account collisions with stationary obstacles, have a desiress PSPACE-hard.



A slightly more constrained version of the problem is ob- This will lead to a precise and straightforward characteriza-
tained when all but one of the robots have specified trajection of the set of parameterizations under which the robots’
tories. This is essentially the problem of planning a pathvelocity profiles remain invariant. We then develop a charac-
for a single robot among moving obstacles, which has beeterization for collisions that can occur between robots (Sec-
treated by Reif and Sharir [17] and Kant and Zucker [9]. Onetion 3.2), and a set of sufficient conditions for collision-free
can generalize this problem to obtain a heuristic solution taoordination of the robots (Section 3.4).
the problem of planning the motions of multiple robots. Erd- . . . L
mar?n and Lozgno—Pe?ez [3] assign prioritieps to robots ang’ -1 Trajectories and Their Parameterizations
sequentially search for collision-free paths for the robots, in We denote the'” robot by.4;, a configuration space by
order of priority, in the configuration-time space. At eachC, and a configuration byy € C. By pathwe mean the
iteration, previous robots are treated as moving obstacles. geometric specification of a curve in configuration space

If the problem is further constrained so that the paths
of the robots are specified, one obtains a path coordina- v:C€[0,1] —~()=qeC
tion problem. O’Donnell and Lozano-Perez [16] developed
a method for path coordination of two robots. LaValle
and Hutchinson also addressed a similar problem in [12],
where each robot was constrained to remain on a specified
configuration space roadmap during its motion. The worky;ii, 7(0) = 0 and~(T) = 1 is a reparameterization of the
mpst closely related to ours is that of .Lerloy, Laumond, andpathfy. For our problemt is a time variable, and’ is some
Simeon [14]. They perform path coordination for over & hun-consiant such that all robots will have completed their tasks
dred robots. However the size of the largest subset of robotﬁrior to time 7. A path together with a parameterization
with intersecting paths is 10. _ defines arajectory. By trajectory we mean a path with the

In this paper, we address an even more constrained Ve{p|ocity of the robot specified at every point along the path.
sion of the multiple robot motion planning problem: the tra-\ye will often simplify notation, and denote a trajectory as
jectory coordination problem where the trajectory of each, ;) rather than explicitly representing the parameterization.
robot, including the time derivatives along the path, is spec- Fqr gur problem, robot velocities are specified a priori.
ified. Previous work on trajectory coordination has focusedye way to do this is to specify an original parameterization
almost exclusively on dual robot systems (Bien and Lee [1]¢or 4 sayr, such that the time derivatives ofprovide the
Chang, Chung and Lee [2]). Shin and Zheng [19] show thayesjred velocity profile. Thus, any reparameterization, say
for a two-robot system, generating time-optimal trajectories, hat gives the desired velocity profile will be such that, for
for each robot independently and.then dgle}ymg the star_t t|mgny< value along the path, the time derivativesréfand
of one of the robots leads to a minimal finish time providedggree. It is easy to show that all such reparameterizations are
the collision region satisfies a strong connectivity a8ssuUmpgptained by merely changing the start time of task execution.
tion. (A sufficient condition for this assumption is that the  \nithout loss of generality, we will consider only the case

robots may collide only once during their motion.) where the start times for the robots are delayed, i.e.,
The trajectory coordination problem for multiple robots

is closely related to jobshop scheduling problems (Garey, , mi(t —tgtert)y . ¢ > gstart

Johnson, and Sethi [5], Lawler et al. [13]). Here space is the 7i(t) = { 0 e (1)
common resource, and there are additional trajectory con-

straints. We model coordination of robots with fixed tra-in which ¢5%¢7* > 0 is the time at which robo#; begins
jectories as no-wait jobshop problems (Sahni and Cho [18]its motion, andr; is the originally specified parameteriza-

A differentiable functionr given by

T:t€[0,T]— 7(t) = ¢ €10,1]

Goyal and Sriskandarajah [6]). tion. Note that this equation also implies thdf remains
motionless untit:*e"*. This restriction on possible reparam-
3 Problem Formulation eterizations leads to the following optimization problem.

The general problem that we are trying to solve can belptimization Problem I: Given a set of robots with spec-
expressed as an optimization proble@iven a set of robots ified trajectories, find the starting times for the robots such
with specified paths and velocity profiles on those paths, finthat the total execution time for the ensemble of robots is
a set of parameterizations for these paths such that the totahinimized and no collisions occur.
execution time for the ensemble of robots is minimized, the We now turn our attention to a set of sufficient conditions
velocity constraints on the paths are satisfied, and no collifor collision-free motion for this optimization problem. As
sions occur. will be seen in Section 4, these sufficient conditions lead

To make this problem more precise, we first turn to a briefto an optimization problem that can be solved using mixed
review of paths and their parameterizations (Section 3.1)integer linear programming.



3.2 Collision Zones: Geometry Initial Goal
Here we develop the representation for the relevant inter- 2
actions between robots, using the above terminology for a I_ll a,
individual robot moving on a path with a specified velocity [ [ a, 2
profile. | |
We first develop notation to represent the set of points by by ITI b3 by
at which theit" robot, .4;, could possibly collide with the 2
4" robot, A;. For a specific value of;, the subset of the Initial Goal

workspace that is occupied by thi& robot is denoted by
A;(7:(¢))- A collision between two robots corresponds to
the situation in which4;(v;(¢;)) NA;(v;(¢;)) # 0. For the
it" robot, we denote byPB;; the set of values of; such 3.3 Collision Zones: Timing
that when robot4; is at configurationy;((;) there exists a  The collision zone pairs describe the geometry of possible
configuration of another robat;, such that the two robots  collisions, but for scheduling the robots, we are interested in
collide: the timing of the collisions. Thus, it is useful to develop
PBi; = {G | 3¢ € [0,1] 5.t Ai(a(G:))NA; (3;(¢;)) # 0} @ corresponding representation for the times at which two
robots might collide. For a specified parameterizatign,

In other words,PB;; is the set of all points on the path of the set of times at which it is possible that robd could
robot.A; at which.4; could collide with.4;. (Our choice of  ¢g|lide with robotA; is given by:

the notatiorP3;; derives from the usual convention of using

Figure 1. Example with two translating robots.

the notationCB3 to denote points in the configuration space 7B;;(r;) = {t|Ai(i(7:(t))) NA;(v;(¢)) # 0,
at which collisions occur.) for some(; € [0,1],i # j}
The setPB;; can be represented as a set of intervals — o U(PBy)
- 7 LV
,PBij = {[Cils’ Cilf]7 te [CZZ’ Cznfl}} (2)

As with PB;;, the setZ B,,(;) can be represented by a set
of intervals, indexed by superscriptthe endpoints of which
are obtained by applying the inverse parameterization (i.e.,
le) to the endpoints of the intervals &3, given in (2):

where each interval is eollision zone and the subscripts
and f refer to the start and finish of thigh collision, in-
dexed by the superscrift, andm denotes the number of
collision zones for the roba#; with A;. There is a natu-
ral corrggpondence between the pollision zoneBBf; qu TBij(i) = {[Tzfl( iks)szil( Z_kf)]} (4)

the collision zones oP ;. In particular, for each collision

zone inPB;; there is at least one collision zonefit3;; that ~ We refer to each interval ascallision-time interval

could result in collision of the two robots. We will refer to  As with collision zones, there is a natural correspondence
these corresponding pairs of collision zoneseltision zone  between collision-time intervals i 3;; and7 B;;, and we
pairs, denoted byPZ;;. The set of collision zone pairs can refer to these pairs amllision-time interval pairs For the

be represented by a set of pairs of intervals: two robots, A; and A;, we denote the set of all collision-
time interval pairs byCZ,;. We represen€Z;; as a set of

= k ok ¢k ck ! :
PIW - {< [ zsasz]v [Cgsa ]f] >}' (3) pairs of intervals
Note that the superscriptserves to index the set of collision
zone pairs. As we show in Section 3.4, it is straightforward CI;; ={< Iil,IJ1 >, < I >, (5)

to usePZ;; to establish a set of sufficient conditions for col- h he first i ark of h pair< 7. %
lision free scheduling of the robots. Note tHii;; andPZ ;; where the first interval” of eac pfeur< i, 45 > corre-
contain equivalent information. sponds to robot4; and the second mtervéf corresponds
Conceptually, collision zone pairs are generated by comto robot.A;. During the time interval’, A; is in a specific
puting the volume swept by each robot and determiningcollision zone and4; is in a corresponding collision zone
where it intersects the volume swept by another robot. Théluring time intervall}. Note thatCZ;; andCZ;; contain
intersection regions of the swept volumes of pairs of robot£quivalent information. The interval pairs ¢Z;;(7;, 7;),
give the collision zone pairs. Figure 1 is an example ofindexed byk, can be determined from the mapping specified
two translating robots with specified trajectories that overin (3) by applying the appropriate inverse parameterization

lap in two collision zones. For this exampRB,, = to the endpoints of the collision zone intervals in each colli-
{[al, Clg], [ag, a4]} and PBgl = {[bl, bQ], [bg, b4]} Colli- sion zone pair- That iS,

sions can occur only whegy € [a1,a2] and(y € [by, bo] ks —1rk

or when(; € [az,aq] and(s € [b3, by]. Thus, P15 = {< CLij(riymj) = A< [m (G (Gl

[a1,as], [b1,b2] >, < [a3, a4), [b3, ba] >}. (NG, NG > (6)



Note that if 7" and I}’ do not overlap, then the two robots .4; could collide with robotA;, which can be assured if the
cannot be in thé'" collision zone pair simultaneously, and two robots are not in any collision zone pair belonging to
therefore no collision will occur in this collision zone pair. PZ;; at the same time. This amounts to ensuring that there
This observation forms the basis for the sufficient conditiongs no overlap between the two intervals of any collision-time

given in Section 3.4.

interval pair for the two robots. If} N I = () for every

For notational convenience, we introduce the variablesollision-time interval pair< IF,I¥ >€ CZ;;(7;,7;), then

T}, andT}; given by
TS, = 7N (7
T = Gy ®)
whereT;, (respectivelyl’;) denotes the time at whicH;

enters (resp. exits) the” collision zone if¢stert = 0.
Note that with multiple robots, the notatidf¥, is ambigu-

.. LA
no collision can occur. (Note that it is not necessary to also

check the interval pairs ifiZ ;;, since preventing collision of
A; with A; necessarily prevents collision of gf; with A;.)
This sufficient condition leads to an optimization problem:

Optimization Problem Il: Given a set of robots with spec-
ified trajectories, find the starting times for the robots such
that the total execution time for the ensemble of robots is
minimized and no two intervals of any collision-time inter-

ous since it does not specify the particular other robot thaval pair overlap.

is involved in the collision. When we use this notation, the

In Section 4, we will present a Mixed Integer Linear Pro-

context will make clear which other robot is involved. Seegram that solves this Optimization prob|em_ The sufficient

Figure 2 for a graphical illustration of these quantities.

A

Ay

time Tl T2

T1s Tog Tof Tt

Figure 2: Timelines for robotsl; and.As. The bold lines
correspond to the collision-time intervals for the robots.

condition is clearly not a necessary condition. For example,
in a follow-the-leader situation where the robots move in the

same direction along their paths in the collision zone, the fol-

lower robot is delayed unduly since it waits for the leader to

exit the collision zone before it enters the collision zone. For

now, we note that this is a conservative strategy that guar-
antees that no collision occurs between the two robots. We
will discuss an alternative strategy that provides the mini-

mum time collision-free schedule in Section 5.

3.5 Assumptions

We make the following assumptions to generate a
collision-free coordination of the robot trajectories:

Since our parameterizations are restricted to those that _ _
only delay the robot start times, we will always have param- 1. The only moving obstacles in the workspace are the

eterizations of the form

T+ = = 1(1), (9)

for each value of € [0, 1]. Inverting the parameterizations

7" andr we obtain

7O =T (10)

Using this notation, we can writeZ; (7/, 7;) as

CT(rt, ) = { < [T+ 2 T + 1),
[les + t;tart’ T]lf + t;tart] >,

< [Tz?; + tftaﬂ"t7 TZJL" + tftart]’
[TJTZ + t;tart’ T’]nf + t;jtart] >}.

3.4 Sufficient Conditions for Collision-free

Scheduling

To prevent collisions between two robats and A;, it
is sufficient to ensure that the times at whidh could col-

robots, and the specified trajectory for each robot does
not result in collisions with any static obstacles.

2. Each robot does not collide with the other robots when
they are at their start or goal configurations.

3. The starting velocity of each of the robots is zero.

4. Each robot path is monotonic, that is, the robot does not
back up along its path.

5. Each robot executes its specified trajectory, with no
changes to its specified velocities, once it starts mov-
ing.

6. The robot motions are sampled at sufficient resolution
so that no collisions occur during the motion between
successive collision-free configurations.

4 An Integer Programming Formulation

We first develop a mixed integer linear programming
(MILP) formulation for Optimization Problem Il for the two
robot case, and then the general case with multiple robots.

lide with robot.4, do not coincide with the times at which ¢ is the start time for robat;, which is to be computed,



andT; is the motion time required for robod; to traverse
its entire trajectory when starting at timg*"* = 0.

4.1 The Two Robot Case

First consider trajectory coordination of two robots
and A;. Assume the trajectory of each robot is given and
that the robots can collide with each other in only one re
gion and that the robots do not collide multiple times in the
region. For each robot, identify its collision zone and com-
pute the time interval during which it is in its collision zone.
The collision-time intervalT;;, T; ¢] of robot.A;, where sub-
scriptss and f indicate start and finish times respectively, in-
dicates when robo#l; can collide with it. The collision-time
interval [T}, T; ] of robot.A; is similarly computed.

The maximum completion time for the two robots is equal
to the time when the last robot completes its task, i.e.
maximum{#s*** + T;, t5'*"* 4-T; }. Since we wish to min-

imize the completion time while ensuring the robots are not

in their collision zones at the same time, the trajectory coor
dination problem can be stated as:

Minimize max{t;**"" + T;, t5'"" 4 T} }
subject to
tftart + T’Zf < t;tart + 7}5 or tftart + Tis > tj_tart + nf
t§ta'rt > ()
i =
tart
t; ar Z 0

the number of collision-time interval pairs for robats;
and A;, i.e., N;; = |CZ;;] and let N,,0s be the num-
ber of robots. The binary variablg;, is defined to be 0
if robot .A; enters itg:*" collision zone with robot4; before
robot . A; and to be 1 if robot4; enters its corresponding
k" collision zone before robatl;. A valid value forM is
— " Nrovets 7, The MILP formulation to coordinate the

motions of the robots is:

Minimize ¢
subject to
tcomplete - tftart - /1—’1 > O, 1 < v < Nrobots
tftart 4 Tzkf _ t;tart _ T]{{; _ M(;ij < 0,
forall < [T}, T}, [T}, T};] >€ CT;,
for1 <i < j < Nyopots
t?tart =+ T7k:f o tftart _ TZIZ‘ _ M(l _ 5”k) < 0
forall < [T, T, [T, TF] >€ CTy;,
for1 <i < j < Nyobots
5ijk S {Oa 1}7 1 < { <j < Nrobots; 1 < k < Nij
t?tart >0, 1<:i< Niobots-

complete

The resulting solution is guaranteed to be a collision-
free trajectory coordination strategy for all the robots. The
completion time constraints and collision-time interval con-
straints are necessary for only those robots that may col-
lide. Note that the MILP always has a feasible solution —

Since the objective function and the constraints are nNof,qve the robots in sequence with only one robot in motion

linear, we transform them to a linear form. Let the max-
imum time for robots4; and .A; to complete their mo-
tions betcompicte- Clearly teompiete > 51t + T; and
Leomplete > tjt“” + T5;. The disjunctive “or” constraint can

be converted to an equivalent pair of constraints using an in-

teger zero-one variablg; and M, a large positive number
([15]). HereM can be chosen to BE + T;. When robot
A; enters the collision zone firsi;; = 0 and the constraint
tstert + Typ < t5'%7 4 Ty, is active, and when robod;
enters the collision zone first;; = 1 and the constraint
3Tt + Typ < 5197 + Ty, is active. The equivalent MILP
formulation is:

Minimize teomplete
subject to
tcomplete - tftart —T; 20
tcomplete - tj'taTt - Tj >0
tftm‘t + Tif _ t;’tﬂ“”t — Tjs — M(Sij <0
t;;_tart + j’]f _ tft‘l” — Tis — M(l — 6”) S 0
t?tart Z 0
tart
t; art > ()
di; €{0,1}

4.2 The Multiple Robot Case

at any given instant. Figure 3 shows the timelines for two
robots with multiple collision intervals, and Figure 4 shows
the collision-free sequencing of the start times of the robots.

1
A

time Tl TZ
Figure 3: Timelines for robotgl; and.4, with multiple col-
lision intervals.

start

time
2

In the general case, multiple robots, pairs of which may o o
have multiple collision regions, must be coordinated. Herd=igure 4: Collision-free timelines for robotd; and A,

< [Tk, TE], [TF,TF] > denotes thé'" collision-time in-  With robot.A; being delayed at its start.

terval pair for the two robotsd; and A;. Let N;; denote



5 Necessary Conditions for Optimality sion zone pairs.
To extend this formulation to multiple robots, we include

we l? ave so far ;:omputeld §takr]t .t'mﬁ N tc()j enlﬁu_re that Nthese disjunctive constraints for every pair of robots that can
EI\_Ar’]c.’ robots are simuiltaneously In their shared collision Zonespotentially collide. The minimum completion time over all
is criterion for collision avoidance can be overly conser- ot is obtained using the following formulation:
vative, for example, when two robat; and.A; are moving
in the same direction in a collision zone pair. We can reducﬁ'\/linimize ;
the completion time and derive the necessary conditions foéubject to
collision avoidance in such cases by permitting the robots to, _start _ s 1<i<N
play “follow the leader”. Assume robaotl; moves first in t;ﬁ;@i’t’lieﬂ " start B Tk M?S P O’""b"”
its collision zone and4; follows it. We need to compute for all <26[T.’€]T1] [T?‘j’s Tk >”ekC_I
how muph earlier the lead robgt; should start moving_in L <i<i <IS’N2f R E v
its collision zone, before the follower robgt; can enter its pstart . T’fj _—tstgf,lt’of TE — M(1—5,) <0
collision zone, to avoid a collision. J e (L ijk) =
Shin and Zheng [19] proved that for two robots with a for a!l <,[Tis’Tif]7 [Tjs’ij] € CLyj,
single collision region, delaying the start time of one of l=si<js Nmbfﬁts _
the robots provides the time-optimal trajectory modification. 5;{(’;”6 {0,1}, 1 S 0 <J =< Nrobots: 1 < k < Nij
They compute the minimum delay time for the collision-free & 20, 1@< Nrobots:

coordination of two robots that have a single collision zone h ut h | o
pair by using a bisection search. The delay time of the fol- 1 n€ Solution to the above MILP solves Optimization Prob-

lower robot, or equivalently, the lead time of the lead robot,lem | and gives the minimum time coordinated trajectories of

is initialized to a value that guarantees the lead robot willth€ roPots when only their start times can change.

exit its collision zone before the follower robot enters its col- _

lision zone. The minimum lead time in the collision zone for 6  EXtensions

which the lead robot can still avoid a collision with the fol- our problem formulation so far has focused on single

lower robot is then computed using bisection search. P . o i . . 9

o ; .body robots with specified trajectories. We now discuss use-

We extend this idea of computing the necessary condi: . . .

. - . . . ful extensions to the basic formulation.

tions for collision avoidance to multiple robots, where pairs

of robots may have multiple collision zone pairs. Giventwog.1  Articulated Robots

robots A; and .4; that have more than one collision zone

: L - To coordinate articulated robots with multiple links, we
pair, we treat each collision zone pair independently when : : L . .
i : : . . consider motions of the individual links. An articulated
computing the lead times using bisection. For ftle col-

ision zone pair, we compute the minimum i that robot R consists of a set of link&4; }. Let R[i] be the robot

robot.4; must lead robat4; by at the start of itéth collision to which link A; belongs. The motions of links of an artic-
zone to avoid a collision, and the minimum tirﬁ’#ad that ulat_ed robqt are segarated by constant time offserAL;het
robot A; must lead robot4; by at the start of itsk;tzﬁ colli- begin moving timef, aft etr the ﬂtrsttmow]r;g link ORt[Z] tb e
i 1 ietstart _ g4star start ;
sion zone to avoid a collision. The corresponding follow-the-2"° movmg. That ist; o triy + T WherEtR[i] IS
leader constraints at?tart+T]<: +T}¢]gd < ts»tart+Tk when the start time of rObOR[Z]. Let Nyinks be the total number
(2 1] J Js

_ - art') k1 lead of robot links. Note that the start time and motion time of a
Ai leads through the collision zone,igf T AT < link may depend on the start and motion times of links that

tart k isi - . . :
£ + Tj whenA; leads t?efgu_gh tf]:e collision zone. precede it in the articulated chain. Thus the formulation for
The maximum value of;0¢ is 77", the time taken for 5 get of articulated robots is:

robot A; to traverse itsith collision zone. Sincd ¢ <
TF, we define a new variablg, = min{T}, + T/:*, T};}  Minimize tompiete

complete

ijk 74
whereT}); = T}, + Tf. TF, the collision-freeentry time  subject to
is the time from start in robatl;’s trajectory, whenA; en- teomptete =t =TT =Ti >0, 1 <0 < Nijnks
ters itskth collision zone pair beforgl;, at which robotA4; tert + TR 4 T — 5t — T — Tf — Méyj <0
pan enter_ its collision zone without causing a collision. Sim-  for all < [7;127 Ti}], [Tf;v Tff] >e CZ;;,
ilarly, define T, = min{T}, + Tl5¢, TF}. The updated for 1 <i < j < Nynrs andR[i] # R[]
follow-the-leader constraints atg*"* + T} < t5'"* 4 T it + T+ Tf, — 5t = TF = T — M(1—8;5) <0
when A; leads through the collision zone, Gf*"* + T, < forall < [T}, T, [T}, TF] >€ CT;

tstert + Tk when A, leads through the collision zone. The for 1 <1< j < Njnks andR|[i] # R[j]
robots.A; and.A4; do not collide when their start times sat-  §;;, € {0,1}, 1 <@ <j < Njngs, 1 <k <Ny

isfy these follow-the-leader constraints over all their colli- tg[fg]” >0, 1<4< Neopots-



The completion time constraints are necessary for all links
of a robot that can potentially have a collision. The collision-
time interval constraints are necessary for only those robots
that have one or more links involved in a potential collision.

6.2 Specifying Sequencing Constraints

In certain tasks, it may be necessary for one robot to com-
plete a particular operation or reach a certain point before
another robot performs a subsequent operation. This can oc-
cur in sequenced assembly tasks, or in welding workcells
where the primary welds must be completed before sec-
ondary welds. Consider the requirement tHatas to reach
q; before 4, reachesgy;. For the unmodified trajectories, let
the time taken for4; to reachq; beT, and for.A; to reach
q; beT,,. The sequencing constraint can then be written as
et + T, < 5" + T,.. Such constraints for multiple
robots can be easily added to the formulation.

7 Complexity

The integer programming formulation of our problem
sgggests It IS an NP-CQmpIete problem_([4]). We first Con'Figure 5: Overhead view of the paths of 20 robots, with their
;lder the decision version of the No-wait Jobshop Scheduly i) configurations indicated by solid cubes.
ing problem (Sahni and Cho [18], Goyal and Sriskandara-
jah [6]), which is NP-complete. Each job consists of an or-
dered set of tasks, where each task is to be performed by a Num. of | Num. of | Collision | MILP
specific processor. The tasks for each job must be executed
in sequence without breaks between them. Each processor
can perform no more than one task at any time instant, and

robots | collision | detection | time
zones | time (secs)| (secs)

each job can be worked on by only one processor at any time 3 2 <1 0.02
instant. The goal is to minimize the makespan (i.e., the max- > 10 2.4 0.02
imum time of completion of any task). 10 27 9.8 0.11

15 65 234 0.53

The above problem can be transformed to our Multiple
Robot Scheduling problem. Let each jgbmodel the tra- 20 9 36.8 1.83
jectory of robotA;. Let each taskj[j] model thekth tra-
jectory segment for robod ;, where each trajectory segment
is a contiguous collision zone segment or collision-free segtermine the collision zones, each robot is stepped through
ment. Let processqs; model the region;, where each re- its trajectory, and at each trajectory point, all the remain-
gion contains one or more trajectory segments. No two traing robots are moved through their complete trajectories to
jectory segments that are in the same region can be executeéétect collisions. So folNV robots where each robot hds
at the same time. The length of each task is the time taketrajectory points, collision detection is perform@dN272)
by the robot to traverse the corresponding segment. The goéimes.
is to minimize the completion time of the robots. It follows

that the decision version of the Multiple Robot Scheduling Using the computed collision-time interval pairs, we

problem is NP-complete, and that the optimization problemgene.rate the corresponding M”.‘P for_mglanpn and solve
is NP-hard. it using CPLEX [8], a commercial optimization package.

See Table 1 for runtime data on a Sun Ultra 10 for sin-
gle body robots. Note that the problem complexity de-
pends primarily on the number of collision zones, to a

We have implemented software in C++ to coordinate thdesser extent on the number of robots, and is relatively
motions of polyhedral robots with specified trajectories (Fig-independent of the number of degrees of freedom of the
ure 5) and have a preliminary implementation for articulatedrobots. Our preliminary experiments indicate that the MILP
robots. We compute the collision zones using the PQP coltime dominates the running time as the number of colli-
lision detection package (Larsen et al. [10]). The robot consion zones increases. Example animations may be seen at
figurations are specified at constant time intervals. To dewww.cs.rpi.edu/"sakella/multiplerobots/

Table 1: Comparison of sample run times for 100 frames.

8 Implementation



9 Conclusion [6] S. K. Goyal and C. Sriskandarajah. No-wait shop schedul-

L . ing: Computational complexity and approximate algorithms.
We have developed an optimization formulation that en-  onsearch25(4):220-244, 1988.

ables the minimum time collision-free coordination of mul- 5

tiple robots with specified trajectories when only their start [71 . ) . S o

times can be changed. The principal advantage of our MILP ggﬁggg_ﬁ;g?giﬂ?ﬁg ..f\?vi,igzgﬁlsi;:gsge;riirll;&tgi cts:

formulation is that it permits the collision-free coordination national Journal of Robotics Resear@(4):76-88, 1984.

of a large number of robots (up to 20 robots). The problem

complexity depends on the number of robots and the num-

ber of potential collisions, and is relatively independent of

the number of degrees of freedom of the robots. Although [8] K. Kantand S. W. Zucker. Toward efficient trajectory plan-

the optimal trajectory coordination of multiple robots is NP- ~ 1ing: The path-velocity decompositioimternational Journal

hard, the availability of efficient collision detection software of Robotics Research(3):72-89, Fall 1986.

and integer programming solvers makes this approach pra&lO] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast dis-

tical. tance queries using rectangular swept sphere volumes. In
There are several issues for future work. Developing poly- IEEE Interpational Conference on Robotics and Automation

nomial time approximation algorithms for the task of select- San Francisco, CA, Apr. 2000

ing start times and characterizing the quality of these solull1] J.-C. Latombe.Robot Motion Planning.Kluwer Academic

tions is important. An alternative approach to minimizing ~ Publishers, Norwell, MA, 1991.

the completion time is modifying trajectories by tuning the [12] S. M. LaValle and S. A. Hutchinson. Optimal motion plan-

velocity of each of the robots. Identifying the conditions ning for multiple robots having independent goal$£EEE

under which we can do this, and developing techniques to ~ Transactions on Robotics and Automatid#(6):912-925,

generate the optimized trajectories is important. Exploring Dec. 1998.

stochastic versions of the task that involve timing uncer{13] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B.

tainties would be useful. Finally, exploring applications of Schmoys. Sequencing and scheduling: Algorithms and com-

this work in computer graphics for choreographing anima- ~ Pléxity. In S. C. Graves, A. H. G. R. Kan, and P. H. Zipkin,
tion characters is another interesting direction. editors,Handbooks in Operations Research and Management

Science, Vol. 4, Logistics of Production and Inveni@ages
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