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Abstract. Coordination and access control are related issues in open distributed
agent systems, being both concerned with governing interaction between agents
and resources. In particular, while coordination deals with enabling interaction
and making it fruitful, access control is meant to control interaction to make it
harmless. We argue that this twofold facet has to be supported by a system in a
uniform and decentralised manner. To this end, we describe how the applica-
tion of the TuCSoN tuple-based coordination model over a hierarchical topol-
ogy is well-suited in this context. On the one hand, policies can be enforced by
means of a single mechanism based on tuples and can be scoped to manage ac-
cess to groups of distributed resources. On the other hand, agents can interact
along a hierarchical infrastructure by applying a standard tuple-based commu-
nication template. This makes TuCSoN a single coherent framework for the
design and development of Internet-based multiagent systems, which takes co-
ordination as the basis for dealing with network topology and access control in
a uniform way.

1   Introduction

Open distributed multiagent systems (MASs, henceforth) have gained sheer interest
due to their suitability to the Internet scenario. Their best property is to cope well with
the unpredictability and the dynamics of the environment. The lack of a global state
of the Internet can be addressed by exploiting the agent autonomy and flexibility. In
addition, the openness and the spatial distribution of systems make the ability to deal
with heterogeneous environments and decentralised forms of control an issue. In
particular, systems are likely to be composed of several heterogeneous subsystems
managed by independent authorities, where heterogeneity refers both to their design
and implementation [9, 16].

In such a context, the ability to coordinate the agents [1] coupled with the possibil-
ity to control the operations they perform is important, so we argue that coordination
and access control should be regarded as tightly connected issues [3, 4, 14].
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Furthermore, the openness and the distribution of the environment make traditional
centralised solutions no longer effective. Architectures with a central coordinator,
which supervises to the whole activity of a system, are not applicable in many con-
texts. In open distributed systems is convenient to employ components in charge of
coordinating tasks and active entities, but they should be decentralised and managed
by local authorities. Consequently, the relationships among subsystems, local
authorities and decentralised coordinators should be explicitly represented in the
design of a system infrastructure. This leads to design system topologies for model-
ling the distribution of the components and their interconnection. Both the coordina-
tion and the access control issue should be addressed in such a decentralised, unpre-
dictable and dynamic environment.

The aim of this paper is to present how the TuCSoN system faces to and manages
such a complexity of open distributed agent systems. The essential components of
TuCSoN are:
• a coordination model based on multiple programmable tuple spaces that mediates

all communications among active entities;
• a distributed infrastructure, modelling a system, upon which tuple spaces are de-

ployed;
• the integration of mechanisms for the access control within the tuple-based envi-

ronment and their application to the hierarchical infrastructure.
In particular, the paper shows that implementing access control mechanisms in

TuCSoN is worthwhile and may provide for a relevant benefit: agents could be sup-
ported along their interaction without a static knowledge of the environment.

In Section 2 we discuss the relationship between coordination and access control.
Section 3 describes the TuCSoN coordination model and its application to a hierar-
chical infrastructure. Section 4 presents how access control techniques have been
applied and fully integrated with the coordination model. In Section 5, the case study
considered throughout the paper is presented in its entirety. Finally, in Section 6,
some related systems are analysed and conclusions drawn.

2   Coordination and Access Control

In general, coordination technology for the Internet is typically concerned with ena-
bling interaction and making it fruitful, while access control technology is typically
meant to bound interaction to make it harmless. Then, access control could be re-
garded as the conceptual security counterpart of coordination. This makes coordina-
tion and access control two strictly related topics, and their combination allows to
fully characterising the interaction between agents and resources in an Internet-based
environment.

In addition, both coordination and access control policies (i.e., sets of rules) have
to be defined and enforced. Enforcement of policies, that is agents being compelled to
act according to preset policies, should occur in a decentralised manner, with a single
and uniform mechanism, and be applied with different granularity, i.e., to individual
agents or to entire multiagent systems.
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Decentralisation is necessary because agent systems need to be scalable, possibly
spread over a wide area network and have no single point of failure.

A single and uniform mechanism for the enforcement of policies is required for
managing the heterogeneity of the overall system. In an organisation, many different
MASs could be deployed, each one with a specific policy to be supported.

Finally, also the granularity of access control policies should be considered:
whether rights are granted to single agents or to entire MASs. New MASs could be
dynamically added in the organisation, and new agents could be dynamically created
within each MAS. Thus, it is often convenient to be able to define policies first in
term of MASs, so as to bound the interaction space of a system within the organisa-
tion, and then in term of agents belonging to MASs.

Before discussing in more detail the TuCSoN's coordination and access control
models, which are the subjects of next two sections, we first introduce an underlying
assumption that holds throughout this paper. The pre-condition for each system in
order to establish what an entity is allowed to do is to recognise whom the interacting
entity is. This leads to the authentication issue: each execution environment holding
protected resources should determine which agent is requiring the execution of an
action before allowing it to be done [11]. A coordination framework should then
endorse an agent naming scheme and support an authentication protocol, univocally
mapping agents onto names. Coherently, a coordination model should embody a
suitable notion of agent identity, by allowing any communication operation to be
associated to an agent identifier. This way, given that policies have to be also defined
in terms of MASs and not only in terms of single agents, a broader notion of identity
should be supported, which enables a MAS to be denoted as a whole. TuCSoN de-
fines a global agent naming scheme by combining a MAS identity and an agent indi-
vidual identity, where the latter is determined within the scope of the former. Hence,
when we refer to agent identities, we intend composite objects having the form MA-
SID:AgentID, where the first is a global name referring a specific MAS and the second
is the relative name for the single agent.

Throughout this paper, we always assume that whether an agent interacts with an
execution environment and access a tuple space, its global name, composed by a
MAS and an individual identity, has been already verified by the system.

3   TuCSoN Coordination Model

In TuCSoN [13], agents interact through a multiplicity of independent coordination
media, called tuple centres, spread over Internet nodes. Agents exchange tuples by
means of standard Linda primitives [2, 6, 7].

Each tuple centre is associated to a node and has a unique name: in particular, a tu-
ple centre can be denoted either by its full Internet (absolute) name or by its local
(relative) name. By means of the absolute name tc@node, tuple centre tc provided by
the Internet node node is referred to from everywhere in the Internet, and by means of
its relative name tc in the context of node node. The general form for any admissible
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TuCSoN communication operation performed by an agent is tc@node?op(tuple)
asking tuple centre tc of node node to perform operation op using tuple.

TuCSoN tuple centres are tuple spaces enhanced with the notion of behaviour
specification: the behaviour in response to communication events of every tuple cen-
tre can be defined according to the system requirements as the observable state tran-
sition following a communication event. Correspondingly, the definition of a new
behaviour for a tuple centre basically amounts to specifying a new state transition in
response to a standard communication event. This is achieved by allowing any com-
munication event to be associated to specific computations, called reactions. In par-
ticular, a specification tuple, stated by reaction(Op,R), associates the event generated
by an incoming communication operation Op to the reaction R.

A reaction is defined as a sequence of reaction goals, which may access the prop-
erties of the communication event triggering the reaction, perform simple term op-
erations, and manipulate tuples in the tuple centre. Each reaction is executed with a
transactional semantics: a successful reaction can atomically modify the tuple centre
state, while a failed reaction yields no result at all. In particular, operations on the
tuple space (out_r, in_r, rd_r, no_r) work similarly to communication operations, and
can trigger further reactions in a chain. Reaction goals are executed sequentially and a
chain of reactions is either a successful or a failed atomic operation depending on
whether or not all its reactions succeed [5].

Then, from the agent's viewpoint, the result of the invocation of a communication
primitive is the sum of the effects of the primitive itself and of all the reactions it has
triggered, perceived altogether as a single-step transition of the tuple centre state. This
makes it possible to uncouple the agent's view of the tuple centre, viewed as a stan-
dard tuple space, from the tuple centre actual state, and to connect them so as to em-
bed the laws of coordination and access control.

3.1   TuCSoN Tree-Like Infrastructure

The interaction space provided by a TuCSoN system relies on a multiplicity of dis-
tributed tuple centres. This way, TuCSoN shares the advantages of models based on
multiple tuple spaces and goes beyond, since different coordination media can encap-
sulate different coordination and access control laws. This leads to introduce the rela-
tionship between a coordination model and its distributed topology, and to discuss
two main problems: (i) how the space where agents live is modelled (network model-
ling), and (ii) how the knowledge about the structure of that space is made available
to the agents (network knowledge).

The problem of network modelling is particularly evident when dealing with in-
trinsically structured domains, as Internet-based organisations frequently are. In fact,
Internet nodes are often grouped in clusters, subject to highly coordinated manage-
ment policies and possibly protected by firewalls. Moreover, large clusters can be
further characterised by the presence of enclosed sub-clusters, often arranged as a
(logical or physical) hierarchical structure of protected organisational domains. Dif-
ferent enclosed clusters provide protected domains of shared resources and are largely
independent from the rest of the organisation in the definition of policies concerning



The TuCSoN Approach      103

their resources. For example, most academic environments or medium- and large-
sized companies have infrastructures that suit this hierarchical model.

As far as network knowledge is concerned, it is, at least, unrealistic to assume that
agents could have a complete knowledge of the whole network topology, as well as of
resources availability. In fact, Internet-based domains are typically dynamic and un-
predictable, due to their complex structure where many decentralised authorities are
present and no central repository of information is available. Therefore, knowledge
about the environment should be acquired dynamically and incrementally by agents
through their interaction. This actually affects the coordination protocol, since part of
the agent interaction concerns the acquisition of information about topology, and
makes network knowledge a coordination-related issue.

In TuCSoN, the gateway locality abstraction has been specifically introduced to
enable the modelling of an Internet-based agent system as a hierarchical infrastruc-
ture. A gateway is a node augmented with the ability of authenticating (although we
do not address this issue in the present paper) and of authorising agents to access
some other nodes and their tuple centres. By connecting gateways in a tree-like topol-
ogy, the definition of nested protection domains is natural: for each possible sub-tree,
the root gateway may hold the policy for managing the access to the corresponding
children. Ordinary nodes are the leaves of the tree, while intermediate nodes could act
also as gateways. Fig. 1 provides an example for a case study. This way, the collec-
tion of the Internet nodes hosting a MAS can be conveniently represented. A hierar-
chical structure is well-suited in many real-world cases and the root of the hierarchy,
that is the most external gateway, may work as a bridge with the Internet so as to
permit the connection among different systems and infrastructures.

Considering the coordination model, each node and each gateway of a TuCSoN
infrastructure implements its own set of tuple centres. In particular, one or more ap-
plication tuple centres can be defined to coordinate and authorise the agent access to
the local resources of a node. Each gateway, in addition, is supposed to provide for a
unique default tuple centre, which represents the standard communication media that
agents access to get information about other available tuple centres of nodes and
gateways.

3.2   The Journal Review Case Study: A First Glance

As our case study, we consider a reviewing process of a scientific journal, as depicted
in Fig. 1: the hierarchical topology represents the relationships among the Publisher,
the Editors, the Area Editors and the Reviewers agents, showed as ovals. The system
is configured with several distributed tuple centres, drawn as boxes: each member of
the system exchanges papers and reviews through tuple centres called papers. Differ-
ently from Reviewers, the Publisher, Editors and Area Editors also act as gateways,
thus exploiting a default tuple centre to exchange information with agents. Relation-
ships among the components of the reviewing process are represented with arrows.
The Authors are the external entities interacting with the Publisher gateway to submit
papers and receive reviews. The Publisher receives submitted papers from Authors,
allocates them to the Editors and should be enabled to manage both papers and re-
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views (i.e., check the status of a paper under review, collect reviews, re-allocate pa-
pers, etc.). Editors act as the Publisher with respect to their corresponding Area Edi-
tors, although they can not interfere with each other or with Publisher's actions. Area
Editors may work for different Editors (see Area Editor2 in Fig. 1), allocate papers to
Reviewers and collect reviews. Reviewers may receive papers from different Area
Editors. Finally, consider agent identities, which have the form MASID:AgentID. We
assume to distinguish between two systems (MASID), one managing the first issue of
the journal (issue1) and another managing the second issue (issue2). The Publisher
deals with both issues, as Area Editor2 that can receive papers from both editors.
Editor1 and Area Editor1 deals with the first issue only, while Editor2 and Area Edi-
tor3 deals only with the second. Reviewers can deal with both issues.

Publisher gw

Editor 2 gw

default

default
Editor 1 gw
default

Area Ed.3 gw
default

Area Ed.1 gw

default

Area Ed.2 gw
default

Rev.4 node
papers

Rev.5 node
papers

Rev.1 node
papers

Rev.2 node
papers

Rev.3 node
papers

Author 1 agentsAuthor 2 Author 3

papers paperspapers

papers papers

papers

Fig. 1. Topology for a scientific journal reviewing process

4   Protection in TuCSoN

As far as agent interaction through tuple centres is concerned, the control of agent
access and authorisation can be achieved only by handling all the communication
events performed in tuple centres. Each communication event should be carried out
according to access control policies. In TuCSoN, tuple centres could be made visible
or invisible to agents under the control of a gateway and the access to the tuples can
be controlled for each agent by tuple centres reactions. The programmability of reac-
tions in response to each communication event allows serving differently any opera-
tion performed in a tuple centre, according to the rights granted to agents.
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4.1   Access Control Matrix

In TuCSoN, the different behaviours of gateways and nodes are exploited in order to
control agent access to tuple centres.

Firstly, nodes are the natural location for the definition and the enforcement of
authorisation policies, because resources are located in nodes, tuple centres mediate
all interactions, and each node might be independently managed. Considering that a
node may implement several independent tuple centres, the global security policy
supported by a node can be formalised by an access matrix in terms of both agent
identities, tuple centres and permissions [10].

ACM[i,j]::= Pi,j  ,∀ i∈ ID, ∀ j∈ TC (1)

where
• ID is a set of different agent identifiers.
• TC is the set of different tuple centres implemented by that node.
• Pi,j is the access permission granted to the i-th identity by the j-th tuple centre of

the given node.
Since ACM is sparse, in practice, it is never stored in its tabular form. Instead, two
implementations have been traditionally derived [10].
From the rows of ACM, a policy could be represented as a collection of capabilities:

CAP[i] ::= <j, Pi,j > , ∀ j∈ TC | i∈ ID (2)

where ID , P and TC are defined as in (1).
From the columns of ACM, instead, access control lists have been defined as list of

pairs:

ACL[j] ::= <i, Pi,j >, ∀ i∈ ID' | j∈ TC (3)

where ID' is the set of agent identifiers defined in the policy of a given tuple centre. P
and TC are defined as in (1).

Let us show an example of these access control mechanisms applied to our case
study. Consider, for instance, the Area Editor1. He should permit Editor1 to insert
papers and withdraw reviews concerning the first issue of the journal, and the Pub-
lisher to do every desired action. In terms of capabilities and access control lists, the
following could be defined:

CAP[issue1:editor1] ::= <{default@areaed1, insert papers},
                                          {default@areaed1, withdraw reviews}>
CAP[publisher] ::= <default@areaed1, everything >

ACL[default@areaed1] ::= <{issue1:editor1, insert papers},
                                              {issue1:editor1, withdraw reviews},
                                              {publisher, everything}>

The two mechanisms are managed differently: capabilities are meant to be physi-
cally held by interacting entities, i.e., Editor1 and the Publisher, while the ACL is
meant to be stored by the resource holder, i.e., Area Editor1.
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For sake of completeness, however, if the administrator of a tuple centre needs to
allow anonymous accesses (i.e. agents having unknown identities), the anonymous
pseudo-identity must be defined in the access control policy. In TuCSoN tuple cen-
tres, agents with an identifier not listed in the policy succeed in matching against the
anonymous one, if specified, thus gaining the permission assigned to it.

In the following, we focus on the case of ACLs, although the analysis could be
easily generalised to the case of capabilities as well.

4.2   Enhanced Access Control Matrix

In the previous subsection, we have described the most traditional mechanisms for
protecting shared resources, and their integration with the TuCSoN coordination
model. Conversely, when the distribution of the system is considered, some particu-
larities arise and traditional protection models need to be enhanced. This, in TuC-
SoN, impacts on the hierarchy of gateways.

On the one hand, a gateway is queried by all agents willing to access the tuple
centres implemented by the nodes of its associated domain, thus it is well-suited to
enforce access control policies on the behalf of those nodes. Furthermore, the hierar-
chical topology of the infrastructure lets gateways control both the accesses to nodes'
tuple centres and the ability of agents to further interact with sub-gateways. This
permits gateways to decide which agents could be allowed to explore different sub-
trees of an infrastructure.

On the other hand, for the characteristics of open distributed systems, local ad-
ministrators have the authority over their resources, thus policies still have to be lo-
cally defined in nodes, not in gateways.

Then, to make gateways able to enforce access control policies, the default tuple
centre implemented by each gateway must hold a combination of the access control
policies defined by tuple centres located in domain’s nodes and sub-gateways. More
precisely, nodes and sub-gateways must partially delegate their authority to an upper
gateway. Delegation, in this context, is an action performed by nodes and gateways,
whose effect is to invest another gateway with the onus of matching agents identities
against their access control policies and thus granting some permissions to agents.
The authority is only partially delegated since gateways can not modify the delegated
policies on their own.

In practice, the result of delegation actions is that the delegated gateway receives
from some nodes and/or sub-gateways, a number of tuples representing entries of
their ACM[i,j] (1). The combination of those policies in the default tuple centre can
be formalised with the 3-dimensions Access Control Matrix.

ACM[i,j,k]::= Pi, j, k ,∀ i∈ ID, ∀ j∈ TC, ∀ k∈ N (4)

where
• ID is the set of different identifiers stated by all the access control policies dele-

gated to the gateway.
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• TC is the set of different tuple centres from which the default tuple centre has been
delegated.

• N is the set of nodes (nodes and sub-gateways) hosting the TC tuple centres.
• Pi,j,k is the access permission granted to the i-th identifier by the j-th tuple centre of

the k-th node of the matrix.
Again, in real contexts the access matrix tends to be highly sparse, being many Pi,j,k

possibly left unspecified. The reason is twofold: (i) agent identifiers relevant for a
MAS occur only in policies defined by nodes interacting with that MAS; (ii) not all
tuple centres are implemented by every node. Hence, in TuCSoN, an ACM is repre-
sented by a table listing only the elements that exhibit legal values of Pi,j,k. The se-
mantic of an unspecified element of ACM - and then of an empty value of Pi,j,k - is
that no right should be granted.

Differently from the traditional case discussed in the previous subsection, in this
one it is useful to maintain the access matrix as a global table held by gateways. This
permits to inspect the matrix along all the three dimensions, making possible both the
enforcement of access policies and the control of agent interaction along the hierar-
chy.

Let us show what discussed above with an example. Consider Area Editor2 gate-
way in Fig.1. Agents that interact with it want information and permissions to further
interact with tuple centres of lower nodes, not with its local resources. Hence, it is in
charge of enforcing access policies for its protection domain. In this case, its domain
is composed by Reviewers' nodes Rev1, Rev3, Rev4 and Rev5. Agents interacting
with him could be the ones of the Publisher and those of the two Editors. In the case
of Publisher's agents, they must be allowed to further access whatever Reviewer's
papers tuple centre they want among the ones of the domain. In the case of an Edi-
tor's agent, it must be allowed to access only reviews concerning its corresponding
journal issue, not the ones of the other. An example of access control matrix of Area
Editor2 might be:

ACM[issue1:editor1, papers, {rev1, rev4}] ::= <withdraw reviews>,
ACM[issue2:editor2, papers, {rev3, rev5}] ::= <withdraw reviews>,
ACM[publisher, papers, {rev1, rev3, rev4, rev5}] ::= <everything>

where Editor1, for example, receives, from the default tuple centre of Area Editor2,
permissions to withdraw tuples from papers tuple centres of Reviewers Rev1 and
Rev4. This way, Editor1's agents are unaware of — and have no rights on — both
other Reviewers and other tuple centres apart the papers one.

4.3   Standard Tuple-Based Communication Template

As we have seen so far, in a TuCSoN infrastructure policies could be uniformly
defined and enforced in a decentralised manner. We move now to consider how
agents may interact with such an infrastructure. We first recall the two basic features:
(i) TuCSoN tuple-based interaction has the standard form tc@node?op(tuple), and
(ii) all the default tuple centres of an infrastructure hold a standard name, e.g., default.
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From this, a standard tuple-based communication template can be applied to the
interaction of agents with default tuple centres:

default@gateway?in(standard domain tuple template)

where the standard domain tuple template is:

domain(Id, info(Tc, Node, Permission), InfoList))

and
• the Id parameter holds the actual value of the identifier of the interacting agent,

which has, in general, a form like MASID:AgentID;
• info(Tc, Node, Permission) is the template for the expected tuples car-

rying the information about the domain policy. Each info tuple carries an access
permission (Permission) that is granted to the agent identifier Id by the tuple
centre Tc of the node Node;

• InfoList is the variable that will hold the resulting list of info tuples by uni-
fying with the domain/3 answer tuple produced by the reaction(s).
This way, all agents accessing a TuCSoN environment are able to interact with the

hierarchy of gateways without any previous knowledge of its structure – a part the
firstly accessed gateway, which is supposed to be statically known. Then they could
explore the infrastructure in a controlled fashion, because they only rely on the in-
formation acquired dynamically and incrementally from gateways.

Therefore, a querying agent is enabled to specify which information and permis-
sions it needs by setting in different manners the attributes of the standard tuple tem-
plate. Let us show an example, in our case study, by supposing that Editor1 and Edi-
tor2 agents want to check the status of two papers that they have allocated to Area
Editor2. The partial knowledge that agents own can be represented as: (i) both editors
do not know who are the actual reviewers of their papers (the Area Editor2 itself
might be as well) and (ii) Editor2 knows that papers, reviews and status information
are stored in tuple centres called papers. Consequently, their queries for the default
tuple centre of Area Editor2 might be:

From editor1

default@areaed2?in(domain(editor1, info(_, _, _),
InfoList))

From editor2

default@areaed2?in(domain(editor2, info(papers, _, _),
InfoList))

default@areaed2?in(domain(editor2, info(default, _, _),
InfoList))

In the former, Editor1 agent generically queries for all tuple centres, local or re-
mote, application-based or default, that it is allowed to access, having no additional
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information. Differently, in the latter, Editor2 agent can make a more specific search
by querying only for papers tuple centres, but must also specify a second tuple for
retrieving accessible sub-gateways. Tuples out'ed in response to the previous tem-
plates may be:

domain(editor1, info(_, _, _), [info(papers, rev1,
withdraw reviews), info(papers, rev3, withdraw re-
views)])

domain(editor2, info(papers, _, _), [info(papers, rev2,
withdraw reviews), info(papers, rev5, withdraw re-
views)])

domain(editor2, info(default, _, _), [])

the first matched by Editor1, while the others matched by Editor2.
In Table 1 the possible configuration of info(Tc, Node, Permission) are

shown and explained.

Table 1. Main instances of the info tuple parameter

info(_,_,_)
All possible info tuples are out'ed. This way, the agent has a com-
plete knowledge about tuple centres, nodes and permission in that
domain, according with the rights granted to its identity.

info(tc,_,_)
This way, the agent requests only those nodes that hold a certain tc
tuple centre, if accessible.

info(_,node,_)
The agent requests only tuple centres hold by the node node, if
accessible

info(_,_,perm)
The agent requests all the tuple centres of the domain where it could
act with the access right perm.

4.4   Delegated Access Control Policies

The application of our security model needs to be further elaborated when policies are
propagated along a hierarchy of gateways, i.e., some nodes delegate policies to a
gateway, this one, in turn, delegates another upper gateway and so on. This because,
whether the process of delegating tuples that compose a policy is applied as-is also to
access matrixes delegated from gateway to gateway, the system consistency would be
hard to be kept. All distributed access matrixes should be synchronised when applica-
tion tuple centres modify their local policies. Local modifications would be propa-
gated to every gateway's default tuple centre that was previously delegated with the
changed policy.

The time frame from one consistent state of the configuration of delegated access
control policies to another one could vary according to the depth of the tree, the net-
work latency, and the size of the access matrixes. We have focused in particular the
latter aspect for improving the system scalability. The idea is that recording in a
gateway the combination of the access matrixes held by all its sub-gateways is not
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strictly necessary. Instead, a gateway should simply establish whether a certain agent
could be permitted to interact with nodes and sub-gateways directly connected with it
in the hierarchical model, and not be concerned with nodes and sub-gateways of
lower levels. To this end, the knowledge of the complete sub-gateway's access matrix
is not required. Hence, the complexity of policies delegated from gateway to gateway
could be reduced by establishing that delegation along the gateway tree should pro-
ceed in the following way:
• when delegation is performed from a node to a gateway, the delegated policies are

the ones effectively defined by application tuple centres as ACLs;
• when delegation is performed along the gateway tree, from gateway to gateway,

the delegated policies should depend only from the multiagent system to which an
agent belongs (MASID) and not from its individual identifier (AgentID).
Hence, delegation between gateways can be realised by delegating tuples as:

<ID*, default, N*, explore> (5)

where
• ID* is the set of different MAS identifiers exhibited by the access matrixes of the

N* sub-gateways. This parameter has the form MASID:_.
• default is the standard name of all the tuple centres providing for the gateway fa-

cility.
• N* is the set of sub-gateways that delegate a policy.
• explore is a new access mode that we have introduced, which captures the fact that

a gateway may allow agents simply to interact with a sub-gateways, being unaware
of the exact sub-gateways' access matrixes.
As an example, consider the delegation from Editor1 and Editor2 to the Publisher.

Its resulting access control matrix is:

ACM[issue1:_, default, editor1] ::= <explore>
ACM[issue2:_, default, editor2] ::= <explore>

which is meant to provide each agent interacting with the Publisher with the mini-
mum set of information and rights needed to deal with the review process. In this
case, for instance, agents related to the first issue of the journal are authorised to in-
teract with Editor1, which holds its own ACM, built up by entries from Area Editors.

From the scalability viewpoint, this solution has some benefits: when some modi-
fications occur in local policies of a node but no MASs is removed or created, the
access matrix to be synchronised is only the one of the gateway delegated by that
node. A distributed synchronisation along the hierarchy is required only when MASs
are created or deleted from the system, because only in this case the ID* parameter of
(5) should be changed.

5   The Journal Review Process Case Study

In this section, the Journal Review Process case study is drawn out for showing how
it works in the TuCSoN framework, including the implications of the hierarchy and
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the tuple-based interactions. To this end, first consider an outlook of the system's
local and delegated policies, as depicted in Fig.2. Access matrixes have been deter-
mined following the rules defined in the previous section. For sake of simplicity, we
have kept at the minimum the information presented, thus the example is not com-
pletely specified, even though its generalisation has no difficulties. The elements for
which details are not provided (AreaEd3, Rev2, Rev4 and Rev5) are left unspecified.

Firstly, consider identities: we have supposed that two systems exist for managing
different issues of the journal, marked with issue1 and issue2 identifiers. This would
make clear how different systems could co-exist and be separately managed in TuC-
SoN. For example, in Rev3 the access control policy states that: (i) agents belonging
to the issue2 system and holding the areaed2 identifier could access the local papers
tuple centre out'ing papers and in'ing reviews; (ii) the belonging to the system that
manage the issue2 permits agents to read the status of a paper to be reviewed; and (iii)
any other agent is rejected. Policies defined by other nodes follows the same schema.

Secondly, consider the delegation performed by the Rev1's and the Rev3's papers
tuple centres towards Area Editor2's default tuple centre. The access matrix is the
combination of all Rev1's and the Rev3's access control policies.

Finally, consider what happens when delegation proceeds through the hierarchy.
The access matrix of the Publisher gateway is build up only by considering journal
issues' identifiers and its policy depends only from the number of different MASs.

Given the above configuration of policies, agents can interact with the hierarchy
by using the communication template described in Subsection 4.3 to explore the
whole infrastructure. In this way, they are unaware of the physical structure of the
environment and are granted with the permissions corresponding to their behaviour.
For instance, assume to let Author's agents check their paper's status. To this extent,
Author's agents can interact with the Publisher's gateway, they can be assigned with a
journal issue identifiers and can be informed about the corresponding editor. In its
turn, the editor may advise them who is the area editor to contact, which, finally, can
provide author's agents with the required information.

6.   Conclusions and Related Work

In this paper, we have discussed the relation between coordination and access control
in open, distributed agent systems and argued that the two issues are tightly con-
nected. We have then presented how these issues have been integrated in the design
of the TuCSoN framework and how the resulting features have been exploited for
supporting a well-known case study in the area of tuple-based coordination. As far as
the relationship between coordination and access control is concerned, we highlight
how this aspect still lacks an extensive analysis, and this underestimation might slow-
down the adoption of coordination models in open environments. The aim of this
work, hence, has been to approach this important facet, presenting a solution that is
applicable to a variety of application contexts. Further works will be devoted to im-
prove and extend the integration of access control and coordination. For instance,
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other models for the access control seems well-suited for TuCSoN, the role-based
one in particular [14].

Publisher gw

Editor 2 gw

default

default
Editor 1 gw
default

Area Ed.3 gw

default
Area Ed.1 gw

default
Area Ed.2 gw

default

Rev.4 node Rev.5 nodeRev.1 node
papers

Rev.3 nodeRev.2 node

Rev1 Local Policy
(issue1:{areaed1,areaed2}, out-paper)
(issue1:{areaed1,areaed2}, in-review)
(issue1:_, read-status)

Rev3 Local Policy
(issue2:areaed2, out-paper)
(issue2:areaed2, in-review)
(issue2:_, read-status)

AreaEd2 Access Matrix
(issue1:areaed2, papers, rev1, {out-paper, in-review})
(issue1:_, papers, rev1, read-status)
(issue2:areaed2, papers, rev3, {out-paper, in-review})
(issue2:_, papers, rev3, read-status)

paperspapers papers papers

AreaEd1 Access Matrix
(issue1:areaed1, papers,rev1,{out-paper,in-review})
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Editor1 Access Matrix
(issue1:_, default, {areaed1, areaed2}, explore)

Editor2 Access Matrix
(issue2:_, default, {areaed2, areaed3}, explore)

Publisher Access Matrix
(issue1:_, default, Editor1, explore)
(issue2:_, default, Editor2, explore)

papers papers

papers papers

papers

papers

Fig. 2. Policies in the Journal Review Process case study

However, other works have addressed issues similar to the ones of this paper, Law-
Governed Interaction, SecOS and ActorSpace in particular.

Law-Governed Interactions (LGI) [12] is a coordination mechanism that allows an
open group of distributed active entities (agents, processes) to interact with each
other, under an explicitly specified policy – called the law of the group. A peculiar
feature of LGI is that for each member of a group, a controller is defined. A control-
ler is a specific system component that holds the law governing an agent (i.e., the
security and coordination policy) and its control state. In this way a controller totally
mediates each event involving the associated entity and has complete knowledge and
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authority over it. This is a different design choice with respect to TuCSoN, which, in
turn, embeds laws into the behaviour specification of tuple centres and does not need
to associate external components to agents or spaces. In the context of LGI, various
access control policies have been modelled, but differently from TuCSoN, issues
concerning network modelling, partial knowledge and delegation of policies are not
considered.

The SecOS model [15] is a different example of integration between a Linda-like
coordination model and security-related issues. In this case, the problem been tackled
is to protect the access to tuples and tuple's attributes by means of cryptographic
mechanisms. Its basic idea is to associate cryptographic keys with attributes in tuples.
An agent needs to furnish a matching key before it can access the corresponding
tuple's object. What is more interesting to highlight about SecOS is that the use of
cryptography in the access to tuple's data is in some way complementary with respect
to the subject of this paper. It represents in fact another possible direction for future
developments of TuCSoN.

ActorSpace [8] provides an underlying platform for agent systems that enables to
control the access to, and the management of resources, but does not adopt coordina-
tion models based on tuples. ActorSpace explicitly models the location of agents on
particular hosts and the amount of computational resources that an agent is allowed to
consume. Resource interaction is mediated by means of proxies, which are compo-
nents of the agent’s behaviour specifically customised to interact with a certain type
of resource. Differently from ActorSpace, in TuCSoN agents interact in a standard
way with resources and have no need to embed components (i.e. proxies) specifically
tailored for the different resource types. This better management of the heterogeneity
of the interaction space is one of the main benefits derived from the adoption of a
tuple-based coordination model. Moreover, also issues related to the structure of the
environment are not explicitly addressed in ActorSpace.
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