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Abstract—This paper discusses the utilization of distributed
energy resources on the distribution side of the power grid to
provide a number of ancillary services. While the individual
capability of these resources to provide grid support mightbe
very small, their presence in large numbers in many distribution
networks implies that, under proper control, they can collectively
become an asset for providing ancillary services. An example is
the power electronics interface of a photovoltaic array mounted
in a residential building roof. While its primary function i s to
control active power flow, when properly controlled, it can also
be used to provide reactive power. This paper develops and
analyzes distributed control strategies to enable the utilization of
these distributed resources for provision of grid support services.
We provide a careful analysis of the applicability capabilities
and limitations of each of these strategies. Several simulation
examples are provided to illustrate the proposed approaches.

I. I NTRODUCTION

On the distribution side of a power system, it has been ac-
knowledged that there exist many distributed energy resources
that can be potentially used to provide ancillary services to
the grid they are connected to [1], [2], [3]. An example is
the utilization of power electronics grid interfaces commonly
used in distributed generation resources to provide reactive
power support. While the primary function of these power
electronics-based systems is to control active power flow, when
properly controlled, they can also be used to provide reactive
power control to the grid they are connected to. Another
example is the utilization of plug-in-hybrid vehicles (PHEV)
for providing active power for up and down regulation. For
instance, such resources could be utilized for energy peak-
shaving during peak hours and load-leveling at night [4].

Proper coordination and control of these distributed re-
sources is key for enabling their utilization for ancillary
services. One solution to this problem can be achieved through
a centralized control strategy where each distributed resource
is commanded from a central controller located, for example,
at the substation that interconnects the distribution network
and the transmission/subtransmission network. This central
controller issues a command to each distributed resource
so that collectively they account for the necessary amount
of, for example, active or reactive power demanded by the
central controller. To achieve this goal in this centralized
fashion however, it is necessary to overlay a communication
network connecting the central controller with each distributed
resource, and requires knowledge of the distributed resources

that are available on the distribution side at any given time.
This centralized approach has been proposed in [2] to provide
reactive power support in distribution feeders by coordinating
distributed reactive power resources, assuming the existence
of two-way communication between every pair of nodes that
posses reactive power resources. Once a node detects that its
voltage exceeds some limits, it requests all other nodes to
increase (or decrease) the amount of reactive power they are
providing until the voltage returns to normal values. Whileany
node with communication capabilities can initiate a request for
reactive power, the coordination of all resources is centralized
in the sense that every other node communicates directly with
the one that initiated the request. The problem of distributed
resources coordination for reactive power support is also
addressed in [3], which proposes a centralized strategy forthe
utilization of the power electronics interfaces in photovoltaic
systems. The commercial product described in [5] also adopts
a centralized control strategy to utilize solar systems mounted
on utility poles for providing reactive power support.

In this paper we propose an alternative approach that
utilizes distributed strategies for control and coordination of
distributed energy resources in power grids. These strategies
offer several advantages, including the following: i) theyare
more economical because they do not require communication
between a centralized controller and the various devices, ii)
they do not require complete knowledge of the distributed
resources available, and iii) they can be more resilient to faults
and/or unpredictable behavioral patterns by the distributed
resources. The proposed approaches rely on a distributed
control strategy where each distributed resource can exchange
information with a number of other “close-by” resources, and
subsequently make a local control decision based on this
available information. Collectively, the local control decisions
made by the resources should have the same effect as the
centralized control strategy. Such a solution could rely on
inexpensive and simple communication protocols, e.g., ZigBee
technology [6], that would provide the required local exchange
of information for the distributed control approach to work.
We pursue this distributed approach, providing algorithmsthat
enable utilization of distributed resources for grid support.

Our approach has been inspired by consensus and coordi-
nation problems, which have a rich history in both computer
science (see, e.g., [7]), and control theory (see, e.g., [8],
[9], [10], [11]). In networked systems that consist of several



entities (also referred to as agents, or nodes), consensus is
defined as having the nodes reach an agreement regarding
some quantity of interest that depends on some initial state
(value) of each node in the network. A typical example of an
application of consensus is a network of sensors measuring
the same variable, e.g., the temperature in a room; initially,
the sensors readings might be different (due to measurement
noise or other peculiarities at each node), and it is desirable
to exchange information with neighboring sensors to reach an
agreement on the room temperature, for example, by calculat-
ing the average temperature of all measurements. An example
of coordination is the movement of a flock of birds, where
each bird coordinates its movement based on the movements
of close-by birds such that the flock moves in a direction
determined by one of the birds called the leader [12].

In our setup, the distributed resources can be thought of
as nodes in a network, where each node can exchange infor-
mation with neighboring nodes such that, through an iterative
process, each distributed resource in the network will compute
the amount of active or reactive power that it needs to provide,
such that the resources collectively provide the predetermined
(requested) amount of active or reactive power. We provide
algorithms that solve this coordination/cooperation problem
when i) there is no limit on the amount of active or reactive
power that each resource can provide (though some notion of
fair distribution of the contribution of active or reactivepower
among resources might be imposed); and ii) the maximum
amount of active or reactive power each resource can provide
is limited, which is a more realistic case. For the unconstrained
case, the algorithms provided follow from well-known results
in consensus problems [8], [10].On the other hand, the
distributed algorithms provided for the unconstrained case are
new and the main theoretical contribution of this paper.

We believe that the proposed distributed control strate-
gies for provision of ancillary services address two features
identified as key to achieving theSmart Grid vision. First,
they enable the active participation of consumers via demand
response. In this regard, consumers have the choice to enable
resources, such as solar installations in buildings and PHEVs,
to provide reactive (and active) power support, for which they
can be paid for by the corresponding utility. Second, it allows
asset optimization and efficient operation. One example is the
utilization of distributed resources for reactive power control.
In this regard, even if banks of switched capacitors or other
existing means that provide reactive power control cannot be
completely replaced by distributed reactive power resources,
it is possible to reduce their size. Furthermore, by generating
reactive power closer to the points where it is consumed, losses
in transmission and distribution systems can be reduced.

The remainder of this paper is organized as follows. Sec-
tion II provides some background on graph theory and pro-
vides the general form of the iterative distributed algorithms to
be discussed. Section III describes strategies for cases where
there are no constraints on node capacity. Section IV discusses
strategies for cases where constraints are imposed on node
maximum capacity. Section V presents concluding remarks.

II. PRELIMINARIES

The exchange of information between nodes where re-
sources are located can be described by a directed graph
G = {V , E}, whereV = {1, 2, . . . , n} is the vertex set (each
vertex corresponds to a node), andE ⊆ V × V is the set
of directed edges, where(j, i) ∈ E if node j can receive
information from nodei. The graph is undirected if and only
if whenever(j, i) ∈ E , then also(i, j) ∈ E , i.e., if nodej
can receive information from nodei, then nodei can also
receive information from nodej. All nodes that can transmit
information to nodej are said to be neighbors of nodej and
are represented by the setNj = {i ∈ V : (j, i) ∈ E}. The
number of neighbors ofj is called the in-degree ofj and
denoted byD−

j . The number of nodes that havej as neighbor,
i.e., j can transmit information to these nodes, is called the
out-degree ofj and is denoted byD+

j .
Let πj [k] be the amount of active or reactive power de-

manded from the distributed resource located in nodej at the
k round of information exchange between nodes. Then, the
distributed algorithms we propose to determine the amount
of resource that will be contributed by nodej perform linear
iterations of the form

πj [k + 1] = pjj [k]πj [k] +
∑

i∈Nj

pji[k]πi[k], (1)

where the pji[k]’s are a set of (potentially time-varying)
weights1. Each node updates its demanded amount to be
a linear combination of its own demanded amount and the
demanded amount of its neighbors. As we will see, the choice
of pji[k]’s will depend on the problem constraints. We discuss
first the case where there are no constraints on the node
capacity. While this is not realistic, the approach to solvethe
problem provides the foundations for subsequently addressing
the constrained case.

III. D ISTRIBUTED CONTROL STRATEGIES WITHOUT

CONSTRAINTS ONNODE CAPACITY

We assume there is a leading node that knows the total
amount of active or reactive powerρd that needs to be
collectively provided by the remainingn nodes. This leader
can communicate withl ≥ 1 nodes, and initially sends a
command demandingρd/l units of active or reactive power
from each of them. Unlessρd changes, the leader will not
subsequently communicate with the nodes.

Since the nodes do not have constraints on the amount of
active or reactive power they can provide, a simple solutionis
that each of thel nodes that the leader initially communicated
with provides exactlyρd/l of active or reactive power and
the remainingn − l nodes do not provide any active or
reactive power. However, it is obvious that in the constrained
case this strategy will not work if thel nodes the leader
initially communicates to cannot provide the amount of active
or reactive power demanded by the leader. Before this problem

1In this paper we discuss strategies with time-invariant weightspij , but we
have also studied strategies with time-varying weights.



is addressed (in the next section), we provide an iterative
algorithm that allows all the nodes to participate in providing
an amount of active or reactive power, so that collectively they
account for the total amount needed.

Let πj [k] be the active or reactive power demanded
from node j at step k, and define the correspond-
ing active or reactive power demand vector asπ[k] =
[π1[k], π2[k], . . . , πj [k], . . . , πn[k]]′. Define the collective ac-
tive or reactive power demand asρ[k] =

∑n
j=1

πj [k], and let
ρd be the collective active or reactive power demanded from
the leader. The objective is to design a distributed iterative
algorithm that, at stepk, updates the active or reactive power
demand from nodej based on i) its current active or reactive
power demandπj [k], and ii) the current active or reactive
power demanded from neighbors ofj (nodes that can transmit
information toj), such that afterm steps the collective active
or reactive power demand equals the total active or reactive
demanded by the leader:ρ[m] =

∑n
j=1

πj [m] = ρd.

A. Splitting Strategy

The simplest solution, which results in constant weightspji,
is for each nodej to equally split its current value among itself
and the nodes that havej as neighbor, i.e., the nodes thatj
can transmit information to [10]. Thus, for each nodej

πj [k + 1] =
1

1 + D+

j

πj [k] +
∑

i∈Nj

1

1 + D+

i

πi[k] (2)

where D+

i the number of nodes thati can transmit infor-
mation to (the out-degree of nodei). Algorithm (2) does
not necessarily split the total active or reactive power de-
mand ρd evenly among all the nodes, but it ensures that
∑N

j=1
πj [k] = ρd, ∀k ≥ 0. Furthermore, provided the

directed graph describing the exchanges between nodes has
a single recurrent class, which necessarily makes it aperiodic
by construction due to the fact that 1

1+D+

j

6= 0, the steady

state solution provided by (2) is unique. To see this, we can
rewrite (2) in matrix form as

π[k + 1] = Pcπ[k],

π[0] = π0, (3)

whereπ0 = [π1[0], π2[0], . . . , πj [0], . . . , πn[0]]′ with πi[0] =
ρd/l if i is a neighbor of the leader node andπi[0] = 0
otherwise. By construction, matrixPc is column stochastic2,
i.e., the sum of the entries of each column adds up to one,
and also primitive [13]. SincePc is a column stochastic
and primitive matrix, the Perron-Frobenius theorem for non-
negative matrices states thatPc has a unique eigenvalue with
largest modulus atλ1 = 1 (see e.g., [14], [13]). Letx be
a right eigenvector ofPc associated withλ1 and let y be a
left eigenvector ofPc associated withλ1 such thatx′y = 1.
Again, from the fact thatPc is column stochastic, the entries

2The structure ofPc is such that columnj has entriespij =
1

1+D
+

j

for

i ∈ Nj ∪ {i}, and 0 otherwise. Thus,Pc is easily verified to be column
stochastic.
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(a) Network topology.
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(b) Node demanded capacity evolution.

Fig. 1. Four-node network implementing even splitting strategy.

of vectory must be all equal. Without loss of generality, let
y = [1, 1, . . . , 1]′, and sincex′y = 1, the entries ofx must add
up to one. Then the steady-state solution of (3) (and therefore
the steady-state solution of (2)) is given by

πss = xy′π0 =
(

N
∑

j=1

πj [0]
)

x. (4)

Since
∑N

j=1
πj [0] = ρd and the entries ofx are nonnegative

and add up to one, it follows that entries ofπss are nonnegative
and add up toρd; therefore, the nodes collectively provide the
total active or reactive power demand.

Example 1: Consider the network of nodes of Fig. 1(a). Let
ρd = 1 and assume that the node initial values are zero. The
leader is indexed by 0 and, as explained before, initially splits
ρd in half and passes it to nodes 1 and 2. Then, following (2),
each node updates its value as follows

π1[k + 1] = 1

3

(

π1[k] + π2[k] + π3[k]
)

,

π2[k + 1] = 1

3

(

π1[k] + π2[k]
)

+ 1

2
π4[k],

π3[k + 1] = 1

3

(

π1[k] + π3[k]
)

,

π4[k + 1] = 1

3

(

π2[k] + π3[k]
)

+ 1

2
π4[k], (5)

with π1[0] = π2[0] = 1/2, and π3[0] = π4[0] = 0. Letting
π[0] = [π1[0], π2[0], π3[0], π4[0]]′, we have

π[k + 1] = Pcπ[k],

π[0] = [1/2, 1/2, 0, 0]′, (6)



where

Pc =









1/3 1/3 1/3 0
1/3 1/3 0 1/2
1/3 0 1/3 0
0 1/3 1/3 1/2









.

Fig. 1(b) shows the evolution of the node active or reactive
power demands until they reach the steady-state solution to(6)
given byπss = [0.23, 0.35, 0.11, 0.31]′. Note that nodes do
not contribute equally because the matrixPc is only column-
stochastic but not row-stochastic. �

B. Even Splitting Strategy

A solution to reach even splitting can be easily obtained

when
n

∑

i=1

pji =

n
∑

i=1

pij = 1 for all j = 1, 2, . . . , n, i.e., the

sum of the weights that each nodej uses to update its current
value is equal to the sum of the weights used by nodej to
split its own value among itself and the nodes that havej as
neighbor [10]. The simplest realization of such algorithm is
obtained when the graph describing the exchanges of infor-
mation is undirected, i.e., if nodej can receive information
from nodei, then nodei can also receive information from
node j, which results in equal in- and out-degrees for each
node, i.e.,D−

j = D+

j := Dj , ∀j = 1, . . . , n. If we define
the maximum degree of the network asD = max

j
{Dj}, one

way even splitting can be achieved is by having each nodej
update its value as follows:

πj [k + 1] =
(

1 −
|Nj |

1 + D

)

πj [k] +
∑

i∈Nj

1

1 + D
πi[k], (7)

where|Nj | = D+

j denotes the number of elements in the set
Nj , i.e, the number of nodes that nodej communicates with;
and πj [0] = ρd/l if the leader is a neighbor of nodej, and
zero otherwise (in fact, even splitting can also be achievedif
instead ofD, we use any upper boundD′ ≥ D in (7)).

Note that the approach in (7), apart from requiring bi-
directional information exchange between nodes, it also re-
quires each node to know an upper boundD′ on the maximum
degreeD of the network, which in practice can be easily
implemented in the design by imposing that each node can
only communicate with a limited number of nodes. Provided
the directed graph describing the exchanges between nodes has
a single recurrent class (which necessarily makes it aperiodic
by construction due to the fact that the diagonal element
1 − |Nj |

1+D 6= 0, ∀j = 1, 2, . . . , n), the steady state solution
provided by (7) is unique and equal for all nodesj. To see
this, rewrite (7) in matrix form as

π[k + 1] = Pπ[k],

π[0] = π0, (8)

whereπ0 = [π1[0], π2[0], . . . , πj [0], . . . , πn[0]]′ with πi[0] =
ρd/l if i is a neighbor of the leader node andπi[0] = 0. By
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Fig. 2. Node demanded capacity evolution for four-node network with an
even splitting strategy.

construction, the matrixP is doubly stochastic3, i.e., the sum
of entries of each row and each column adds up to one [13].
From the fact thatP is doubly stochastic, and as a result of
the Perron-Frobenius theorem, the steady-state solution of (8)
is given by πss = xy′π0, with x′y = 1, and wherex is a
right eigenvector associated with the eigenvalueλ1 = 1 (the
unique eigenvalue ofP with largest modulus), andy is a left
eigenvector associated withλ1. SinceP is doubly stochastic,
all entries ofy must be equal, all entries ofx must be equal,
and we can choose without loss of generalityx = [1, 1, . . . , 1]′

andy = 1

N [1, 1, . . . , 1]′. Then the steady-state solution of (8)
(and therefore the steady-state solution of (7)) is given by

πss =
( 1

N

N
∑

j=1

πj [0]
)

[1, 1, . . . , 1]′. (9)

Example 2: Consider again the network of Fig. 1(a). By
following (7), it is easy to see that, the entries ofP in (8)
are the same as the entries ofPc in Example 1 except for
a few ones that are modified as follows:p24 = 1/3, p44 =
2/3, p33 = 2/3, and p43 = 0 (note that there is no longer
communication between 3 and 4), and the rows also add up to
one, so that matrixP becomes doubly stochastic. Fig. 2 shows
the evolution of node demands, where it can be seen that the
steady-state solution isπss = [0.25, 0.25, 0.25, 0.25]′. �

IV. D ISTRIBUTED CONTROL STRATEGIES WITH

CONSTRAINTS ONNODE CAPACITY

Armed with the analysis in the previous section, we now
address the case where nodes have limits on the amounts
of active or reactive power they can provide. Letπmax

j , for
j = 1, 2, . . . , n, be the maximum active or reactive power
that nodej can provide (its maximum capacity), and define
the corresponding maximum active or reactive power capacity
vector asπmax = [πmax

1 , πmax
2 , . . . , πmax

n ]′. As before, we let
ρ[k] =

∑n
j=1

πj [k] be the collective active or reactive power
capacity demanded from the nodes at instantk, andρd be the
collective active or reactive power demand. We assume that
ρd ≤

∑n
j=1

πmax
j := χmax.

3The structure ofP is such that it is symmetric withpij = pji =
1

1+D

if j ∈ Ni (i.e., i ∈ Nj), and0 otherwise; each diagonal entrypii is chosen
so that the sum of the entries of each row/column is one.



The objective is to design a distributed iterative algorithm
that, at stepk, updates the active or reactive power demanded
from nodej based on i) its current active or reactive power
demandπj [k], and ii) the current active or reactive power
demanded by neighboring nodes that communicate toj, such
that afterm steps:

1) πj [m] reaches a steady state value andπj [m] ≤
πmax

j , ∀j; and
2) the collective active or reactive power provided by all

the nodes equals the total active or reactive demanded
by the leader:ρ[m] =

∑n
j=1

πj [m] = ρd ≤ χmax.

A. Fair Splitting with Constraints on Network Topology

A simple solution to the constrained problem can be ob-
tained if each node could compute (or knows) the maximum
active or reactive power capacityχmax that the nodes in
the network can collectively provide, and the total active or
reactive power demandρd. Once each node has computed
πmax and ρd, the total active or reactive power demand
can be collectively provided by having each nodej provide
πj [m] = ρd

χmax πmax
j ≤ πmax

j . The problem with this approach
is that by using distributed algorithms of the form given
in (1), each individual node can neither computeχmax nor
ρd, because each node does not necessarily know the exact
number of nodes in the network. At best, by assuming that i)
each pair of nodes in the network can exchange information
bidirectionally and, ii) there is a limitD on the number of
nodes that a given node can exchange information with (or
an upper boundD′ on this maximum number of neighbors),
each node could compute the quantitiesχmax

N and ρd

N , where
N is the total (but unknown) number of nodes in the network.
This can be achieved if the nodes use the algorithm in (7)
twice; first to exchange the initially demanded capacity from
them and, second to exchange the maximum capacities they
can provide. To summarize, if we set the initial conditions
of (7) to be ρd/l if j is one of thel nodes the leader can
communicate to and zero otherwise, the steady-state solution
of (7) will be ρd

N , ∀j = 1, . . . , n; whereas, if we set the initial
conditions of (7) to beπmax

j , the steady solution of (7) is
P

j πmax
j

N = χmax

N , ∀j = 1, . . . , n. Then, by dividing these
two quantities, we obtain thatρd/N

χmax/N = ρd

χmax , and the total
demanded capacityρd can be satisfied by having each nodej
set its contribution to

πj = ρd/N
χmax/N πmax

j = ρd

χmax πmax
j . (10)

Note that the nodes do not need to knowN (the total number
of nodes in the network) and can calculateχmax

N and ρd

N
simultaneously by separately performing two local averaging
operations at each iteration. It is important to keep in mind
that the algorithm in (7) requires symmetric communication
between nodes and an upper boundD′ on the number of nodes
a given node can communicate to (i.e., it requires an upper
bound on the maximum degreeD of the network).

Example 3: Consider again the network and even split-
ting algorithm of Example 2. Takeρd = 1 and πmax =
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Fig. 3. Evolution of the algorithm run by each node to compute
P

4
j=1

πmax
j

/4 (average of node maximum capacities).

[0.4, 0.2, 0.4, 0.1] so that χmax = 1.1 > ρd. Each
node runs twice (in parallel) the algorithm in (7). For the
first one, the initial conditions for nodes 1 and 2 are 0.5
and 0 for nodes 3 and 4. For the second one, the initial
conditions of each node are set to the corresponding entriesof
πmax = [0.4, 0.2, 0.4, 0.1]. The first step of the algorithm is
equivalent to the unconstrained case of Example 1, displayed
in Fig. 2, where it can be seen that the node converge to 0.25
(the total amount requested divided by the number of nodes),
whereas the evolution of the second run is displayed in Fig. 3,
where it can be see that each nodes converges to the average
of the entries ofπmax, i.e.,

∑4

j=1
πmax

j /4 = 0.275. �

B. Fair Splitting without Constraints on Network Topology

A solution can also be achieved without assuming bi-
directional communication between nodes and without a limit
on the number of nodes a given node can communicate with.
In this case, the algorithm consists of three steps:

1) Each nodej uses the simple splitting solution of (2),
where πss = [πss

1 , πss
2 , . . . , πss

n ]′ is the unique non-
negative vector with entries that sum to1 that satisfy
πss = Pcπ

ss, wherePc was defined in (3).

2) Each nodej computesµ = min
j

{
πmax

j

πss
j

}, which can

be done in finite time (bounded by the diameter of the
network4) via the following algorithm:

µj [k + 1] = min{µj [k], min
i∈Nj

{µi[k]}},

µj [0] =
πmax

j

πss
j

. (11)

3) Each nodej computesδj =
min

j
{πmax

j /πss
j }

πmax
j /πss

j
=

µ
µj [0]

(note that0 < δj ≤ 1) and adjusts the weights in (2) as

πj [k + 1] =
(

1 − δj(1 −
1

1 + D+

j

)
)

πj [k] +

∑

i∈Nj
δi

1

1+D+

i

πi[k]. (12)

4The diameter of the network is defined to be the maximum shortest path
between any pair of nodes in the network [15].



To see the steady-state solution reached by (12), we can rewrite
(12) in matrix form as

π[k + 1] =
[

Pc∆ + (I − ∆)
]

π[k] := P̂π[k], (13)

with π[0] = π0 = [π1[0], π2[0], . . . , πj [0], . . . , πn[0]]′, I being
the identity matrix, and∆ = diag

(

δ1, δ2, . . . , δn

)

being a
diagonal matrix with0 < δj ≤ 1, ∀j = 1, 2, . . . , n. Since
i) Pc is a column stochastic matrix with a unique eigenvector
corresponding to the eigenvalue of largest modulusλ1 = 1;
and ii) the non-zero diagonal entries of the matrixP̂ are the
same as the non-zero diagonal entries of the matrixPc; it
follows that the matrixP̂ = Pc∆ + (I −∆) is also a column
stochastic matrix with a unique eigenvector correspondingto
the eigenvalue of largest modulusλ1 = 1 (see, e.g., [14]). Let
πss be the solution toπss = Pcπ

ss as discussed in step 1)
above, and let̂πss be the steady-state solution to (13). Then,
we haveP̂ π̂ss = (Pc∆ + (I − ∆))π̂ss = π̂ss, from where it
follows thatPc∆π̂ss = ∆π̂ss.

The Perron-Frobenius theorem ensures the uniques of the
solution of (3) up to a positive constant. Thus∆π̂ss = απss

for some α > 0 such that
n

∑

j=1

π̂ss
j = ρd (since P̂ is

column-stochastic, we know that
n

∑

j=1

πss
j = ρd); therefore,

δj π̂
ss
j = απss

j , where 0 < δj ≤ 1, ∀j = 1, . . . , n, from
where it follows then thatαπss

j ≤ π̂ss
j , ∀j = 1, . . . , n.

If πss
j < πmax

j , ∀j = 1, . . . , n (as desired), we have

α ≤
πmax

j

πss
j

∀j = 1, . . . , n or α ≤ min
j

πmax
j

πss
j

. By choosing

α =
ρd

∑n
j=1

πmax
j

min
j

{
πmax

j

πss
j

} and δj =
min

j
{πmax

j /πss
j }

πmax
j /πss

j
,

it follows that π̂j
ss =

ρd
∑n

j=1
πmax

j

πmax
j ≤ πmax

j (and also

n
∑

j=1

π̂ss
j = ρd), achieving fair splitting as in (10) but without

imposing any constraints on the network topology.

Example 4: Consider again the network and splitting al-
gorithm of Example 1. Takeρd = 1 and πmax =
[0.4, 0.2, 0.4, 0.1]. The first step of the algorithm is equiv-
alent to the unconstrained case of Example 1, displayed in
Fig. 1(b). The second step (11) of the algorithm converges in
three iterations as the diameter of the network is determined by
the length of the path between nodes 3 and 4, which happens
to be 3; thusµ1[3] = µ2[3] = µ3[3] = µ4[3] = 0.3226. Each
node adjusts its weights according to the third step of the algo-
rithm, which results inδ1 = 0.185, δ2 = 0.565, δ3 = 0.088,
and δ4 = 1. The evolution of (12) is displayed in Fig. 4,
where it can be seen that the steady-state solution isπss =
[0.359, 0.177, 0.376, 0.088]′, with all the entries smaller than
the corresponding entries ofπmax = [0.4, 0.2, 0.4, 0.1]. �
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Fig. 4. Fair splitting algorithm evolution after nodes modified their weights.

V. CONCLUDING REMARKS AND FUTURE WORK

We have studied distributed control strategies that can be
used to determine (in a distributed fashion) the amount of ac-
tive or reactive power that needs to be provided by distributed
active and reactive power resources. These strategies havethe
potential to enable assets already present in distributionsys-
tems as active and reactive power support resources. Further
work will investigate the existence of faster algorithms for
the constrained case. It is also important to investigate the
algorithms performance in the presence of faults, e.g., broken
communication links, and nodes not updating their value.
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