
Co-ordination and Control of Multiple UAVs

Arthur Richards,∗ John Bellingham†, Michael Tillerson‡, and Jonathan How§

Space Systems Laboratory

Massachusetts Institute of Technology

Abstract

This paper addresses the key problems of autonomous task allocation and trajectory planning
for a fleet of UAVs. Task assignment must account for differing UAV capabilities and types
of waypoints. Timing constraints, no-fly-zones, and different vehicle dynamics must also
be included in the trajectory planning. The overall objective is to minimize the mission
completion time for the fleet. The resulting optimization is a highly-coupled combination
of the task assignment problem, involving logical constraints, and the trajectory design
problem, involving non-convex obstacle and collision avoidance and dynamics constraints.
Two methods are presented for solving this problem. One expresses the entire problem as a
single mixed-integer linear program, which can then be solved using commercially available
software. This method is guaranteed to find the globally-optimal solution to the problem, but
is computationally intensive. It therefore offers a benchmark against which heuristic methods
can be evaluated. The second method employs an approximation for the trajectory-planning
part, allowing rapid computation of the cost of many different trajectories. This enables the
assignment and trajectory problems to be decoupled and partially distributed, offering much
faster computation. The two methods are compared to evaluate the performance degradation
incurred due to the approximation. Several examples are presented to show that, since the
approximate method finds the optimized assignments much faster, it can be applied to very
large fleet assignment problems.

∗Research Assistant, MIT Dept. of Aeronautics and Astronautics, arthurr@mit.edu
†Research Assistant, MIT Dept. of Aeronautics and Astronautics, john b@mit.edu
‡Research Assistant, MIT Dept. of Aeronautics and Astronautics, mike t@mit.edu
§Associate Professor, MIT Dept. of Aeronautics and Astronautics, jhow@mit.edu
MIT 37-391, 77 Massachusetts Ave., Cambridge, MA 02139

1 Introduction

The capabilities and roles of Unmanned Aerial Vehicles (UAVs) are evolving, and require

new concepts for their control [1]. In particular, new methods in planning and execution

are required to coordinate the operation of a fleet of UAVs. Today’s UAVs typically require

several operators for control, but future UAVs will be designed to make their own tactical

decisions autonomously and will be integrated into teams that coordinate to achieve high-

level goals, thereby allowing one operator to control an entire fleet [1]. With these goals in

mind, this paper presents results on the guidance and control of fleets of cooperating UAVs.

A key challenge for these systems is to develop an overall control system architecture that

can perform optimal coordination of the vehicles, evaluate the overall system performance

in real-time, and quickly reconfigure to account for changes in the environment or the fleet.

The focus of this paper is fleet coordination, which includes team composition and goal

assignment, resource allocation, and trajectory optimization. For many vehicles, obstacles,

and targets, fleet coordination is a very complicated optimization problem [1, 2, 3, 8]. A

general problem is posed involving heterogenous vehicles and waypoints subject to obstacle

avoidance, vehicle dynamics, and timing constraints. Each task must be performed at a

corresponding waypoint and each vehicle has the capabilities to do some, but not necessarily

all, of the tasks. The timing constraints result from the fact that some tasks must be per-

formed in a specific order. For example, a typical sequence in a Suppression of Enemy Air

Defenses (SEAD) mission would require UAVs to fly to a specified waypoint to perform re-

connaissance, then electronic suppression, followed by ordnance delivery, and finally, damage

assessment. The fleet coordination problem is to allocate the vehicles with the appropriate

capabilities (e.g., sensors, payloads) to the waypoint and ensure that they can arrive with

the correct temporal separation. A typical scenario is illustrated in Fig. 1. Five vehicles of

three types, 1, 2 and 3, are to be assigned among six waypoints of three types, A, B and C.

The vehicles must avoid the hatched regions, or “no-fly-zones”. Table 1 shows a typical set

of capabilities for the fleet shown in Fig. 1.

The problem is to design a trajectory for each vehicle such that each waypoint is visited by

a suitably capable vehicle, at times permitted by the temporal constraints. The trajectories

and assignments are designed to minimize some cost function, in this case the overall mission

completion time. The complexity of this class of problems arises from the inherent coupling

between the assignment of tasks and the trajectory generation. The cost for a vehicle to

visit a particular waypoint is strongly dependent on the path taken and hence on other

waypoints visited on the way. If costs could be calculated for all permutations of visits, the

assignment could be done quite easily, but this cost calculation is impractical due to the

extremely large number of possible assignments. Even for the relatively small problem in

Fig. 1, there are 1296 valid assignment combinations. For each of these, the order of the visits

must still be chosen, so the number of possible permutations is even higher. Additionally, the

2

Figure 1: Example Scenario

numbers of permutations and combinations grow at a non-polynomial rate with the number

of waypoints.

This paper presents two methods for solving this problem. The first captures the coupling

of the problems by combining both assignment and trajectory design into a single mixed-

integer linear program (MILP) optimization. While previous work treats the two problems

separately [2, 3], the combination of the two that is presented here is guaranteed to find

the globally optimal solution. This provides a benchmark against which all other methods,

which may be faster but based on heuristics, can be evaluated. However, the computation

can be intensive and, using current optimization techniques, the method is not well-suited

for real-time operation. The combined optimization method uses a linearization of aircraft

dynamics previously applied to UAV avoidance problems [4]. The logical constraints for

collision and obstacle avoidance can be encoded as constraints upon binary variables [6],

resulting in a MILP problem. Further logical constraints are added in this paper to include

the assignment of vehicles to waypoints, subject to the constraints described in the following.

The second method presented simplifies the coupling between the assignment and trajectory

design problems by calculating and communicating only the key information that connects

the two [8]. It estimates the cost of various trajectory options by using straight line path

approximations. This method takes advantage of the fact that, for typical missions, the

shortest paths for the UAVs tend to resemble straight lines that connect the UAVs starting

position, the vertices of obstacle polygons, and the waypoints. The assignment is then

3

Table 1: Example Capabilities

Waypoint UAV Type
Type 1 2 3

A X X
B X X
C X X

performed using these approximated costs. A more detailed trajectory generator is then used

to plan exact, dynamically feasible paths for the given assignments. The cost estimation and

detailed trajectory design steps can both be performed on distributed platforms for faster

execution. This simplification of the coupling presents a more computationally tractable

approach, and maintains the advantages over previous methods that treat the two problems

in isolation.

The following sections present the problem formulation and these two solution methods. The

performance of these algorithms is then compared on several examples.

2 Encoding the Problem

This section describes a matrix formulation for encoding the statement of the problem de-

scribed in the previous section. Let there be NV vehicles, NW waypoints and NZ no-fly

zones. A total of NT time steps are used for planning, although the mission will typically

not require all of this time. The UAVs are modeled as vehicles moving in two dimensions

with limited speed and turning rate. Therefore, the vehicle dynamics are completely spec-

ified by the vectors vmax and ω, where vmaxp and Ωp are the maximum speed and turning

rate of the pth vehicle respectively. Both vmax and ω are NV -element vectors. Initial states

are also included in a matrix S such that the pth row is the initial state vector (x, y, ẋ, ẏ) of

the pth vehicle, forming a NV × 4 matrix.
The waypoints are specified by the NW × 2 matrix W where (Wi1,Wi2) is the position of

the ith waypoint. No fly zones are modeled as rectangular regions defined by the NZ × 4
matrix Z where (Zj1, Zj2) is the bottom left vertex of the j

th no fly zone and (Zj3, Zj4) is the

top right vertex. The vehicle capabilities are included in the matrix K, in which Kpi = 1 if

vehicle p can visit the ith waypoint and 0 otherwise. The matrix K has size NV ×NW .
Time dependencies, forcing one waypoint to be visited after another, separated by some

interval, are included in the matrix∆. Each row of the matrix represents a time dependency

and it has a column for each waypoint. Thus if there are ND time dependencies, the matrix

is ND × NW . A dependency is encoded by −1 in the column corresponding to the first
waypoint and +1 in the column for the second. The corresponding element in the vector tD

4

is the interval between the two visits. Thus, if the vector t contains the visiting times for

each waypoint, the constraint is implemented as

∆t ≥ tD (1)

Therefore, in summary, the problem can be completely specified by the vectors and matrices

vmax,ω,S,W,Z,K,∆, tD

3 Combined Assignment and Trajectory Design

This section describes the solution of the global optimal assignment and trajectory problem

as a single MILP. It has been shown that the problem of designing a trajectory for an aircraft

to visit a pre-assigned list of waypoints can be written and solved as a MILP [4]. Here, the

waypoint selection constraints will be modified to include the assignment and capability

constraints for a group of heterogenous vehicles. The effect of the assignment constraints

are shown in a series of examples in Section 3.4.

3.1 Dynamics in the Combined Formulation

This section presents the model of aircraft dynamics used in the combined assignment method

(see Ref. [4] for details). The aircraft is modeled as a point mass moving in 2-D. Let the

position of aircraft p at time step t be given by (xtp, ytp) and its velocity by (ẋtp, ẏtp), forming

the elements of the state vector stp. Each aircraft is assumed to be acted upon by control

forces (fxtp , fytp) in the X- and Y -directions respectively, forming the force vector ftp.

The maximum speed vmaxp is enforced by an approximation to a circular region in the velocity

plane

∀t ∈ [1 . . . NT] ∀p ∈ [1 . . . NV] ∀m ∈ [1 . . . NC]

ẋtp sin
µ
2πm

NC

¶
+ ẏtp cos

µ
2πm

NC

¶
≤ vmaxp (2)

where NC is the order of discretization of the circle. The maximum turning rate is enforced

by limiting the force magnitude, using another circular region approximation

∀t ∈ [0 . . .NT − 1] ∀p ∈ [1 . . .NV] ∀m ∈ [1 . . . NC]

fxtp sin
µ
2πm

NC

¶
+ fytp cos

µ
2πm

NC

¶
≤ fp (3)

5

where fp is related to the maximum turn rate by

ωp =
fp
vmaxp

(4)

The discretized dynamics of the overall system, applied to all NV vehicles up to NT time

steps, can be written in the linear form

∀p ∈ [1 . . . NV] ∀t ∈ [0 . . . NT − 1]

s(t+1)p = Astp +Bftp

(5)

where A and B are the system dynamics matrices for a unit point mass. In all cases,

the initial conditions are specified from the initial condition matrix described in Section 2,

s0p = Sp, where Sp is the p
th row of the initial state matrix S.

The constraints for avoiding a rectangular region were developed in [5] and can be written

as ∀t ∈ [1 . . . NT] ∀p ∈ [1 . . . NV] ∀j ∈ [1 . . . NZ]
xtp − Zj3 ≥ −Rcjpt1

and Zj1 − xtp ≥ −Rcjpt2
and ytp − Zj4 ≥ −Rcjpt3
and Zj2 − ytp ≥ −Rcjpt4
and

4X
z=1

cjptz ≤ 3

(6)

where cjptz are a set of binary decision variables and R is a positive number that is much

larger than any position to be encountered in the problem. If cjptz = 0, the vehicle p is

clear of the no-fly zone j in the zth direction (of the four directions +X, -X, +Y , -Y) at

the tth time step. If cjpkz = 1, the constraint is relaxed. The final inequality ensures that

no more than three of the constraints are relaxed at any time step, so there must always be

safe separation in at least one direction.

3.2 Assignment Logic in the Combined Formulation

The set of constraints to detect if a vehicle visits a waypoint can be written as

∀p ∈ [1 . . .NV] ∀t ∈ [1 . . . NT] ∀i ∈ [1 . . . NW]
xtp −Wi1 ≤ R(1− bipt)

and xtp −Wi1 ≥ − R(1− bipt)
and ytp −Wi2 ≤ R(1− bipt)
and ytp −Wi2 ≥ − R(1− bipt)

(7)

6

where bipt is a binary decision variable, W is the waypoint location matrix from Section 2,

and R is the same large, positive number used in Eq. 6. It can be seen that bipt = 1

implies that vehicle p visits waypoint i at time step t. This binary variable can then be

used in logical constraints for the assignment. This formulation can easily be relaxed so

that a vehicle “visits” a waypoint if it passes within a specified distance of that point. The

following constraint enforces that each waypoint is visited exactly once by a vehicle with

suitable capabilities.

∀i ∈ [1 . . .NW]
NTX
t=1

NVX
p=1

Kpibipt = 1 (8)

Time dependencies are enforced by the following constraint

∀k ∈ [1 . . . NC]
NWX
i=1

∆ki

NTX
t=1

NVX
p=1

t bipt ≥ tDk (9)

in which the summations
NTX
t=1

NVX
p=1

t bipt extract the time of visit for the i
th waypoint. Note

that the time is in units of time-steps, since the index t is used as the measure of time at

each step. This is equivalent to the form shown in Eq. 1.

3.3 Cost Function for the Combined Method

This section develops the cost function for the centralized method. The primary aim is to

minimize the mission completion time. Small penalty weightings are included to help the

numerical conditioning and accelerate the solution process.

The first step is to extract the flight completion time tp for the p
th vehicle, which is the time

at which it visits its last waypoint

∀p ∈ [1 . . . NV] ∀i ∈ [1 . . . NW] tp ≥
NTX
t=1

t bipt (10)

A similar set of constraints finds the overall mission completion time t̄

∀p ∈ [1 . . . NV] t̄ ≥ tp (11)

The complete cost function is

min
s,f ,b,c

J = t̄+ ²1

NVX
p=1

[tp + ²2

NT−1X
t=0

(|fxtp|+ |fytp|)] (12)

where the decision variables are the forces f (which determine the state vectors s), and the

7

binary variables b and c, for waypoint visit and no-fly zone logic respectively.

The weighting factors ²1 and ²2 are small positive numbers and are included to help the

solution process. The first weighting ensures that the minimum time path is chosen for all

aircraft. If it were omitted, only the aircraft that finished last would be explicitly minimized,

and those finishing earlier could select multiple paths without affecting the cost. The force

weighting has a similar role for each aircraft: many paths may lead to flight completion at the

same discrete time-step, but the additional force weighting means there is a unique solution

for each vehicle. Together, the weightings force the problem to have a unique solution.

Experience has shown that this greatly reduces the solution time for the problem.

The optimization problems shown here can be easily translated into the AMPL modeling

language [7]. An AMPL model file contains the constraint forms for all cases, while the

data is written to an AMPL data file by a Matlab script. CPLEX optimization software is

used to solve the problem [11]. A series of scripts in Matlab and AMPL allow the entire

path-planning problem to be invoked by a single command.

3.4 Example of Combined Method

This section demonstrates the effect of vehicle assignment constraints on a simple scenario.

Fig. 2 shows the designed trajectories for two vehicles visiting all four waypoints. Both

vehicles have the capability to visit all the waypoints, so every entry of the capability matrix

is 1. There are no timing dependencies. As expected, each vehicle travels in a nearly straight

path to the two nearest waypoints. In Fig. 3, the scenario has been changed by removing the

capability of vehicle 1 to perform the task at waypoint B, as it does in the solution of the

first problem. Vehicle 2 is now the only vehicle with that capability, so it is required to visit

point B. It would be feasible for vehicle 2 to follow the same trajectory as in the previous

example, then visit point B at the end. However, by assigning vehicle 1 to point D, vehicle

2 can proceed straight from C to B, leading to an earlier mission completion.

Note that, in the plan shown in Fig. 3, vehicle 1 visits point A then point D. However, for

the third problem, the scenario was modified to require that point D must be visited before

point A. Clearly the previous trajectory is no longer feasible. In the optimal solution shown

in Fig. 4, vehicle 2 goes almost directly to point D. Point C is on the way so it is visited in

passing. Vehicle 1 moves slowly in order to arrive at point A just after vehicle 2 arrives at

D. Finally, vehicle 2 is still required to visit point B due to the incapability of vehicle 1. In

the final variation on this problem, an obstacle is added to block the path from C to D taken

by vehicle 2 in the previous design. Fig. 5 shows the new assignment and trajectories. It is

still necessary that vehicle 2 visits point B, due to the lack of capability of vehicle 1, and

that point D must be visited before point A. Therefore, vehicle 1 is sent directly to point D,

while point A is visited by vehicle 2 on its way from C to B.

8

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

1

2

A
B

C
D

Fig. 2: Centralized assignment for two ve-
hicles among four waypoints. Both vehicles
may visit all four waypoints.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

1

2

A
B

C
D

Fig. 3: Centralized assignment with full ca-
pabilities except vehicle 1 cannot visit way-
point B

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

1

2

A
B

C
D

Fig. 4: Centralized assignment problem
from Fig. 3 with extra time dependency:
waypoint D must be visited before A.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

1

2

A
B

C
D

Fig. 5: Centralized assignment problem
from Fig. 4 with additional obstacle.

9

Find shortest straight line path
for each waypoint permutation

Optimal subtask assignment

Design detailed UAV trajectories

Collision avoidance

Compute feasible permutations,
prune

Fig. 6: Steps in the subtask assignment and detailed trajectory planning algorithm

These examples have shown that the constraints developed in this section have the intended

effects. It can be seen that the design in each case satisfies the mission requirements. The

examples also demonstrate the complexity of the problem at hand: small changes in capabil-

ity, timing constraints or obstacles can lead to completely different vehicle assignments, and

a wide selection of permutations are used in even this simple example. These lessons are im-

portant in the development of any approximate approach for real-time implementation and

illustrate the importance of comparison with the globally optimizing benchmark method.

4 Approximate Method

This section describes an approximate method [8] for solving the UAV coordination and con-

trol problems. The approximate method offers much faster solution times, but could yield

sub-optimal results. However, the globally-optimal solution from the combined method can

be used to evaluate the degradation in the performance associated with using this approxi-

mation (see Section 5). The cost function used in the approximate method is similar to that

of the combined method, and is the overall mission completion time, plus a small weighting

on the individual vehicle finishing times. However, this method evaluates the cost as a func-

tion of estimated finishing times found using straight line path approximations. Given the

estimated finishing times for each UAV tp, this cost can be evaluated as

t̄ = max
p

tp (13)

10

Compute feasible permutations,
prune

Optimal subtask assignment

Collision avoidance

Cost
Calc #1

Cost
Calc #2

Cost
Calc #n-1

Cost
Calc #n

Trajectory
design #1

Trajectory
design #2

Trajectory
design #n-1

Trajectory
design #n

…

…

Fig. 7: Steps in the distributed task assignment and trajectory planning algorithm

J1(t̄, t) = t̄+
α

NV

NVX
p=1

tp (14)

where α¿ 1 adds a small extra penalty on the average completion time, similar to Eq. 12.

4.1 Overview of the Approximate Algorithm

The five main steps in the algorithm are shown in Fig. 6. This section gives a brief description

of each step. Some steps are discussed further in later sections, and the details are in Ref. [8].

The first step is to enumerate a list of all feasible assignments and orderings, subject to

vehicle capabilities. Assignments, such as those involving a large number of tasks for a

single vehicle, can also be eliminated at this step. These are predicted with confidence to

have long completion times and will therefore be unfavorable.

Next, the approximate finishing time associated with each assignment and ordering is cal-

culated using the straight-line approximation method (see Section 4.2). With these ap-

proximate finishing times available, the task assignment problem can be performed to find

the minimum of the approximate cost, which is performed by a MILP optimization (see

Section 4.3). The final step uses fixed-assignment MILP methods [4, 5] to plan detailed tra-

jectory commands for each vehicle. These account for dynamics and inter-vehicle collision

avoidance.

4.2 Finding Permutation Costs in the Approximate Method

This section presents the process for developing a list of feasible subtask assignments, find-

ing approximate finishing time information for each subtask assignment, and pruning the

11

Fig. 8: Visibility graph and
shortest paths between UAV
6, all waypoints

Fig. 9: Shortest path for
UAV 6 over one combination
of waypoints

Fig. 10: Shortest paths for
all UAVs over same combi-
nation of waypoints

list. This algorithm accepts the aircraft starting states S0, capabilities K, obstacle vertex

positions Z, and waypoint positions W. The algorithm also accepts two upper bounds to

decrease computational effort: nmax which specifies the maximum number of waypoints that

a UAV may visit on its mission, and tmax which specifies the maximum time that any UAV

can take to complete its mission. From this information, this algorithm finds for each UAV

the shortest permutation of every combination of fewer than nmax waypoints.

The steps in this algorithm are depicted in Figures 8—10, in which a fleet of UAVs (shown with

◦) must visit a set of waypoints (shown with ×). First, the visibility graph between the UAV
starting positions, waypoints, and obstacle vertices is found. The visibility graph is shown

in Fig. 8 as grey lines. Next, this graph is searched to find the shortest paths between all

pairs of waypoints, and between the starting position of each UAV and all waypoints (Fig. 8

shows the result for UAV 6 with black lines). In Fig. 9, one combination of waypoints has

been chosen, and the shortest path from UAV 6’s starting position to visit them all is shown.

The order of arrival for this path is found by forming all possible ordered permutations of the

unordered combination of waypoints, then summing the distance over the path associated

with each order of arrival from UAV 6’s starting point. In Fig. 10, the shortest path to visit

the same combination of waypoints is shown for each vehicle. Note that, as expected, the

best permutation of these waypoints is not the same for all vehicles.

The algorithm produces four matrices whose jth columns, taken together, fully describe one

permutation of waypoints. These are the row vector u, whose element uj identifies which

UAV participates in the jth permutation; P, whose Pij entry identifies the i
th waypoint

visited by permutation j; V, whose Vij entry is 1 if waypoint i is visited by permutation j

and 0 if not; T, whose Tij entry is the time at which waypoint i is visited by permutation j,

and 0 if waypoint i is not visited; and C, whose element Cj is the time at which permutation

j is completed. This procedure is described in detail in Algorithm 1.

In this algorithm, finding the shortest distance between a set of points is performed by finding

the visibility graph between the points and vertices of obstacles, then applying an appropriate

12

1: Find shortest distances between all waypoint pairs (i, j) as D(i, j) using S0, Z, andW.
2: for all UAVs p do
3: Find shortest distances d(i) between start points of UAV p, and all waypoints i using

S0, Z, andW.
4: for all combinations of nC waypoints that p is capable of visiting, nC = 1 . . . nmax do
5: for j = 1 . . . nCPnC do
6: Make next unique permutation P 01j . . . P

0
nCj

of waypoints in the combination

7: C 0j =
d(P 01j)
vmax,p

8: T 0P 01jj = C
0
j

9: for i = 2 . . . nC do
10: if C 0j > tmax then
11: go to next permutation
12: end if

13: C 0j ← C 0j +
D(P 0

(i−1)j ,P
0
ij)

vmax,p

14: T 0P 0ijj = C
0
j

15: end for
16: end for
17: Append p to u
18: Append a column to V, whose ith element is 1 if waypoint i is visited, 0 if not.
19: jmin = minargj C

0
j

20: Append column jmin of T
0 to T

21: Append column jmin of P
0 to P

22: end for
23: end for

Algorithm 1: Algorithm for finding shortest paths between waypoints

shortest path algorithm such as the Bellman-Ford All-Pairs Shortest Path algorithm [10].

Note that the iterations through the “for loop” between lines 2 and 23 of Algorithm 1 are

independent, and can each be distributed to parallel processors. The corresponding matrices

from each processor can then be combined and passed onto the next stage in the algorithm,

the task assignment problem. Once the tasks assigned to each vehicle are known, trajectories

that visit the required waypoints can be designed on distributed platforms. The distributed

form of the approximate algorithm is shown in Fig. 7. The parallel platforms could be

processors onboard the UAVs, or could be several computers at a centralized command and

control facility.

4.3 Task Allocation in the Approximate Method

Section 4.2 outlined a method for determining the approximate costs for a UAV to visit a set

of waypoints. This section presents a mathematical method of allocating the waypoints to

each UAV based on these costs and other constraints. The base of the task allocation problem

13

is formulated as a Multidimensional Multiple-Choice Knapsack Problem (MMKP) [9]. The

“knapsack” in this case is the complete mission plan. The “multi-dimensional” aspect refers

to the NW waypoints (NW -dimensions) that can be grouped in NM different permutations

(elements). The list of waypoints visited in a permutation make up the weight of that

permutation. The “multiple-choice” comes from choosing which waypoints to assign to each

of the NV different UAVs (sets). The objective is to assign one permutation (element) to

each vehicle (set) that is combined into the mission plan (knapsack), such that the cost of the

mission (knapsack) is minimized and the waypoints visited (weight) meets the constraints

for each dimension NW . The problem is given by

min J2 =
NMX
j=1

Cjxj

subject to
NMX
j=1

Vijxj ≥ wi
Np+1−1X
j=Np

xj = 1

(15)

where the permutations of vehicle p are numbered Np to Np+1−1, with N1 = 1 and NNv+1 =
Nm + 1 and the indices have the ranges i ∈ {1, . . . , NW}, j ∈ {1, . . . ,Nm}, p ∈ {1, . . . , NV }.
The binary decision variable xj = 1 if permutation j is selected, and 0 otherwise. The

cost in this problem formulation minimizes the sum of the costs to perform each selected

permutation. The first constraint enforces that waypoint i is visited at least wi times, usually

wi = 1. The second constraint prevents more than one permutation being assigned to each

vehicle.

The MMKP formulation forms the base of the task allocation algorithm, however, modifica-

tions are made to the basic problem statement to include additional cost considerations and

constraints. The solution to the MMKP selects a permutation for each vehicle. The ordered

set of waypoints for each vehicle is then determined from the column in P corresponding

to the selected permutation for each vehicle. The cost in Eq. 14 is a weighted combination

of the sum of the individual mission times (as in the MMKP problem) but also the total

mission time. In order to include the total mission in the cost, a new continuous variable, t̄,

is introduced and the following constraint is added to the original formulation in Eq. 15

NMX
j=1

Cjxj ≤ t̄ (16)

The constraint forces t̄ = maxp tp and allows the total mission time to be included in the

14

cost. The new cost is as follows,

J3 = t̄+
α

NV

NmX
i=1

Cixi (17)

The problem is now a mixed-integer linear programming problem that can be solved using

commercially available software such as CPLEX [11]. The solution to the task allocation

problem is a set of ordered sequences of waypoints for each vehicle which ensure that each

waypoint is visited the correct number of times while minimizing the desired cost (mission

completion time). Additional constraint formulations for heterogenous vehicles and timing

constraints are available in [8].

4.4 Example of Approximate Method

This section shows the application of the approximate method to the example scenarios

shown in Figs. 2—5. The results are shown in Fig. 11. These show the assignments and

corresponding straight-line path approximations. The problems are in the same order as

earlier, reading left-to-right, top-to-bottom. In each case, the assignment and route are the

same as those found by the combined optimization method. In the last two cases, in which a

timing constraint was added, the approximate method has specified a delayed starting time

for one of the vehicles. In the same circumstances, the combined planner used the same start

time for both vehicles but made one move slower. These differences arise from the different

dynamics models used in the two methods, but lead to equivalent results.

5 Performance Comparison

This section compares the performance of the two methods (combined optimization and ap-

proximation) in solving two sample problems. The combined method provides a benchmark

evaluation of the globally-optimal solution to the problem by solving a single, highly complex

optimization. The comparison evaluates what computational savings are available with the

approximate method, and what cost is incurred in the resulting solution.

The first sample problem is small, involving two vehicles, four waypoints and two obstacles.

This was solved by both methods and allows a performance comparison between the two.

The second problem is much larger and is beyond the capabilities of the combined method

using current solution techniques. Thus the first example illustrates the performance of the

method and the second example shows its speed and potential for large problems.

15

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

1

2

A
B

C
D

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

1

2

A
B

C
D

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

1

2

A
B

C
D

t
0
 = 10.05

t
0
 = 0

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

1

2

A
B

C
D

t
0
 = 0

t
0
 = 2.61

Fig. 11: Solutions to example problem in Figs. 2—5 using the approximate method.

5.1 Smaller Evaluation Problem

Fig. 12 shows the designed trajectories for the smaller problem, found using the combined

method. The vehicle capabilities are shown in Table 2. There are no time dependencies in

this problem. The computation took just over eight minutes, solved by CPLEX software

running on a 1GHz PC with 256MB RAM. The total mission time for the designed solution

is 23 time steps (in this case, each step is four units: the scaling of this problem is arbitrary).

Fig. 13 shows the solution for the same problem from the approximate method. Comparing

the figures it is evident that both methods generate the same result, indicating that the

approximate method has successfully found the globally-optimal solution. The approximate

method took under five seconds to compute the result, using CPLEX and MATLAB on

a 1GHz PC with 256MB RAM. While the cost computation could be distributed, it was

performed sequentially on a single PC in this example.

16

Table 2: Vehicle Capabilities in Comparison Problem

Waypoint Vehicle
1 2 3

A X X
B X X X
C X X
D X X

−20 −15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

1

2

A

B

C
D

3

Fig. 12: Solution of the comparison prob-
lem by centralized method

−15 −10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

WP1

WP2

WP3

WP4

Veh1

Veh2

Veh3

x position

y
po

si
tio

n

UAV Coordination w/ Approximate Costs
Mission Time = 19.90

: 1,2,4

: 1,2,3,4

: 2,3

Fig. 13: Solution of the comparison prob-
lem by approximate method

5.2 Large Evaluation Problem

Fig. 14 shows the design for a large fleet assignment problem, found using the approximate

method. With six vehicles, twelve waypoints, and numerous no fly zones (obstacles), this

problem is too large to be solved by the combined method in any practical computation time,

due to the extremely large number of permutations involved. However, the approximate

method found the solution in 27 seconds, running on the same PC used for the previous

examples. Note that the capabilities of the various vehicles are denoted by the table at the

top-left of Fig. 14.

6 Conclusions

This paper presents two solutions to the coupled problems of task allocation and trajectory

planning for a group of UAVs. Both approaches minimize the mission completion time and

17

−15 −10 −5 0 5 10

−15

−10

−5

0

5

10

15

20

WP1

WP2

WP3

WP4

WP5

WP6

WP7

WP8

WP9

WP10

WP11

WP12

Veh1

Veh2

Veh3

Veh4

Veh5

Veh6

x position

y
po

si
tio

n

UAV Coordination w/ Approximate Costs
Mission Time = 23.91

:
:
:

Fig. 14: Solution of large problem by approximate method

account for differing UAV capabilities and types of waypoints, timing constraints, and no-

fly-zones. One approach (the combined method) solves these coupled optimization problems

as a single mixed-integer linear program. This method is guaranteed to find the globally-

optimal solution to the problem, but is computationally intensive. The second method

employs an approximation for the trajectory-planning part, allowing rapid computation of

many different trajectory costs. This enables the assignment and trajectory problems to be

decoupled and partially distributed, offering much faster computation. Several examples are

presented in the paper to evaluate the cost degradation incurred due to the approximation.

Examples are also presented to show that, since the approximate method finds the optimized

assignments much faster, it can be applied to very large UAV fleet assignment problems.

Acknowledgments

The research was funded in part under Air Force grant # F49620-01-1-0453 and DARPA

contract # N6601-01-C-8075.

18

References

[1] S. A. Heise, “DARPA Industry Day Briefing,” available on-line at

www.darpa.mil/ito/research/mica/MICA01mayagenda.html

[2] C. Schumaker, P. Chandler, S. Rasmussen, “Task Allocation for Wide Area Search

Munitions via Network Flow Optimization” proceedings of the AIAA Guidance, Navi-

gation, and Control Conference and Exhibit, Montreal, Canada, Aug. 6-9, 2001.

[3] P. Chandler, M. Pachter, “Hierarchical Control for Autonomous Teams” proceedings

of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal,

Canada, Aug. 6-9, 2001.

[4] A. G. Richards, J. P. How, “Aircraft Trajectory Planning with Collision Avoidance using

Mixed Integer Linear Programming,” submitted to the American Control Conference,

2002.

[5] T. Schouwenaars, B. DeMoor, E. Feron and J. How, “Mixed integer programming for

safe multi-vehicle cooperative path planning,” presented at the ECC, September 2001.

[6] A. Bemporad and M. Morari, “Control of Systems Integrating Logic, Dynamics, and

Constraints,” in Automatica, Pergamon / Elsevier Science, New York NY, Vol. 35,

pp. 407—427, 1999.

[7] Robert Fourer, David M. Gay, and Brian W. Kernighar. AMPL, A modeling language

for mathematical programming. The Scientific Press, 1993.

[8] J. S. Bellingham, M. J. Tillerson, A. G. Richards, J. P. How, “Multi-Task Assignment

and Path Planning for Cooperating UAVs,” to appear in the proceedings of the Con-

ference on Cooperative Control and Optimization, 2001.

[9] M. Moser, D. Jokanovic, N. Shiratori, “ An Algorithm for the Multidimensional

Multiple-Choice Knapsack Problem” IEICE Trans. Fundamentals, Vol. E80-A, No.3

March 1997.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, MIT Press,

1990.

[11] ILOG CPLEX User’s guide, ILOG, 1999.

19

