

Coordination in Large-Scale Agile Software Development:
A Multiteam Systems Perspective

Alexander Scheerer

SAP AG &
Institute for Enterprise Systems,

University of Mannheim
 alexander.scheerer@sap.com

Tobias Hildenbrand
SAP AG

 tobias.hildenbrand@sap.com

Thomas Kude
University of Mannheim
 kude@uni-mannheim.de

Abstract
The widespread use of lean and agile development

methods shows a fundamental shift in how
organizations try to cope with complexity and volatility
issues. In large-scale settings, the coordination of
many people often results in a team of teams setup. We
introduce the multiteam systems perspective to
describe different conceptual strategy types for inter-
team coordination. These types are illustrated with
examples from a large enterprise software
development organization.

1. Introduction

Lean and agile development methods have become
widespread in use and are the de facto standard in large
parts of many software organizations of different sizes
[7,18,31,41,52,65,66]. The introduction of these
approaches shows a fundamental shift in how
organizations try to cope with complexity and volatility
issues [13].

Previous development processes have tried to cope
with these problems by “risk minimization” measures
in the form of large upfront planning and rigid stage-
gated process steps and structures. This led to
inflexible requirements management, long time-to-
market and a fear of delivery, as markets evolved in the
months from project start [29].

The introduction of agile development and lean
principles over the last decade [6,45,46] have shifted
coping strategies for complexity and volatility towards
more collaborative and cooperative approaches [19]
with empirical process controls [55]. Self-empowered
teams are one of the main changes regarding this issue.
Planning Poker, Pair Programming, User Story
Mapping [44] and other cooperative approaches in the
development process are only a few examples of the
methodological shift. Many of these new approaches
have been regarded in light of small company or single

team settings, or with student developer teams.
However, these development methods have gained
prominence in large-scale settings as well. These
contexts show particular challenges as large groups of
people need to be coordinated, which usually results in
a hierarchical team of teams setup [24] where several
teams have to work closely together in order to release
a single software product. This organizational setup
has been defined as a multiteam system (MTS) by
Mathieu et al. [36] who assert that MTSs are “two or
more teams that interface directly and interdependently
in response to environmental contingencies toward the
accomplishment of collective goals” [36:290].

As the beginnings of Agile Development lie in
small team contexts, the available literature on inter-
team coordination in large-scale setups is sparse. The
main inter-team coordination mechanism in these types
of development environments is, according to
practitioner literature, the Scrum-of-Scrums approach
[25,56]. Previous publications on this topic remain
scarce, only seven papers could be identified by the
authors [5,26,42,43,57,60,61] that come to the
conclusion that coordination on an inter-team level
remains extremely challenging [42].

Previous studies found that the theoretical
understanding in the field of agile development is
lacking and have called for more studies on the
underlying fundamental concepts of agile software
development [1,2,13]. With this work, we intend to
advance the conceptual understanding of coordination
in multiteam agile software development systems and
try to answer the research question:

How can coordination theoretically be achieved in
large-scale software development systems?

In order to do so, this paper is structured as follows.
Section 2 gives an overview of the literature streams
which need to be incorporated for a comprehensive
view on the above research question. Section 3 derives
possible coordination archetypes within MTS contexts
in agile IS development and gives an illustrative
example for two coordination types. Section 4

2014 47th Hawaii International Conference on System Science

978-1-4799-2504-9/14 $31.00 © 2014 IEEE

DOI 10.1109/HICSS.2014.587

4780

concludes this paper with implications and future
work.

2. Foundations

Starting with the environment in which large-scale
development finds itself, we briefly show how
complex adaptive systems theory and Agile
Development fit together. Subsequently, we introduce
the concept of multiteam systems from organizational
psychology and finish with the conceptual
fundamentals of coordination.

2.1. Large-Scale Software Development

The previously dominant scientific management
[62] oriented methods and the move towards more
cooperative lean and agile development methods
signify a shift in coping strategies for complexity and
volatility. The full scope of the problem space where
software development finds itself was not captured by
previous approaches. Incomplete and ever-changing
requirements together with complex interdependencies
in the requirements as well as the existing software
stack are only a few attributes of this problem domain.
First steps in describing this problem context have
been made by DeGrace and Stahl [12] in referring to
Software Development as wicked problems [50]. More
recently the Cynefin Framework (see Figure 1) [58]
has laid out the relationship between work contexts and
possible solution approaches based on, among others,
complex adaptive systems theory [20].

Figure 1. The Cynefin Framework [58]

The framework provides five contexts which are

defined by their relationship between cause and effect.
The simple, complicated, complex, and chaotic
domains necessitate contextually appropriate

responses, while disorder is prevalent when it is
uncertain which other context seems dominant.[58]

Within the framework the move towards agile and
lean development can be viewed as a shift from a
complicated environment to understanding software
development as a complex environment [49]. The
leadership paradigm of probe, sense, respond can
clearly be seen in agile’s quest for shorter intervals
with working software to validate customer
requirements early. According to the Cynefin
Framework, complex domains require more interaction
and communication of actors than any other, which
shows the clear push towards more
collaborative/cooperative work as mentioned earlier
[58].

2.2. Multiteam Systems Research

The type of large-scale development system
examined is one in which several teams have to work
together in order to complete a release of a software
product. This type of organizational setup has been
described within the organizational psychology domain
as a multiteam system (MTS). The collective goal of
this system can be broken down into a goal hierarchy
and constitutes a key characteristic of any MTS. The
goal hierarchy marks the boundary of a MTS in that all
teams within the system share at least a distal goal
while the individual teams pursue their more proximal
goals individually. This structure of goals leads to
teams displaying input, process and outcome
interdependence with at least one other team [36].

While MTS have received increasing attention in
organizational psychology over the last decade
[3,10,11,23,33,34,37], the aspect of coordination is
underdeveloped. So far, especially the areas of
compositional attributes and linkages have been
explored. Marks et al. [33] found that cross-team
processes had the most value in MTSs with a high
interdependent goal hierarchy. Well-managed MTS
transition processes influenced MTS performance
positively, but did not support team-level action
processes. Decentralized planning led to enhanced
multiteam performance by fostering proactivity and
higher aspiration levels. Nevertheless, strong negative
effects were found in excessive risk seeking and
coordination failures [23].

Asencio et al. [3] propose multiteam charters as a
means to develop efficient leadership structures and
communication networks. Boundary spanners and
communication norms across teams are mentioned as
important considerations in MTS collaboration. These
differentiated team roles are viewed by Davison et al.
[10] as a key factor in performance. Teams which
included boundary spanning roles consistently

4781

outperformed teams which had not. The reasoning lies
in the information processing complexity inherent in
large organizations which lead to the need for
formalized boundary spanning [10].

In their study of leadership in multiteam systems
DeChurch and Marks [11] trained leader teams in two
ways, either by facilitating strategy development or
coordination. They found that strategy training was
positively related to explicit coordination, with
coordination training affecting implicit coordination
(see section 2.3) stronger. However, an unidentified
mechanism, such as shared mental models, seem to be
influencing inter-team coordination. They conclude
that the study of mental models in MTSs constitutes an
interesting path for future research [11].

2.3. Coordination Research

Coordination is a multi-faceted research area which
takes its inputs from a variety of fields including but
not limited to Economics, Organization Theory and
Computer Science. Coordination Theory presents a
framework for analysis of coordination in that it
defines coordination as the management of
dependencies. These dependencies are to be managed
by coordination mechanisms [30]. However, no
predictive power arises from this theory as no
hypotheses or propositions are stated [59]. Crowston et
al. [9] recognizes these limitations and calls for future
research to develop testable hypotheses.

The study of coordination in organizational theory
has identified several mechanisms to coordinate
workers [32,38,63,64]. Thompson [63] who cites
March and Simon [32] in his description of three key
generic coordination approaches: standardization or
rules, plans and schedules, and mutual adjustment. Van
De Ven et al. [64] added a fourth dimension of team,
which extends mutual adjustment by joint
simultaneous interactions within a usually collocated
team. Similarly, Mintzberg [38] proposes mutual
adjustment, direct supervision, and standardization (of
work processes, of work outputs, of norms and of
worker skills) as basic mechanisms for coordination.

The mix of mechanisms according to situational
context factors is of interest when regarding
coordination strategies [28,59]. Strode et al. [59]
present first insights into the combination of
coordination mechanisms in agile development. They
present a coordination strategy which includes
synchronization, structure and boundary spanning as
key elements which influence coordination
effectiveness [59]. Furthermore, intensified
communication was observed as a facilitator of mutual
trust and shared cognition by Li and Maedche [28].

In an effort to classify coordination mechanisms,
Espinosa et al. [14] present three types of coordination:
mechanistic, organic and cognitive coordination. While
mechanistic coordination includes coordination by plan
or rules with little communication, organic
coordination refers to coordination by means of mutual
adjustment or feedback via interaction. This
communication can be formal and planned or informal
and spontaneous. Cognitive coordination, on the other
hand, is based on knowledge the actors have about
each other and is achieved implicitly. Shared mental
models [8,15] and transactive memory systems [39] are
two examples of this type of mechanism. Cognitive
Coordination is viewed by Espinosa et al. as a key
enhancer of mechanistic and organic coordination [14].

This position is also supported by Rentsch and
Staniewicz [48], who emphasize the role of cognitive
coordination by suggesting cognitive similarity as the
key driving component of coordination mechanisms in
multiteam systems. These cognitive similarity types are
identified by the form of similarity, the form of
cognition, and the cognitive content domain.

The form of similarity among individuals includes
congruence, accuracy and complementarity. The
emergence of cognitive congruence among teams
constitutes the matching of cognitions between
individual team members when there is no correct
value or target. Accuracy reflects exactly this degree of
fit towards a predetermined target value.
Complementarity, on the other hand, represents the
differing cognitions of team members that fit together
like puzzle pieces [48]. These types of similarities have
been found to positively influence team performance,
e.g. via shared mental models [8,15,16,27,35,51], as an
example of a congruent cognition, or through
transactive memory systems [17,21,22,39,40], which
depicts a complimentary cognition.

Lastly, the form of cognition pertains to the type of
information in consideration, with the cognitive
content domain referring to the knowledge areas which
are dealt with [47].

Our conceptual framework (Figure 2) shows the
process theoretical view of inter-team coordination
effectiveness and especially the interplay of
mechanistic, organic and cognitive coordination
mechanisms within the coordination strategy.

4782

Figure 2. Conceptual Framework
Adapted from [14,16]

3. Archetypes of Coordination in MTS

According to our previously introduced
coordination framework of mechanistic, organic and
cognitive coordination, we introduce conceptual
archetypes of coordination modes within MTSs. Table
1 shows all possible strategy types when considering
only low and high degrees within the three
coordination types. This reduced view was chosen in
order to keep the overview simple. Further subtypes
mentioned in Section 3.1 can be seen in Table 2.

Table 1. Strategy Types

3.1. Coordination Strategy Types

Out of the identified possible configurations, only
some appear plausible, as will be discussed next.
Hence we first discuss in the following section
plausible types 1, 2 and possible subtypes of 2 which
differ in their combination of mechanistic and
cognitive coordination but remain high in their organic
coordination. After that, we will continue with the
plausible types 3, 4 and 5 which have significant
drawbacks in practice and finish with the implausible
types 6, 7 and 8.

Strategy type 1 (“The Perfect Plan”) is
characterized by high mechanistic, low organic and
low cognitive coordination. This archetype depicts the
perfect plan-based approach to software development.
While within teams, coordination may well be
achieved through organic or cognitive mechanisms, the
focus of multiteam coordination in this strategy lies
solely on mechanistic coordination with little
communication between individual actors. This type
assumes that software development can be
“programmed” from a coordination perspective, e.g.
through complete upfront planning all dependencies as
well as all contingencies can be resolved and
accounted for. Since the coordination is programmed
through upfront planning with little communication,
one person or a very small set of people, needs to have
a deep insight into the full technical details of the
entire software system in order to specify all details
necessary for individual work packages and correct
integration. While this type, taking aforementioned
assumptions into account, is entirely plausible from a
theoretic viewpoint, it has deep implications for large-
scale software development, especially in the
enterprise software domain where requirements are
often in a state of flux. In an environment where large
existing codebases have complex interdependencies
within and to other software modules and products, the
assumption of an omniscient person or small group
who has the capability to plan an entire software
release down to individual work packages with their
respective technical dependencies seems elusive. This
type can be illustrated with the previously introduced
complicated domain of the Cynefin Framework (see
Chapter 2.1). The leadership paradigm of sense,
analyze and respond is the core of strategy type 1.
First, the problem space of the software is understood
(sensed). Typically a small set of people (including the
chief architect for example), will analyze the problem
and develop a technical plan (architecture) and a
sequence plan (schedule). The enactment of both plans,
e.g. the actual development phase, is then considered
the response in this case.

Strategy
Type

Coordination type
plausible

Mechanistic Organic Cognitive

1 high low low �

2 low high high �

3 low low high (�)

4 high high high (�)

5 low low low (�)

6 low high low -

7 high high low -

8 high low high -

4783

Strategy type 2 can be viewed as the antipode to
type 1. Through the low to medium occurrence of
mechanistic coordination, this strategy relies on
organic and cognitive mechanisms in order to achieve
coordination effectiveness. This type includes three
subtypes which differ in their amount of mechanistic
and cognitive mechanisms but remain high on organic
coordination throughout.

Table 2. Strategy Type 2 Subtypes

Strategy Type 2.1 (“Organic Planning”) relies on

high organic and cognitive coordination with medium
mechanistic coordination. An assumption inherent in
this type is that there are limits to the planning
capability of individuals and small groups.
Nevertheless, a certain amount of planning is seen as
required in order to achieve a general alignment
between individual teams and to reduce unnecessary
rework and communication overhead introduced by
organic coordination.

Strategy Type 2.2 (“Communication Focused”)
shows little to no mechanistic and a maximum amount
of organic and cognitive coordination. The lack of
planning and other mechanistic coordination is based
on the assumption that any type of investment in plans
and rules goes to waste as they will need to be adjusted
continuously anyway. In order to achieve coordination
effectiveness teams need to communicate
comprehensively and adjust their actions mutually
which relies heavily on feedback and a common
understanding or shared knowledge base, thus
questioning the initial subdivision into a team of teams
setting.

Strategy Type 2.3 (“Selective Communication”) is
characterized by low-medium mechanistic, high
organic and medium cognitive coordination. Inherent
in this type of coordination is the notion that organic
coordination has limits to the amount of people or
teams that can be effectively coordinated. In order to
lower the necessary shared understanding among
participants and thus increase organic coordination
effectiveness, only subparts of the development system
engage in “costly” coordination activities and system
wide coordination is established via hierarchical
procedures where the amount of involved people is
reduced the more subparts or teams are involved.

Overall, the lower reliance on upfront planning and
rigid rules allows for a leadership paradigm
comparable to the complex domain in the Cynefin
Framework of probe, sense and respond. Fitting to the
lean principle of customer value, it is possible to
quickly experiment with requirements and present
prototypes to the customer for idea validation and
respond to the feedback given.

The following types remain plausible but have
significant disadvantages in a practical setting.

Strategy type 3 (“Coordination Heaven”) A
hypothetical type, in which only cognitive coordination
is high. This cannot be achieved in reality as one would
have to employ people that already have a high
cognitive coordination without using the other types,
e.g. by developing the exact same piece of software
with the same people. As cognitive coordination needs
to be established between the actors somehow, the
prohibited use of mechanistic and organic coordination
also prevents the establishment of cognitive
coordination.

Strategy type 4 (“Extensive Coordination”) in
which every coordination type is high will most likely
be very well coordinated. However, coordination is not
an end in itself. Its right to exist is dependent on the
actual tasks and work to be done. To deliberately
implement this coordination strategy would mean to
accept high overhead costs for coordination with
unclear benefits in comparison to other strategies.

Strategy type 5 (“Coordination Deficit”) shows
little coordination activities in any of the three
coordination types. While theoretically plausible and
perhaps also practically present, the absence of
coordination activities in a discussion on coordination
strategies seems unrewarding and can hardly lead to
coordination effectiveness.

The following three types are implausible from a
conceptual standpoint.

Strategy type 6 shows low mechanistic, high
organic and low cognitive coordination. If only
implementing organic coordination activities without
some sort of common understanding or knowledge
sharing to base communication on, this strategy
promotes aimless communication and feedback. While
not plausible as a desirable strategy to achieve
coordination effectiveness, this coordination strategy
might depict an intermediate state for attaining strategy
type 2.2 or 2.3.

Strategy type 7 promotes high mechanistic and high
organic coordination. If we think back to the
definitions of both coordination types, we see that
mechanistic relies heavily on plans and rules with little
or no communication, while organic coordination is
based upon communication. This is a direct

Strategy
Type

Coordination type
plausible

Mechanistic Organic Cognitive

2.1 medium high high �

2.2 very low high high �

2.3 low-medium high medium �

4784

contradiction and implausible from a theoretic
standpoint.

Strategy type 8, with high mechanistic, low organic
and high cognitive coordination is equally implausible
as high cognitive coordination (e.g. shared
understanding) among the teams is mainly established
through communication which is not desirable here, as
the amount of organic coordination is low.

3.2. Illustrative Examples

Two illustrative examples from a large-scale
development organization will be used to demonstrate
the previously discussed archetypes of coordination in
multiteam systems.

3.2.1 Example for strategy type 1. The software
company in our example followed this strategy for a
long time before introducing lean management and
agile development in 2009. As the company grew
massively since the 1970s, a process framework
needed to be in place in order to (a) coordinate
development projects with 10.000 and more person
days and (b) establish a quality management system to
achieve an ISO certification. This process framework
followed a typical “waterfall pattern” when it was
introduced in the mid-1990s, i.e. there was a phase
with basic portfolio decisions, then requirements were
specified, the architecture was designed and refined
and then development across multiple teams started.
When the software was put into code, testing started,
often by a central testing department located offshore
as well as with consultants and customers. The tested
software was validated by another central team that
adopted the role of first customer, i.e. they installed,
configured and re-tested the software in their lab. Only
after this sequential process of about 12 to 18 months
the software released to market – a market that often
changed substantially in the meantime. [54]

3.2.2 Examples for strategy type 2. Working
according to strategy type 1 led to numerous problems
as the company grew further and the product portfolio
became even broader. Among other things, a high
degree of bureaucracy emerged due to the division of
labor along the process. Moreover, it took too long
until software could be evaluated with customers to get
feedback and minimize planning risks. Therefore,
starting in 2009 after a longer pilot phase, the company
implemented lean management and agile development
[53]. One major change was the introduction of Scrum
as process framework on the team level. Along with
Scrum there was no longer a “project manager” but the
roles of “Scrum Master”, responsible for the team

process, and “Product Owner”, responsible for the
product towards customers.

As most enterprise applications are built by more
than one single team, inter-team coordination and
scaling was a key issue. Therefore, the role of “Chief
Product Owner” (CPO) was established. The CPO is
responsible for an entire application or solution.
Depending on the size of the product, there are 1-2
levels of (area) product owners, i.e. the overall product
is divided into several “product areas” and then feature
sets on team level. Within these teams, architects,
developers, user interface designers, documentation
writers, etc. are included to implement features end-to-
end. In this setting the coordination follows a mixture
of type 2.1 and 2.3 depending on the respective product
development area. Some departments tend to lean more
towards a centrally focused coordination, e.g. CPO,
APOs and POs are responsible for inter-team
coordination in a “product team” who then carry
decisions into the individual teams. Other departments
implemented a Scrum hierarchy, e.g. Scrum-of-Scrums
in which delegates from the teams manage
coordination tasks together with the APOs and POs.
The strategy 2.2 (“Communication Focused”) is only
seen in areas of high exploratory nature. Here teams
decide to participate in “open spaces”, meetings which
have little predefined structure and purely serve the
purpose of increasing cognitive coordination and thus
promote organic coordination.

4. Discussion and Future Research

The presented archetypes of coordination in MTS
constitute a first step to establish the multiteam level of
analysis in studies of software development
organizations. The described coordination strategies lie
on a continuum between organic and mechanistic
coordination types. On the far side of pure
organic/cognitive coordination (see strategy type 2.2),
one has to recognize the absurdity of dividing the
system in individual teams if the communication
network is completely interconnected between teams.
This goes against the initial reasoning to divide the
systems into teams, e.g. to reduce overhead
communication and coordination through establishing
modularity [4]. On the other side of the spectrum, the
purely mechanistic strategy (see strategy type 1),
contradicts the lean and agile principles of empowered
teams and embracing change. The problems addressed
by lean/agile methods in small settings are only lifted
to the inter-team level in large-scale settings.

The described trade-off can only be managed by a
balanced approach to coordination within MTSs. One
possible tactic is to institutionalize cognitive
coordination via boundary spanners. First insights into

4785

this strategy have been published by Davison et al.
[10], albeit in a military setting. The differences in the
environment, e.g. task types or dependencies between
teams, associated with software development are
sufficient to necessitate an exploratory approach for
this research area.

Based on the understanding gathered from these
conceptual insights, we see a high value in pursuing an
exploratory approach to shed light on coordination in
large-scale software development. The exploration of
coordination could be based on our conceptual
framework (Figure 2), in which the core part depicts
the reciprocal influence of mechanistic, organic and
cognitive coordination within the coordination
strategy. A focus on the link between organic and
cognitive coordination seems promising, as cognitive
similarities are likely to influence mutual adjustment
and feedback processes. In addition, the impact of the
environment, e.g. multiteam characteristics [67], may
affect the entire coordination system. We deem the
multiteam system level of analysis appropriate, in
order to make sense of the multi-level data to be
gathered, as cognition rests exclusively within
individuals [47] while cognitive similarity
configurations are a multiteam emergent state which in
turn drives a multiteam process, namely coordination
[48].

5. References

[1] Abrahamsson, P., Conboy, K., and Wang, X. ‘Lots done,
more to do’: the current state of agile systems development
research. European Journal of Information Systems 18, 4
(2009), 281–284.

[2] Ågerfalk, P.J., Fitzgerald, B., and Slaughter, S. Flexible
and distributed information systems development: State of
the art and research challenges. Information systems research
20, 3 (2009), 317–328.

[3] Asencio, R., Carter, D.R., DeChurch, L.A., Zaccaro, S.J.,
and Fiore, S.M. Charting a course for collaboration: a
multiteam perspective. Translational Behavioral Medicine 2,
2 (2012).

[4] Baldwin, C.Y. and Clark, K.B. Design rules: The power
of modularity. The MIT Press, 2000.

[5] Bannerman, P.L., Hossain, E., and Jeffery, R. Scrum
Practice Mitigation of Global Software Development
Coordination Challenges: A Distinctive Advantage? System
Science (HICSS), 2012 45th Hawaii International
Conference on, (2012), 5309–5318.

[6] Beck, K. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 2001.

[7] Begel, A. and Nagappan, N. Usage and Perceptions of
Agile Software Development in an Industrial Context: An
Exploratory Study. International Symposium on Empirical
Software Engineering and Measurement, IEEE Computer
Society (2007), 255–264.

[8] Cannon-Bowers, J.A., Salas, E., and Converse, S. Shared
mental models in expert team decision making. Current
issues in individual and group decision making, (1993), 221–
246.

[9] Crowston, K., Rubleske, J., and Howison, J. Coordination
theory: A ten-year retrospective. In P. Zhang and D. Galletta,
eds., Human-Computer Interaction in Management
Information Systems. M. E. Sharpe, Inc., 2006, 120–138.

[10] Davison, R.B., Hollenbeck, J.R., Barnes, C.M.,
Sleesman, D.J., and Ilgen, D.R. Coordinated Action in
Multiteam Systems. The Journal of applied psychology 97, 4
(2012), 808–24.

[11] DeChurch, L.A. and Marks, M.A. Leadership in
Multiteam Systems. The Journal of applied psychology 91, 2
(2006), 311–29.

[12] DeGrace, P. and Stahl, L.H. Wicked Problems,
Righteous Solutions. Yourdon Press, Upper Saddle River, NJ,
USA, 1990.

[13] Dybå, T. and Dingsøyr, T. Empirical studies of agile
software development: A systematic review. Information and
Software Technology 50, 9-10 (2008), 833–859.

[14] Espinosa, J.A., Armour, F., and Boh, W.F. Coordination
in enterprise architecting: an interview study. System
Sciences (HICSS), 2010 43rd Hawaii International
Conference on, (2010), 1–10.

[15] Espinosa, J.A., Kraut, R., Lerch, J., Slaughter, S.,
Herbsleb, J., and Mockus, A. Shared mental models and
coordination in large-scale, distributed software
development. Proceedings of the International Conference
on Information Systems (ICIS 2001), (2001), 64.

[16] Espinosa, J.A., Lerch, F.J., Kraut, R.E., Salas, E., and
Fiore, S.M. Explicit vs. implicit coordination mechanisms
and task dependencies: one size does not fit all. In Team
cognition: understanding the factors that drive process and
performance. American Psychological Association,
Washington, DC, 2004, 107–129.

[17] Faraj, S. and Sproull, L. Coordinating Expertise in
Software Development Teams. Management Science 46, 12
(2000), 1554–1568.

[18] Fry, C. and Greene, S. Large Scale Agile
Transformation in an On-Demand World. Proceedings of the
AGILE Conference 2007, (2007), pp. 136 – 142.

4786

[19] Hildenbrand, T., Rothlauf, F., Geisser, M., Heinzl, A.,
and Kude, T. Approaches to collaborative software
development. Complex, Intelligent and Software Intensive
Systems, 2008. CISIS 2008. International Conference on,
(2008), 523–528.

[20] Holland, J.H. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to
Biology, Control and Artificial Intelligence. MIT Press,
Cambridge, MA, USA, 1992.

[21] Hollingshead, A.B. Retrieval processes in transactive
memory systems. Journal of Personality and Social
Psychology 74, 3 (1998), 659.

[22] Kanawattanachai, P. and Yoo, Y. The impact of
knowledge coordination on virtual team performance over
time. MIS quarterly 31, 4 (2007), 783–808.

[23] Lanaj, K., Hollenbeck, J.R., Ilgen, D.R., Barnes, C.M.,
and Harmon, S.J. The Double-Edged Sword of Decentralized
Planning in Multiteam Systems. Academy of Management
Journal of Management Journal, (2012), 1–61.

[24] Larman, C. and Vodde, B. Scaling Lean & Agile
Development: Thinking and Organizational Tools for Large-
Scale Scrum. Addison-Wesley Professional, Upper Saddle
River, N.J, 2008.

[25] Larman, C. and Vodde, B. Practices for Scaling Lean
and Agile Development: Large, Multisite, and Offshore
Product Development with Large-Scale Scrum. Addison-
Wesley Professional, Upper Saddle River, N.J, 2010.

[26] Lee, E.C. Forming to performing: Transitioning large-
scale project into agile. Agile, 2008. AGILE’08. Conference,
(2008), 106–111.

[27] Levesque, L.L., Wilson, J.M., and Wholey, D.R.
Cognitive divergence and shared mental models in software
development project teams. Journal of Organizational
Behavior 22, 2 (2001), 135–144.

[28] Li, Y. and Maedche, A. Formulating Effective
Coordination Strategies in Agile Global Software
Development Teams. Proceedings of the International
Conference on Information Systems (ICIS 2012), (2012).

[29] Mackert, O., Hildenbrand, T., and Podbicanin, A. Vom
Projekt zum Produkt - SAP’s Weg zum “Lean Software
Product Development”. Vom Projekt zum Produkt.
Fachtagung des GI-Fachausschusses Management der
Anwendungsentwicklung und -wartung im Fachbereich
Wirtschaftsinformatik (WI-MAW), 01.-03. Dezember 2010 in
Aachen, (2010), 13–25.

[30] Malone, T.W. and Crowston, K. The interdisciplinary
study of coordination. ACM Computing Surveys 26, 1 (1994),
87–119.

[31] Mangalaraj, G., Mahapatra, R., and Nerur, S.P.
Acceptance of software process innovations – the case of
extreme programming. European Journal of Information
Systems 18, 4 (2009), 344–354.

[32] March, J.G. and Simon, H.A. Organizations. Wiley,
New York, 1958.

[33] Marks, M.A., DeChurch, L.A., Mathieu, J.E., Panzer,
F.J., and Alonso, A. Teamwork in Multiteam Systems. The
Journal of applied psychology 90, 5 (2005), 964–71.

[34] Mathieu, J.E., Gilson, L.L., and Ruddy, T.M.
Empowerment and Team Effectiveness: An Empirical Test
of an Integrated Model. The Journal of applied psychology
91, 1 (2006), 97–108.

[35] Mathieu, J.E., Heffner, T.S., Goodwin, G.F., Salas, E.,
and Cannon-Bowers, J.A. The influence of shared mental
models on team process and performance. Journal of Applied
Psychology 85, 2 (2000), 273–283.

[36] Mathieu, J.E., Marks, M.A., and Zaccaro, S.J. Multiteam
systems. In N. Anderson, D.S. Ones, H.K. Sinangil and C.
Viswesvaran, eds., Handbook of Industrial, Work and
Organizational Psychology Volume 2 Organizational
Psychology. Sage Publications Ltd, London, 2001, 289–313.

[37] Mathieu, J.E., Maynard, M.T., Taylor, S.R., Gilson,
L.L., and Ruddy, T.M. An examination of the effects of
organizational district and team contexts on team processes
and performance: a meso-mediational model. Journal of
Organizational Behavior 28, (2007), 891–910.

[38] Mintzberg, H. Structure in 5’s: A Synthesis of the
Research on Organization Design. Management science 26, 3
(1980), 322–341.

[39] Moreland, R., Argote, L., and Krishnan, R. Socially
shared cognition at work: Transactive memory and group
performance. In What’s social about social cognition?
Research on socially shared cognition in small groups. Sage
Publications, Inc, 1996, 57 – 84.

[40] Moreland, R.L. and Myaskovsky, L. Exploring the
performance benefits of group training: Transactive memory
or improved communication? Organizational Behavior and
Human Decision Processes 82, 1 (2000), 117–133.

[41] Nerur, S., Mahapatra, R.K., and Mangalaraj, G.
Challenges of migrating to agile methodologies.
Communications of the ACM 48, 5 (2005), 72–78.

[42] Paasivaara, M., Lassenius, C., and Heikkila, V.T. Inter-
team coordination in large-scale globally distributed scrum:
Do Scrum-of-Scrums really work? Empirical Software
Engineering and Measurement (ESEM), 2012 ACM-IEEE
International Symposium on, (2012), 235–238.

4787

[43] Paasivaara, M. and Lassenius, C. Scaling scrum in a
large distributed project. Empirical Software Engineering
and Measurement (ESEM), 2011 International Symposium
on, (2011), 363–367.

[44] Patton, J. User Story Mapping. 2008.
http://guide.agilealliance.org/guide/storymap.html.

[45] Poppendieck, M. and Poppendieck, T. Lean software
development: an agile toolkit. Addison-Wesley Professional,
2003.

[46] Reinertsen, D.G. The Principles of Product
Development Flow: Second Generation Lean Product
Development. Celeritas Publishing, 2009.

[47] Rentsch, J.R., Delise, L.A., and Hutchison, S. Cognitive
Similarity Configurations in Teams: In Search of the Team
MindMeld. In E. Salas, G.F. Goodwin and C.S. Burke, eds.,
Team Effectiveness in Complex Organizations: Cross-
Disciplinary Perspectives and Approaches. Psychology
Press, New York, NY, 2009, 241.

[48] Rentsch, J.R. and Staniewicz, M.J. Cognitive similarity
configurations in multiteam systems. In Multiteam systems :
an organization form for dynamic and complex
environments. Routledge, New York, NY, 2012, 225–252.

[49] Rikkila, J., Abrahamsson, P., and Wang, X. The
Implications of a Complexity Perspective for Software
Engineering Practice and Research. Journal of Computer
Engineering & Information Technology, (2012).

[50] Rittel, H.W.J. and Webber, M.M. Dilemmas in a
General Theory of Planning. Policy Sciences 4, 2 (1973), pp.
155–169.

[51] Rouse, W.B., Cannon-Bowers, J.A., and Salas, E. The
role of mental models in team performance in complex
systems. Systems, Man and Cybernetics, IEEE Transactions
on 22, 6 (1992), 1296–1308.

[52] Rudorfer, A., Stenzel, T., and Herold, G. Case for
Feature-Oriented Requirements Engineering. IEEE Software
29, 5 (2012), 54–59.

[53] Scheerer, A., Schmidt, C.T., Heinzl, A., Hildenbrand,
T., and Voelz, D. Agile Software Engineering Techniques:
The Missing Link in Large Scale Lean Product Development.
Proceedings of the “Multikonferenz Software Engineering”,
(2013).

[54] Schnitter, J. and Mackert, O. Introduncing Agile
Software Development At SAP AG - Change Procedures and
Observations in a Global Software Company. Proceedings of
the 5th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), (2010).

[55] Schwaber, K. and Beedle, M. Agile Software
Development with Scrum. Prentice Hall, 2001.

[56] Schwaber, K. Agile project management with Scrum.
Microsoft Press, 2004.

[57] Smits, H. and Pshigoda, G. Implementing scrum in a
distributed software development organization. Agile
Conference (AGILE), 2007, (2007), 371–375.

[58] Snowden, D.J. and Boone, M.E. A leader’s framework
for decision making. harvard business review 85, 11 (2007),
68.

[59] Strode, D.E., Huff, S.L., Hope, B., and Link, S.
Coordination in co-located agile software development
projects. Journal of Systems and Software 85, 6 (2012),
1222–1238.

[60] Sutherland, J., Schoonheim, G., and Rijk, M. Fully
distributed scrum: Replicating local productivity and quality
with offshore teams. System Sciences, 2009. HICSS’09. 42nd
Hawaii International Conference on, (2009), 1–8.

[61] Sutherland, J., Schoonheim, G., Rustenburg, E., and
Rijk, M. Fully distributed scrum: The secret sauce for
hyperproductive offshored development teams. Agile, 2008.
AGILE’08. Conference, (2008), 339–344.

[62] Taylor, F.W. The principles of scientific management.
Harper & Brothers, New York, London, 1911.

[63] Thompson, J.D. Organizations in Action: Social Science
Bases of Administrative Theory. McGraw-Hill, 1967.

[64] Van De Ven, A.H., Delbecq, A.L., and Koenig Richard,
J. Determinants of Coordination Modes within
Organizations. American Sociological Review 41, 2 (1976),
322–338.

[65] VersionOne Inc. 7th Annual State of Agile Development
Survey. 2012. http://www.versionone.com/pdf/7th-Annual-
State-of-Agile-Development-Survey.pdf.

[66] West, D., Grant, T., Gerush, M., and D’Silva, D. Agile
Development: Mainstream Adoption Has Changed Agility.
Forrester Research, (2010).

[67] Zaccaro, S.J., Marks, M.A., and DeChurch, L.A.
Multiteam Systems: An Introduction. In S.J. Zaccaro, M.A.
Marks and L.A. DeChurch, eds., Multiteam Systems An
Organization Form for Dynamic and Complex Environments.
Routledge, New York, NY, USA, 2012, 3–32.

4788

