
Coordination in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASoitw are
Development

ince its zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinception, the software industry has been in crisis. As Blazer

noted 20 years ago, “ [Software] is unreliable, d&wed late, unrespon-

sive to change, mefficient, and expensive and has been for the past

20 years” [4]. In a survey of software contractors and government con-

tract officers, over half of the respondents believed that calendar over-

runs, cost overruns, code that required in-house modifications before

being usable, and code that was difficult to modify were common prob

lems in the software projects they supervised [22] Even today, problems

with software systems are common and highly-publicized occurrences.

While there is no single cause of the software crisis, a major contrib-

utor is the problem of coordinating activities while developing large

software systems. We will argue that this coordination becomes much

more dficult as project size and complexity increase. Coorclmation

dfficulties are not limited to software development, though, but are

an inherent aspect of work in any large organization. Viewed from

this perspective, some of the mechanisms used to coordmate work in

large organizations in general ought to have applicability to software

development. In particular, we examine the respective roles of formal and miormal commumcatlon

mechanisms in coordinating work on software projects. We will argue that most of the existing coordina-

tion support tools have used formal communication procedures, and that there is a need for nurturing

informal communication procedures as well.

Coordination has been defined as the direction of “ inditiduals’ efforrs toward achieving common and

explicitly recognized goals” [3] and “ the integration or linking together of different parts of an organiza-

tion to accomplish a collective set of tasks” [23]. In software development, it means that dierent people

working on a common project agree to a common definition of what they are building, share informa-

tion, and mesh their activities. They must have a common view ofwhat the software they are constructing

should do, how it should be organized, and how it should fit with other software systems already in place

or undergoing parallel development. To build the software efficiently, they must share detailed design

specifications and information about the progre’ess of software modules. In sum, they must coordinate

their work so that it gets done and fits together, so that it isn’t done redundantly, and so that components

of the work are handed off expeditiously.

Characteristics of software Development

Achieving a successful software system requires tight coordination among the various efforts involved in

the software development cycle. Yet this coordination is dimcult to achieve. As Curtis, Kramer and Iscoe

[ll] note in their study of large software development projects, communication bottlenecks and break

downs are very common. Indeed, several characteristics of software development make these coordina-

tion problems not just common, but inevitable [6,8].

.!3de. A fundamental characteristic of many software systems is that they are very large and far beyond

the ability of any individual or small group to create or even to understand in detail. If a software system

were small, effective coordination could occur because a single individual or small group could direct

its work and keep all the implementation details in focus. Indeed, large projects are more successful if

a single, often exceptional, individual with both applicationdomain knowledge and software knowledge

guides and coordinates the project [ll]. But this ideal is impossible for many large software systems,

where system size is measured in millions or tens of millions of lines of code and the life of the

