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ABSTRACT 

 

In this research, statistical models of airport delay and single flight arrival delay were 

developed. The models use the Airline On-Time Performance Data from the Federal 

Aviation Administration (FAA) and the Surface Airways Weather Data from the National 

Climatic Data Center (NCDC). Multivariate regression, ANOVA, neural networks and 

logistic regression were used to detect the pattern of airport delay, aircraft arrival delay 

and schedule performance. These models are then integrated in the form of a system for 

aircraft delay analysis and airport delay assessment. The assessment of an airport’s 

schedule performance is discussed.  

The results of the research show that the daily average arrival delay at Orlando 

International Airport (MCO) is highly related to the departure delay at other airports. The 

daily average arrival delay can also be used to evaluate the delay performance at MCO. 

The daily average arrival delay at MCO is found to show seasonal and weekly patterns, 

which is related to the schedule performance. The precipitation and wind speed are also 

found contributors to the arrival delay. The capacity of the airport is not found to be 

significant. This may indicate that the capacity constraint is not an important problem at 

MCO. 

This research also investigated the delays at the flight level, including the flights with 

delay ≥0 minute and the flights with delay ≥15min, which provide the delay pattern of 

single arrival flights. The characteristics of single flight and their effect on flight delay 

are considered. The precipitation, flight distance, season, weekday, arrival time and the 

time spacing between two successive arriving flights are found to contribute to the arrival 

delay. We measure the time interval of two consecutive flights spacing and analyze its 
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effect on the flight delay and find that for a positively delayed flight, as the time space 

increases, the probability of the flights being delayed will decrease. 

While it was possible to calculate the immediate impact of originating delays, it is not 

possible to calculate their impact on the cumulative delay. If a late departing aircraft has 

no empty space in its down line schedule, it will continue to be late. If that aircraft enters 

a connecting airport, it can pass its lateness on to another aircraft. In the research we also 

consider purifying only the arrival delay at MCO, excluding the flights with originating 

delay >0. The model makes it possible to identify the pattern of the aircraft arrival delay. 

The weather conditions are found to be the most significant factors that influence the 

arrival delay due to the destination airport. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Research Motivation 

With the great increase in air traffic comes a large increase in the demand for airport 

capacity. However, airspace and airport capacity cannot keep increasing at a rate 

necessary to match the rising demand. When an airport's capacity is reduced during “peak 

hours", the demand for an airport's resources exceeds the capacity that the airport can 

afford. This is known as a capacity-demand imbalance. Demand refers to the number of 

flights scheduled to arrive or depart in a given time period (rate of flight arrivals or 

departures). Capacity is the maximum number of flight arrivals or departures in a given 

time period. The direct result of the capacity-demand imbalance is the airport congestion 

and flight delay. Many major airports around the world have significant delay problems 

as a result of an imbalance between capacity and demand (Aisling and Kenneth, 1999).  

Flight delays are obviously frustrating to air travelers and costly to airlines. Airline 

companies are the most important customers of the airport (Ashford and Wright, 1992). 

A well-known phase ‘the airplane earns only when flying’ holds true. On-time 

performance of airlines schedule is key factor in maintaining current customer 

satisfaction and attracting new ones. Flight schedule of the airport is the key to planning 

and executing airlines’ operation (Wu, 2005). With each schedule, the airline defines its 

daily operations and commits its resources to satisfying its customers’ air travel needs. 

Therefore, one of the basic requirements all airlines place on the ground handling is to 

ensure high efficiency of handling activities, avoiding delays (Mueller, et al., 2002). 

Flight delay is complex to explain, because a flight can be out of schedule due to 

problems at the airport of origin, at the destination airport, or during the airborne. A 
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combination of these factors often occurs. Delays can sometimes also be attributable to 

airlines. Some flights are affected by reactionary delays, due to late arrival of previous 

flight. These reactionary delays can be aggravated by the schedule operation. Flight 

schedules are often subjected to irregularity. Due to the tight connection among airlines 

resources, delays could dramatically propagate over time and space unless the proper 

recovery actions are taken. Even if complex, there exist some pattern of flight delay due 

to the schedule performance and airline itself. Some results extracted from the case study 

on Orlando International Airport (MCO) can help to better understand the phenomenon. 

 

1.2 Problem Statement 

Our case study is Orlando International Airport (MCO). The generality of a number of 

the findings may be limited, however, the methodology developed in this paper is widely 

applicable.  

Orlando International Airport (MCO) is Florida's busiest airport, serving 56 airlines 

and around 30 million domestic passengers each year, with scheduled non-stop services 

to 84 US and 17 international destinations. More than 33 million passengers fly in and 

out of MCO each year, making it fourth busiest airport in the country for domestic 

travelers and the 14th in the country for total passengers (from 

http://www.orlandoairports.net). 

The airport is presently moderately congested and for the past several years. While the 

domestic air traffic in MCO has greatly increased over the last 10 years, especially in 

2004(14%) and in 2005(10%), it is predicted to continue to increase at a rate of 3 to 5% 

over the next 15 years, which has placed a heavier burden on air traffic control and 
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airport facilities. Airport capacity will lose at the rate necessary to catch up with the 

rising demand. Because of the surge in air traffic and the limited capacity of airports, the 

capacity-demand imbalance will become more and more serious, which results in the 

airport congestion and flight delay.  

What is more, the inherent randomness of air traffic systems cannot consider 

stochasticity enough in schedule planning. Because of this, there is often a notable 

discrepancy between a schedule and actual performance, which will increase the delay 

problem. It is vital that methodologies and tools be developed to analyze the increasing 

flight delay.  

In air traffic flow management (ATFM), delay and congestion incur due to uncertainty 

of future landing capacity over a several hour interval. Ground holding program is one of 

the basic methods of lowering the cost of this problem. It means to have a flight wait on 

the ground at its point of origin than to have it circle the airport at its destination, unable 

to land. 

If adverse weather conditions are anticipated at one airport the Federal Aviation 

Administration (FAA) issues a ground delay program (GDP) at this airport that increases 

the gap between successive flight arrivals to ensure safe operations. In most cases, the 

available slots for flight arrivals are less than what is required for the original planned 

schedule (Ball et al., 2000). Thus, a scheduled flight could be held at its origin, diverted 

to another airport or in the worst case it could be canceled. These disruptions in the 

planned flight schedule impact availability of crews and aircrafts for future flights. For 

instance, if a flight is delayed, its crewmembers may misconnect their next scheduled 

flights. They may also exceed the maximum allowed (legal) duty period length resulting 
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in not completing remaining flights in their planned schedule (Yu et al., 2003). 

Studies have identified the stages of flight in which delays occur and the causal factors 

that result in delays. For example, DOT classifies delays as gate delay, taxi-out delay, 

airborne delay and taxi-in delay. And the data shows that 84% of all delays occur on the 

ground (gate, taxi-out, taxi-in), out of which 76% are prior to takeoff (gate, taxi-out), 

suggesting that focusing on ground delay prediction will have the most impact on 

improving forecasting algorithms (Mueller, et al., 2002). So the arrival delay in this thesis 

is the delay value counting at the gate.  

Empirical studies on airport congestion have identified several reasons which generate 

flight delays: saturation of airport capacity (including air transportation control activities), 

airline problems, reactionary delays, passengers and cargo, weather and other 

unpredictable disruptions (e.g. strikes). Among all these reasons, delay time experienced 

by flights and passengers can be mostly attributed to the first two groups: problems 

caused by air transportation control and airports, and by airlines. The impact of the most 

common and important of these factors will be discussed in chapter 3. 

Inclement weather causes delays not only at airports experiencing the inclement 

weather, but also at airports with flights connecting from the airports experiencing 

inclement weather. During inclement weather, airport capacity is reduced due to 

increased aircraft separations. Because instrument landing systems are required for 

aircraft navigation in these conditions, this situation is called Instrument Meteorological 

Conditions, or IMC. Clear weather is known as Visual Meteorological Conditions or 

VMC. 

In order to represent in our model this complex formation of flight delays, we will 

 4

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VGP-4DFT3HK-1&_user=2139851&_coverDate=11%2F01%2F2004&_alid=312393450&_rdoc=4&_fmt=full&_orig=search&_cdi=6044&_sort=d&_st=5&_docanchor=&_acct=C000054275&_version=1&_urlVersion=0&_useri


concentrate on three main reasons: airports’ capacity, characteristics of individual flights, 

and weather conditions.  

 

1.3 Research Objectives 

On-time performance of airlines schedule is a key factor in maintaining current customer 

satisfaction and attracting new ones. However, flight schedules are often subjected to 

irregularity. Due to the tight connection among airlines resources, these delays could 

dramatically propagate over time and space unless the proper recovery actions are taken 

(Mueller, et al., 2002). This thesis presents models which projects individual arrival flight 

delays and alerts for possible future breaks during irregular operation conditions. Using 

the prediction model, it is possible to test sensitivity of overall schedule performance to 

the schedule time parameter. 

Flight delay is a complex phenomenon. Even if complex, there exist some pattern of 

flight delay due to the schedule performance and airline itself. Due to the arrangement of 

airline schedule, the flight delay may show seasonal, weekly or daily patterns, and also 

show some preference according to airborne time, flight distance and origination areas 

etc. This is the interest of this thesis.  

While it was possible to calculate the immediate impact of originating delays, it is not 

possible to calculate their impact on the cumulative delay. If a late departure aircraft has 

no empty space in its down line schedule, it will continue to be late. If that aircraft enters 

a connecting airport, it can pass its lateness on to other aircraft. In the research we also 

consider purifying only the arrival delay at MCO, excluding the flights with originating 

delay > 0. The model will make it possible to see the pattern of the aircraft arrival delay.  
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The analysis of an airport’s schedule performance is another focus in this thesis. The 

airport delay distributions and the delay assessment of airport are presented. The results 

of our research show that the arrival delay is highly related to the departure delay at the 

originate airport. The patterns of daily average arrival delay at MCO are also carried out. 

Schedule design involves establishing a consistent rule for selecting the correct amount of 

time to allocate to each flight segment. In response to flight delay predictions and reason 

for these delays that are generated by the model, which can give indications for the 

appropriate recovery actions to recover/avoid these delays.  

 

1.4 Organization of the Thesis 

Following this introductory chapter, chapter 2 gives a background and description of 

flight delay along with a literature review of delay models, simulation methods and the 

statistical techniques used in the thesis. 

Chapter 3 provides descriptions of the data sources and definitions of the data used to 

calibrate the statistical models of the thesis. There are two main data sources: the Airline 

On-Time Performance Data from the Federal Aviation Administration (FAA) and the 

climatic data from the National Climatic Data Center (NCDC).  

Chapter 4 presents the airport delay distribution and delay assessment. Then the 

average daily arrival delay models are carried out to analyze the airport arrival delay and 

pattern detection. 

Chapter 5 presents models for delay analysis of individual arrival flights. Patterns 

between the flights with no delay and late flights are found. At the same time the patterns 

between the flights with low delay and high delay are found 

In Chapter 6 we consider purifying only the arrival delay at MCO, excluding the flights 
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with originating delay > 0. The model will make it possible to see the pattern of the 

aircraft arrival delay more clearly. 

The final chapter consists of summary and conclusions from this research and provides 

insight into future research.
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 

 

2.1 Discussion of Flight Delay 

Flight delay is a complex phenomenon, because it can be due to problems at the origin 

airport, at the destination airport, or during airborne. A combination of these factors often 

occurs. Delays can sometimes also be attributable to airlines. Some flights are affected by 

reactionary delays, due to late arrival of previous flights. These reactionary delays can be 

aggravated by the schedule operation. Flight schedules are often subjected to irregularity. 

Due to the tight connection among airlines resources, delays could dramatically 

propagate over time and space unless the proper recovery actions are taken. Even if 

complex, flight delays are nowadays measurable. And there exist some pattern of flight 

delay due to the schedule performance and airline itself (Wu, 2005). Some results 

extracted from the case study of Orlando International Airport (MCO) can help to better 

understand the phenomenon. 

Two government agencies keep air traffic delay statistics in the United States. The 

Bureau of Transportation Statistics (BTS) compiles delay data for the benefit of 

passengers. They define a delayed flight when the aircraft fails to release its parking 

brake less than 15 minutes after the scheduled departure time. The FAA is more 

interested in delays indicating surface movement inefficiencies and will record a delay 

when an aircraft requires 15 minutes or longer over the standard taxi-out or taxi-in time 

(Mueller, et al., 2002). 

Generally, flight delays are the responsibility of the airline. Each airline has a certain 

number of hourly arrivals and departures allotted per airport. If the airline is not able to 

get all of its scheduled flights in or out each hour, then representatives of the airline will 

 8



determine which flights to delay and which flights to cancel (from 

http://www.travelforecast.com).  

These delays take one of three forms, ground delay programs, ground stops, and 

general airport delays. When the arrival demand of an airport is greater than the 

determined capacity of the airport, then a ground delay program may be instituted. The 

airport capacity is unique to each airport, given the same weather conditions. The various 

facilities at an airport can determine how much traffic an airport can handle during any 

given weather event. Generally, ground delay programs are issued when inclement 

weather is expected to last for a significant period of time. These programs limit the 

number of aircraft that can land at an affected airport. Because demand is greater than the 

aircraft arrival capacity, flight delays will result. 

Second, ground stops are issued when inclement weather is expected for a short period 

of time or the weather at the airport is unacceptable for landing. Ground stops mean that 

traffic destined to the affected airport is not allowed to leave for a certain period of time. 

Lastly, there are general arrival and departure delays. This usually indicates that arrival 

traffic is doing airborne holding or departing traffic is experiencing longer than normal 

taxi times or holding at the gate. These could be due to a number of reasons, including 

thunderstorms in the area, a high departure demand, or a runway change. Our research 

finds that arrival and departure delays are highly correlated. Correlation between arrival 

and departure delays is extremely high (around 0.9 for 2002 and 2003). This finding is 

useful to prove that congestion at destination airport is to a great extent originated at the 

departure airport.  

In order to understand flight delay, it is useful to consider the phenomenon of 
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scheduled delay. The simplest way of reducing delays is not to increase the speed and 

efficiency of the system to meet the scheduled time, but to push back the scheduled time 

to absorb the system delays. As a result, one estimate put the number of scheduled delays 

that were built into airline schedules in 1999 at 22.5 million minutes. The number of 

arrival delays reported by BTS would have been nearly 25% higher in 1999 if airlines 

had maintained their 1988 schedules (Wu, 2005). 

Sources of airport delay include many elements, such as weather, airport congestion, 

luggage loading, connecting passengers, etc. Weather is the main contributor to delays in 

the air traffic control (ATC) system. Traffic volume delays are caused by an 

arrival/departure demand that exceeds the normal airport arrival rate (AAR)/airport 

departure rate (ADR). The demand may also exceed the airport capacity if AAR and 

ADR are reduced due to weather conditions at the airport, equipment failure or runway 

closure. Delays may also be attributed to airline operations procedures (Aisling and 

Kenneth, 1999).  

 

2.2 Literature Review 

2.2.1 Literature on Delay Analysis and Potential Remedies 

The increase in delays in the National Airspace System (NAS) has been the subject of 

studies in recent years. The literature on delay analysis and its potential remedies extends 

back over several decades. Levine (1969) argues that pricing is a better means of 

allocating scarce airport capacity to meet the demand than other mechanisms being 

considered at the time, such as slot allocation.  

The Federal Aviation Administration (FAA) describes the increase in delays and 
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cancellations from 1995 through 1999. Schaefer and Miller (2001) found that the current 

system for collecting causal data does not provide the appropriate data for developing 

strong conclusions for delay causes and recommend changes to the current data collection 

system. 

Allan et al. (2001) examined delays at New York City Airports from September 1998 

through August 2000 to determine the major causes of delay that occurred during the first 

year of an Integrated Terminal Weather System (ITWS) use and delays that occurred 

with ITWS in operation that were “avoidable” if enhanced weather detection. The 

methodology used in the study has considered major causes of delays (convective 

weather inside and well outside the terminal area, and high winds) that have generally 

been ignored in previous studies of capacity constrained airports such as Newark 

International Airport (EWR). The research found that the usual paradigm of assessing 

delays only in terms of Instrument Meteorological Conditions (IMC) and Visual 

Meteorological Conditions (VMC) and the associated airport capacities is far too 

simplistic as a tool for determining which air traffic management investments best 

reduces the “avoidable” delays.  

Schaefer and Miller (2001) use the Detailed Policy Assessment Tool (DPAT) to model 

the propagation of delay throughout a system of airports and sectors. To estimate delays, 

throughputs, and air traffic congestion in a typical scenario of current operations in the U. 

S., DPAT models the flow of approximately 50,000 flights per day throughout the 

airports and airspace of the U. S. National Airspace System (NAS) and can simulate 

flights to analyze delays at airports around the world. They obtained results for local 

flight departure and arrival delays due to IMC, propagation for IMC, comparisons to 
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VMC results, and a comparison of propagated delays to entire system.   

Rosen (2002) measures the change in flight times resulting from 

infrastructure-constant changes in passenger demand. Results indicate that delays rise 

with the ratio of demand to fixed airport infrastructure, decreasing average flight times by 

close to seven minutes after the sharp decrease in demand in the Fall of 2001. Flight time 

differences between the airlines in the sample are small, though the larger United had 

shorter average flight times in the winter quarter than America West, the smaller airline 

in the data sample. 

Janic(2003) presents a model for assessment of the economic consequences of 

large-scale disruptions of an airline single hub-and-spoke network expressed by the costs 

of delayed and cancelled complexes of flights. The model uses the scheduled and affected 

service time of particular complexes to determine their delays caused by disruption. 

During the last decade, a considerable attention has been given to proactive schedule 

recovery models as a possible approach to limit flight delays associated with Ground 

Delay Programs (GDP) (Abdelghany et al., 2004; Clarke, 1997). In these models, the 

impact of any reported flight delays, due to GDP or any other reason, is propagated in the 

network to determine any possible down-line disruptions (Monroe and Chu, 1995). 

Wu (2005) explores the inherent delays of airline schedules resulting from limited 

buffer times and stochastic disruptions in airline operations. It is found that significant 

gaps exist between the real operating delays, the inherent delays (from simulation) and 

the zero-delay scenario. Results show that airline schedules must consider the 

stochasticity in daily operations. Schedules may become robust and reliable, only if 

buffer times are embedded and designed properly in airline schedules. 
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2.2.2 Review on Methodology of Delay Analysis 

Suzuki (2000) proposes a new method of modeling the relationship between on-time 

performance and market share in the airline industry. The idea behind the method is that 

the passengers decision to remain (use same airline) or switch (use other airlines) at time 

t depends on whether they have experienced flight delays at time t-1 or not.  

Air traffic flow management (TFM) (Ball, Connolly, and Wanke 2003) procedures 

such as Ground Delay program (GDP), Ground Stop (GS), or Miles-in-Trail (MIT) 

metering are options available to the Air Traffic Management (ATM) authority to 

manage airway congestion and to respond to anticipated weather conditions (Wanke et al. 

2003). The effects of such complex interactions was quantified with either discrete event 

simulation or mathematical models or both. In this analysis, the authors developed a 

recursive MIT penalty function to quantify the ripple effects of specific MIT programs 

over relevant sets of flights and flight restrictions within the NAS. In conjunction with 

discrete event simulation, it is possible to examine and quantify the total impacts of 

various TFM programs for alternatives analysis and provide a comparison across several 

alternative TFM programs available to air traffic flow management decision-makers.  

Hansen (2002) analyzes runway delay externalities at Los Angeles International 

Airport (LAX) using a deterministic queuing model. The model allows estimating the 

delay impact of each specific arriving flight on each other specific arriving flight. The 

research finds that, despite being only moderately congested (average queuing delay only 

4 min per arriving flight), individual flights can generate as much as 3 aircraft-hours of 

external delay impact on other flights, with an average impact of 26 aircraft-minutes and 
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3400 seat-minutes. About 90 percent of this impact is external to the airline as well as the 

flight, a consequence of the lack of a dominant airline at LAX. 

Shomik et al. (2002) presents an analysis of the possible impact of the application of 

slot controls as a demand management measure at San Francisco International Airport 

(SFO). A deterministic queuing model that uses an actual arrival schedule as input and 

simulates arrival delay based on available arrival capacity is used to estimate delay 

reduction potential of slot controls. The conclusions show the overall potential of slot 

controls to alleviate delay at SFO and their non-delay consequences. 

Mehndiratta et al. (2002) propose a simulation framework to analyze the effects of 

stochastic flight delays on static gate assignments. The results of testing the framework 

on actual Chiang Kai-Shek airport (Taiwan) operations were good, showing that the 

framework could be useful for airport authorities to perform gate assignments. 

Abdelghany et al. (2004) present a flight delay projection model, which projects flight 

delays and alerts for down-line operation breaks for large-scale airlines schedules. The 

results show that down-line schedule disruptions are proportional to the number of flights 

impacted by the GDP. Furthermore, in the recorded GDP instances, aircraft appears to be 

the reason for most flight delays predicted by the model.  

Hansen and Hsiao (2005) analyze the recent increase in flight delay in the US domestic 

system by estimating an econometric model of average daily delay that incorporates the 

effects of arrival queuing, convective weather, terminal weather conditions, seasonal 

effects, and secular effects (such as half year). Results suggest that, controlling for these 

factors, delays decreased steadily from 2000 through early 2003, but that the trend 

reversed thereafter. 
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Hansen and Zhang (2005) investigated the interaction between LaGuardia Airport 

(LGA) and the rest of the aviation system by estimating simultaneous equations of 

average LGA and National Airspace System delay using two-stage least squares. The 

results demonstrate that the arrival delay impact of the Aviation Investment and Reform 

Act for the 21st Century (AIR-21) on LGA was in the form of increased Ground Delay 

Program (GDP) holding, and that while delay increased markedly under AIR-21 there 

were also observable improvements in the ability of LGA airport to handle traffic.  

Hansen and Peterman (2004) use censored regression to analyze the delay impacts of 

the implementation of Traffic Management Advisor (TMA) metering at Los Angeles 

International Airport (LAX) in order to assess whether and how they have affected NAS 

performance. The results show that weather variables are not significant in the IMC 

models. In contrast to the IMC results, weather effects are significant under VMC. 

Temperature, visibility, and wind all have significant effects in at least one of the time 

periods. The presence of these weather effects under VMC suggests that, as a result of the 

greater flexibility of VMC separation rules, the performance of the airport is more 

responsive to changing conditions. It is notable that temperature is one the influential 

factors.  

The current method of valuing delay in benefit-cost analysis is insufficient for 

determining the distributional impacts of a technology change on users because it fails to 

account for the shifts in where benefits occur and to which users. Kanafani et al (2004) 

propose a theoretical framework for evaluating the distributive effects of technology 

changes that requires a new approach to the evaluation of delay and understanding 

efficiency in light of the state of the system. The framework defines different categories 
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of delay per flight and a method for calculating the cost of each type of delay by 

stakeholder recognizing that the airlines have different business strategies and therefore 

have different preferences. A case study based on a recent study of the benefits of the 

Integrated Terminal Weather Service (ITWS) demonstrates that a detailed investigation 

of the breakdown of delay into components can lead to more accurate delay cost 

accounting. 

 

2.2.3 Conclusions of Review 

Statistical models and simulation method are used to analyze flight delay, including 

deterministic queuing model, censored regression, and econometric model etc. But we 

can see that the analysis on delay are carried on macroscopical data or microcosmic data 

with only a few days. That is because of the huge data of flights every day. So here the 

flight delay are categorized into several level, and the logistic regression models are used 

here to better identify the delay pattern. In this thesis, studies on airport delay and delay 

influence on individual flight are carried out, using multiple regression model, logistic 

regression models, neural network models and tree model. The influencer related to 

aircraft, airline operations, change of procedures and traffic volume are also discussed. 

This paper will detect the pattern of delay from the airport level in which delays occur, 

give basic statistics on their magnitudes and frequencies.  

The data used will be described in chapter 3, and the casual factors will be introduced 

too in chapter3. Chapter 4, 5, 6 will focus on the statistic models on airport delay and 

individual flight delay. 
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2.3 Statistical Background 

2.3.1 Analysis of Variance (ANOVA) 

Analysis of variance (ANOVA) is used to study the effects of one or more independent 

(predictor) variables on the dependent (response) variable. Most commonly, ANOVA is 

used to test the equality of means by analyzing the total sum of squares (about the 

combined mean), which is partitioned into different components (due to model or due to 

random error). The formulas below depict the function of single-factor and multiple 

comparisons of ANOVA proposed by Girden (1992). 

 Single-Factor or One-Way 

A factor is an independent variable. Thus in single-factor ANOVA, the effects of only 

one independent variable are being tested. For single-factor ANOVA, each level of the 

factor is referred to as a treatment. The null hypothesis is equality of factor level means. 

The Single-Factor ANOVA model can be written as Yij = μ + αj+ εij, where Yij represents 

the i
th

 observation of the j
th

 factor level 

i = 1,…nj, j = 1,…k, 

nj is the number of observations for the j
th

 factor level, k is the total number of factor 

levels, μ is the overall mean of all factor level means, and αj is called the effect of the j
th

 

factor level. 

The unknown parameters (μ, αj) are usually estimated from the data using the method 

of ordinary least squares (OLS). In OLS, is minimized with respect 

to μ, α

∑∑
= =

−−
k

j

n

i

ij

j

jY
1 1

2)( αμ

1, α2, ..., αk. As stated earlier, the equality of factor level means are tested by 

analyzing the decomposition of overall variance (total sum of squares). The deviation 
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YYij − , the difference between each observation and the overall mean can be 

decomposed into two components: deviation between each factor level mean and the 

overall mean; and the deviation of each observation around its respective factor level 

mean.  

The ‘total sum of squares’ equals the sum of the ‘sum of squares due to model’ plus 

the ‘sum of squares due to random error’. Each sum of squares term divided by its 

associated degrees of freedom results in its mean square (MS). The F-value that is used as 

a test statistic is the ratio of the mean square of the model and the mean square error. 

Mean square of the model can also be thought of as the mean squared deviation between 

groups (treatments) and the mean squared error as the mean squared deviation within 

groups. Large values of the F-statistic lead to the rejection of the null hypothesis of the 

factor level means being equal. 

 Multiple Comparisons 

When the F-test rejects the null hypothesis that there exists an equality of means, the 

procedure of multiple comparisons allows one to determine where the differences lie 

while controlling the simultaneous confidence coefficient (1-α). In general, the procedure 

of multiple comparisons is used to determine if there exists statistically significant 

differences between two or more factor level means. Each comparison is known as a 

contrast, L, and is defined as ∑= jjtL μ , where tj satisfies the restriction . ∑ = 0jt

There are three common methods of multiple comparisons that are used: the Tukey 

Method, the Scheffe’ Method and the Bonferroni Method. The Tukey method should be 

used when the factor level sample sizes are equal and the multiple comparisons of interest 

are all pairwise comparisons. Scheffe’s method is the most general method in that it can 
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be used regardless of whether or not the factor level sample sizes are equal and when all 

possible comparisons are sought. The Bonferroni method can be used irregardless of the 

factor level sample sizes, but only for a prespecified set of contrasts. The method that 

yields the greatest amount of precision of the confidence intervals depends on the type 

and amount of multiple comparisons being made.  

 

2.3.2 Logistic regression modeling 

Logistic regression belongs to the group of regression methods for describing the 

relationship between explanatory variables and a discrete response variable. A logistic 

regression is proper to use when the dependent is categorized and can be applied to test 

association between a dependent variable and the related potential factors, to rank the 

relative importance of independents, and to assess interaction effects (Allison, 1999). 

Binary logistic regression is used when the dependent variable Y can only take on two 

values (such as low delay vs high delay). The equation 1 and 2 below depict the logit of 

binary logistic and multiple logistic regression model proposed by Allison (1999). 

The probability that flight with high delay will occur or not is modeled as logistic 

distribution in Equation 1. 
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The Logit of the multiple logistic regression model is given by Equation 2. 
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where, π( )x  is conditional probability of a highly delayed flight, which is equal to the 
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number of highly delayed flights divided by the total number of flights.  is 

independent variables. The independent variables can be either categorical or continuous, 

or a mixture of both. Both main effects and interactions can generally be 

accommodated.

xn

βn  is model coefficient, which directly determines odds ratio involved. 

The odds of an event are defined as the probability of the outcome event occurring 

divided by the probability of the event not occurring. The odds ratio that is equal to 

exp(βn ) tells the relative amount by which the odds of the outcome increase (O.R. 

greater than 1.0) or decrease (O.R. less than 1.0) when the value of the predictor value is 

increased by 1.0 units.  

Maximum likelihood (ML) is the method for estimating the logit model for grouped 

data and the only method in general use for individual-level data. Maximum likelihood is 

a very general approach to estimation that is widely used for all sorts of statistical models. 

There are two reasons for this popularity. First, ML estimators are known to have good 

properties in large samples. And the sampling distribution of the estimates will be 

approximately normal in large samples, which means that you can use the normal and 

chi-square distributions to compute confidence intervals and p-values. The other reason 

for ML’s popularity is that it is often straightforward to derive ML estimators when there 

are no other obvious possibilities. One case that ML handles very nicely is the data with 

categorical dependent variables (Allison, 1999). 

 

2.3.3 Tree Classification Method  

Decision trees build classification models based on recursive partitioning of data. 

Typically, a decision tree algorithm begins with the entire set of data, splits the data into 
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two or more subsets based on the values of one or more attributes, and then repeatedly 

splits each subset into finer subsets until the size of each subset reaches an appropriate 

level. The entire modeling process can be represented in a tree structure, and the model 

generated can be summarized as a set of “if–then” rules. Decision trees are easy to 

interpret, computationally inexpensive, and capable of coping with noisy data. Therefore, 

the techniques have been widely used in various applications(The introduction to SAS 

Enterprise Miner Software, available from SAS). 

In tree-structured representations, a node represents a set of data, and the entire data set 

is represented as a root node. When a split is made, several child nodes, which 

correspond to partitioned data subsets, are formed. If a node is not to be split any further, 

it is called a leaf; otherwise, it is an internal node. In this report, we deal with binary trees, 

where each split produces exactly two child nodes(32). 

When a data point falls in a partitioned region, a decision tree classifies it as belonging 

to the most frequent class in that region. The error rate is the total number of 

misclassified points divided by the total number of data points; and the accuracy rate is 

one minus the error rate. The splitting attributes and their values in decision trees are 

determined by a sort-and-search procedure, in conjunction with an impurity measure(The 

introduction to SAS Enterprise Miner Software, available from SAS). 

 

2.3.4 Neural networks 

Artificial neural networks are alternative computation techniques that can be applied to 

solve category analysis problems. In this section we describe multi-layer perceptron 

(MLP) and Radial basis function (RBF) neural network that are most commonly used 
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neural network architectures. 

2.3.4.1 MLP neural network architecture 

The MLP network is one of the most popular neural network architectures that fit a 

wide range of applications such as forecasting, process modeling, and pattern 

discrimination and classification. MLPs are feed-forward neural networks trained with 

the standard back-propagation algorithm. They are supervised networks so they require a 

desired response to be trained.  

An MLP neural network has input layer, hidden layer and output layer along with input 

and output bias. The net input to hidden layer neurons is determined through inner 

product between the vector of connection weights and the inputs. The activation function 

is applied to this net input of hidden neurons and the weights from hidden to output layer 

are then used to get the output of the network. These weights are the parameter estimated 

during the supervised training process and are then used to ‘score’ unseen observations. 

The activation function of hidden neurons is non-linear in nature and is critical in the 

functioning of the neural network for it allows the network to ‘learn’ any underlying 

relationship of interest between inputs and outputs. An MLP neural network shown in 

Figure 2.1 from Christodoulou and Georgiopoulos (2001) has input layer of size K, a 

hidden layer of size J and output layer of size I along with input and output bias. In the 

MLP architecture the connections are of feed-forward type; it means that the only 

connections allowed between nodes are from a layer of a certain index to layers of higher 

index. (Neural Networks, http://www.statsoft.com/textbook/stathome.html) 
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Figure 2.1 MLP neural network architecture 

 

The number of input and output units is defined by the problem (there may be some 

uncertainty about precisely which inputs to use, a point to which we will return later. 

However, for the moment we will assume that the input variables are intuitively selected 

and are all meaningful). Once the number of layers, and number of units in each layer, 

has been selected, the network's weights and thresholds must be set so as to minimize the 

prediction error made by the network. This is the role of the training algorithms. (Neural 

Networks, http://www.statsoft.com/textbook/stathome.html) 

The historical cases that you have gathered are used to automatically adjust the weights 

and thresholds in order to minimize this error. This process is equivalent to fitting the 

model represented by the network to the training data available. The error of a particular 

configuration of the network can be determined by running all the training cases through 
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the network, comparing the actual output generated with the desired or target outputs. 

The differences are combined together by an error function to give the network error. The 

most common error functions are the sum squared error (used for regression problems), 

where the individual errors of output units on each case are squared and summed together, 

and the cross entropy functions (used for maximum likelihood classification).  

In back propagation, the gradient vector of the error surface is calculated. This vector 

points along the line of steepest descent from the current point, so we know that if we 

move along it a "short" distance, we will decrease the error. A sequence of such moves 

(slowing as we near the bottom) will eventually find a minimum of some sort. The 

difficult part is to decide how large the steps should be.  

Large steps may converge more quickly, but may also overstep the solution or (if the 

error surface is very eccentric) go off in the wrong direction. A classic example of this in 

neural network training is where the algorithm progresses very slowly along a steep, 

narrow, valley, bouncing from one side across to the other. In contrast, very small steps 

may go in the correct direction, but they also require a large number of iterations. In 

practice, the step size is proportional to the slope (so that the algorithms settles down in a 

minimum) and to a special constant: the learning rate. The correct setting for the learning 

rate is application-dependent, and is typically chosen by experiment; it may also be 

time-varying, getting smaller as the algorithm progresses (Christodoulou and 

Georgiopoulos, 2001) .  

The algorithm therefore progresses iteratively, through a number of epochs. On each 

epoch, the training cases are each submitted in turn to the network, and target and actual 

outputs compared and the error calculated. This error, together with the error surface 
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gradient, is used to adjust the weights, and then the process repeats. The initial network 

configuration is random, and training stops when a given number of epochs elapses, or 

when the error reaches an acceptable level, or when the error stops improving.  

The details of the algorithm would make this point clearer and are provided below from 

Christodoulou and Georgiopoulos (2001). The objective function takes the following 

form:  
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where w = [w1   w2     …     wN]
 T consists of the interconnection weights in the network, dkp 

and okp are the desired and actual values, respectively, for kth output and pth pattern. N is 

the total number of weights, P is the number of patterns, and K is the number of network 

outputs. The above equation may be rewritten as  
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where E is the cumulative error vector (for all patterns).  

 

2.3.4.2 Radial basis function (RBF) neural network 

The RBF network is a popular alternative to the MLP, which although it is not as well 

suited to larger applications, can offer advantages over the MLP in some applications. 

For example, an RBF network can be easier to train than an MLP network. RBF networks 

have a number of advantages over MLPs. First, as previously stated, they can model any 

nonlinear function using a single hidden layer, which removes some design-decisions 

about numbers of layers. Second, the simple linear transformation in the output layer can 
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be optimized fully using traditional linear modeling techniques, which are fast and do not 

suffer from problems such as local minima which plague MLP training techniques. RBF 

networks can therefore be trained extremely quickly (Neural Networks, 

http://www.statsoft.com/textbook/stathome.html). 

Radial-Basis Function Networks contains an input layer, a hidden layer with nonlinear 

activation functions and an output layer with linear activation functions. A radial basis 

function network (RBF) has a hidden layer of radial units, each actually modeling a 

Gaussian response surface. Since these functions are nonlinear, it is not actually 

necessary to have more than one hidden layer to model any shape of function: sufficient 

radial units will always be enough to model any function.  

In the hidden layer of an RBF, each hidden unit takes as its input all the outputs of the 

input layer xi (Christodoulou and Georgiopoulos 2001). The hidden unit contains a "basis 

function" which has the parameters "centre" and "width". The centre of the basis function 

is a vector of numbers of the same size as the inputs to the unit and there is normally a 

different centre for each unit in the neural network. The first computation performed by 

the unit is to compute the "radial distance", d, between the input vector xi and the centre 

of the basis function, typically using Euclidean distance: 

 
22
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The unit output a is then computed by applying the basis function B to this distance 

divided by the width w:  )/( wdBa =

In feed forward neural network architectures the activation function of hidden neurons 

is applied to a net single value that is obtained by combining input vectors with the vector 
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of connection weights between input layer to hidden layer. The function that combines 

the inputs with the weights may be referred to as the ‘combination function’. In the MLP 

neural network architecture the combination function was simply the inner product of the 

inputs and weights.  

There are two distinct types of Gaussian RBF architectures. The first type, the ordinary 

RBF (ORBF) network, uses the exponential activation function, so the activation of the 

unit is a Gaussian "bump" as a function of the inputs. The second type, the normalized 

RBF (NRBF) network, uses the softmax activation function, so the activations of all the 

hidden units are normalized to sum to one.  

Note that the output bias has no role in an NRBF network since the constant bias term 

would be linearly dependent on the constant sum of the hidden units due to the softmax 

activation. The distinction and advantages of NRBF networks over the ORBFs are 

discussed in detail by Tao (1993). It was argued by Tao (1993) that the normalization not 

only is a desirable option but in fact is imperative.  

In NRBF networks one may add another term to the Gaussian combination function 

referred to as the ‘altitude’ which determines the maximum height of the Gaussian curve 

over the horizontal axis. Based on the two parameters (width and height) defining the 

shape of combination function the NRBF networks may be categorized into five different 

types: 

NRBFUN: Normalized RBF network with unequal widths and heights 

NRBFEV: Normalized RBF network with equal volumes (ai=wi) 

NRBFEH: Normalized RBF network with equal heights (and unequal widths) (ai=aj) 

NRBFEW: Normalized RBF network with equal widths (and unequal heights) (wi=wj) 
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NRBFEQ: Normalized RBF network with equal widths and heights (ai=aj) and (wi=wj) 

where wi and ai represent the widths and heights, respectively, of the neurons in the 

hidden layer. Note that the last four categories of networks are special cases of the first 

and are more parsimonious in nature. It essentially means that with certain assumptions 

about the shape of the combination functions they reduce the number of parameters to be 

estimated. 

The output activation function in RBF networks is customarily the identity. Using an 

identity output activation function is a computational convenience in training, but it is 

possible and often desirable to use other output activation functions just as you would in 

an MLP. The Neural Network node sets the default output activation function for RBF 

networks the same way it does for MLPs.  

As mentioned earlier, training of RBFs takes place in distinct stages. First, the centers 

and deviations of the radial units must be set; then the linear output layer is optimized. 

Centers should be assigned to reflect the natural clustering of the data. The two most 

common methods are:  

Sub-sampling. Randomly-chosen training points are copied to the radial units. Since 

they are randomly selected, they will represent the distribution of the training data in a 

statistical sense. However, if the number of radial units is not large, the radial units may 

actually be a poor representation (Haykin, 1994).  

K-Means algorithm. This algorithm (Bishop, 1995) tries to select an optimal set of 

points that are placed at the centroids of clusters of training data. Given K radial units, it 

adjusts the positions of the centers so that each training point belongs to a cluster center, 

and is nearer to this center than to any other center and each cluster center is the centroid 
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of the training points that belong to it.  

Once centers are assigned, deviations are set. The size of the deviation (also known as 

a smoothing factor) determines how spiky the Gaussian functions are. If the Gaussians 

are too spiky, the network will not interpolate between known points, and the network 

loses the ability to generalize. If the Gaussians are very broad, the network loses fine 

detail. This is actually another manifestation of the over/under-fitting dilemma. 

Deviations should typically be chosen so that Gaussians overlap with a few nearby 

centers.  
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CHAPTER 3 DATA DESCRIPTION AND RELATED ISSUES 

 

The analysis in this thesis is based on data from the Airline On-Time Performance Data 

from the Federal Aviation Administration (FAA) and the climatic data from the National 

Climatic Data Center (NCDC). In the following chapters, models will be presented for 

the estimation of a vector of airport daily arrival delay and single flight arrival delay. 

These models are formulated using flight delay parameters and weather conditions at 

Orlando International Airport (MCO).  

The delay statistics with the data specific to MCO airport is the subject of this section. 

A comprehensive characterization and comparison of the arrival and departure delay 

distributions will be presented. Historical delay data for the airport are summarized. To 

enable such an analysis, several data fields for every aircraft arriving at MCO airport 

from 2002 to 2003 were extracted from the database. The various causal factors related to 

aircraft, airline operations, weather and traffic volume are also discussed in section 3.3. 

 

3.1 Airline On-Time Performance Data and Surface Airways Weather Data 

The statistical models in this thesis are estimated on this data consisting of domestic 

flights with the destination of MCO. The data for the non-stop flights on scheduled 

service by certificated carriers to MCO were obtained from the Airline On-Time 

Performance Data from the Federal Aviation Administration (FAA). The data is collected 

by the Office of Airline Information, Bureau of Transportation Statistics (BTS). 

The models are presented for the estimation of a vector of airport average daily arrival 
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delay or single flight arrival delay. The data used consists of the non-stop domestic 

flights on scheduled service by certificated carriers with the destination of MCO. This 

database contains departure delays and arrival delays for non-stop domestic flights by 

major air carriers, and provides such additional items as origin and destination airports, 

flight numbers, scheduled and actual departure and arrival times, cancelled or diverted 

flights, taxi out and taxi in times, airborne time, and non-stop distance. The flight data 

used is from 01/01/2002 through 12/31/2003 excluding the cancelled and diverted flights. 

The following data fields were extracted for each aircraft in the database:  

 identification code, 

 information of the date of departure, 

 original airport code, 

 destination airport code, 

 scheduled time and actual time of departure, 

 scheduled time and actual time of arrival, 

 scheduled flight time and actual flight time, 

 arrival delay and departure delay, 

 flight distance, 

 cancelled and diverted flights. 

 Arrival performance and departure performance in this thesis is based on arrival at the 

gate. So the delay considered is based on the delay at the gate. The flights that leave the 

gate more than fifteen minutes after the scheduled time shown in the carriers’ 
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computerized reservations systems (CRS) are considered “late” while all other flights are 

recorded as “on-time”. Similar to origin airports, flights at destination airports are defined 

as “on-time” if they arrived at the gate within fifteen minutes of the scheduled time 

shown in the carriers’ CRS, while all remaining flights are defined as “late”. The delayed 

flights considered here are the flights with delay equal to or more than 15 minute. 

Considering the number of random events impacting on-time arrival performance of 

the airline, it is surprising that the airlines can run on schedule at all. Recent statistics 

show that the airlines in MCO, in Table 3.1, arrive on time only between 60 and 70 

percent of the time from 2000 to 2004, while there is no big increase in the air traffic 

volume. According to Table 3.1, there is an increasing trend in on-time performance from 

2000 to 2003 excluding 2004, due to the hurricane impact in 2004 on MCO. For the 

analysis on the single flight delay, our interest is in the positively delayed flights and the 

on-time performance of the schedule, the before- time flights will not be considered, and 

only the on-time flights and positively delayed flights are considered 

Table 3.1 On-time Performance at MCO 

year before_time on_time delay Total 

2000 11370 11.37% 64713 64.73% 23892 23.90% 99975 

2001 14671 14.87% 65470 66.37% 18499 18.75% 98640 

2002 12527 15.37% 54812 67.27% 14141 17.36% 81480 

2003 13153 14.24% 63813 69.09% 15391 16.66% 92357 

2004 12801 11.87% 73574 68.20% 21496 19.93% 107871 
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Weather conditions play a very important role in determining airport capacities. Since 

it is our goal to predict and estimate arrival flight delay, it is imperative that we consider 

weather conditions. Most often, weather-related flight delays are due to the interaction of 

two factors. One, how many planes can an airport accept during a given time period 

based on the weather (airport capacity)? Two, how many planes are scheduled to arrive 

(airport demand) during the same given time period? 

There are a whole slew of weather parameters than cause flight delays. The most 

significant and common weather variables that cause delays are low clouds and low 

visibility. Low visibility may be due to fog, haze, smoke, and falling precipitation. When 

these conditions occur, planes may be spaced farther apart, thus resulting in fewer planes 

landing in any given hour. Wind, another typical factor, can also have a significant impact 

on flights. Strong low-level winds or wind shear may require that planes be spaced farther 

apart. Strong crosswinds may make some runways unusable.  

We control for adverse weather using information about the amount of rainfall for 

every day at MCO. That database contains daily observations about the inches of the 

rainfall indicating whether the station had heavy rainfalls during that day. We also include 

in our model the daily average wind speed at Orlando International Airport. Airport wind 

speed and precipitation at MCO are the two weather variables from Surface Airways 

Hourly Weather Data, which is collected and archived by the NCDC. 
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3.2 Variables information 

Since the interest of this research is on the arrival flight delay, we will consider the 

average daily arrival delay at MCO and the single arrival flight delay. The independent 

and dependent variables are introduced as below. 

(1) Flight arrival delay 

Arrival delay equals the difference of the actual arrival time minus the scheduled 

arrival time. The single flight delay metric uses directly the arrival delay for each flight 

with target delay level (delay ≥0 or delay≥15 min). While the average daily delay metric 

reflects all the arriving flights, flights that arrive early are assigned zero delay in the 

calculation. For the delay metric, d(t), we used the average daily positive delay for all 

scheduled and completed flights from other airports to MCO airport in Orlando. It is the 

average of positive delay per flight per day.  

(2) Maximum hourly flow rate (airport capacity) 

The airport capacity refers to the ability of the various facilities in the airport system in 

handling the aircrafts’ activities in the airport. The critical factor of the capacity is the 

relationship between the demand and capacity and how the transportation system’s 

service time is affected. As service time increases, system delay may increase and overall 

system reliability decreases.  

The preferred measure of the airport capacity is the ultimate or saturation capacity, 

which gives the maximum number of aircrafts that, can be handled during a certain 
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period under conditions of continuous demand 
(2)

. It is usually expressed in terms of 

operations per hour (arrivals or departures). This hourly capacity is the maximum number 

of operation that can be handled in a one-hour period under specific operating conditions, 

in particular, weather conditions (ceiling and visibility), air traffic control, the aircraft 

mix and the nature of operations. In this research, the airport capacity is represented by 

the maximum hourly capacity in one day (including arrival and departure flights) 

according to the actual departure time. 

(3) Arrival demand 

The arrival demand is included as another variable that may capture the incidence of 

congestion in the airport system. The arrival demand vector is represented by the sum of 

completed arrival flights to MCO in the hour when the flight occurs according to the 

scheduled arrival time. 

(4) Flight distance 

The effect of flight distance is captured by the categories of the flight distance, which 

respectively represent the flight distance of 0 to 750 miles, 750 to 1000 miles and greater 

than 1000 miles. These classes are categorized with the same percentage of total flights. 

These factors in the model can show whether the long-term flights influence the arriving 

delay more or the short-term flights. 

(5) Spacing of Inter-arrival time 
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The space is used here another variable, which means the intervals between two 

consecutive arriving flights. This inter-arrival time is calculated as the time between each 

flight and the before flight according to the schedule arriving time. The aim of spacing is 

to find the relationship of delay and the schedule operation of the airport. The intervals 

between arrival flights differ under different weather conditions, runway conditions and 

operating conditions. If the traffic flows arrive smoothly, we can say that the spacing is 

constant and small which means the waiting and service time for each flight is controlled 

at a low level. 

(6) Airport precipitation 

The database contains daily observations about the inches of the rainfall indicating 

whether the station had heavy rainfalls during that day. That indicated that the adverse 

weather contributes to the delay in that day. The precipitation is in hundredth of an inch 

of rainfall per hour. 

(7) Airport wind speed 

The arrival delay can be affected by windy conditions, either because of the direct 

effect of the wind or because of associated conditions such as wind shear. The variable of 

daily average wind speed at MCO from NCDC is used in our model. The wind speed is 

speed of wind in mph per day. 

(8) Seasonal variables 
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Seasonal effects are captured by a set of dummy variables. The seasonal variables 

indicate the seasons when the flights are scheduled. The season has four classes, spring 

(March-May), summer (June-August), fall (September to November), and winter 

(December to February), which represent the four seasonal patterns in Orlando. The 

model includes 3 seasonal dummies. These variables capture the seasonal changes in the 

flight delay. 

(9) Weekly variables 

These variables indicate the weekday when the flights are scheduled to detect the 

weekly pattern of delay. 

(10) Origin airport regional variables  

There are 82 airports that have direct flights to Orlando. Here the areas of the origin 

airports are divided into four parts that are southeast, southwest, northeast and northwest 

(appendix A) to detect the region impact on the arrival delay.  

(11) Time effect 

The time effect is defined by a set of dummy variables. These variables indicate the 

scheduled arriving time of each delayed flights. Here we classify the scheduled arrival 

time into 3 classes: morning, afternoon and evening. They are 7am to 11:59 am, 12 am to 

4:59 pm, and 5 pm to 11:59 pm. So the model includes 2 dummies to capture the 

scheduled arrival time of each delayed flight. 
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(12) Interaction effects 

In addition to the various factors above, we also investigated the interaction effects 

between season and time, time effect and weekend effect, weekend effect and distance 

effect by adding a set of variables with the corresponding interaction. 

 

3.3 Airport Arrival Delay Distributions (including early arrivals) 

In this section, air traffic delay characteristics at MCO were examined, and the focus is 

on aggregate statistics derived from the complete dataset, which includes all the traffic 

over the two-year period. The cumulative distribution of arrival delay and departure delay 

will be examined, along with other arrival delay characteristics. 

3.3.1 Cumulative Distribution of Arrival Delay  

Figure 3.1 and Figure 3.2 show individually the percentage of aircraft as a function of 

departure and arrival delays for individual flights. The y axle shows the percentage of 

aircraft, out of all the aircraft that arrived at MCO from 2002 to 2003, which had the 

number of minutes of delay as x axle. The negative value shows that the flight arrived 

before scheduled time, and the positive value shows the flight arrived after scheduled 

time. The value of zero shows the flight arrived exactly on time, which presents a small 

part of the arriving aircrafts. Note that arrival delays are computed at MCO while the 

departure delays are computed elsewhere (destination airports).  

Based on the mean and standard deviations derived from the raw data, for the 
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departing flights, 94% of the delays ranged from −10 to 53 min, with the mean being 

7.881 minutes and the standard error (STD), 22.51 min. For the arriving flights, 94% of 

the delays ranged from −29 to 58 min, with the mean being 4.847 minutes and the STD, 

25.82 min. The mean of departure (7.881 minutes) delay shows higher than the mean of 

arrival delay (4.847 minutes). From the distribution of departure delay and arrival delay, 

we can also see that the departure delay has a much larger part of zero value and smaller 

part of negative value compared to arrival delay, which indicates a large amount of 

aircrafts departure on time and a small amount of aircrafts departure before time.  

 

Figure 3.1 Percentages of aircraft as a function of arrival delays 
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Figure 3.2 Percentages of aircraft as a function of departure delays 
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Figure 3.3 Number of aircrafts according to the distributions of departure delays and arrival delay 

 

In Figure 3.3, the number of aircrafts as a function of the distributions of departure 

delays and arrival delay are showed. The light line shows the number of aircrafts as a 
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function of departure delay minutes, and the dark line show that of arrival delay minutes. 

Observe from the two lines that a slightly greater percentage of aircraft encounter arrival 

delays than experience departure delays. This may be due to those aircrafts that 

experienced departure delays, which propagate through to become arrival delays, and 

those small number that did not experience departure delays but were subject to enroute 

delays or terminal delays, becoming arrival delays. It should be noted that the difference 

between the percentages of delayed departures and arrivals is rather small. And from 

Figure 3.1 and 3.2, it is evident that the percentages of delayed departures and arrivals are 

similar in some cases, suggesting that delay is frequently incurred on departure and 

carries through to arrival. 

All these imply that most of the delay originates before departure, in another words, 

the departure delay has a high relation with arrival delay.  

Considering the distribution of arrival delay and the definition of delay, we classify in 

this thesis 3 categories of delay. No delay means the delay time from 0 to 14 minutes, 

low delay represents the delay time from 15 to 29 minutes, and high delay is the delay 

time greater than or equal to 30 minutes. The notations "no delay", "low delay" and "high 

delay" here are relative and only for comparison purposes. In the real world, the airport 

authority should generate delay distributions suitable to its own operations for testing. 

3.3.2 Arrival delay pattern over time 

Airline travelers have become familiar in recent years with frequent delays and 
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congestion. Air traffic has become concentrated particularly at certain seasons, at certain 

time of a week, or at certain times of the day.  

Observe from Table 3.2 that in summer MCO bears the highest positive arrival delay, 

and a large part of delayed flights are with delay more than 15 minutes. In Figure 3.4, the 

seasonal pattern of delayed flights is explained more expressly. The air traffic has no big 

difference in four seasons (spring and summer bear heavier traffic volume), while in 

summer more flights are positively delayed and with delay of more than 15 minutes. And 

in fall, the delayed flight is much lower compared to other three seasons. In another word, 

the arrival delay at MCO shows seasonal pattern. 

The delay concentration at certain season may depend on the area characteristics or the 

weather conditions. The adverse weather in summer at MCO may attribute to the arrival 

delays. And the travel pattern at MCO shows the summer and winter are the busiest 

seasons, especially for domestic travelers. The imbalance of capacity and demand may 

cause the arrival delay. 

Table 3.2 Numbers of arrivals as a function of seasons 

Season 
Numbers of arrivals 

with delay≥15 min 

Numbers of arrivals 

with positive delay 
Number of arrivals 

Spring 22348 50885 122925 

Summer 29159 57100 123577 

Fall 16789 41570 116343 

Winter 25123 52881 117478 
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Figure 3.4 Delay distributions of arrivals as a function of seasons 

 

In Figure 3.5, the blue bar represents the percent of aircrafts with positive delay, and 

the red one shows the percentage of traffic volume in one week. Although the weekends 

(Saturday and Sunday) have higher traffic volume, the variation from day to day is small. 

Observe from Figure 3.5 that although the traffic volume is lower on Thursday and 

Friday, the percentage of delayed aircraft is higher. A likely explanation for such a trend 

is the small variation in departures from day to day, which is related to the airline 

schedule.  

 43



0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

week

pe
rc

en
ta

ge
 o

f a
irc

ra
fts

posi t i ve del ay t r af f i c vol ume
 

Figure 3.5 Delay distribution of arrivals as a function of day of week 

 

Airports are more congested during certain times of day, and this may affect the delay 

distribution during a day. This distribution may also be dependent on the departure station 

or the arrival station. In Figure 3.6, the delay distribution during time of day are shown. 
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Figure 3.6 Delay distribution of arrivals as a function of time of day 

 

Figure 3.6 shows the great variation in traffic volume in one day. From 1:00am to 

5:00am, the volume is very low, while it peaks between 10:00am and 11:am. In the 
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afternoon and evening, the volume still shows variations. Observe that although in the 

morning, when the volume is higher, the percentage of delayed aircrafts is lower than the 

percentage of traffic volume. This trend is reversed in the evening. The percentage of 

volume is lower than the percentage of delayed aircrafts. This can be due to many reasons.   

The traffic demand in the evening decreased, at the same time the capacity decreased. 

And it may be because of the origin airport. One possible explanation is the small 

variation in departures from day to day is not enough to reach a capacity threshold that 

will increase the number of delayed aircraft. 

 

3.3.3 Arrival delay distribution according to flight characteristic 

The delay distribution may depend on several characteristics of the flight. For example, 

a flight with a long scheduled airborne time may experience more variance in its actual 

airborne time than a flight with a short one.  
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Figure 3.7 Delay distributions as a function of flight distance 

 

Figure 3.7 shows the delay distribution as a function of flight distance.  About 

44.78% of the traffic volumes with flight distance <750 miles are positively delayed. 
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Among them, 19.73% are flights with delay ≥15, and 10.9% are flights with delay≥30. 

About 41.95% of the traffic volumes with flight distance from 750 to 1000 miles are with 

delay>0. Among them, 20.1% are flights with delay ≥15, and 11.5% are flights with 

delay≥30. About 39.4% of the traffic volumes with flight distance ≥ 1000 miles are with 

delay>0. Among them, 18% are flights with delay ≥15, and 9.9% are flights with 

delay≥30. The flights with flight distance <750 miles seem to be more probable to be 

positively delayed. The pattern of delays greater than 15 minutes is similar as the pattern 

of delays greater than 30 minutes.  
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Figure 3.8 Arrival volume and arrival delays from top 15 airports 

 

From Figure 3.8, the top 15 airports with the highest traffic volume to MCO (blue bar) 

and positively delayed flights (red bar) are shown. ATL shares the highest traffic volume 

in MCO, while the delay phenomenon is the most serious. 57.5% of arriving flights from 

ATL are delayed. Another airport needed to emphasize is DTW. Although the traffic 
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volume in DTW ranks 15, 55.4% of the flights from DTW are with positive arrival delay. 

Also, at PHL and CLT, the positively delayed flights represent more than 50 percent of 

the whole volumes. 
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CHAPTER 4 AVERAGE DAILY DELAY MODEL 

Based on the evidence on flight delays for the case of MCO described in Chapter 3, and 

on previous works in the literature analyzing this problem, in this chapter we develop 

statistical models to study airport congestion and delays.  

This part was devoted to the analysis of departure and arrival delays of aircraft with the 

objective of detecting airport delay patterns and finding the contributing factors. To put 

the results in perspective, historical delay data for MCO from January 1 2002 to 

December 31 2003 were used. Causal factors for the delays related to aircraft, airline 

operations, change of procedures and traffic volume were identified. 

4.1 Airport delay distribution and evaluation 
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Figure 4.1 Delay distributions at MCO airport 

Figure 4.1 shows trends in daily average arrival delay and departure delay at MCO, 
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along with that of the departure delay of the arriving flights at MCO in 2002 and 2003. 

The vertical 3 figures are individually daily average departure delay of flights departing 

from MCO, daily average arrival delay of flights arriving at MCO and daily average 

departure delay of flights arriving at MCO. Lognormal distribution (in dark line) and 

Gamma (in light line) distribution are tried on these daily average delays of airports and 

Lognormal distribution is found to give a better fit. The calculations of these daily 

average delays are the same as the calculation of daily average arrival delay. Although 

daily average departure delay of arrivals decreases from 7.696 to 6.947 minutes, the daily 

average arrival delay and departure delay at MCO shows no change between 2002 and 

2003. 

Table 4.1 Correlation matrix of airport delay 

 
Arrival delay of 

arrivals at MCO 

Departure delay of 

arrivals in other airports 

Departure delay of 

departures at MCO 

Arrival delay of 

arrivals at MCO 
1.00 0.8726 0.8745 

Departure delay of 

arrivals in other airports 
0.8726 1.00 0.7691 

Departure delay of 

departures at MCO 
0.8745 0.7691 1.00 

 

Given the correlation matrix among the airport delays, the arrival delay of arriving 

flight at MCO is highly related with its departure delay, which proves the analysis in 

section 3.3. And the arrival delay of arriving flights at MCO also shows high relation 

with the departure delay of departing flights at MCO. The arrivals and departures share 

the common facilities in the MCO airport, so the fluctuation in operational performance 
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will definitely propagate each other. It is reasonable that the departure delay at other 

airports is highly related with the departure delay at MCO, since they are in the NAS and 

the delay phenomenon will spread out among them.    

Table 4.2 2002-2003 MCO airport delay statistics 

 2002 2003 

Mean(min) 6.508 6.323 
Average daily departure delay 

Std dev 3.969 4.376 

Mean(min) 8.840 8.814 
Average daily arrival delay 

Std dev 4.826 5.352 

Annual departure delay for late flights (hr) (ADD) 7268.8 8369.2 

Annual airborne time for departures at MCO (hr) 

(AATD) 
160286.0 182276.8 

Ratio of ADD/AATD 4.53% 4.59% 

Annual arrival delay for late flights (hr) (AAD) 9929.8 11256.15 

Annual airborne time for arrivals at MCO (hr) (AATA) 166197.7 189125.3 

Ratio of AAD/AATA 5.97% 5.95% 

Percentage of late departing flights 13.55% 13.23% 

Percentage of late arriving flights 20.78% 19.85% 

* Flights that leave/arrive at the gate more than fifteen minutes after the scheduled time shown in the carriers’ CRS are 

considered late.   

The items in Table 4.2 can be used as criteria to critique the airport operations based on 

performance. The percentage of late arriving flights at MCO is 20.78% and 19.85% in 

2002 and 2003 respectively, which are relatively high values. It means that this airport 

may need additional capacity or operational improvements. The annual airborne time is 
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calculated by the sum of flight time of departures or arrivals. We can see in Table 4.2 the 

annual airborne time of MCO is increasing quickly, and the annual arrival (or departure) 

delay is also increasing quickly. The ratio of this two can also be criteria to evaluate the 

airport delay. Average daily departure delay and arrival delay are another criteria, which 

can give more information about airport delay. Analysis on average daily arrival delay 

will be the focus in later sections. 

4.2 Linear regression model of the average daily delay 

We analyze the flight delay at the MCO airport in Orlando by estimating linear 

regression model of average daily delay that incorporates the effects of arrival demand, 

airport capacity, weather conditions in Orlando, seasonal effects. From the estimation 

results we are able to quantify some of the sources of delays from January 2002 to 

December 2003 and track changes in delays that are attributed to major causal factors.  

4.2.1 Model description and variables 

The statistical models are formulated based on data obtained from the Federal Aviation 

Administration (FAA) and the National Climatic Data Center (NCDC) as described in 

Chapter 3. 

The multiple regression methodology was initially attempted. We assume that the 

errors are normally, identically, and independently distributed. Initial experimentation 

revealed that these assumptions do not hold. In particular we found that the errors are not 

normal. About the random error ε, the assumption that ε is normally distributed is the 
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least restrictive when we apply regression analysis in practice.  

After some experimentation, a model is developed for the average daily arrival delay at 

MCO in Table 4.1. The following describes general structure of a linear model including 

main effects and the interaction factors. 

d(t)= f(θ,C(t), A(t), F(t), I(t), D(t), W(t), S(t), R(t), S(t)*W(t))+ v(t) 

where: 

d(t) is average arrival delay on day t; 

f(·) is a model function; 

C(t) is maximum hourly capacity (including departure and arrival flight) in MCO; 

A(t) is a vector represents the arrival demand on day t in MCO; 

F(t) is the variables capturing different flight durations; 

I(t) and D(T) are the space of inter-arrival time and its standard deviation; 

W(t) is a vector characterizing weather on day t; 

S(t) is a vector capturing seasonal influences; 

R(t) is a matrix capturing original airport regional variables; 

S(t)*W(t) is the interaction effect between seasonal effect and weather effect; 

v(t) is a stochastic error term. 

In section 3.2, the arrival delay is described. For our delay metric, d(t), we used the 

average daily positive delay for all scheduled and completed flights from other airports to 

MCO airport in Orlando. It is the average of positive delay per flight per day. Flights that 
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arrive early are assigned zero delay in the calculation. 

The flight time variables show the influence of airborne time on airport delay. This 

effect is represented by four variables, which is respectively the percentages of arrivals 

with the flight time of 0- 1:59 hours, 2 hours to 2:59 hours, 3 hours – 3:59 hours, and 

more than 4 hours. They are created by the bins with approximately equal frequencies. So 

there are three factors in the model. 

The space is calculated by the intervals between two consecutive arriving flights 

according to the scheduled time. When the space is smaller than 10 minutes (which is 

found to be a sensitive point to arrival delay in this dataset), it is assume 1, otherwise it is 

0. The space variable we use in this model is calculated by the percentage of flights with 

the space smaller than 10 minutes.  

Seasonal effects can be captured by 3 dummy variables as described before. The 

seasonal variables here are calculated by the percentage of flights that depart in each 

season.  

The areas of the origin airports are divided into four parts that are southeast, southwest, 

northeast and northwest (appendix A). So this influence can be captured by 3 variables. 

And the percentage of daily flights from each site to MCO is calculated as a variable, 

which indicated the location effect on the flight.  

 53



4.2.2 Model Result 

The model is introduced in Table 4.3 and 4.4.  

Table 4.3 Model Fit Statistics for the linear model of average daily arrival delay 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 7 5220.68208 745.81173 39.07 <.0001 

Error 722 13782.56230 19.08942   

Corrected Total 729 51.96    

 

Table 4.4 Model estimation for the linear model of average daily arrival delay 

Variable 
Parameter 

Estimate 

Standard 

Error 
t Value Pr > |t| 

Intercept 5.898758807 0.62127819 9.49 <.0001 

Precipitation 0.040140903 0.00402798 9.97 <.0001 

Wind 0.018784278 0.00646164 2.91 0.0038 

Monday and Sunday -1.604567713 0.42864250 -3.74 0.0002 

Tuesday and Saturday -2.683561807 0.42793584 -6.27 <.0001 

Wednesday 2.012502691 0.52356437 -3.84 0.0001 

Thursday and Friday 0.000000000    

Spring and Winter 2.657272124 0.39922837 6.66 <.0001 

Summer 4.423730962 0.47084648 9.40 <.0001 

Fall 0.000000000    

 

4.2.3 Model interpretation 

The R square values for this linear model is only 0.2755, which is not satisfactory. And 

different transformations of dependent variable are tried including log, inverse, square, 

square root, exponential and standardized, but the R square did not improve. So some 

other statistics methods will be used to analyze the daily delay in the following section. 
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The model presented includes only 4 variables originally identified; the others were 

found to be statistically insignificant and eliminated.  

In the model, delay is positively related to the precipitation, which means the higher 

rainfall will cause more flight delay. And the variable of wind contributes to the delay, 

which means the delay increases with higher wind speed. 

As to the seasonal effect estimates, we find that delay increases during Summer 

relative to Fall. During spring and winter, the delay is higher than in fall. In summer, 

Orlando has much more heavy rainfall activity along with the hurricane that increases the 

delay. And one factor contributing to the pattern of seasonal effects is changes in upper 

air wind patterns throughout the year. 

The results of the model shows significant weekly pattern. On Wednesday, Thursday 

and Friday, the average daily arrival delay shows higher value. 

4.3 Analysis of Variance (ANOVA) on the average daily arrival delay 

Analysis of variance (ANOVA) is used here to study the effects of one or more 

independent (predictor) variables on the dependent variable. Most commonly, ANOVA is 

used to test the equality of means by analyzing the total sum of squares (about the 

combined mean), which is partitioned into different components (due to model or due to 

random error). 
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Table 4.5 Tukey's Studentized Range (HSD) Test for daily arrival delay on week pattern 

Week 

Comparison 

Difference 

Between Means 
95% Confidence Limits 

5 - 4           0.6788     -0.5863   1.9440 

5 - 7           2.0100      0.7449   3.2752  *** 

5 - 1           2.1348      0.8697   3.4000  *** 

5 - 3           2.3324      1.0702   3.5945  *** 

5 - 2           3.0037      1.7416   4.2659  *** 

5 - 6           3.0181      1.7529   4.2832  *** 

4 - 5          -0.6788      -1.9440   0.5863 

4 - 7           1.3312      0.0660   2.5963  *** 

4 - 1           1.4560      0.1908   2.7212  *** 

4 - 3           1.6535      0.3914   2.9157  *** 

4 - 2           2.3249      1.0627   3.5870  *** 

4 - 6           2.3392      1.0740   3.6044  *** 

7 - 5          -2.0100      -3.2752  -0.7449  *** 

7 - 4          -1.3312      -2.5963  -0.0660  *** 

7 - 1           0.1248      -1.1403   1.3900 

7 - 2           0.9937      -0.9072   2.8946 

7 - 3           0.3224      -0.9398   1.5845 

7 - 6           1.0080      -0.2571   2.2732 

1 - 5          -2.1348      -3.4000  -0.8697  *** 

1 - 4          -1.4560      -2.7212  -0.1908  *** 

1 - 7          -0.1248      -1.3900   1.1403 

1 - 3           0.1975      -1.0646   1.4597 

1 - 2           0.8689      -0.3933   2.1310 

1 - 6           0.8832      -0.3820   2.1484 

3 - 5          -2.3324      -3.5945  -1.0702  *** 
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3 - 4          -1.6535      -2.9157  -0.3914  *** 

3 - 7          -0.3224      -1.5845   0.9398 

3 - 1          -0.1975      -1.4597   1.0646 

3 - 2           0.6713      -0.5878   1.9304 

3 - 6           0.6857      -0.5765   1.9478 

2 - 4          -2.3249      -3.5870  -1.0627  *** 

2 - 7          -0.9937      -2.2558   0.2685 

2 - 1          -0.8689      -2.1310   0.3933 

2 - 3          -0.6713      -1.9304   0.5878 

2 - 5          -3.0037      -4.9046  -1.1028  *** 

2 - 6           0.0143      -1.2478   1.2765 

6 - 5          -3.0181      -4.2832  -1.7529  *** 

6 - 4          -2.3392      -3.6044  -1.0740  *** 

6 - 7          -1.0080      -2.2732   0.2571 

6 - 1          -0.8832      -2.1484   0.3820 

6 - 3          -0.6857      -1.9478   0.5765 

6 - 2          -0.0143      -1.2765   1.2478 

** 1-7 represent Monday to Sunday individually；*** means showing significant difference with 95% 

confidence. 

.
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Table 4.6 Tukey's Studentized Range (HSD) Test for daily arrival delay on seasonal pattern 

Season 

Comparison 

Difference 

between means 
95% Confidence Limits 

2 - 4           1.6876       0.4331   2.9421  *** 

2 - 1           2.9905       1.7429   4.2381  *** 

2 - 3           5.0435       3.7925   6.2946  *** 

4 - 2          -1.6876       -2.9421  -0.4331  *** 

4 - 1           1.3029       0.0484   2.5574  *** 

4 - 3           3.3559       2.0980   4.6138  *** 

1 - 2          -2.9905       -4.2381  -1.7429  *** 

1 - 4          -1.3029       -2.5574  -0.0484  *** 

1 - 3           2.0530       0.8020   3.3040  *** 

3 - 2          -5.0435       -6.2946  -3.7925  *** 

3 - 4          -3.3559       -4.6138  -2.0980  *** 

3 - 1          -2.0530       -3.3040  -0.8020  *** 

** 1-4 represent Spring to Winter individually. 

 

The week differences are proved by F-test to be significant (p<0.0001). LSD test and 

TUKEY test both proved that the daily delay on Thursday and Friday are obviously 

higher than other weekdays. From Table 4.5, Tuesday and Saturday have the lowest daily 

delay in the week. This pattern should be related with the weekly schedule of the airport. 

At the same time, the season differences are proved by F-test to be significant (p<0.0001). 

From Table 4.6, LSD test and TUKEY test both proved that in summer the daily delay is 

obviously higher than other three seasons, and in fall the daily delay is obviously lower 

than other three seasons. In spring the daily delay is lower than in winter. This pattern 

should be related with several reasons. In Orlando summer is a rainy season. The thunder 
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may cause the interrupt of the operations of the airport, which increase the delay of the 

flights that schedule arrival times are during or directly after the bad weather. 

 

4.4 Using Proportional Odds Model to analysis the average daily arrival delay at 

MCO 

4.4.1 Model description and variables 

Logistic regression belongs to the group of regression methods for describing the 

relationship between explanatory variables and a discrete response variable. A logistic 

regression is proper to use when the dependent variable is categorized and can be applied 

to test the association between a dependent variable and the related potential factors, to 

rank the relative importance of independent variables, and to assess interaction effects.  

To introduce the factors into logistic regression model and test their main effects on 

airport delay, the average daily arrival delay at MCO are identified, which are 

categorized into three groups. From the Table 4.7, the dependent variable (average daily 

arrival delay) can take on three values: Y = 0 for delay<5 min; Y=1 for delay ≥5 and < 10 

min; Y=2 for delay≥10min. They are created by the bins with approximately equal 

frequencies.   
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Table 4.7 Quantiles of daily average arrival delay 

    Quantile            Estimate 

   100% Max              35.05098 

    99%                  25.55390 

    95%                  19.12648 

    90%                  15.82271 

    75% Q3               11.67059 

    50% Median            7.52775 

    25% Q1               4.95496 

    10%                   3.50041 

     5%                   3.06098 

     1%                   2.15493 

     0% Min               1.28016 

 

Here we treat the arrival delay as a categorical outcome with three levels and keep the 

natural ordering presented in the data. There are usually three different ways of 

generalizing the logit model to handle ordered categories. We will use the Proportional 

Odds Model (Cumulative Logit Model). For this model, we have actually imposed the 

restriction that the regression parameters except the intercepts are the same for the two 

logit models. It implies that it doesn’t make any difference how we categorize the 

dependent variable - the effects of the explanatory covariates are always the same. The 

results of modeling are showed below in Table 4.8, 4.9 and 4.10. 

The independent variables are the same as the linear regression model in section 4.2. 

Considering the week pattern of the daily delay, the week is classified into five levels: 
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Monday and Sunday have no significant difference and are combined into one level. 

Tuesday and Saturday are combined into one level. Wednesday, Thursday and Friday are 

individually one level. 

4.4.2 Model results 

Table 4.8 Model estimation for logistic regression model of average daily arrival delay 

Parameter DF Estimate Standard Error Chi-Square Pr>ChiSq 

Intercept  3 1 -1.4073 0.1974 50.8256 <.0001 

Intercept  2 1 0.8087 0.1927 17.6189 <.0001 

precipitation 1 0.0264 0.00364 52.4524 <.0001 

Monday and Sunday 1 0.4423 0.1935 5.2256 0.0223 

Wednesday 1 0.4659 0.2355 3.9136 0.0479 

Thursday 1 0.9280 0.2402 14.9235 0.0001 

Friday 1 1.3301 0.2457 29.3148 <.0001 

spring 1 -0.2356 0.2026 1.3520 0.2449 

summer 1 0.3872 0.2161 3.2104 0.0732 

fall 1 -1.4521 0.2113 47.2132 <.0001 
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Table 4.9 Odds Ratio Estimates for logistic regression model of average daily arrival delay 

Effect Point estimate 95% Wald Confidence Limits 

Precipitation 1.027 1.019 1.034 

Monday and Sunday vs 

Tuesday and Saturday 
1.556 1.065 2.274 

Wednesday vs Tuesday and 

Saturday 
1.593 1.004 2.528 

Thursday vs Tuesday and 

Saturday 
2.530 1.580 4.051 

Friday vs Tuesday and 

Saturday 
3.781 2.336 6.120 

spring vs winter 0.790 0.531 1.175 

Summer vs winter 1.473 0.964 2.250 

Fall   vs winter 0.234 0.155 0.354 

 

Table 4.10 Model Fit Statistics for logistic regression model of average daily arrival delay 

Association of Predicted Probabilities and Observed Responses 

Percent Concordant      74.0    Somers' D    0.504 

  Percent Discordant      23.6    Gamma        0.516 

Percent Tied             2.4    Tau-a        0.330 

 Pairs                 174384    c            0.752 

 

  Score Test for the Proportional Odds Assumption 

Chi-Square       DF     Pr > ChiSq 

5.5864        7         0.5888 

 

4.4.3 Model interpretation 

From table 4.10, test statistic for the Proportional Odds Assumption is 5.5864with the 

DF of 7, so the p value is 0.5888. The high p-value is desirable. For this problem, we find 

no reason to reject the proportional odds model.  
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   Adjusting for other variables, the odds of having a higher arrival delay in spring will 

be 0.79 times of the odds in winter, the odds of having a higher arrival delay in summer 

will be 1.473 times of the odds in winter, and the odds of having a higher arrival delay in 

fall will be 0.234 times of the odds in winter. 

On Monday and Sunday the odds of having a higher arrival delay will be 1.556 times 

of the odds on Tuesday and Saturday, on Wednesday the odds of having a higher arrival 

delay will be 1.593 times of the odds on Tuesday and Saturday, on Thursday the odds of 

having a higher arrival delay will be 2.530 times of the odds in Tuesday and Saturday, 

and on Friday the odds of having a higher arrival delay will be 1.556 times of the odds in 

Tuesday and Saturday. From the odds ratio, on Thursday and Friday the airport is showed 

to have the higher probability to have delay more than 10 minutes. 

For each 10*0.01=0.1 inch increase with the precipitation, the odds of having more 

arrival delay increases by exp(0.0264*10)-1= 30.2%. There are no significant 

interactions. 

Compared with linear regression model, the multiple logistic regression model shows 

the same seasonal pattern and weekly pattern. But the logistic regression model shows a 

better fit of the dataset. The daily delay on Thursday and Friday are obviously higher than 

other weekdays. Tuesday and Saturday have the lowest daily delay in the week. In 

summer the daily delay is obviously higher than other three seasons, and in fall the daily 

delay is obviously lower than other three seasons. In spring the daily delay is lower than 
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in winter. At the same time the variable of precipitation contributes to the delay. 

From the results we find that all significant factors are uncontrollable, and the average 

daily delay is related to the weather conditions. 

 

4.5 Using neural network to analyze the average daily arrival delay at MCO 

4.5.1 A brief review of methodology 

Artificial neural networks are alternative computation techniques that can be applied to 

solve categorical analysis problems. In this section we describe multi-layer perceptron 

(MLP) and Radial basis function (RBF) neural network that are most commonly used 

neural network architectures. 

The MLP network is one of the most popular neural network architectures that fit a 

wide range of applications such as forecasting, process modeling, and pattern 

discrimination and classification. MLPs are feed-forward neural networks trained with 

the standard back-propagation algorithm. They are supervised networks so they require a 

desired response to be trained.  

A radial basis function (RBF) network is a feed forward network with a single hidden 

layer for which the ‘combination function’ is more complex and is based on a distance 

function (referred to as width) between the input and the weight vector. Ordinary RBF 

(ORBF) networks using radial combination function and exponential activation function 

are universal approximators in theory (Powell, 1987), but in practice they are often 
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ineffective estimators of the multivariate function. Due to the localized effect the ORBF 

neural networks often require an enormous number of hidden units to avoid an 

unnecessarily bumpy fit. To avoid the pitfalls of ORBF networks, softmax activation 

function may be used. It essentially normalizes the exponential activations of all hidden 

units to sum to one. This type of network is called a "normalized RBF" or NRBF network. 

NRBF is used in this section. 

4.5.2 Model results and conclusions 

The models in this section are formulated based on the same data as used in the linear 

and logistic regression models. The sample size is 730. The difference is the data is 

partitioned into two parts, 60% for training model and 40% for validation. 

8 MLP and NRBF neural network models having a range (2 to 5) of hidden nodes are 

compared. The result from these neural networks shows that the MLP network with 4 

hidden nodes performs best among the models in their respective architectures. At the 

same time, one logistic regression model is employed to compare with the best MLP 

network. 
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Figure 4.2 The captured response lift plots for models of the daily delay 

 

The captured response lift plots for models of the daily delay are showed in Figure 4.2. 

The best models were identified through the lift plot having cumulative percentage of 

captured response in the validation dataset on vertical axis. The higher a curve from the 

baseline curve the better is the performance of the corresponding model. It may be noted 

that the logistic regression model has its captured response percentage higher than the 

MLP model within first seven deciles (deciles = 10 percentiles). Since the 3-level target is 

classified by about same frequency, the three levels (lower delay(<5minute), medium 

delay (5-10 minute) and higher delay(≥10 minute)) will be individually about 30-40% of 

the whole data and therefore it is decided to evaluate the model performances within first 

four deciles (deciles = 10 percentiles).  So we can say that the logistic regression model 

performs better that neural network models for this daily delay data. 
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4.6 Conclusions 

Not all arrivals can occur when they are scheduled to, then airport congestion happens. 

The delay distribution of the airport can make it easier to understand the airport delay. 

The assessment of an airport’s schedule performance is also discussed. Finally, 

Multivariate regression, ANOVA, Neural networks and Logistic regression are used to 

detect the pattern of airport arrival delay. 

The results of our research show that the arrival delay is highly related to the delay at 

the origin. The airport arrival delay can also be used to evaluate the airport delay. The 

airport arrival delay is found to show seasonal and weekly patterns, which are related to 

the schedule performance. The precipitation and wind speed are also found contributors 

of airport arrival delay. The capacity of the airport is not found to be significant. This 

may indicate that the capacity constraint is not a determinant variable in the delay 

problem at MCO. 
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CHAPTER 5 SINGLE FLIGHT ARRIVAL DELAY MODELS 

From the Airline On-Time Performance Data, the airline’s on-time performance in the 

Orlando International Airport (MCO) —the proportion of flights arriving within 15 

minutes after scheduled time, for 2004 was 68.20 percent, decreased from 69.09 percent 

in 2003, while the traffic volume increase from 92357 to 107871 per year. These delays 

are frustrating to air travelers and costly to airlines. They are also the concern in this 

research. What is the pattern of the delay? What is the contribution of various causal 

factors? Can we predict the delay with the flight schedule? 

Historical data exists to describe nearly all of the random events and variables involved. 

However, no simple formula exists that allows the scheduler to measure their complex 

interaction. The key to solving the airline scheduling problem is to recognize the random 

processes involved and make scheduling and policy decisions that minimize the risk of 

delays. To allow the scheduler to test a variety of scheduling strategies and operations 

policies that might impact schedule performance, we focus on all the delayed flights 

under schedule conditions to minimize their interaction. 

This research analyzes different factors that affect flight delays and flights with high 

delay. Logistic regression is used to analyze how airport factors, airline factors and 

weather conditions influence delay at MCO. Although sophisticated simulation models 

can be used to predict delay, they are not well suited to our goal of assessing the 

sensitivity of delay to individual flights in the schedule, since every question requires a 
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new simulation run. Instead, we employ a set of logistic regression models that both 

predicts delay and clearly reveals the sensitivity of factors to individual flight delay. The 

multiple logistic regression is tried, with the delay divided into 3 levels: 0 minutes≤

delay<15 minutes, 15 minutes≤delay<30 minutes, and delay≥30 minutes. But the results 

show not satisfactory. So two binary logistic regression models are used in this chapter to 

illustrate the pattern of delay. 

 

5.1 Delay model on the flights with delay ≥0 

5.1.1 General 

The flights that leave the gate more than fifteen minutes after the scheduled time 

shown in the carriers’ computerized reservations systems (CRS) are considered “late” 

while all other flights are recorded as “on-time”. Similar to origin airports, flights at 

destination airports are defined as “on-time” if they arrived at the gate within fifteen 

minutes of the scheduled time shown in the carriers’ CRS, while all remaining flights are 

defined as “late”. The delayed flights considered here are the flights with delay equal to 

or more than 15 minute. 

To introduce the factors into a statistical model and test their main effects on delay of 

late flights, only the on-time flights and delayed flights from 2002 to2003 (shown in 

Table 3.1) are identified, which are categorized into two groups: no delay (0≤arrival 

delay<15), delayed flight (15≤arrival delay).  

Those factors include information of individual flights, as well as the corresponding 
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airport conditions and weather conditions. So that the dependent variable Y (individual 

flights) here takes on two values: Y = 0 for no-delayed flights (0≤arrival delay<15), Y = 1 

for late flights (15≤arrival delay). From Table 5.1, the no-delayed flights and late flights 

respectively represent 61.54% and 38.46% of the whole data set. 

Table 5.1 Sample size Sample size for flight with delay ≥0 

Number of flights 
Period 

no-delayed flights late flights Total 

2002 21701 13874 35575 

2003 24701 15123 39824 

Total 46402 28997 75399 

 

Binary logistic regression is proper to use here when the dependent is a dichotomy (an 

event happened or not) and can be applied to test association between a dependent 

variable and the related potential factors, to rank the relative importance of independents, 

and to assess interaction effects. 

The model was estimated on a data set consisting of all the individual domestic 

arriving flights with delay ≥0 at MCO. The data for the non-stop flights on scheduled 

service by certificated carriers to MCO were obtained from the Airline On-Time 

Performance Data on the Bureau of Transportation Systems website from 01/01/2002 

through 12/31/2003 excluding the cancelled and diverted flights. 

The factors are introduced as the same as delay model in section 2.1. The significant 

independent variables in the model are introduced in Table 5.2. 
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Table 5.2 Definition of independent variables for delay model with delay≥0 

Parameter                          Definition                             

Thursday and Friday           The flight takes place on Thursday and Friday       

 Summer                    The flight takes place in summer           

 Winter                     The flight takes place in winter                 

 Fall                        The flight takes place in fall   

 Evening                    The flight takes place between 5pm to 11:59pm 

 Afternoon                  The flight takes place between 12pm to 4:59pm   

 Distance between 750-1000    The flight distance is in between 750 and 1000 miles  

 Distance > 1000             The flight distance is larger than 1000 miles 

 Precipitation                Hundredth of inches of the precipitation per day      

 log space                   The log transform of the space             

 

5.1.2. Model results  

The final logit model is presented in Tables 5.3 and 5.4 and 5.5. 

Table 5.3 Model estimation for delay model on the flights with delay≥0 

Parameter             Estimate  StandardError  Wald Chi-Square  Pr > ChiSq 

  Intercept      1     -1.0827      0.0287     1423.1896        <.0001 

  Winter        1      0.1432      0.0215     44.5419         <.0001 

  Fall          1     -0.2595      0.0233      123.7075        <.0001 

  Summer      1      0.2191      0.0211      107.7185        <.0001 

  Evening      1      0.7179      0.0210      1166.2651       <.0001 

  Afternoon     1      0.2889      0.0226      163.9135        <.0001 

  Thursday and Friday   0.1172      0.0164       50.8101        <.0001 

Distance > 1000       -0.0338      0.0214        2.4898        0.1146 

Distance between 750 and 1000  0.1921      0.0182      111.4865        <.0001 

  Precipitation           0.0226     0.00111      414.5916        <.0001 
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  log space            -0.0198     0.00905        4.7965        0.0285 

 

Table 5.4 Odds Ratio Estimates for delay model on the flights with delay≥0 

Effect             Point Estimate     95%Wald Confidence Limits 

Winter vs spring           1.154       1.106       1.203 

Fall vs spring             0.771       0.737       0.808 

Summer vs spring          1.245       1.194       1.297 

Evening vs moring         2.050        1.967      2.136 

Afternoon vs moring        1.335       1.277       1.395 

Thursday and Friday vs other weekdays 1.124       1.089       1.161 

Distance>1000vs distance<750      0.967       0.927       1.008 

Distance in[750,1000]vs distance<750  1.212       1.169       1.256 

Precipitation               1.023       1.021       1.025 

log space                  0.980       0.963       0.998 
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Table 5.5 Model Fit Statistics for delay model on the flights with delay≥0 

       Criterion       Intercept Only   intercept & Covariates 

         AIC           99612.098      96759.608 

         SC            99621.319      96861.041 

         -2 Log L       99610.098      96737.608 

       

           Testing Global Null Hypothesis: BETA=0        

  Likelihood Ratio       2872.4895       10        <.0001 

  Score                2785.6663       10        <.0001 

   ald                 2553.7276       10        <.0001 

  Likelihood Ratio       2872.4895       10        <.0001 

       

  Association of Predicted Probabilities and Observed Responses 

   Percent Concordant          60.9    Somers' D    0.224 

   Percent Discordant          38.4    Gamma       0.226 

   Percent Tied                0.7     Tau-a        0.106 

                                                           

      Hosmer and Lemeshow Goodness-of-Fit Test           

       Chi-Square       DF     Pr > ChiSq               

        17.4662         8         0.1226                   

 

5.1.3 Model interpretation 

From Table 5.5, Hosmer and Lemeshow Goodness-of-Fit Test statistic is 17.4662 with 

the DF of 8. The resulting p value of 0.1226, shown in Table 5.5, suggests that the model 

fits well. We find no reason to reject the odds model at 5% confidence level. 
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Four factors including season influences, time influences, distance influences, 

precipitation and space show significant association with the likelihood of flights of 

delay.  

The ‘odds ratio’ column in Table 5.4 are obtained from the parameter estimates. For the 

dummy variable ‘summer’, which indicates the flight takes place in summer, the odds 

ratio is 1.245. The odds ratio of 1.245 tells us that the predicted odds of ‘delay flights’ for 

summer are 1.245 times the odds for other seasons. In other words, the predicted odds of 

delay are about 24.5% higher when the season is summer. The dummy variable ‘winter’ 

indicates the flight takes place in winter, the odds ratio is 1.154. This implies that the 

predicted odds of delay are about 15.4% higher when the season is winter. The dummy 

variable ‘fall’ indicates the flight takes place in fall, the odds ratio is 0.771. This implies 

that the predicted odds of delay are about 23% lower in winter than other seasons. 

The odds ratios for the arrival time show the relative ratios of high delay between 

different times (morning, afternoon, an evening) for each flight. Compared to morning, 

the odds of delay in the afternoon could be 1.335 times higher and the odds in the 

evening could be 2.05 times higher. At evening the flights are much more likely to be 

delayed than in morning. The results testified that the time would definitely contribute to 

delay.  

The odds ratio of the distance variables is interesting. For each flight with the flight 

distance between 750 to 1000 miles, the odds of having arrival delay will increase by 

1.212-1=21.2%. While for the flight with the flight distance larger than 1000 miles, the 
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odds of having  arrival delay will decrease 1-0.967=3.3% than the flight with the flight 

distance less than 750 miles. 

The odds ratio for the precipitation shows that for each 10*0.01=0.1 inch increase with 

the precipitation, the odds of having more arrival delay increases by exp(0.0226*10)-1= 

25.3%.  

The odds ratio for the log space shows that as the space increases, the probability of 

the flights being delayed will decrease. Since the space is the inter-arrival time for two 

successive flights, when the space increases, the service time for each flight will increase, 

so that the efficiency of the operation will decline.  

5.2 Delay model of the flights with the delay≥15 minutes 

In this section a data mining approach is presented to detect the pattern of the delayed 

(late) flights (with the delay≥15 minutes), which separate low-delay flights from 

high-delay flights. The formation and structure of the dataset used for the analysis are 

discussed in detail as follow.  

5.2.1 Methodology 

To introduce the factors into statistical model and test their main effects on the extent 

of flights delay, the late arriving flights at MCO (with arrival delay≥15 minute) are 

identified, which are categorized into two groups: low delay and high delay.  

Those factors include information of late flights, as well as the corresponding airport 

conditions. So that the dependent variable Y (late flights) here takes on two values: Y = 0 
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for low-delayed flights (with 15-30 minutes delayed), and Y = 1 for high- delayed flights 

(with more than 30 minutes delayed). When the flight is delayed no more than 30 minute, 

it is considered low-delayed, otherwise high-delayed. From Table 5.6, the low-delayed 

flights and high-delayed flights respectively represent 46.49% and 53.51% of the flights 

with delay more than or equal to 15 minutes. 

 

Table 5.6 Sample size for flight with delay ≥15 minutes 

Number of flights 
Period 

Low delay High delay Total 

2002 6663 7211 13874 

2003 6819 8304 15123 

Total 13482 15515 28997 

 

Linear regression model is tried not to be satisfactory here, because the R square is 

very small and the error is not normal. Binary logistic regression is proper to use here 

when the dependent is a dichotomy (an event happened or not) and can be applied to test 

association between a dependent variable and the related potential factors, to rank the 

relative importance of independents, and to assess interaction effects.  

5.2.2 Model results 

Table 5.7 shows the significant independent variables in the model and the definitions. 

The final logit model is presented in Tables 5.8 and 5.9 and 5.10. 
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Table 5.7 Definition of independent variables for delay model with delay≥15  

Parameter                                     Definition                 

 West                           The origin airport is in west area          

 Summer                        The flight takes place in summer           

 Winter                         The flight takes place in winter               

 Evening                        Schedule arrival time later than 4:59pm 

 Afternoon                       Schedule arrival time from 12pm to 4:59pm 

 Distance between 750 and 1000     The flight distance is in [750, 1000]  

Distance greater than 1000 mile      The flight distance is greater than 1000 miles 

Distance greater than 750 mile       The flight distance is greater than 7500 miles 

 Distance >750mile *evening        The product of evening and fall             

 Distance >750mile *afternoon       The product of evening and weekend          

 Precipitation                    Hundredth of inches of the precipitation per day  
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Table 5.8 Model estimation for delay model with delay≥15 

        Parameter       Estimate  StandardError  Wald Chi-Square  Pr > ChiSq 

        Intercept         -0.2409      0.0533       20.4052        <.0001 

        Winter           0.1032      0.0335        9.4638        0.0021 

        Fall            -0.0670      0.0378        3.1416        0.0763 

        Summer         0.1987      0.0327       36.9306        <.0001 

        West           -0.3630      0.0631       33.0936        <.0001 

        Evening         0.3440      0.1257        7.4913        0.0062 

        Afternoon        0.3814      0.1288        8.7765        0.0031 

       Wednesday       -0.1068      0.0349        9.3737        0.0022 

       Tuesday         -0.0746      0.0370        4.0543        0.0441 

 Distance greater than 1000 mile  0.1475      0.0593        6.1855        0.0129 

 Distance between 750 and 1000  0.0721      0.0559        1.6610        0.1975 

        Precipitation      0.00775     0.00101       58.6159        <.0001 

 Distance >750mile *evening    0.1138      0.0698        2.6574        0.1031 

 Distance >750mile *afternoon   -0.1053      0.0707        2.2147        0.1367 

 

Table 5.9 Odds Ratio Estimates for delay model with delay≥15 

Effect                        Point Estimate  95%Wald Confidence Limits 

Winter vs spring                    1.109       1.038       1.184 

Fall vs spring                       0.935       0.868       1.007 

Summer vs spring                   1.220       1.144       1.301 

West vs others                      0.696       0.615       0.787 

Wednesday vs others                 0.899       0.839       0.962 

Tuesday vs others                    0.928       0.863       0.998 

Distance ≥1000 vs distance <750       1.159       1.032       1.302 

Distance in[750,1000]vs distance <750    1.075       0.963       1.199 

Precipitation                         1.008       1.006       1.010 
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Table 5.10 Model Fit Statistics for delay model with delay≥15 

      Criterion     Intercept Only   intercept & Covariates 

        AIC        39796.695      39262.704 

        SC         39804.964      39378.464 

        -2 Log L     39794.695      39234.704 

       

           Testing Global Null Hypothesis: BETA=0  

     Test        Chi-Square      DF       Pr > ChiSq 

 Likelihood Ratio   559.9913       13         <.0001 

 Score            551.6177       13         <.0001 

 Wald            539.5727       13         <.0001 

       

  Association of Predicted Probabilities and Observed Responses 

Percent Concordant         56.9    Somers' D    0.159 

Percent Discordant         41.0    Gamma        0.163 

Percent Tied                2.2    Tau-a        0.079 

Pairs                 206482128    c            0.580 

                                                       

      Hosmer and Lemeshow Goodness-of-Fit Test           

       Chi-Square       DF     Pr > ChiSq               

         6.3118        8         0.6123                  

 

5.2.3 Model interpretation 

Output of the binary logistic regression includes model estimation and odds ratio 

estimate for significant independent variables and the model fit statistics. 

There are some summary statistics to measure the goodness of fit for the regression 
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model. That is a single number that represents a model fit. From Table 5.10, Hosmer and 

Lemeshow Goodness-of-Fit Test statistic is 6.3118 with the DF of 8. Hosmer and 

Lemeshow statistic is calculated in the following way. Based on the estimated model, 

predicted probabilities are generated for all observations. These are sorted by size, and 

then grouped into approximately 10 intervals. Within each interval the expected 

frequency is obtained by adding up the predicted probabilities. Expected frequencies are 

compared with observed frequencies by the conventional Pearson chi-square statistic. We 

find no reason to reject the odds model at 5% confidence level. The resulting p value of 

0.6123, shown in Table 5.8, suggests that the model fits well. 

Four factors including season influences, time influences, week influences, distance 

influences, regional influences and precipitation show significant association with the 

likelihood of flights of high delay.  

Let’s look at the numbers in the ‘odds ratio’ column in table 5.9, which are obtained 

from the parameter estimates. For the dummy variable ‘summer’, which indicates the 

flight takes place in summer, the odds ratio is 1.220. The odds ratio of 1.220 tells us that 

the predicted odds of ‘high delay’ for summer are 1.22 times the odds for other seasons. 

In other words, the predicted odds of high delay are about 22% higher when the season is 

summer. The dummy variable ‘winter’ indicates the flight takes place in winter, the odds 

ratio is 1.109. This implies that the predicted odds of high delay are about 10.9% higher 

when the season is winter. The dummy variable ‘fall’ indicates the flight takes place in 

fall, the odds ratio is 0.935. This implies that the predicted odds of high delay are about 
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6.5% lower when the season is fall. 

The odds ratios for the arrival time show the relative ratios of high delay between 

different times (morning, afternoon, an evening) for each flight. It shows that there is a 

clear association between the ratios of high delay and the arrival time. Compared to 

morning, the odds of high delay in the evening could be e
0.4578

=1.58 times higher and the 

odds in the afternoon could be e
0.2762

=1.318 times higher. This means as that latter time 

periods in the day experience higher delay ratios. The results testified that the time would 

definitely contribute to high delay. 

Adjusting for other variables, the odds of having a higher arrival delay when a flight 

departs from west area is e
-0.3630

=0.695 times of the odds in other areas. That means the 

odds of having more arrival delay decreases by 1-0.695= 30.5% when the flight takes off 

from the west area. 

For each flight with the flight distance between 750 to 1000 miles, the odds of having a 

higher arrival delay will increase by 1.075-1=7.5%. While for the flights with the flight 

distance more than 1000 miles, the odds of having a higher arrival delay will increase by 

1.159-1=15.9%. The odds ratios show that the flights with long flight distance will have 

higher odds of high delay. 

After confirming the main effect model, the next regression analysis is to explore the 

possible significant interactions between these factors. It is found that there is one 

interaction factors associated with high delay including: evening and distance >750mile 

(P-value = 0.1031), afternoon and distance >750mile (P-value = 0.1367). 

 81



The results confirm that the effects of distance are different between daytime. For the 

flight distance more than 750 miles, in evening high delay is more likely to occur than 

morning; while in afternoon high delay is less likely to occur than morning; for other 

distance groups, the difference between weekdays is not apparent.        

5.3 Conclusions 

Flight schedules are often subjected to irregularity. Due to the tight connection among 

airlines resources, delays could dramatically propagate over time and space unless the 

proper recovery actions are taken. And there exist some pattern of flight delay due to the 

schedule performance and airline itself. The results extracted from the case study on 

Orlando International Airport (MCO) can help to understand better the phenomenon. 

From the delay models on the flights with delay≥0 and delay≥15min, the individual 

flight arrival delay is found to show seasonal pattern, weekly pattern, which corresponds 

to the pattern of the airport arrival delay. And the precipitation is also found contributors 

of airport arrival delay. The wind speed at MCO is found to influence the airport arrival 

delay, but is not so significant to the individual flight arrival delay. The capacity of airport 

is also found to be not significant to single flight delay.  

From the delay models of the flights with delay≥0, the odds ratio of the distance 

variables is interesting. For each flight with the flight distance between 750 to 1000 miles, 

the odds of having arrival delay will increase by 21.2%. While for the flight with the 

flight distance larger than 1000 miles, the odds of having arrival delay will decrease 3.3% 

than the flight with the flight distance less than 750 miles. Another variable needed to 
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mentioned is the space of successive flights. The odds ratio for the space shows that as 

the space increases, the probability of the flights being delayed will decrease. Since the 

space is the inter-arrival time for two successive flights, when the space increases, the 

service time for each flight will increase, so that the efficiency of the operation will 

decline. 

From the delay models of the flights with delay≥15, the flights with long flight 

distance will have higher odds of high delay. The results testified that the time would 

definitely contribute to high delay, that latter time periods in the day experience higher 

delay ratios. Adjusting for other variables, the odds of having more arrival delay 

decreases by 30.5% when the flight takes off from the west area. The results also confirm 

that the effects of distance are different between daytime. For the flight distance more 

than 750 miles, in the evening high delay is more likely to occur than the morning; while 

in the afternoon high delay is less likely to occur than the morning; for other distance 

groups, the difference between weekdays is not apparent. 

Capacity increase is not necessarily a solution to airport congestion, in a context of 

rapidly growing demand for air services. Another characteristic of air congestion that we 

illustrate empirically is that a flight delay is not necessarily more costly during a peak 

period, but depends on the impacts generated on subsequent flights. In response to single 

flight delay predictions and reason for these delays that are generated by the model, 

which can give indications for the appropriate recovery actions to recover/avoid these 

delays. 
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CHAPTER 6 ANALYSIS ON THE DELAY DUE TO MCO 

 

Analysis of the airline’s performance data shows that some delays can be attributed to 

operating procedures. An example is originating delay. That is, the first flight segment of 

the day for some lines of flying typically depart late. Originating delay concerns the 

airlines because it can impact the entire line of flying. The results of our research show 

that the arrival delay is highly related to the origin delay. 

While it was possible to calculate the immediate impact of originating delays, it is not 

possible to calculate their impact on the cumulative delay. If a late originating aircraft has 

no slack in its down line schedule, it will continue to be late. If that aircraft enters a 

connecting bank, it can pass its lateness on to other aircraft. So here we purify only the 

arrival delay at MCO, excluding the flights with originating delay >0. The model will 

make it possible to see the pattern of the aircraft arrival delay. Of course, the result can 

range form insignificant to significant depending on the status of other control factors. 

 

6.1 A brief review of methodology  

The analytic goal is to predict the flight delay from the schedule information. Below is 

the description of the predictors. In this project, logistic regression model, tree model, 

and neural network will be used to fit the single flight delay and then compare them on 

the basis of an independent test sample. The delayed flights considered here are the 

arriving flights with the delay equal to or more than 1 minute. We only consider the 

delayed flights that depart before schedule time or on time, so that we can make sure 

these arrival-delayed flights are not departure-delayed. 

To introduce the factors into statistical model and test their main effects on delay of 

flights, the delayed flights from other airports to MCO are identified, which are 

categorized into two groups: low delay and high delay.  

The flights that arrive the gate more than fifteen minutes after the scheduled time are 
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considered “high delay” while other flights with delayed time less than 15 minutes are 

recorded as “low delay”. 

Those factors include information of delayed flights, as well as the corresponding 

airport conditions. So that the dependent variable Y (delayed flights) here takes on two 

values: Y = 0 for low-delayed flights (with 1-15 minutes delayed), and Y = 1 for high- 

delayed flights (with more than 15 minutes delayed). When the flight is delayed no more 

than 15 minute, it is considered low-delayed, otherwise high-delayed. From Table 6.1, the 

low-delayed flights and high-delayed flights respectively represent 79.54% and 20.46% 

of the whole data set. 

Table 6.1 Sample size used for flight delay analyses 

Number of flights 
Period 

Low delay High delay Total 

2002 8070 2145 10215 

2003 11139 2796 13935 

Total 19209 4941 24150 

 

6.2 Modeling results and analysis 

6.2.1 Classification of delay based on logistic regression 

Table 6.2, 6.3, 6.4 list the Maximum Likelihood Estimates and odds ratios properly 

adjusting other factors for significant independent variables, where the highest levels of 

independent variables are considered as the default levels. Table 6.5 lists the model fit 

statistics. The following sections document the interpretation of the regression results. 

 

 

 

 

 

 85



 

Table 6.2 Significant variables for Logistic regression model 

Effect DF wald chi-square P value definition 

Crs_time 3 67.14 <0.0001 Schedule arrival time of each flight 

distance  76.44 <0.0001 Flight distance of each flight 

Season  51.96 <0.0001 The season when the flights depart 

sitecode  65.12 <0.0001 The area of the original airport 

preciption  265.14 <0.0001 The number of rainfall per day 

wind  9.39 0.0022 The wind speed per day 

                                         

Table 6.3 Analysis of Maximum Likelihood Estimates for Logistic regression model 

parameter DF 
Estimate Stan error wald 

chi-square 

P value 
definition 

Intercept 1 -1.9133 0.0754 644.5 <0.0001  

Crs_time1 1 -0.4369  0.0744 34.51 <0.0001 Schedule arrival time of 7am to 8:59am 

Crs_time2 1 0.0616  0.0397 2.40 0.1211 Schedule arrival time of 9am to 2:59 pm 

Crs_time3 1 0.3062  0.0399   58.86 <0.0001 Schedule arrival time of 3pm to 8:59pm 

Distance1 1 -0.3287  0.0404 66.20 <0.0001 Flight distance of 0 to 750 miles 

Distance2 1 0.2349  0.0332 50.08 <0.0001 Flight distance of 750 to 1000 miles 

Season1 1 -0.0437  0.0385  1.28   0.2570 Spring 

Season2 1 0.2578  0.0381  45.72    <0.0001 Summer 

Season3 1 -0.1734  0.0395  19.32   <0.0001 Fall 

Sitecode1 1 -0.0651  0.0610 1.14 0.2861 South area 

Sitecode2 1 0.2852  0.0399 51.10 <0.0001 East area 

Sitecode3 1 -0.0899  0.0471 3.64 0.0565 Central area 

preciption 1 0.0392  0.00241 265.14 <0.0001 The hundred inches of rainfall per day 

wind 1 0.00259  0.000845 9.39 0.0022 The wind speed per day 
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Table 6.4 Odds Ratio Estimates for Logistic regression model 

variables  Point estimate 

Crs_time1 7am to 8:59am vs later than 9pm 0.603 

Crs_time2 9am to 2:59pm vs later than 9pm 0.992 

Crs_time3 3pm to 8:59pm vs later than 9pm 1.267 

Distance1 Less than 750 miles vs longer than 1000 miles 0.655 

Distance2 750 miles to 1000 miles vs longer than 1000 miles 1.151 

Season1 Spring vs winter 0.997 

Season2 Summer vs winter 1.348 

Season3 Fall vs winter 0.876 

Sitecode1 South vs west 1.067 

Sitecode2 East vs west 1.515 

Sitecode3 Central vs west 1.041 

preciption  1.040 

wind  1.003 

 

Table 6.5 Hosmer and Lemeshow Goodness-of-Fit Test for Logistic regression model 

Chi-Square DF Pr > ChiSq 

9.6248 8 0.2924 

 

Output of the binary logistic regression includes model estimation and odds ratio 

estimate for significant independent variables and the model fit statistics. There are some 

summary statistics to measure the goodness of fit for the regression model. That is a 

single number that represents a model fit. From Table 6.5, Hosmer and Lemeshow 

Goodness-of-Fit Test statistic is 9.6248 with the DF of 8. Hosmer and Lemeshow statistic 
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is calculated in the following way. Based on the estimated model, predicted probabilities 

are generated for all observations. These are sorted by size, and then grouped into 

approximately 10 intervals. Within each interval the expected frequency is obtained by 

adding up the predicted probabilities. Expected frequencies are compared with observed 

frequencies by the conventional Pearson chi-square statistic. We find no reason to reject 

the odds model at 5% confidence level. The resulting p value of 0.2924, shown in Table 

6.5, suggests that the model fits well. 

Four factors including season influences, time influences, week influences, distance 

influences, regional influences and precipitation show significant association with the 

likelihood of flights of high delay.  

Let’s look at the numbers in the ‘odds ratio’ column in Table 6.4, which are obtained 

from the parameter estimates. For the dummy variable ‘summer’, which indicates the 

flight takes place in summer, the odds ratio is 1.348. The odds ratio of 1.348 tells us that 

the predicted odds of ‘high delay’ for summer are 1.348 times the odds for the winter 

season. In other words, the predicted odds of high delay are about 34.8% higher when the 

season is summer. The dummy variable ‘spring’ indicates the flight takes place in spring, 

with the odds ratio is 0.997. This implies that the predicted odds of high delay in spring 

are about the same as the season of winter. The dummy variable ‘fall’ indicates the flight 

takes place in fall, with the odds ratio is 0.876. This implies that in fall the predicted odds 

of high delay are about 12.4% lower than when the season is fall.  

The odds ratios for the arrival time show the relative ratios of high delay between 
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different times (7am to 8:59am, 9am to 2:59pm, 3pm to 8:59pm, 9pm to 11pm) for each 

flight. It shows that there is a clear association between the ratios of high delay and the 

arrival time. Compared to the time of 9pm to 11pm, the odds of high delay in the 7am to 

9am could be 0.603 times, the odds in the 9am to 3pm could be 0.992 times, and the odds 

in the 3pm to 9pm could be 1.267 times. This means that in 7am to 9am there is less odds 

of high delay than in 9pm to 11pm, in 9am to 3pm the odds of high delay has no big 

difference from in 9pm to 11pm, while in 3pm to 9pm the odds of high delay will be 

26.7% higher than in 9pm to 11pm. 

Adjusting for other variables, the odds of having a higher arrival delay when a flight 

departs from south area is 1.067 times of the odds in west areas. The odds of having a 

higher arrival delay when a flight departs from east area is 1.515 times of the odds in 

west areas. The odds of having a higher arrival delay when a flight departs from central 

area are 1.041 times of the odds in west areas. That means when the flight takes off from 

the east area, the odds of having higher arrival delay will be about 45-50% higher than 

other areas. 

For each flight with the flight distance between 750 to 1000 miles, the odds of having a 

higher arrival delay will increase by 1.151-1=15.1%. While for the flights with the flight 

distance less than 750 miles, the odds of having a higher arrival delay will decrease by 

1-0.655=34.5%. The odds ratios show that the flights with the flight distance between 

750 to 1000 miles will have higher odds of high delay than other categories. 

The odds ratio for the precipitation shows that for each 10*0.01=0.1 inch increase with 
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the precipitation, the odds of having more arrival delay increases by exp(0.0392*10)-1= 

48.0%.  

6.2.2 Classification of delay based on Decision Tree 

Both Entropy method and likelihood ratio chi-square were used as measures of split 

criteria to fit tree models. The results showed that the Entropy method is better according 

to the misclassification rate and RSC for testing association between the branches and the 

target categories. As shown in Table 6.6, the maximal tree was pruned back to yield the 

sequence of terminal nodes. Misclassification rates based on training data are decreasing 

monotonically as the number of modes increase. However, the misclassification rates 

based on the validation data show to reach a minimum value for the tree having 5 nodes. 

Figure 6.1 illustrated the procedure to select the best size tree model. Further, Figure 6.2 

shows the tree diagram with 5 terminal nodes. 

 

Table 6.6 Missing Classification Rate and Leaves of Tree Sequence using 

Leaves Training Validation 

1 0.2059 0.2015 

2 0.2059 0.2015 

3 0.2002 0.1953 

4 0.2002 0.1953 

**5 0.1977 0.1949** 

6 0.1977 0.1949 

**Minimum cost tree  
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Figure 6.1 The best size tree model based on missing Classification 

 

 

Figure 6.2: Tree classification diagram  

 

According to the decreasing order of variable importance, the tree model shows that 

the most important variables associated high delay are Precipitation and wind. The 

corresponding importance values for the variables are shown in Table 6.7.  
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Table 6.7 Important variable selection base on tree model 

Name Importance Role 

Precipitation 1 input 

Wind 0.1682 input 

 

The special contribution of the tree model to the delay analysis is that the complex tree 

classification is helpful to find the complex pattern based on combined variables. The 

Table 6.7 illustrates 2 most significant variables, which gives us the information that at 

present the weather conditions are most important variables for the delay problem due to 

destination airport at MCO. 

6.2.3 Classification of delay based on Neural network 

The models in this section are formulated based on data same as before. The data is 

partitioned into two parts, 70% for training model and 30% for validation. 

4 MLP and 3 NRBF neural network models having a range (2 to 5) of hidden nodes are 

compared. The result from Table 7, the assessment of neural network model, shows that 

the MLP network with 3 hidden nodes performs best among the models in their 

respective architectures. This model is compared with the results of logistic regression 

and tree models. In Figure 6.3, the average error plot for MLP model with 3 hidden nodes 

shows that when the iteration number increases above 10, the model derived from the 

training data shows a good fit on the valid data. 
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Table 6.8 Assessment of neural network model 

Neural 

network 

# of 

nodes 

Root 

ASE 

Valid: 

Root 

ASE 

Misclassification 

Rate 

Valid: 

Misclassification 

Rate 

MLP 2 0.3923 0.3915 0.1998 0.1964 

MLP 3 0.3925 0.3912 0.1995 0.1957 

MLP 4 0.3940 0.3915 0.2003 0.1961 

MLP 5 0.3925 0.3912 0.1995 0.1957 

RBF 3 0.4044 0.4012 0.2059 0.2015 

RBF 4 0.4044 0.4012 0.2059 0.2015 

RBF 5 0.4044 0.4012 0.2059 0.2015 

 

 

Figure 6.3 Average error plot for MLP model with 3 hidden nodes 

 

6.2.4 Model assessment 

In this study, the main purpose of fitting logistic regression model, tree model and 
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neural network model is to predict probability of highly delayed flight occurrence. The 

correct predicted rate is used to assess model performance. From the Cumulative 

percentage captured Response Chart as shown in Figure 6.4, MLP neural network model 

with 3 nodes and logistic regression model performs better than tree model in data 

prediction.  

 

 
Figure 6.4: Assess model performance: captured response lift plots for 3 models 

 

The captured response lift plots for models of the flight delay are showed in Figure 6.4 

above. The best models were identified through the lift plot having cumulative percentage 

of captured response in the validation dataset on vertical axis. The higher a curve from 

the baseline curve the better is the performance of the corresponding model.  

The performance of each model may be measured by determining how well the models 

capture the target event across various deciles.  From a practical application point of 

view it must be understood that high delay flights are not normal events and one would 
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need to be parsimonious in issuing warnings for high delay. Therefore, it might be not be 

reasonable to assign more than 20-30% of observations as high delay and it was decided 

to evaluate the model performances based on percentage of high delay identified within 

first three deciles (deciles = 10 percentiles) of posterior probability. It should be noted it 

(the posterior probability) is not the probability of high delay occurrence at a given point 

in time but is a measure providing the relative likelihood of high delay occurrence given 

the composition of the sample. That is the reason in this research we have examined the 

performance of the models on validation dataset based on percentiles rather than setting a 

specific threshold on posterior probability. It may be noted that the logistic regression 

model and MLP model have its captured response percentage higher than the tree model 

within first 3 deciles (deciles = 10 percentiles). 

The result from Table 6.9, the assessment of 3 models, shows that the Root ASE and 

misclassification rate for each model. The MLP network with 3 hidden nodes and the 

Logistic regression model are found to perform almost the same as tree model. From the 

logistic regression model, the variables of arrival time, flight distance, season, region, 

preciption and wind are found related to the arrival flight. From the tree model, we found 

that the weather conditions play the most important roles in the flight arrival delay.  

Considering the neural network’s performance is black box, we will use the logistic 

regression to analyze the results of prediction. 
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Table 6.9 Assessment of 3 models 

Model 
Root 

ASE 

Valid: 

Root ASE 

Misclassification 

Rate 

Valid: 

Misclassification Rate 

Tree model 0.3959 0.3928 0.2002 0.1953 

Logistic 

regression 
0.3962 0.3935 0.1996 0.1954 

MLP 0.3929 0.3912 0.1995 0.1957 

 

6.3 Conclusions and Discussions 

Using the 2002-2003 Airline On-Time Performance Data from Federal Aviation 

Administration (FAA) and weather data from the National Climatic Data Center (NCDC), 

this study examined the delay of arriving flights due to destination airport at MCO based 

on neural network model, logistic regression model and decision tree model.  

The models examined the delay pattern related to arrival demand, airport capacity, 

weather conditions in Orlando, season influences, time influences, week influences, 

distance influences, regional influences. Seven factors including season influences, time 

influences, week influences, distance influences, regional influences, wind speed and 

precipitation show significant association with the likelihood of flights of high delay. 

From the results, the highly delay flights show significant seasonal pattern. In summer, 

the odds of high delay is much higher than in other seasons, while in fall the odds of high 

delay is much lower than in other seasons. The highly delay flights also show significant 

daily pattern. During the time from 9pm to 11pm, the flights have the fewer odds to have 

high delay, while during the time from 3pm to 9pm the flights have the higher odds to 

have high delay. 
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Adjusting for other variables, the odds of having higher arrival delay will be about 

45-50% higher than other areas when the flight takes off from the east area. For the 

flights with the flight distance between 750 to 1000 miles, the odds of having a higher 

arrival delay will be higher than other categories, while for the flights with the flight 

distance less than 750 miles, the odds of having a higher arrival delay will be the lowest. 

The variables of precipitation and the wind speed also contribute to the higher delay for 

arriving flights. 

Compared with the results from Chapter 5, the arrival delays due to MCO show 

apparently regional pattern, besides the seasonal, weekly and daily patterns. And the 

short-distance flights (<750 miles) show significantly less probability to be delayed more 

than 15 minutes than mid- and long-distance flights.  

The delay propensity analyses in this study provide a better understanding of flight 

delay problem and provide more information to seek effective countermeasures. 
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CHAPTER 7 CONCLUSIONS AND DISCUSSION 

 

7.1 General 

In this research, statistical models for airport delay and single flight arrival delay are 

developed. The models use the Airline On-Time Performance Data from the Federal 

Aviation Administration (FAA) and the Surface Airways Weather Data from the National 

Climatic Data Center (NCDC). Multivariate regression, ANOVA, neural networks and 

logistic regression are used to detect the pattern of airport delay, aircraft arrival delay and 

schedule performance. These models are then integrated in the form of a system for 

aircraft delay analysis and airport delay assessment. In this chapter we summarize 

conclusions from this study. The contributions of this research are also discussed along 

with the future scope. 

 

7.2 Summary and Conclusions 

One of the concerns of this thesis is the delay problem in the context of airports. The 

delay distribution of an airport can make it easier to understand the airport delay. The 

assessment of an airport’s schedule performance is also discussed. Finally, Multivariate 

regression, ANOVA, Neural networks and Logistic regression are used to detect the 

pattern of airport arrival delay.  

The results of the research show that the arrival delay is highly related to the originate 

delay. The airport arrival delay is found to show seasonal and weekly patterns, which is 
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related to the schedule performance. The precipitation and wind speed are also found to 

be contributors of airport arrival delay. The capacity of airport is not found to be 

significant. This may indicate that the capacity constraint is not an important problem at 

MCO. 

At the same time this research enables us to investigate the delay at the flight level, and 

different delay level are compared, which gives out the pattern of arrival delay. Then, the 

effect of a flight on the immediate flight is considered. We measure the time interval of 

two consecutive flights and analyze its effect on the flight delay. 

The characteristic of single flight and their effect on flight delay are considered. The 

patterns of delay from the flight level in which delays occur are analyzed, and the 

significant reasons of delay are given out. The precipitation, flight distance, season, 

weekday, arrival time and the space between two successive arriving flights are found to 

contribute to arrival delay of flights. We measure the time interval of two consecutive 

flights and analyze its effect on the flight delay. The results show that as the spacing 

between two successive arriving flights increases, the probability of the flights being 

delayed will decrease. 

The characteristics of air congestion that we illustrate empirically is that a flight delay 

is not necessarily during a peak period, but depends on the impacts generated on 

subsequent flights. In response to single flight delay predictions and reason for these 

delays that are generated by the model, which can give indications for the appropriate 

recovery actions to recover/avoid these delays. 
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While it was possible to calculate the immediate impact of originat delays, it is not 

possible to calculate their impact on the cumulative delay. If a late originating aircraft has 

no space in its down line schedule, it will continue to be late. If that aircraft enters a 

connecting airport, it can pass its lateness on to other aircraft. So in the research we also 

consider purifying only the arrival delay at MCO, excluding the flights with originating 

delay >0. The model makes it possible to see the pattern of the aircraft arrival delay. The 

weather conditions are found to be the most significant factors that influence the arrival 

delay due to the destination airport. 

 

7.3 Comments and future research 

Delays may also be attributed to airline operations procedures. This type of operation 

is desirable from an airline point of view because it allows the passengers, aircraft and 

crew to be rerouted to various destinations. They also provide airlines the opportunity to 

consolidate passengers into some flights while canceling others. Another factor is the 

aircraft size. For example, the turboprops require a smaller runway, climbe more slowly 

and fly at lower altitudes than the jets. These characteristics allow them to be naturally 

separated from the higher altitude jet traffic. Increased numbers of smaller jets, which 

operate in the same flight regime as the larger jets, means more aircraft competing for the 

same airspace, thereby increasing congestion and delays. The airline information and 

aircraft model are not considered in the thesis make the drawbacks. What is important, 

due to the lack of data, the airport condition and weather information at the origin airports 
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are not available, which decreases the reliability of the models. 

It is theorized that larger airlines should have increased exposure to delays from 

weather when they serve more destinations. More destinations mean more potential 

delays to be spread throughout the system. Because they have more flights, larger airlines 

can more accurately predict the likelihood of crew sickness or mechanical failure. This 

enables them to keep a smaller percentage of their resources in reserve than smaller 

carriers, while maintaining the same on-time performance. Delay data on both large- and 

medium-sized national carriers allows comparison of the effects of congestion and 

weather delays on airlines with different network characteristics (Rosen 2002). These can 

be a direction of future research. 
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APPENDIX A: VARIABLES USED IN THE REGRESSION MODELS
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Variables Definition 

Flight arrival delay 
Difference of the actual arrival time minus the scheduled 

arrival time 

Maximum hourly flow 

rate 

Maximum numbers of operation that can be handled in a 

one-hour period under specific operating conditions 

Arrival demand Number of completed arrival flights to MCO per day 

according to the scheduled arrival time. 

Flight duration Airborne time for each flight 

Space of Inter-arrival 

time 

Intervals between two consecutive arriving flights 

Airport precipitation Daily observations about the inches of the rainfall  

Airport wind speed Daily average wind speed at MCO, speed of wind in mph per 

day. 

Seasonal variables Indicate the seasons when the flights are scheduled, spring 

(March-May), summer (June-August), fall (September to 

November), and winter (December to February). 

Weekly variables Indicate the weekday when the flights are scheduled 

Time variables Indicate the scheduled arriving time of each delayed flights, 

morning (7am to 11:59 am), afternoon (12 am to 4:59 pm), 

and evening (5 pm to 11:59 pm).  

Origin airport regional 

variables 

The regional effects are captured by a set of dummy 

variables, south, east, central, and west areas (definition is in 

Appendix B). 

Flight distance Categories of flight distance, which respectively represent 

the distance of 0 to 750 miles, 750 to 1000miles and greater 

than 1000 miles.  
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APPENDIX B: DEFINITION OF REGIONAL VARIABLES
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Areas Definition 

South 

States of Alabama, Florida, Georgia, Mississippi, North Carolina, South 

Carolina, and Tennessee 

East 

States of Connecticut, Delaware, District of Columbia, Indiana, Kentucky, 

Maine, Maryland, Massachusetts, Michigan, New Hampshire, New 

Jersey, New York, Ohio, Pennsylvania, Rhode Island, Vermont, Virginia, 

and West Virginia 

Central States of Arkansas, Colorado, Illinois, Iowa, Kansas, Louisiana, 

Minnesota, Missouri, Nebraska, North Dakota, Oklahoma, South Dakota, 

Texas, and Wisconsin 

West States of Alaska, Arizona, California, Hawaii, Idaho, Montana, Nevada, 

New Mexico, Oregon, Utah, Washington, and Wyoming 
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