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Abstract

In a decentralized supply chain, with long-term competition between independent retail-

ers facing random demands and buying from a common supplier, how should wholesale and

retail prices be specified in an attempt to maximize supply-chain wide profits? We show

what types of coordination mechanisms allow the decentralized supply chain to generate

aggregate expected profits equal to the optimal profits in a centralized system, and how the

parameters of these (perfect) coordination schemes can be determined. We assume that the

retailers face stochastic demand functions which may depend on all of the firms’ prices as

well as a measure of their service level, e.g., the steady-state availability of the product. We

systematically compare the coordination mechanisms when retailers compete only in terms

of their prices, and when they engage in simultaneous price and service competition.



1 Introduction

We consider a decentralized supply chain with long-term competition between independent

retailers facing random demands and buying from a common supplier. In this setting, we

investigate how wholesale and retail prices should be specified in order to maximize supply-

chain wide profits. The design of effective coordination mechanisms in supply chains has

recently received considerable attention in the operations management literature, following

on earlier work in economics (see e.g., Tirole 1988, and Mathewson and Winter 1984) and

the marketing literature on channel coordination (see e.g., Jeuland and Shugan 1983, and

Moorthy 1987). Ideally, a coordination mechanism allows the decentralized supply chain to

generate aggregate expected profits equal to those in the first-best solution, i.e., the optimal

profits in a centralized system. We refer to such mechanisms as perfect coordination schemes.

This paper develops such schemes for settings where the retailers compete in terms of their

pricing strategies, as well as those where they compete simultaneously in terms of their prices

and long-term service levels.

A variety of pricing structures and contractual arrangements have been discussed in the

operations management literature, see e.g., the surveys by Lariviere (1999), Tsay et al.

(1999) and Cachon (2002). This parallels innovations in many industries where suppliers

increasingly adopt non-standard pricing schemes to influence retail prices, retail sales and

supply chain profits.1 For example, the adoption of so-called revenue sharing schemes has

revolutionized the video rental industry.

However, most of the literature considers coordination mechanisms for a supply chain

with a single retailer, thereby avoiding the complications which arise under any type of

competition between retailers. As to the sparse literature on coordination mechanisms for

supply chains with competing retailers, a few papers (in particular Padmanbhan and Png

1995, 1997, Deneckere et al. 1996, 1997, van Ryzin and Mahajan 1999, Cachon 2002, and

Bernstein and Federgruen 2005) address this question in a single period setting. Papers

addressing infinite horizon models typically assume that demands occur at a constant deter-

ministic rate and that all demands are satisfied fully and immediately, an ideal service level

which, under deterministic demands, can easily be guaranteed. Here, retailer competition is

1See e.g., Ailawadi et al. (1999) who report that, across forty packaged good categories included in the

Market Fact Book, no less than 37% of retail sales were made “on deal”, i.e., on the basis of one or several

such pricing schemes.
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confined to price or quantity competition. (See Chen et al. 2001, Bernstein and Federgruen

2003, and the references cited therein.)

Under random demands, the competitive dynamics among the retailers are considerably

more complex, when viewed in a multi-period or infinite horizon setting. First, each retailer

needs to complement its pricing strategy with an efficient strategy to replenish its inventory

from the supplier. Second, the distribution of the random demands faced by a retailer

depends, in general, on all the retailers’ prices and service levels, i.e., the (steady-state)

availability of their products. We observe an increasing number of industries in which some

of the competing retailers aggressively attempt to obtain larger market shares by providing

higher levels of service. For example, in the fierce competition between amazon.com and

barnesandnoble.com, the latter initiated a massive advertising campaign promising same

business day delivery in various parts of the country. These complications result in significant

challenges when designing a coordination mechanism for the chain.

To analyze the mechanism design questions, we focus on two-echelon supply chains with a

single supplier servicing a network of retailers. We assume one of several systems of demand

processes whose distributions are functions of all retailer prices and all announced service

levels, quantified as the firms’ no-stockout frequency, i.e., the fraction of time during which

the firm does not run out-of-stock.2 Bernstein and Federgruen (2004b) consider alternative

service measures, e.g., the likelihood with which customers receive delivery within a given

promised time limit. We analyze a periodic review, infinite horizon model, with the retailers

facing a stream of demands that are independent across time but not necessarily across firms.

End-of-the-period inventories are carried over to the next period. We assume that stockouts

are backlogged. Each retailer may place an order with the supplier at the beginning of each

period. Similarly, the supplier may, at the beginning of the period, replenish her inventory

from an outside source. The supplier fills the retailers’ orders from her own inventory or, in

case of stockouts, from an “emergency” or “backup” source. Such emergency procurements

incur additional costs. The retailers and the supplier pay facility-specific inventory carrying

and variable order costs. In addition, the retailers may incur out-of-pocket backlogging

costs, which are proportional with the size of the backlogs. Contrary to most standard

inventory models, but more representative of actual cost/service tradeoffs experienced in

practice, ours does not require that direct backlogging costs exist. Even in their absence,

every firm has a proper incentive to carry appropriate safety stocks, since a large stockout

2This is often referred to as the type-1 service level (see e.g., Nahmias 2001, §5.4.6).
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frequency reduces the retailer’s average sales and increases that of the competitors. We also

show that backlog penalties may need to be charged (or paid) to the retailers as part of a

coordination scheme. The exact optimal strategy for the centralized chain is unknown and of

a prohibitively complex structure. We therefore define the first-best solution as the optimal

supply chain wide profits achievable under an optimal pricing structure and assuming all

facilities adopt some base-stock policy, i.e., each facility increases its inventory position to

some given base-stock level, whenever the inventory has dropped below this level.

We first consider the case where the firms’ service levels are exogenously specified. Here,

we assume that the retailers respond to a given wholesale pricing scheme by non-cooperatively

selecting their retail price along with a dynamic inventory replenishment strategy. We ini-

tially assume that each retailer chooses a stationary retail price to be used throughout the

planning horizon. This assumption is satisfied, for example, when the model addresses

supply chain coordination for a given year or season, with daily or weekly replenishment

opportunities, during which retail prices remain constant by managerial choice or by neces-

sity. Blinder et al. (1998) report on a detailed and comprehensive survey of 200 firms in

the U.S. selected from a large variety of industries, firm sizes, and geographical regions, to

document how rigid or sticky prices are and what factors explain this stickiness. No less

than 45% of the firms vary their prices only on an annual basis and 60% conduct a price

review at most twice a year. Correspondingly, 49% of the firms report making at most a

single price change per item per year, and 65% at most two changes. The authors identify

some twelve distinct theories to explain this price stickiness. Their book complements an

earlier literature of econometric studies documenting a pervasive trend of price rigidity, for

example, Carlton (1986), Cechetti (1986), and Kashyap (1995).

Under a static price choice, there is a unique Nash equilibrium of prices and associated

inventory strategies in response to a linear wholesale pricing scheme. Since each firm’s

inventory strategy only impacts its own profit, the infinite horizon stochastic game can be

reduced to a single stage game, in the sense that both games share the same set of Nash

equilibria. In other words, even though the base-stock levels depend on the equilibrium

prices and service levels, the replenishment dynamics can be decoupled from the strategic

interations. We use this to show that the system can be coordinated with constant per unit

wholesale prices specified, once and for all, at the beginning of the infinite planning horizon.

The results contrast with those in the single-period model in Bernstein and Federgruen

(2005) in which stockouts are assumed to result in lost sales. There, perfect coordination

cannot be achieved with a simple linear wholesale pricing scheme. Instead, it is essential to
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combine such a scheme with a guarantee by the supplier to buy back any unsold units at

a given (retailer specific) buy-back rate. That paper presents an alternative coordination

mechanism, the so-called Price Discount Sharing scheme, under which the supplier subsidizes

the retailer for part of the dollar amount the retailer discounts its retail price from a given

list price. This scheme also needs to be combined with a buy-back guarantee. Moreover,

in Bernstein and Federgruen (2005)’s single period model, the stochastic demand functions

do not depend on the firms’ service levels. That model therefore does not analyze how the

equilibria and parameters of any coordination schemes are affected by these service levels.

We proceed with the full equilibrium model, in which the retailers compete in terms of

two distinct strategic instruments: (i) their retail prices (or, equivalently, their expected sales

targets), and (ii) their announced service levels (no-stockout frequencies). (Each firm con-

tinues to select a dynamic infinite horizon inventory strategy along with these two choices.)

Under static pricing, the infinite horizon retailer competition game can again be reduced to

a single stage game, now one in which each firm selects a price and a service level.

Under combined price and service level competition, a perfect coordination scheme can

be designed on the basis of a specific vector of constant per unit wholesale prices, combined

with a vector of constant per unit backlogging cost penalties to be paid by the retailers

to the supplier (or vice versa).3 This type of coordination scheme was first introduced by

Celikbas et al. (1997) to coordinate the marketing and production functions within a single

firm and by Lariviere (1999) in the context of a single retailer, single period model in which

the retail price, and hence the demand distribution, is exogenously given. The scheme is also

related to the “lost sales transfer payment” scheme in Cachon (2002, §5) for a setting with

a single retailer facing an exogenously specified (Poisson) demand process, with stockouts

resulting in lost sales: a given fee is paid by the retailer to the supplier (or vice versa) for

every unit in lost sales. The backlogging penalties are most easily implemented when they

are negative, i.e., when they are to be paid by the supplier to the retailer: here, the retailer

is properly incented to report any backlogs so as to recover the backlogging penalties. If the

penalty is positive, a possible way for the supplier to monitor backlogs at the retailers would

involve rebate coupons to be distributed to the customer (perhaps along with the warranty

or service registration card) and to be sent in to the supplier or a third party.

In §6, we discuss how, and to what extent, our coordinating mechanisms continue to

3These wholesale prices and backlogging penalties are again specified, once and for all, at the beginning

of the infinite planning horizon.

4



apply when firms are allowed to change their price in each period. (Since the firms’ service

levels are defined in terms of long-run average fill rates, it only makes sense to treat them as

static choices.) While under the assumption of static pricing the competition model reduces

to a single stage game, it distinguishes itself from prior models in the literature by its ability

to incorporate demand and cost implications of long-term service levels. Prior models of

retailer competition with stochastic demands consider a single period and either assume

that firms compete exclusively in terms of their prices, or they assume that firms compete in

terms of their single period inventory levels under given prices. For example, van Ryzin and

Mahajan (1999) consider a single period model in which customers choose retailers based on

the availability of stocks. The authors confine themselves to linear wholesale pricing schemes

with a constant per unit wholesale price, and investigate how close the best such scheme

comes to achieving the first best solution. In contrast to this model, Cachon (2002, §5) shows

that a linear wholesale pricing scheme achieves perfect coordination, if the retailer demands

are perfectly correlated and arise in proportion to their initial stocks. Deneckere et al. (1996,

1997) consider a model with perfect competition and a (uniform) market clearing price which

depends on the aggregate inventory of the retailers according to one of two demand functions,

corresponding to two possible states of the general economy. Once again, a linear wholesale

pricing scheme fails to coordinate the chain. The authors propose to combine it with a

resale price maintenance scheme instead, under which the retailers are obliged to set their

price above a given threshold. Padmanabhan and Png (1995, 1997) exhibit the benefits

of a full returns policy in a two-retailer price competition model, with deterministic linear

demand functions. In other models, the strategic importance of the inventory level consists

in its ability to attract substitute demand from competitors that have run out of stock,

while the primary demand functions are independent of any measure of service or inventory

availability, see, e.g., Netessine and Rudi (2003).

Finally, as reviewed above, Bernstein and Federgruen (2005) consider the general single

period price competition model with lost sales. The current paper relies heavily on Bernstein

and Federgruen (2004b)’s single echelon model for price and service competition between

retailers. See there for a literature review on earlier inventory models with price and/or

service sensitive demand processes.

The remainder of this paper is organized as follows. Section 2 presents the model and

notation. Section 3 characterizes the retailers’ equilibrium behavior in response to a given

wholesale pricing scheme as well as the centralized solution. Section 4 derives the proposed

coordination mechanisms when service levels are predetermined and Section 5 when the
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retailers compete simultaneously in terms of their price and service levels. Section 6 discusses

how our results can be extended to settings where dynamic pricing is allowed. Section

7 reports on a numerical study. Finally, Section 8 offers conclusions and a discussion of

extensions to our model. All proofs are deferred to an Appendix.

2 Model and Notation

Consider a two-echelon supply chain with a supplier selling to N independent retailers, each

facing random demands. We analyze a periodic-review infinite-horizon model in which, at

the beginning of each period, each retailer may replenish its inventory by placing an order

with the supplier and the supplier may choose a replenishment quantity to be procured

from an outside source. Each retailer i = 1, ..., N positions itself in the market by selecting

a retail price pi from a given interval [pmini , pmaxi ], as well as a steady-state service level

fi ∈ [0.5, 1), defined as its (long-run) no-stockout frequency. (See Bernstein and Federgruen

2004b for alternative service measures.) For most of the paper, we assume that the retailers

are required to adopt a stationary price. In §6 we discuss how our results and analysis extend

to settings in which prices may, in principle, be varied each period.

The supplier must anticipate incoming orders with an appropriate replenishment strategy.

This situation arises, for example, when the supplier’s procurement mechanism is constrained

by a capacity limit or when her replenishment orders fail to be filled instantaneously, but

become available during or at the end of the period in which they are placed. When faced

with stockouts, the supplier takes advantage of a backup or emergency source to fill the

uncovered part of the retailer orders. For example, the supplier may subcontract at the

last minute or schedule overtime production. Thus, all retailer orders can be filled at the

requested level, albeit that procurements from the backup source are associated with signif-

icant additional costs. Subsequent to the initial price and service level choices, decisions are

made in the following sequence: at the beginning of each period, all retailers simultaneously

determine their order quantity for that period. Next, these orders are filled immediately

(when necessary, with the help of an emergency order to clear a stockout at the supplier),

after which the supplier decides on the next replenishment order.

Each retailer incurs holding costs which are proportional with the inventory it carries.

Stockouts at the retailers are backlogged. In §8 we provide a discussion of the case where
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stockouts result in lost sales. A retailer may incur direct, out-of-pocket backlogging costs.

If so, these are proportional with the backlog size. Thus, for each retailer i = 1, ..., N , let

h+
i = the per period holding cost for each unit carried in inventory,

h−i = the per period direct backlogging cost for any unit backlogged.

The supplier incurs variable “regular” procurement costs, as well as linear holding costs.

The additional procurement cost associated with any “emergency” end of the period pro-

curement is given by a convex function h−0 (·), reflecting increasing marginal costs:

h−0 (x) = the additional cost of clearing an end of the period shortfall of x units.

Following Bernstein and Federgruen (2004b), the demand faced by each retailer i, in

any period t, has a distribution which may depend on the entire vector of retail prices p

as well as the entire vector of announced minimum service levels f = (f1, ..., fN). We thus

allow a firm to provide better than its announced service level. We assume, however, that

customer demand for a given firm depends on its specified rather than its actual service

level, similar to it being dependent on the specified technical quality of the product (e.g.,

the product’s expected lifetime). (See Bernstein and Federgruen 2004b for a review of how

information about the firms’ minimum service level is available in a variety of industries, and

how customers can avail themselves of estimates when service level targets fail to be publicly

available.) Moreover, we show that in the absence of direct backlogging costs (i.e., when

h−i = 0) a firm will always equate its actual service level to the minimum specified level,

rendering the distinction between the two service level concepts a moot point. Similarly,

when a backlogging penalty is charged to a retailer as part of a coordination scheme (see

§5), the retailer is always induced to specify a (minimum) service level which equals its actual

(long-run average) service level. Let Dit(p, f) be the random demand faced by retailer i in

period t, under the retail price vector p and the service level vector f , with general cumulative

distribution function (cdf) G̃i(x|p, f). An assumption with important implications for the

firms’ equilibrium behavior is that the demand variables are of the multiplicative form, i.e.,

Dit(p, f) = di(p, f)εit, (1)

with εit a general continuous random variable whose distribution is stationary and indepen-

dent of the vectors p and f . Thus, for all i = 1, ..., N , the sequence {εit} has a common

general cdf Gi(·) with density function gi(·), inverse cdf G−1
i (·) and standard deviation si.

Without loss of generality, we assume E(εit) = 1, for all i and t. Thus, EDit(p, f) = dit(p, f)

and G̃i(x|p, f) = Gi

(
x

di(p,f)

)
, so that di(p, f) represents the expected demand for retailer i.
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Under the multiplicative model, the absolute level of any fractile of the demand distri-

bution G̃i may depend on the complete vector of prices p and service levels f , but the ratio

of any pair of fractiles is independent of p and f . Another implication of the multiplicative

model is that the coefficient of variation of any one-period demand is the exogenously given

constant si, i.e., it is independent of p and f . See Bernstein and Federgruen (2004a) for a

discussion of non-multiplicative demand models, with demand functions that depend on the

price vector p, only. As is standard in virtually all inventory models, we assume that, for all

i = 1, ..., N , the sequence of random variables {εit : t = 1, 2, ...} is independent, so that the

same independence property applies to the sequence {Dit}. In contrast, the demands faced

by the retailers in any given period may be correlated, following a general joint distribution.

The mean sales functions satisfy the basic monotonicity properties:

∂di(p, f)

∂pi
≤ 0,

∂di(p, f)

∂fi
≥ 0,

∂di(p, f)

∂pj
≥ 0,

∂di(p, f)

∂fj
≤ 0, j �= i, (2)

i.e., a retailer’s demand volume decreases with its own price and increases with the price of

any of its competitors, and it increases with its own service level and decreases with those of

the competitors. We also assume that no firm’s sales increase under a uniform price increase:

(D)
N∑
j=1

∂di
∂pj

< 0 for all i = 1, ..., N.

Finally, we denote by ηi(p, f) = |∂di(p,f)
∂pi

pi

di(p,f)
| the absolute price elasticity for retailer i.

As in Bernstein and Federgruen (2004b), we focus on three classes of demand functions:

(I) The Attraction Model. Attraction models are among the most commonly used

market share models, both in empirical studies and in theoretical models, see e.g., Leeflang

et al. (2000). Here, we assume a fixed potential market size M , with each retailer’s actual

market share determined by a vector of attraction values a = (a1, ..., aN). More specifically,

retailer i’s market share is given by ai/
∑N
j=0 aj where a0 is a constant representing the value

of the no-purchase option. In our context, we assume that retailer i’s attraction value ai

depends on its retail price pi and service level fi according to a general function ai = ai(pi, fi).

This gives rise to the system of expected demand functions:

di(p, f) = M
ai(pi, fi)∑N

j=1 aj(pj , fj) + a0

. (3)

Clearly, the attraction values are decreasing in the price and increasing in the service variable:

∂ai
∂pi

≤ 0 and
∂ai
∂fi

≥ 0 for all i = 1, ..., N. (4)
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We assume that each attraction function ai is log-concave. Let ãi = log ai. Common

specifications include the Multinomial Logit (MNL) Model, with ãi(pi, fi) = bi(fi) − αipi,

where αi ≥ 0 and the functions bi(·) are twice differentiable, increasing and concave for

i = 1, ..., N . (See Anderson et al. 1992 and Mahajan and van Ryzin 1999 for surveys of

many econometric studies employing this specification.) The MNL model is a special case

of the more general class of Separable Attraction Functions, where ãi = bi(fi) + αi(pi). A

separable function ã is appropriate when the percentage increase in the attraction value of

a firm due to a marginal change in its price is independent of the prevailing service level, or

vice versa. Non-separable attraction functions are useful to represent increased or decreased

sensitivity of the attraction values to price changes under a higher service level regime.

(II) The Linear Model. The average demand functions are linear in all prices and

service levels, i.e., for positive constants bi, eij, βi and γij:

di(p, f) = ai − bipi +
∑
j �=i

eijpj + βifi −
∑
j �=i

γijfj, i = 1, ..., N. (5)

(III) The Log-Separable Model. This demand model assumes that a regular system of

price-dependent demand functions {qi(p)} is scaled up or down, as a function of the service

levels f offered by the different firms. This gives rise to the specification:

di(p, f) = ψi(f)qi(p), (6)

with qi and ψi differentiable, satisfying the monotonicy properties ∂ψi(f)
∂fi

> 0, ∂ψi(f)
∂fj

<

0, ∂qi(p)
∂pi

< 0, ∂qi(p)
∂pj

> 0, j �= i, and with the normalization ψi(f, f, ..., f) = 1. That is,

if the firms choose identical service levels, their demands only depend on the prices. We

assume that each function qi(p) is log-supermodular in (pi, pj) and each function ψi(f) is

log-supermodular in (fi, fj), i.e.,

∂2 log qi(p)

∂pi∂pj
≥ 0 for all i �= j;

∂2 log ψi(f)

∂fi∂fj
≥ 0 for all i �= j. (7)

Also,

−∂
2 log qi(p)

∂p2
i

>
∑
j �=i

∂2 log qi(p)

∂pi∂pj
, i = 1, ..., N ; (8)

−∂
2 log ψi(f)

∂f2
i

>
∑
j �=i

∂2 log ψi(f)

∂fi∂fj
, i = 1, ..., N. (9)

These are standard conditions to guarantee a unique equilibrium in single-period competition

models with linear costs, see Vives (2000). Milgrom and Roberts (1990) showed that virtually

9



all standard classes of demand functions, including the Linear, Logit, Cobb-Douglas, and

CES functions, satisfy (7)-(9) with minor parameter restrictions.

3 Best Response Policies and the Centralized Solution

In this section, we describe how each chain member optimally responds to chosen (infinite

horizon) strategies by the other firms. In addition, we analyze the optimal solution in the

centralized system.

Assume first that the supplier adopts an arbitrary vector of constant wholesale prices

w. Since the supplier fills all retailer orders, πi, the long-run average profit for retailer i,

depends on the infinite horizon strategies of the competing retailers and the supplier only

via (p−i, f−i),4 the price and service level choices of the competing retailers. Given a choice

(pi, fi), retailer i faces a stream of independent demands, identically distributed like Di(p, f)

so that a simple base-stock policy with base-stock level yi optimally complements the price

and service level choices among all possible infinite horizon inventory strategies. Moreover,

it is easily verified that under such a strategy, firm i’s long-run average profit is given by:

πi(p, f, yi) = (pi − wi)di(p, f) − h−i (di(p, f) − yi) − (h−i + h+
i )E[yi −Di(p, f)]+. (10)

Given (1), the base-stock level y∗i (p, f) which optimizes the profit in (10) subject to the

constraint of providing a no-stockout probability at least equal to the specified level fi, is:

y∗i (p, f) = di(p, f)G−1
i

(
max

{
fi,

h−i
h−i + h+

i

})
, i = 1, ..., N. (11)

Thus, the optimal base-stock level is a multiple of retailer i’s expected single period demand.

This multiple depends on the variability of these demands (via the distribution Gi(·)), the

relative magnitude of the cost rates h−i and h+
i , and the specified (minimum) service level

fi. The multiple does not depend on any of the prices or the competitors’ service levels.

Substituting (11) into (10) and regrouping terms, we get the (reduced) profit functions

π̃i(p, f) = [pi − wi − ki(fi)]di(p, f), (12)

where

ki(fi) = h−i − h−i G
−1
i

(
max

{
fi,

h−i
h−i + h+

i

})
+ (h−i + h+

i )E

[
G−1
i

(
max

{
fi,

h−i
h−i + h+

i

})
− εi

]+

(13)

4For any vector x ∈ �n, let x−i = {xj : j �= i}, i = 1, ..., N .

10



denotes the expected operational cost required to support one unit of sales (which in the

multiplicative model is independent of the sales volume).

Thus, under an exogenously specified vector of service levels f0, the retailers face an

infinite-horizon sequential game which can be reduced to a single-stage game in which each

firm i only chooses its price pi and with profit functions {π̃i(p, f0)}. Specifically, if p∗ is a

Nash equilibrium in the single stage game, the price vector p∗ combined with the N -tuple of

base-stock policies with base stock levels {y∗i (p∗, f0), i = 1, ..., N} is an equilibrium of Nash

strategies in the infinite horizon game, and vice versa. Similarly, if the vector of service

levels f is endogenously determined, the retailers face an infinite horizon game which can be

reduced to a single stage game in which each firm i chooses a price pi and a service level fi,

with profit function π̃i(p, f). Thus, we can restrict attention to the single-stage game, which

we refer to as the retailer game.

From (12), note that π̃i is the product of the expected demand volume di(p, f) of firm i and

its profit margin [pi−wi−ki(fi)]. All service levels in f impact on a firm’s expected demand,

but only the firm’s own service level impacts its profit margin. It is easily verified that the

ki(·) functions are differentiable and increasing. We assume, without loss of generality, that

limp↗∞ π̃i(p) = 0, and limp↗∞ ∂π̃i

∂pi
(p) < 0. In particular, we assume that the vector of upper

limits pmax = (pmax1 , ..., pmaxN ) is chosen sufficiently large that

∂π̃i
∂pi

(pmax) < 0. (14)

We now turn our attention to the supplier. As shown above, it is optimal, in a decentral-

ized system, for all retailers to adopt some base-stock policy. Note that the specific choices

of the base-stock levels have no impact on the revenues or costs incurred by the supplier.

Assuming the retailers choose (p, f) as their prices and service levels, the supplier faces an

i.i.d. stream of aggregate orders, the common distribution of which equals that of the aggre-

gate single period consumer demand in the system. Let D0(p, f) denote a random variable

with this distribution. (The cdf G̃0(x|p, f) of D0(p, f) can be obtained from the joint distri-

bution of the {εi} variables. It depends on p and f only via the vector of mean demands d,

i.e., G̃0(x|p, f) = G̃0(x|d).) It is thus optimal for the supplier to adopt a (modified) base-

stock policy, see e.g., Federgruen and Zipkin (1986). Under a modified base-stock policy,

the supplier increases her inventory position, each period, to a level as close as possible to a

base-stock level. If no capacity limit prevails, the base stock level can be achieved in every

period. In the presence of a capacity limit, a full capacity order is placed when the difference
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between the base stock level and the period’s beginning inventory is equal to or larger than

the capacity limit.

Similar to those of the retailers, it is easy to compute the supplier’s optimal base-stock

level y0(p, f), see Zipkin (2000). Let C0(p, f) denote the expected holding and emergency

procurement costs incurred by the supplier under an optimal (modified) base-stock policy.

Since C0 depends on (p, f) only via the cdf G̃0 and since the latter depends on (p, f) only via

the vector of mean demands d, it is possible to write C0(p, f) = C̃0(d). In some cases, C̃0 can

be obtained in closed form. Consider, for example, the case where the supplier’s orders are

uncapacitated and her expediting costs are linear with cost rate h−0 . If the random demand

components {εi : i = 1, ..., N} follow a general multivariate Normal distribution, D0(p, f)

is Normal itself and its mean µ0(p, f) and standard deviation s̃0(p, f) can be obtained as a

closed form function of the functions {di(p, f)} and the variance-covariance matrix of {εi}.
Moreover, because D0(p, f) is Normal, C0(p, f) = (h−0 + h+

0 )φ
(
Φ−1

(
h−0

h−0 +h+
0

))
s̃0(p, f), see

Zipkin (2000, Chapter 6), with φ(·) and Φ(·) the pdf and cdf of the standard Normal. For

example, when the εi-variables are independent,

C0(p, f) = C̃0(d) = (h−0 + h+
0 )φ

(
Φ−1

(
h−0

h−0 + h+
0

))√√√√ N∑
i=1

d2
i (p, f)s2

i . (15)

In this case, ∂C̃0/∂di = (s̃i/s̃0)c
i
0, where ci0 represents the supplier’s per unit cost if she serves

retailer i exclusively and s̃i = disi, the standard deviation of retailer i’s demand.

When designing coordination mechanisms, it is essential to characterize the first-best

solution which arises when optimizing the centralized system. Such a system would adopt a

price and service level vector (pI , f I) but the accompanying fully optimal supply chain wide

replenishment strategy is unknown, see e.g., Federgruen and Zipkin (1986) and Zipkin (2000).

In defining the first best solution, we therefore restrict attention to replenishment strategies

under which each retailer’s inventory is governed by some base-stock policy.5 As shown above,

the same (modified) base-stock rule for the supplier’s inventory optimally complements such

retailer base-stock policies, regardless of whether one considers the supplier’s profit or the

aggregate profit in the supply chain. With this restriction, let π̃I(p, f) denote the optimal

system wide long-run average profit under the price vector p and vector of service levels f .

5Many supply chain models with exogenously specified demands are based on the assumption that all

facilities adopt a base stock policy, see e.g., Graves and Willems (2000) and Ettl et al. (2000) and the

references therein. These models have been implemented successfully at various product divisions of Eastman

Kodak, IBM and other companies.
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Note that

π̃I(p, f) =
N∑
j=1

(pj − cj − kj(fj))dj(p, f) − C0(p, f)

=
N∑
j=1

π̃j(p, f) +

⎧⎨
⎩

N∑
j=1

(wj − cj)dj(p, f) − C0(p, f)

⎫⎬
⎭ ,

where the expression within curled brackets represents the expected profit earned by the

supplier. For any f ∈ [0.5, 1)N , let pI(f) denote a maximum of the continuous function

π̃I(·, f) on the compact cube XN
i=1[p

min
i , pmaxi ] and let (pI , f I) denote a global maximum of

the (continuous) function π̃I(·, ·), which exists because limfi↗1 π̃I(p, f) = −∞, i = 1, ..., N .

4 Coordination Under Price Competition

In this section, we show that under exogenously specified service levels f0, perfect coordi-

nation can be achieved with simple constant per unit wholesale prices. This coordinating

vector of wholesale prices is, in fact, unique. We also characterize its dependence on f0.

Theorem 1 Assume that the vector of service levels f0 is exogenously specified. (a) There

exists a vector w∗(f0), with

w∗
i (f

0) = pIi (f
0) − ki(f

0
i ) −

pIi (f
0)

ηi(pI(f0), f0)
≤ pIi (f

0) − ki(f
0
i ), (16)

such that pI arises as the unique price equilibrium in the retailer game induced by this vector

of wholesale prices w∗(f0). Moreover, w∗(f0) is the only vector of constant wholesale prices

under which pI(f0) arises as a price equilibrium. (b) Assume, in addition, that pIi (f
0) >

ci + ki(f
0
i ) + ∂C̃0(p

I(f0),f0)
∂di

, i = 1, ..., N . Then, ci +
∂C̃0(p

I(f0),f0)
∂di

< w∗
i (f

0).

In our basic model, holding costs are independent of the wholesale prices. Since capital

costs usually are a major component of inventory carrying costs, one may wish to assume

that each holding cost rate h+
i increases with the wholesale price wi, as follows: h+

i (wi) =

ρiwi + h0
i , i = 1, ..., N. The above result also holds under this assumption.

To compute the coordinating wholesale price w∗
i for any given retailer i, it suffices to

know its cost structure and demand function along with the optimal price vector pI(f0): ki
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is easily computable, merely knowing retailer i’s distribution Gi(·), cost parameters h+
i and

h−i and its service level f0
i , while the price elasticity ηi can be determined from the shape

of this retailer’s expected demand function di(p, f
0) and the vector pI(f0), alone. Note that

ki depends on wi if h+
i does. In general, computation of w∗

i requires the determination of

the unique value of wi for which wi + ki(f
0
i (wi)) crosses the value pIi

(
1 − 1

ηi(pI)

)
. Only in

the “basic” model, where h+
i is independent of the wholesale price wi (i.e., when ρi = 0), is

the identity for w∗
i in the theorem a closed form expression for w∗

i . This identity also shows

that under the coordinating wholesale pricing scheme, each retailer i incurs a total per unit

expected cost equal to its retail price pIi , multiplied with a “discount” factor
(
1 − 1

ηi(pI )

)
which is an increasing function of the retailer’s price elasticity, another manifestation of the

“inverse elasticity rule,” see Tirole (1988, p. 66).

The coordinating wholesale prices w∗(f0) characterized in Theorem 1 can be comple-

mented with the use of fixed periodic payments or franchise fees to allow for an arbitrary

allocation of supply chain profits among the supplier and the retailers.

The proof of Theorem 1 shows that the retailers can be induced to adopt any desired

vector of retail prices, and this with a unique vector of wholesale prices w∗. Assuming that a

fixed vector of retail prices p0 is targeted, it is of interest to investigate how the coordinating

wholesale prices will change in response to a change in one of the firms’ service levels f0:

Proposition 1 Assume a specific retail price vector p0 is targeted. (a) If the service level f0
i

of some retailer i is increased, the corresponding wholesale price w∗
j is increased for all of its

competitors j �= i, in each of the demand models (I), (II) and (III). (b) If the service level f0
i

of some retailer i is increased, this will result in a decrease of its coordinating wholesale price

w∗
i under the Linear and Log-Separable demand models (II) and (III). Under the Attraction

model, w∗
i will decrease (increase) if

k′i(f
0
i ) + [p0

i −w∗
i − ki(f

0
i )]

2 ∂2di
∂pi∂fi

≥ (≤)0. (17)

If the wholesale price is set to achieve perfect coordination (as opposed to targeting a

fixed retail price vector), these monotonicities are less clear, since the optimal price vector

pI in a centralized system has a complex dependence on the given service level f0.
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5 Coordination Under Price and Service Competition

Consider now the case where the retailers simultaneously compete in terms of their prices and

service levels. Here, service levels are endogenously determined as part of the equilibrium

strategies of the retailers, as opposed to being specified as exogenous input parameters.

In this setting, a simple linear wholesale pricing scheme no longer suffices to coordinate the

supply chain. However, perfect coordination can, in general, be achieved if a linear wholesale

pricing scheme is combined with a backlogging penalty scheme under which each retailer pays

the supplier a given (possibly negative) penalty for each unit backlogged, in each period.

To guarantee perfect coordination under a combined wholesale price / backlog penalty

scheme, we need a restriction on the distributions of the random factors {εi}. In particular,

we need to ensure that the functions ki(fi) be convex. Recall that ki(f) denotes retailer i’s

expected inventory and backlogging costs per unit of sales, when guaranteeing a service level

f . The following Lemma can be found in Bernstein and Federgruen (2004b).

Lemma 1 (a) ki(·) is increasing and differentiable, with

k′i(fi) = 0, for fi <
h−i

h−i + h+
i

and k′i(fi) =
(h+

i + h−i )fi − h−i
gi(G

−1
i (fi))

, for fi ≥ h−i
h−i + h+

i

.

(b) ki(·) is convex and limfi↑1 k
′
i(fi) = ∞, for all distributions Gi such that:

(PF2) Gi is log-concave or, equivalently, is a Polya Frequency function of order 2

(PF2) for all x ≥ G−1
i (0.5), and gi has infinite support, where G−1

i (·) denotes

the inverse of the Gi−distribution.

Condition (PF2) is satisfied for all distributions whose density function decreases beyond

the median, e.g., the Normal and Exponential distributions and many specifications of the

Gamma and Weibull distributions. In the remainder of this section, we assume that (PF2)

holds.

We now demonstrate that perfect coordination can be achieved with a linear wholesale

pricing scheme, combined with a constant set of backlogging penalties, per unit backlogged

in each period. (These penalties, when positive, are paid by the retailer to the supplier and,

when negative, by the supplier to the retailer.) Let k∗i (fi) denote firm i’s service level cost

function when the backlogging cost rate h−i is replaced by h−∗
i .
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Theorem 2 Assume that the following condition holds:

h+
i ≥ γi(p

I , f I) gi(G
−1
i (f Ii )), i = 1, ..., N, (18)

and let w∗
i = pIi − k∗i (f

I
i ) −

pIi
ηi(pI , f I)

≤ pIi − k∗i (f
I
i ), (19)

h−∗
i =

h+
i f

I
i − γi(p

I , f I) gi(G
−1
i (f Ii ))

1 − f Ii
, i = 1, ..., N, (20)

where the γi(p
I , f I)-factors are given by:

Attraction Model: γi(p
I , f I) = −∂ãi(p

I
i , f

I
i )

∂fi
/
∂ãi(p

I
i , f

I
i )

∂pi
,

Linear Model: γi(p
I , f I) =

βi
bi
,

Log-Separable Model: γi(p
I , f I) = −∂ lnψi(f

I)

∂fi
/
∂ ln qi(p

I)

∂pi
.

Then, the centralized solution (pI , f I) arises as a price and service level equilibrium in the

retailer game under the (constant) wholesale prices w∗ and backlogging penalties h−∗. In

other words, the scheme where retailer i is charged the constant wholesale price w∗
i and a

penalty h−∗
i − h−i for each unit backlogged in each period, induces perfect coordination.

The coordinating backlogging penalties are specified as affine functions of the holding

cost values {h+
i }, where the coefficient in the linear term is given by f Ii /(1− f Ii ). Note that

the simplistic choice h−∗
i = h+

i

(
fI

i

1−fI
i

)
which equates the critical fractile

h−∗
i

h−∗
i +h+

i

to f Ii , would

result in “too high” a backlogging penalty and would therefore likely result in the retailer

adopting a service level fi > f Ii . The simplistic choice is coordinating when the demand

functions do not depend on the service levels. Since a firm’s demand increases when it

increases its service level, a smaller backlogging penalty suffices to induce the firm to adopt

the service level in f I . Note that the amount by which the simplistic choice is reduced, is

proportional to the marginal demand sensitivity with respect to the firm’s own service level.

Finally, since in general k∗i (·) �= ki(·), the coordinating wholesale prices w∗ are different from

those arising when the service levels are fixed a priori as f = f I , i.e., when firms compete in

terms of their prices only.

The conditions in Theorem 2 thus guarantee that the centralized solution (pI , f I) is an

equilibrium set of prices and service levels. In general, it is hard to guarantee that this

price and service level vector arise as the only possible equilibrium choices. One case where
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uniqueness can be guaranteed is the important class of MNL Models. For this class of demand

functions, Theorem 4 in Bernstein and Federgruen (2004b) establishes that the single stage

game employed in the proof of Theorem 2 has a unique Nash equilibrium. This equilibrium

must be an interior point of the feasible action space and must therefore satisfy the first-

order conditions as its unique solution as well. Note from (12) that ∂ log π̃i/∂pi ↗ ∞ as

pi ↘ wi + ki(fi), while ∂ log π̃i

∂pi
(pmaxi , p−i) ≤ ∂ log π̃i

∂pi
(pmaxi , pmax−i ) < 0, where the first inequality

follows from ∂2 log π̃i

∂pi∂pj
≥ 0 (as is easily verified) and the second one from (14). Moreover, the

first-order condition (27) takes the simple form: −αik′i(fi) + b′i(fi) = 0. By the proof of

Theorem 2, this implies that under the proposed coordinating scheme, (pI , f I) arises as the

only possible equilibrium. For other types of Attraction models, it is harder to guarantee

that a unique Nash equilibrium exists. Based on similar arguments as for the MNL Model,

one can show that in the Linear model (pI , f I) arises as the unique price and service level

equilibrium, see Theorem 8 in Bernstein and Federgruen (2004b).

In the Log-Separable model, if the functions qi(p) and ψi(f) are Linear, Logit, Cobb-

Douglas or CES (with minor parameter restrictions), the single-stage game in the proof of

Theorem 2 is supermodular. Thus, even if multiple equilibria exist, there is an equilibrium

(p, f ) which is component-wise largest among all Nash equilibria and an equilibrium (p, f)

which is component-wise smallest. Moreover, the following tatônnement scheme converges

to (p, f) when starting in (pmin, fmin), with fmini = 0.5, and to (p, f) when starting in

(pmax, fmax), with fmaxi = 0.9999. In the k-th iteration, (pk, fk) is obtained from (pk−1, fk−1)

by determining (pk, fk) = arg maxpi,fi π̃i(pi, fi, p
k−1
−i , f

k−1
−i ). Convergence of the scheme to the

same point when started in (pmin, fmin) or in (pmax, fmax) thus provides an easy numerical

test that the equilibrium is unique.

In the MNL and Linear Models, the equilibrium service level of any retailer i is entirely

independent of any of the wholesale prices, as well as any of the cost rates pertaining to its

competitors. This is immediate from the first order conditions (26) and (27). For i = 1, ..., N ,

let f∗
i denote retailer i’s equilibrium service level in the absence of any backlogging penalty

imposed by the supplier. The following proposition shows that the coordinating penalty for

any retailer i, h−∗
i − h−i , is positive [negative] when f∗

i is lower [greater] than its optimal

centralized service level f Ii . The additional positive [negative] penalty increases [decreases]

the cost of backlogs, inducing the retailer to adopt a higher [lower] service level. This

equivalence fails to hold for other types of demand functions.

Proposition 2 Assume that the demand functions are of the MNL or Linear Models, and
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satisfy condition (18). Then, h−∗
i − h−i ≥ 0 if and only if f∗

i ≤ f Ii , i = 1, ..., N .

Finally, the existence of a coordinating scheme is based on condition (18), which implies

that h+
i + h−∗

i ≥ 0, a condition necessary to guarantee that the functions k∗i (·) be convex.

Condition (18) is generally satisfied for sufficiently large service levels {f Ii }, provided that

γi(p
I , f I) remains bounded. Indeed, note that limfi↑1 gi(G

−1
i (fi)) = limx→∞ gi(x) = 0 for any

distribution with unbounded support, since E(εi) =
∫∞
0 xgi(x)dx = 1. Under the Attraction

Model, the γi(p
I , f I)-factors remain bounded as fi ↑ 1 when, for example, ãi is a separable

function (as in the MNL-model), or when it is submodular, i.e., ∂2ãi

∂pi∂fi
≤ 0, since in these cases

the factor is positive and decreasing in fi. For the case of the Linear Model, the γi(p
I , f I)-

factors are constants independent of f I . Finally, under the Separable Model, γi(p
I , f I) is

decreasing in f Ii since ψi(·) is log-concave by (7) and (9).

Observe that the coordinating wholesale prices w∗ are always specified to provide the

retailers a positive margin, i.e., pIi −w∗
i − ki(f

I
i ) > 0. In addition, they are decreasing in the

retailer’s expected sales volume. (In the case of the Attraction Model, retailer i’s margin is

also an increasing function of the retailer’s market share di/M .) Thus, wholesale prices are

discounted on the basis of expected sales volumes. Our model thus provides an economic

rationale for this most prevalent type of discounting, even though the cost structure may

fail to exhibit any economies of scale with respect to the retailers’ sales volumes. A similar

observation was made in Bernstein and Federgruen (2003) for an infinite horizon model with

deterministic demands.

6 Dynamic Pricing

Thus far, we have assumed that each of the retail firms selects a price at the beginning

of the planning horizon, and maintains that price thereafter. As explained in §2, the up-

front restriction to a constant price is often a necessity or it is managerially desirable, as

is evidenced by the fact that close to half of the firms in the U.S. conduct a price review

no more often than annualy, while 61% review their prices at most twice a year. In other

settings, the price may, in principle, be varied in each period, along with the firm’s order

quantity. It can be shown that the same N -tuples of infinite horizon strategies, identified

in Theorems 1 and 2, continue to represent Nash equilibria in this relaxed strategy space.

For example, in the case of simultaneous price and service competition, assume that all of
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firm i’s competitors adopt the service vector f∗
−i and stationary pricing strategies p∗−i, along

with infinite horizon base-stock policies with base stock levels y∗−i. It is then optimal for

firm i to adopt the service level f∗
i , along with a constant price p∗i and the infinite-horizon

base-stock policy with base stock level y∗i (p
∗, f∗), even though the price in each period may

be changed. This result follows from Fedegruen and Heching (1999, Theorem 7) and Chen

and Simchi-Levi (2004). Given the choices of firm i’s competitors, firm i faces a combined

pricing and inventory planning Markov Decision Problem in which it is optimal to select

the constant price p∗i , as well as the above base-stock policy. Thus, while Federgruen and

Heching (1999) have shown that significant profit can be gained by lowering (increasing)

the retail price when inventories are high (low), these benefits arise only in non-stationary

settings, or in finite horizon settings where the end-of-the-horizon truncation of the plan-

ning process generates a type of non-stationarity. Moreover, this N -tuple of strategies is a

subgame perfect Nash equilibrium: even if the firms deviate from their policies for a finite

number of periods, resuming the N -tuple of stationary strategies continues to be a Nash

equilibrium thereafter.

In particular, even though price variations are allowed, these equilibrium strategies con-

tinue to employ a constant, stationary price for each firm under any given (stationary)

pricing scheme by the supplier. However, it is in general hard to preclude the existence of

alternative, more complex, equilibrium strategies, even if the associated single stage games

(see the proofs of Theorems 1 and 2) can be guaranteed to have a unique Nash equilibrium.

Tirole (1988) and Fudenberg and Tirole (1991) discuss the possibility of infinitely many al-

ternative Nash strategies based on tacit collusion among the retailers. Thus, the existence

of those alternative Nash equilibria makes it less certain that the proposed pricing schemes

in Theorems 1 and 2 result in perfect coordination, i.e., induce the retailers to adopt the

centralized optimal solution. (Even so, much has been written about the extent to which

these alternative stratgies have practical relevance, see e.g., Shapiro 1989.)

Ever since the seminal paper by Maskin and Tirole (1988), much of the economics lit-

erature on dynamic oligopoly models has restricted attention to Markov Perfect Equilibria

(MPE) only, see, e.g., Ericson and Pakes (1995), Fershtman and Pakes (2000) and Curtat

(1996). Here, each firm’s strategy must prescribe actions as a function of the prevailing

“payoff sensitive” system state only. The latter is defined as the minimal state specification

which is sufficient to describe future payoffs to the firms.6 In our case, the payoff sensitive

6Maskin and Tirole (1988, page 553) motivate their restriction as follows: “We have several reasons
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state vector in each period is the vector of stationary inventory levels in this period. Under

the restriction to MPEs, the uniqueness result is straightforward under the following modi-

fication of the rules of engagement between the supplier and the retailers: assume that each

firm is allowed to sell (part of) its inventory at the beginning of each period back to the

supplier, with full credit, before determining its price and replenishment decisions for the

current period. It is then a dominant strategy for each firm to initially “sell back” all of

its inventory and then face its price and replenishment decisions with a starting inventory

level of zero. In other words, under the credit option, the system starts each period in the

unique state where all starting inventory levels are zero.7 Since the system returns in each

period to the same state, the above N -tuple of strategies is the unique MPE in the modified

system. (Assuming that the firms start with a vector of inventory levels below the vector

of equilibrium base-stock levels, these strategies can be implemented without any firm ever

using the sell back option.)

Finally, in settings where the retailers may be able to monitor and enforce an alterna-

tive equilibrium of strategies based on tacit price collusion, any incentive for them to do

so (as opposed to adopting the coordinating strategies) may be eliminated by reallocating

π̃I(p
I , f I), the maximum possible aggregate supply chain wide profits, via periodic fixed

transfer payments in the form of franchise fees or supplier allotments. More specifically,

if firm i’s long-run average profit value under some alternative equilibrium equals π̂i, since∑N
i=0 π̂i ≤ π̃I(p

I , f I), it is possible to identify transfer payments which, in conjuction with

the above pricing schemes, would induce all firms to adopt the intended equlibrium and have

all be better off.

for restricting our attention to Markov strategies. Their most obvious appeal is their simplicity. Firms’

strategies depend on as little as possible while still being consistent with rationality. More relevant from

our perspective is that Markov strategies seem at times to accord better with the customary conception of

a reaction in the informal industrial organization literature than do, say, the reactions emphasized in the

repeated game (or ‘supergame’) tradition, the best-established formal treatment of dynamic oligopoly to

date.”
7If a firm faces a backlog at the beginning of a period, it is clearly optimal to bring the firm’s inventory

level up to zero by making an initial purchase to clear the backlog.
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7 Numerical Study

In this section, we report on a numerical study conducted to provide a comparison of the

supply chain performance under price competition, under combined price and service compe-

tition, and under an optimal centralized solution. The purpose of the study is to understand

how firms operate in these settings under different market conditions (e.g., customer sensi-

tivities to prices and service levels, variability of demand), and how the retailers’ position

in the market (as given by their service levels) affects the resulting equilibrium strategies

relative to the centralized solution. In addition, we assess the impact of changes in the sup-

plier’s cost structure. In all cases, we compute the parameters of the coordination schemes

and discuss the impacts of their implementation.

The numerical study consists of a base scenario, as well as 13 alternative scenarios

obtained by varying one (set of) parameter(s) at a time. All scenarios have N = 3 re-

tailers and assume linear demand functions, as in (5), and Normally distributed variables

{εi : i = 1, ..., N} which are independent of each other and have mean one and standard

deviation si = 0.5. Recall that under linear demand functions, a unique price equilibrium

p∗(f0) exists for any given vector f0 as well as a unique pair (p∗, f∗) under combined price

and service competition. As mentioned in §3, the choice of Normal distributions allows for a

closed form expression of the supplier’s expected cost C0. For the base scenario I, we have:

d1(p, f) = 50 − 18p1 + 7p2 + 7p3 + 100f1 − 20f2 − 20f3,

d2(p, f) = 50 + 3p1 − 10p2 + 3p3 − 20f1 + 100f2 − 20f3, and

d3(p, f) = 50 + 3p1 + 3p2 − 10p3 − 20f1 − 20f2 + 100f3.

That is, retailer 1 has a clientele which is significantly more sensitive to price changes by

any of the three retailers than its two competitors. On the other hand, the customers of all

three retailers exhibit the same sensitivity to uniform price changes in the industry. (Note

that btoti = 4 for all i = 1, 2, 3, where btoti = bi −∑
j �=i eij.)

The retailers face identical cost parameters ci = 10, h+
i = 4, and h−i = 0. Finally,

h+
0 = 0.6 and h−0 = 6, and pmini = 0 and pmaxi = 30, i = 1, 2, 3. By choosing h−0 = 6 and

c = 10, we assume that the additional per unit cost to clear a shortage at the supplier is

60% of the normal variable procurement cost. When evaluating decentralized solutions, we

assume that each retailer i pays the supplier a constant per unit wholesale price wi = 13.5.

(The supplier’s 35% markup corresponds approximately with the profit-to-revenue ratio in

the centralized solution for the base instance.)
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For each of the 14 scenarios, we have computed both the centralized and decentralized

solution, each for all service level combinations obtained by varying the service level of each

retailer on a grid from 0.5 to 0.99, with a width of 0.01. (It is very hard to determine the

global optimum (pI , f I) of the centralized system since the centralized profit function πI

typically has many local optima.) We thus determine (pI , f I) as the service level vector

which, along with the best corresponding retail prices, results in the largest system-wide

profit value among all grid points.

Scenarios (II)-(VI) investigate the impact of different customer price sensitivities. In

Scenario (II), we set e12 = 5, e13 = 9, maintaining the total price sensitivity btot. However,

while in the base scenario retailer 1’s customers are equally sensitive to the prices charged

by retailers 2 and 3, in (II) they are considerably more sensitive to retailer 3’s price, perhaps

because its product is a closer substitute or because it is geographically closer than retailer

2. In scenario (III), we increase btot1 from 4 to 6 by setting e12 = 5, e13 = 7. Thus, retailer

1 now has a larger total price sensitivity as well as larger sensitivities to price changes by

individual retailers. In (IV), we reduce btot1 from 4 to 3 by setting e12 = 7.5, e13 = 7.5,

maintaining the symmetry between retailers 2 and 3. Scenarios (V) and (VI) investigate the

impact of reduced and increased price elasticities for retailers 2 and 3, by setting b2 = b3 = 8

and b2 = b3 = 12, respectively.

The first six scenarios assume that all retailers have identical sensitivities with respect

to their own service level. In scenarios (VII) and (VIII), we decrease and increase this

coefficient for retailer 1 from its value in the base scenario, β1 = 100, to β1 = 80 and to

β1 = 120, respectively. The former case represents a setting where retailer 1’s customers are

significantly more price-sensitive but care less about service than those of the competitors.

In the latter case, retailer 1’s customers are more demanding with respect to both attributes.

Scenario (IX) specifies γij = 30, for all i �= j, and represents a setting with increased service-

level competition. Finally, in scenario (X), we assess what impact the inventory-related cost

parameters at the supplier have on the centralized and decentralized solutions by setting

h+
0 = 3, h−0 = 30. In the last four scenarios (XI)-(XIV), we investigate the impact of demand

variability, varying the coefficient of variation of the demand distributions from 0.2 to 0.6.

Table 1 reports, for each of the 14 scenarios, the optimal service levels in a centralized

system f I , the coordinating wholesale prices under price competition and exogenous service

levels set at f I , the equilibrium service levels f∗, and the parameters of the coordination

scheme under simultaneous price and service level competition.
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Sc. fI w∗ (p−only) f∗ w∗ (simult.) h−∗
1 h−∗

2 h−∗
3

I (0.75,0.98,0.98) (13.2,17.0,17.0) (0.79,0.90,0.90) (13.4, 16.5, 16.5) -2.1 147.6 147.6

II (0.75,0.96,0.99) (13.3,16.0,18.2) (0.79,0.90,0.90) (13.4, 15.5, 17.6) -2.1 52.9 342.7

III (0.73,0.95,0.97) (12.6,14.3,15.0) (0.79,0.90,0.90) (12.7, 13.9, 14.5) -2.8 34.8 84.0

IV (0.76,0.99,0.99) (13.6,18.7,18.7) (0.79,0.90,0.90) (13.8, 18.1, 18.1) -1.7 342.7 342.7

V (0.73,0.97,0.97) (15.8,22.3,22.3) (0.79,0.92,0.92) (16.1, 21.9, 21.9) -2.8 72.6 72.6

VI (0.77,0.99,0.99) (11.6,13.0,13.0) (0.79,0.87,0.87) (11.7, 12.4, 12.4) -1.3 351.6 351.6

VII (0.50,0.97,0.97) (13.1,16.4,16.4) (0.73,0.90,0.90) (13.7, 15.8, 15.8) -3.1 84.0 84.0

VIII (0.83,0.99,0.99) (13.4,17.7,17.6) (0.83,0.90,0.90) (13.4, 17.1, 16.8) -0.3 342.7 147.6

IX (0.50,0.96,0.96) (12.4,14.7,14.7) (0.79,0.90,0.90) N/A N/A N/A N/A

X (0.74,0.97,0.97) (14.9,16.7,16.7) (0.79,0.90,0.90) (15.1, 16.2, 16.2) -2.5 84.0 84.0

XI (0.91,0.99,0.99) (13.3,17.8,17.8) (0.93,0.97,0.97) N/A N/A N/A N/A

XII (0.86,0.99,0.99) (13.3,17.5,17.5) (0.89,0.94,0.94) N/A N/A N/A N/A

XIII (0.81,0.98,0.98) (13.3,17.2,17.2) (0.84,0.92,0.92) (13.4, 16.8, 16.8) -2.8 135.5 135.5

XIV (0.70,0.98,0.98) (13.2,16.8,16.8) (0.74,0.87,0.87) (13.4, 16.1, 16.1) -1.4 155.7 155.7

Table 1 - Equilibrium service levels and coordinating schemes

Table 2 exhibits, again for each scenario, the retailers’ prices in the centralized and

decentralized systems, both for f = f I and f = f∗. (Recall that pI(f I) = pI is the optimal

price vector under centralization, while p∗(f∗) = p∗ represents the equilibrium price vector

under simultaneous price and service competition.)

Sc pI(fI ) pI(f∗) p∗(fI ) p∗(f∗)

I (18.5, 22.4, 22.4) (18.2, 20.8, 20.8) (17.6, 20.1, 20.1) (17.3, 18.7, 18.7)

II (18.6, 21.6, 23.2) (18.3, 20.4, 21.3) (17.6, 19.7, 20.4) (17.3, 18.7, 18.7)

III (16.1, 19.8, 20.5) (16.2, 19.0, 19.3) (16.1, 19.2, 19.6) (16.2, 18.5, 18.5)

IV (20.1, 24.0, 24.0) (19.4, 21.9, 21.9) (18.4, 20.6, 20.6) (17.9, 18.8, 18.8)

V (22.7, 30.0, 30.0) (23.3, 30.0, 30.0) (18.8, 23.6, 23.6) (18.7, 22.3, 22.3)

VI (16.0, 17.8, 17.8) (15.6, 16.1, 16.1) (17.0, 18.2, 18.2) (16.5, 16.5, 16.5)

VII (16.8, 21.7, 21.7) (17.1, 20.4, 20.4) (16.1, 19.9, 19.9) (16.4, 18.6, 18.6)

VIII (19.8, 23.2, 22.9) (19.2, 21.3, 21.3) (18.6, 20.5, 20.2) (18.1, 18.7, 18.7)

IX (15.4, 19.5, 19.5) (16.3, 18.2, 18.2) (15.4, 18.7, 18.7) (16.4, 17.5, 17.5)

X (19.2, 22.1, 22.1) (19.0, 20.9, 20.9) (17.4, 19.8, 19.8) (17.3, 18.7, 18.7)

XI (18.3, 21.3, 21.3) (18.4, 20.9, 20.9) (17.3, 18.6, 18.6) (17.4, 18.3, 18.3)

XII (18.5, 21.8, 21.8) (18.4, 21.0, 21.0) (17.5, 19.3, 19.3) (17.4, 18.5, 18.5)

XIII (18.5, 21.9, 21.9) (18.0, 20.5, 20.5) (17.5, 19.5, 19.5) (17.1, 18.3, 18.3)

XIV (18.6, 22.8, 22.8) (18.0, 21.1, 21.1) (17.6, 20.6, 20.6) (17.1, 19.0, 19.0)

Table 2 - Prices in the centralized and decentralized systems

The following general conclusions can be drawn from the numerical study.
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(A) Under price and service level competition, retailers differentiate themselves

less than in a centralized system.

This pattern applies across all fourteen scenarios (as well as others we have evaluated but

whose results we do not report in the paper). Here, we measure the degree of differentiation

in the service levels by the span of the vector of service levels, i.e., maxi fi−mini fi. Similarly,

we measure the degree of differentiation in the prices by the span of the price vector. As

far as the differentiation in the service levels is concerned, an even stronger contrast arises

between the centralized and the decentralized systems: across all scenarios, the service level

of the best service provider is lower and that of the worst service provider higher under

competition than in the centralized solution. In other words, supply chain wide profits

are maximized by providing clearer and more distinct alternatives than in a competitive

setting. In the latter, retailers tend to adopt clustered price and service level profiles. This

phenomenon is reminiscent of what is known to be the case in the classical Hotelling model,

under exogenously given prices, where the retailers differentiate themselves by their location,

as opposed to their service level. Similarly, Borenstein and Netz (1999) have substantiated

why airlines differentiate their departure times less under competition, compared to the

centralized solution.

(B) Prices and service levels tend to be less sensitive to parameter changes

in the decentralized system than in the centralized system.

Compare first the solutions in each of the scenarios (II)-(X), with base scenario (I).

The observed pattern holds throughout, except for the service levels of retailers 2 and 3

in scenarios (V) and (VI). Compared to (I), these change by one percentage point in the

centralized system, while they change by 2% and 3%, respectively, in the equilibrium of the

decentralized system. This occurs because the operational cost functions ki(·) are convex

and extremely sensitive to changes in the service level, when it is close to one. In scenarios

(V) and (VI) changes in the price sensitivities of retailers 2 and 3 affect their choice of

service levels. However, these changes are less pronounced in the centralized system, where

the service levels are significantly closer to one.

Turning next to the remaining scenarios (XI)-(XIV), the same observation applies to the

comparison of the service levels for retailers 2 and 3. In addition, in these scenarios, changes

in the demand variability tend to have a somewhat stronger impact on the prices in the

decentralized as opposed to the centralized system, even under fixed service levels. This
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can be explained as follows. System-wide profits in the centralized system depend both on

the variability of the individual retailers’ demands as well as that of the aggregate demand

through the supplier’s cost function C0(p, f). In contrast, in the decentralized system, prices

result from a retailer game in which only the coefficients of variation of the individual retailer

demands matter. For example, going from scenario (XI) to (XII) corresponds to a 50%

increase in the coefficient of variation of demand faced by each retailer, while the coefficient

of variation of the aggregate demand experienced by the supplier increases only by 22.5%.

(C) In the centralized solution, the retailers tend to charge more than in

the decentralized system.

Two opposite forces influence how prices compare in both systems. On the one hand,

double marginalization implies higher retail prices relative to those optimal in the centralized

system. On the other hand, competition among the retailers tends to lower their prices. In

most scenarios, the competitive effect dominates, confirming what is often assumed to be the

case in classical oligopoly models in which firms only compete in prices. In scenario (VI),

however, pI(f I) < p∗(f I) and pI(f∗) < p∗(f∗). In that case, the increased values of b2 and b3

seem to reduce the relative effect that competition has on these firms, so the effect of double

marginalization dominates.

(D) Competition may result in higher or lower service levels compared with

those arising in a centralized system.

Thus, while prices are generally higher in the centralized system, the same fails to be

the case for the retailers’ service levels. As mentioned in (A), all that can be predicted

is that the lowest service provider in the centralized solution increases its service level in

the decentralized system, while the highest service level provider in the centralized system

decreases its service level under decentralization.

(E) The combined wholesale price/backlogging rate coordinating scheme derived

in Section 5 achieves perfect coordination in almost all scenarios, i.e., in

almost all cases h+∗ + h−∗ ≥ 0. In those cases where h+∗ + h−∗ < 0, we can

identify coordinating wholesale price/backlogging rate schemes under which

aggregate supply chain profits come very close to the first-best level.

As discussed in Section 5 under simultaneous competition, the unique vector of wholesale

prices w∗ and backlogging penalty rates h−∗ coordinate the supply chain if h+ + h−∗ ≥ 0.
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Proposition 2 shows that h−∗
i ≥ 0 if and only if f Ii ≥ f∗

i . In all scenarios, this inequality

is satisfied for retailers 2 and 3, while f I1 < f∗
1 , implying that h−∗

1 < 0. However, h+
1 + h−∗

1

remains positive for all scenarios, except for (IX), (XI) and (XII).

The general shape of the coordinating backlogging rate in (20) shows that, at least

under linear demand functions, h−∗
i increases rapidly to +∞ as f Ii approaches one. This is

illustrated in Table 1 by some of the large positive penalty rates charged to retailers 2 and 3.

The magnitude of h−∗
i is also influenced by the difference between f∗

i and f Ii . For example,

the equilibrium service levels for retailer 1 in scenarios (IV), (II), and (III) differ from those

in the centralized system by 1%, 2%, and 3%, respectively, and the (absolute) value of h−∗
1

increases accordingly. Also, h−∗
1 is very close to zero in scenario (VIII), where the centralized

and decentralized service levels for retailer 1 differ only by a few decimal points, while in

scenario (IX), h+
1 +h−∗

1 < 0 as f∗
1 exceeds f I1 by 29%, the largest difference among all retailers

and all scenarios. Scenarios (XI) and (XII) are the only other two in which h+
1 + h−∗

1 < 0.

These two scenarios have in common that (i) f∗
1 > f I1 and (ii) f I1 is itself relatively high. It

follows from Proposition 2 that (i) implies that h−∗
1 < 0 and the expression in (20) shows

that the absolute value of h−∗
1 can be relatively large when f I1 is relatively high.

Even if in scenarios (IX), (XI), and (XII), it is not possible to achieve perfect coordination

with the linear wholesale price/backlogging penalty scheme presented in Section 5, it is

possible to come close to the first-best solution. For example, we have observed that in (IX),

when charging retailer 1 a wholesale price of $12.4 and retailers 2 and 3 wholesale prices of

$14.7, along with backlogging penalties of −$3.5, $52.9 and $84, we obtain an equilibrium

that leads to aggregate supply chain profits within 2.3% of the first best solution.

Finally, the difference between retailer i’s coordinating wholesale price under simulta-

neous price and service competition and that under price-only competition is given by

k∗i (f
I
i ) − ki(f

I
i ), see (16) and (19). It is easy to verify that for a fixed service level f ,

the function ki(f) given in (13) is strictly increasing in h−i . Then, k∗i (f
I
i ) − ki(f

I
i ) > (<)0 if

and only if h∗−i > (<)h−i . In the scenarios investigated in this numerical study, h−i = 0, and

h−∗
2 , h−∗

3 > 0 while h−∗
1 < 0. Thus, retailers 2 and 3 have to pay (sometimes hefty) backlog-

ging penalty fees to the supplier under simultaneous competition, but their wholesale prices

are lower than in the setting where the service levels are exogenously set at f I . At the same

time, in the coordinating scheme under simultaneous competition, retailer 1 is subsidized

for its consumer backlogs, thus providing an incentive to reduce its inventory levels, but is

charged a higher wholesale price than it would be in a setting where the centralized optimal
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service level is exogenously determined.

We conclude this section with a discussion of the sensitivity of the centralized and de-

centralized solutions to the service levels, and of the firms’ relative performance (in terms of

market shares and profits) in both systems. To this end, Table 3 characterizes the central-

ized solution under given service levels f I = (0.75, 0.98, 0.98), f∗ = (0.79, 0.90, 0.90), as well

as four other service level combinations. These are obtained by deviating from f I with 2

alternative service levels for retailers 1 and 2, each. (Since in the base scenario retailers 2 and

3 are symmetric, similar results are obtained for retailer 3.) The table displays the optimal

prices and corresponding sales volumes for the three retailers, and the aggregate optimal

profits in the supply chain. The last three columns display the coordinating wholesale prices

(under the given vector of service levels). In Table 4, we evaluate for the same six vectors of

service levels, the unique equilibrium which arises in the decentralized system. After listing

the equilibrium prices, we exhibit the equilibrium mean sales volumes, the equilibrium ex-

pected profit of each firm, and the percentage gap between the centralized solution and the

aggregate supply chain wide profits in the decentralized uncoordinated system.

f0 pI(f0) dI(f0) π̃I(f0) w∗(f0)

fI = (0.75, 0.98, 0.98) (18.5, 22.4, 22.4) (65.5, 12.5, 12.5) 618 (13.2, 17.0, 17.0)

f∗ = (0.79, 0.90, 0.90) (18.2, 20.8, 20.8) (56.8, 15.2, 15.2) 574 (13.2, 17.0, 17.0)

(0.50, 0.98, 0.98) (17.4, 22.3, 22.3) (60.7, 14.2, 14.2) 598 (13.2, 16.8, 16.8)

(0.99, 0.98, 0.98) (20.4, 21.9, 21.9) (49.1, 16.5, 16.5) 510 (13.0, 16.1, 16.1)

(0.75, 0.70, 0.98) (17.8, 19.1, 21.7) (56.4, 13.3, 12.6) 511 (13.0, 16.3, 16.3)

(0.75, 0.99, 0.98) (18.6, 22.7, 22.4) (66.9, 10.3, 13.0) 617 (13.2, 17.0, 17.0)

Table 3 - Centralized Solutions

f0 p∗(f0) d∗(f0) π̃∗(f0) π̃∗
S(f0) gap

fI = (0.75, 0.98, 0.98) (17.6, 20.1, 20.1) (50.9, 25.5, 25.5) (123, 63, 63) 323 7.4%

f∗ = (0.79, 0.90, 0.90) (17.3, 18.7, 18.7) (42.4, 27.6, 27.6) (83, 69, 69) 310 7.5%

(0.50, 0.98, 0.98) (16.5, 20.2, 20.2) (46.7, 26.5, 26.5) (102, 68, 68) 317 7.2%

(0.99, 0.98, 0.98) (20.0, 20.2, 20.2) (33.5, 26.9, 26.9) (61, 70, 70) 278 6.1%

(0.75, 0.70, 0.98) (17.1, 17.1, 19.8) (42.2, 25.6, 23.0) (82, 55, 51) 288 6.8%

(0.75, 0.99, 0.98) (17.6, 20.4, 20.1) (52.2, 23.3, 26.0) (130, 53, 66) 322 7.5%

Table 4 - Decentralized Solutions

Both the centralized and the decentralized solutions can be quite sensitive to the service

levels. As far as the former is concerned, the optimal aggregate profits vary between $618

27



under f I and $266 under the vector (0.99, 0.5, 0.5) (not shown in Table 3), where retailer

1 adopts an extremely high service level and its competitors a very low one. Even when

changing the service levels from f I to f∗, the optimal centralized profit drops by around

7%. Interestingly, an increase of one percentage point in the service level of retailer 2 in f I

has only a minor impact on aggregate profits under centralized and decentralized control,

while that increase may represent significantly higher operational costs to that firm itself. In

fact, under price competition retailer 2 experiences a considerable decrease in its equilibrium

profit (from $63 to $53).

Combined price and service competition causes all retailers to reduce their prices p∗ =

p∗(f∗) beyond their equilibrium prices p∗(f I) under the exogenously given service levels f I ,

which themselves are lower than pI . This results, for example, in prices for retailers 2 and

3 that are 17% lower than in the centralized solution. The change in prices is, as discussed

above, associated with a reduction of the high-end retailers’ service levels from 98% to 90%

and an increase of retailer 1’s service level from 75% to 79%. The equilibrium sales volumes

for retailers 2 and 3 under combined price and service competition are approximately 8%

higher than their values under price competition with f0 = f I , while those of retailer 1 decline

by approximately 16%. (Thus, aggregate sales are close to equal in the two equilibria.) The

retailers’ market shares vary dramatically under the three solutions. That of retailer 1 is close

to 72% under the centralized solution, but reduces to less than 50% under price competition

and f0 = f I , and to 43% under combined price and service competition. Retailer 1 charges

a significantly lower price than its competitors, both in the decentralized and the centralized

solution. In both settings, the higher price sensitivity of retailer 1’s customers results in its

positioning itself as the low-price/low-service-level alternative in the market.

The coordinating wholesale prices generate significant gross profit margins (w∗ − c) for

the supplier which are sometimes larger, but sometimes smaller than the gross retailer mar-

gins (pI − w∗). For example, under f0 = f I , the margin vectors are ($3.2, $7.0, $7.0) and

($5.3, $5.4, $5.4), respectively. Consider now the impact of a change in one of the service lev-

els on the coordinating wholesale prices. As an example, set f0 = f I . With f0
1 and f0

3 fixed,

as f0
2 is increased from 0.7 to 0.99, its own coordinating wholesale price w∗

2 increases from

$16.3 to $17.0, while the retail price p2 increases from $17.1 to $20.4. In contrast, Proposition

1 shows that if the targeted retail price p2 was kept constant, w∗
2 would decrease.

Finally, note that the profit gap between the centralized and decentralized systems under

fixed service levels ranges, in these examples, from 6.1% to 7.5%. In addition, while price-only

28



competition with service levels set at f I leads to a gap of 7.4%, simultaneous competition

leads to a significantly higher gap of 14.1% relative to the centralized system under f I . Thus,

the ability to pre-specify the retailers’ service levels at their system-optimal values may, under

decentralized control, be very beneficial for the overall performance of the supply chain.

8 Conclusions and Extensions

We have addressed a general model for two-echelon supply chains with several competing

retailers served by a common supplier. Each retailer’s stochastic demand function depends

on its own retail price, as well as those of its competitors, but also on the service levels guar-

anteed by all firms. The retailers’ service levels are defined as their no-stockout frequency.

Most of our analysis has focused on three basic classes of stochastic demand functions which

depend on the vector of retail prices p and the vector of service levels f , i.e., the Attraction

Models, the Linear Models, and the Log-Separable Models.

Focusing first on the case where the firms’ service levels are exogenously specified, we

have shown that perfect coordination can be achieved by a simple linear wholesale pricing

scheme (with constant per unit wholesale prices). When service levels are endogenously

determined, i.e., when the retailers simultaneously compete in terms of their prices and their

service levels, coordination can again be achieved with a linear wholesale pricing scheme,

albeit that this wholesale pricing scheme needs to be combined with a set of constant per

unit backlogging penalties to be paid by the retailers to the supplier, or vice versa. Finally,

we derive a number of managerial insights which arise from the numerical study.

An important assumption in our paper, common to most stochastic inventory models, is

that stockouts at the retailers are fully backlogged. It is of interest to consider the alternative

setting where stockouts result in lost sales. Assume first that the retailers do not guarantee

any particular service level, so that the mean demand functions only depend on the vector

of retail prices. In this case, a firm’s service level is defined as the long-run frequency

with which it does not run out of stock at the end of a period. Similar to the proof of

Theorem 1, it can again be shown that, under a vector of constant wholesale prices, a

Nash equilibrium of infinite horizon strategies exists in which each retailer adopts a given

price and a stationary base stock policy, provided a Nash equilibrium exists in a related

single-stage game. This single-stage game has been analyzed in Bernstein and Federgruen
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(2005). Theorem 4 there shows that this single-stage game has a unique equilibrium vector

of prices which is monotone in the vector of wholesale prices, under a condition with respect

to the shape of the distributions of the error factors. (The condition is satisfied, e.g., for

Exponentials and Normal distributions with coefficient of variation less than or equal to

one.) Under these conditions, it is possible to show that, as in the case of full backlogging,

perfect coordination can be achieved with a linear wholesale pricing scheme. A situation,

similar to this lost sales model, arises in our model with backlogging if there are explicit

out-of-pocket backlogging costs that depend on the retail price (e.g., by being specified as

a percentage of the retail price). It is easily verified that the profit functions in the related

single stage game are structurally similar to the profit functions discussed above. If the

retailers guarantee specific service levels, the situation is more complex, either when these

service levels are exogenously specified or when the retailers engage in simultaneous price and

service competition, and it is no longer possible to guarantee the existence of a coordinating

wholesale pricing scheme. (The difficulty results from the fact that the retailers’ profit

functions no longer have increasing differences in their own retail price and the wholesale

price charged by the supplier.)
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Appendix: Proofs

Proof of Theorem 1. (a) Under any given vector of constant wholesale prices w, the

retailers face an infinite horizon non-cooperative game. At the beginning of the game, the

retailers simultaneously select a price vector p ∈ ΠN
j=1[p

min
j , pmaxj ]. Thereafter, each retailer

i selects an infinite horizon (possibly history-dependent) replenishment strategy σi. Let

σ = (σ1, ..., σN). Firm i’s average profit Πi depends on the price vector p and the N -tuple

of strategies σ, i.e., Πi = Πi(p, σ). In the infinite horizon game, a Nash equilibrium is a

vector p∗ and an N -tuple of inventory strategies σ∗, such that Πi(pi, σi, p
∗
−i, σ

∗
−i) ≤ Πi(p

∗, σ∗)

for all i = 1, ..., N . As explained in Section 3, given a specific price vector p and service

level vector f0, each retailer i optimally adopts a base-stock inventory policy with base-

stock level y∗i (p, f
0), and earns a long-run average profit of π̃i(p, f

0), see (12). This implies

that the price vectors that are part of an infinite horizon Nash equilibrium are the same

as those that are Nash equilibria in the single-stage game in which retailer i only selects a

price pi ∈ [pmini , pmaxi ] and earns profits π̃i(p, f
0). It therefore follows from Theorem 2(b),

Theorem 7(a), and Theorem 9(a) in Bernstein and Federgruen (2004b) for the Attraction,

Linear, and Log-Separable demand models (I)-(III), respectively, that the solution to the

first order conditions

∂ log π̃i(p, f
0)

∂pi
= 0 (21)

is the unique Nash equilibrium in the single-stage game and hence the unique equilibrium

prices chosen as part of an equilibrium strategy in the infinite horizon game, as well.

Writing pI for pI(f0), this implies that pI is the unique set of equilibrium prices if and

only if for all i = 1, ..., N , pIi satisfies the first order condition (21), i.e.,

∂ log π̃i(p
I
i , p

I
−i, f

0|w∗
i )

∂pi
=

1

pIi − w∗
i − ki(f

0
i )

+
∂di(p

I , f0)/∂pi
di(pI , f0)

= 0. (22)

For the demand models (I)-(III), it is easily verified that ∂2 log π̃i/∂pi∂wi > 0. In other

words, the function ∂ log π̃i/∂pi is strictly increasing in wi. To show the existence of a

unique coordinating wholesale price w∗
i ≤ pIi − ki(f

0
i )

def
= wi, under which equation (22) is

satisfied, it thus suffices to verify that

lim
wi↘−∞

∂ log π̃i(p
I
i , p

I
−i, f

0|wi)
∂pi

=
∂di(p

I , f0)/∂pi
di(pI , f0)

< 0, while lim
wi↗wi

∂ log π̃i(p
I
i , p

I
−i, f

0|wi)
∂pi

> 0.

Finally, the identity for w∗
i (f

0) is immediate from (22).
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(b) Define w0
i = ci + ∂C̃0/∂di. Note that

∂π̃I(p
I , f0)

∂pi
= di +

(
pIi − ci − ki(f

0
i ) −

∂C̃0

∂di

)
∂di
∂pi

+
∑
j �=i

(
pj − cj − kj(f

0
j ) − ∂C̃0

∂dj

)
∂dj
∂pi

= 0.

It then follows from our assumption and
∂dj
∂pi

≥ 0, that di+

(
pIi − ci − ki(f

0
i ) −

∂C̃0

∂di

)
∂di
∂pi

< 0.

Therefore,
∂π̃i(p

I , f0|wi = w0
i )

∂pi
= di+

(
pIi − ci − ki(f

0
i ) −

∂C̃0

∂di

)
∂di
∂pi

< 0, and hence

∂ log π̃i(p
I , f0|wi = w0

i )

∂pi
< 0.

The proof of part (a) shows that w∗
i (f

0) ≥ w0
i .

Proof of Proposition 1. Rewrite (22) as:

1

p0
i − w∗

i − ki(f0
i )

+
∂d̃i(p

0
i , f

0
i )

∂pi
= 0, i = 1, ..., N, (23)

where d̃i = log di. It follows from the Implicit Function Theorem that the coordinating

wholesale prices are differentiable functions of the service levels, with the matrix

(
∂w∗

i

∂fj

)N
i,j=1

= diag (−[p0
1 − w∗

1 − k1(f
0
1 )]2, ...,−[p0

N − w∗
N − kN (f0

N )]2)×

×
(

k′i(f
0
i )

[p0
i − w∗

i − ki(f0
i )]

2
δij +

∂2d̃i(p
0, f0)

∂pi∂fj

)N
i,j=1

.

Here, diag (∆1, ...,∆N) denotes a diagonal matrix, ∆i the i-th diagonal element and δij the

Kronecker delta, i.e., δij = 1 if i = j and 0 otherwise. Part (a) then follows therefore directly

from the observation that ∂2d̃i

∂pi∂fj
≤ 0 in each of the models (I), (II) and (III). This is immediate

in the Log-Separable model where this second-order partial derivative is zero. In the Linear

model, ∂2d̃i

∂pi∂fj
= − biγij

d2i
≤ 0 and in the Attraction model ∂2d̃i

∂pi∂fj
=

∂ai/∂pi×∂aj/∂fj

(
∑N

l=1
al)2

≤ 0, by (4).

For part (b), note that
∂w∗

i

∂f0
i

= −k′i(f0
i ) − [p0

i − w∗
i − ki(f

0
i )]

2 ∂
2d̃i(p0,f0)
∂pi∂fi

and k′i(·) ≥ 0 imply

that
∂w∗

i

∂f0
i
< 0 in the Linear and Log-Separable models where ∂2d̃i

∂pi∂fi
= biβi

d2i
≥ 0 and ∂2d̃i

∂pi∂fi
= 0,

respectively. In the Attraction model, ∂2d̃i

∂pi∂fi
< 0 may occur.

Proof of Theorem 2. Similar to the proof of Theorem 1, under any given pricing

scheme by the supplier, the retailers face an infinite horizon game. In this case, the retailers

select simultaneously at the beginning of the game, a vector of service levels f ∈ [0, 1)N

along with a price vector p ∈ ΠN
j=1[p

min
j , pmaxj ]. Thereafter, each retailer i again selects
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an infinite horizon replenishment strategy σi. Firm i’s average profit per period, Πi, now

depends on the price vector p, the service level vector f and the N -tuple of strategies σ,

i.e., Πi = Πi(p, f, σ). In the infinite horizon game, a Nash equilibrium is now a triple

(p∗, f∗, σ∗) such that Πi(pi, fi, σi, p
∗
−i, f

∗
−i, σ

∗
−i) ≤ Πi(p

∗, f∗, σ∗) for all i = 1, ..., N . Following

the arguments in Theorem 1, one observes that the pairs (p∗, f∗) (of a price vector and a

service level vector) that are part of an infinite horizon Nash equilibrium are the same as

those that are Nash equilibria in the single stage game in which retailer i only selects a

service level fi ∈ [0, 1) along with a price p ∈ [max{pmini , wi + ki(fi)}, pmaxi ] and in which

it receives a profit π̃i(p, f). We therefore again first establish that a solution (p∗, f∗) to the

first order conditions:

∂π̃i
∂pi

(pi, fi) = 0 and
∂π̃i
∂fi

(pi, fi) = 0, i = 1, ..., N, (24)

is a Nash equilibrium in this single stage game and is hence part of an equilibrium strategy

of the infinite horizon game. For the Attraction and Linear models, this result follows from

Theorem 3(a) and Theorem 8 in Bernstein and Federgruen (2004b), respectively. As for the

Log-Separable demand functions, the result is obtained by showing that for all i = 1, ..., N ,

log π̃i = log[pi−wi−ki(fi)]+log qi(p)+log ψi(f) is jointly concave in (pi, fi). Joint concavity

of the second and third terms is immediate from (7)− (9); that of the first term follows from

the fact that the margin function (pi − wi − ki(fi)) is jointly concave in (pi, fi) by Lemma

1, and therefore log-concave. Note from (20) that f Ii ≥ h−∗
i

h+
i +h−∗

i

. Then, by Lemma 1 and the

definition of h−∗
i ,

k∗
′
i (f Ii ) =

(h+
i + h−∗

i )f Ii − h−∗
i

gi(G
−1
i (f Ii ))

= γi(p
I , f I), i = 1, ..., N. (25)

Next, note that the first order conditions in (24) are equivalent to:

∂ log π̃i
∂pi

=
1

pi − wi − ki(fi)
+
∂di/∂pi
di(p, f)

=
1

pi − wi − ki(fi)
− ηi(p, f)

pi
= 0, i = 1, ..., N, (26)

k′i(fi)
∂di
∂pi

+
∂di
∂fi

= 0, i = 1, ..., N (27)

Straightforward algebra verifies that under the backlogging penalties h−∗ and wholesale prices

w∗, given by (20) and (19), the centralized solution (pI , f I) satisfies this pair of equations.

It thus remains to show that for all i = 1, ..., N , h−∗
i + h+

i ≥ 0, ensuring that the functions

{k∗i (·)} are convex and hence that each function log π̃i(p, f) is jointly concave in (pi, fi). But

h−∗
i + h+

i ≥ 0 is immediate by adding h+
i to both sides of (20) and using (18).
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Proof of Proposition 2. In the MNL case, the equilibrium service level vector f∗

under a given wholesale price vector w and backlogging rate cost vector h− satisfies the

first order condition (27): −k′i(f∗
i )αi + b′i(f

∗
i ) = 0, i = 1, ..., N . From Lemma 1, k′i(f

∗
i ) =(

(h+
i + h−i )f∗

i − h−i
)
/gi(G

−1
i (f∗

i )). On the other hand, under the coordinating scheme in

this model, retailer i is charged the wholesale price w∗
i and a penalty h−∗

i − h−i = h+
i

fI
i

1−fI
i
−

gi(G
−1
i (fI

i ))

1−fI
i

b′i(f
I
i )

αi
− h−i . Then, f∗

i < [>]f Ii implies that −k′i(f Ii )αi + b′i(f
I
i ) < [>] − k′i(f

∗
i )αi +

b′i(f
∗
i ) = 0, since ki(·) is convex and bi(·) is concave. This, in turn, implies that h−∗

i − h−i >

[<]
h+

i f
I
i −gi(G

−1
i (fI

i ))k′i(f
I
i )

1−fI
i

− h−i = 0. A similar argument applies to the Linear Model.
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