
Computer Supported Cooperative Work: The Journal of Collaborative Computing 5: 155–200, 1996. 155
c
 1996 Kluwer Academic Publishers. Printed in the Netherlands.

Coordination Mechanisms: Towards a Conceptual
Foundation of CSCW Systems Design ?

KJELD SCHMIDT� and CARLA SIMONE��
�Systems Analysis Department, Risø National Laboratory, Roskilde, Denmark,
Email: kjeld.schmidt@risoe.dk; ��Department of Computer Sciences, University of Torino, Torino,
Italy, Email: simone@di.unito.it

Abstract. The paper outlines an approach to CSCW systems design based on the concept of ‘coordi-
nation mechanisms.’ The concept of coordination mechanisms has been developed as a generalization
of phenomena described in empirical investigations of the use of artifacts for the purpose of coordi-
nating cooperative activities in different work domains. On the basis of the evidence of this corpus
of empirical studies, the paper outlines a theory of the use of artifacts for coordination purposes
in cooperative work settings, derives a set of general requirements for computational coordination
mechanisms, and sketches the architecture of Ariadne, a CSCW infrastructure for constructing and
running such malleable and linkable computational coordination mechanisms.

Key words: Cooperative work, articulation work, coordination, artifact, coordination mechanisms,
CSCW environments, Ariadne

A major research issue in CSCW is to understand how computer systems can
be instrumental in reducing the complexity of coordinating cooperative activities,
individually conducted and yet interdependent.

In fact, the issue was identified and defined with admirable precision quite early
in the history of CSCW, by Anatol Holt: ‘The new capabilities at which coordina-
tion technology aims depend on finding and installing appropriate conceptual and
structural units with which to express tasks, their diverse relations to each other
and to the people who ultimately bear responsibility for them.’ ‘To be useful, this
must be done in a flexible yet well-integrated manner, with plenty of leeway for
the unpredictability of real life.’ (Holt, 1985, p. 281).

Since then, this issue has been investigated by a range of eminent CSCW
researchers. The initial results were not encouraging, however, in that coordination
facilities were experienced as excessively rigid, either because the underlying
protocol was not accessible and could not be modified (e.g., The Coordinator, cf.
Winograd, 1986; Winograd and Flores, 1986; Flores et al., 1988), or because the
facilities for changing the protocol did not support actors in modifying the protocol
(e.g., DOMINO, cf. Kreifelts et al., 1991a; Kreifelts et al., 1991b).

? The first version of this paper was written while Carla Simone was with the University of Milano.



156 K. SCHMIDT AND C. SIMONE

In response to these initial experiences, a number of research projects have
attempted to make coordination facilities flexible to actors, e.g., Egret (Johnson,
1992), ConversationBuilder (Kaplan et al., 1992; Bogia et al., 1993; Bogia et al.,
1996), and OVAL (Malone et al., 1992; Malone et al., 1995).

While closely related to these and other CSCW research efforts, our research
has taken a somewhat different approach in that we have aimed at developing
a computational notation which, on one hand, is sufficiently general to facilitate
the construction of computer-based coordination mechanisms for any cooperative
work arrangement and which, on the other hand, supports the cooperating actors
themselves in constructing mechanisms which are both malleable and linkable. This
notation – named Ariadne? – exists in the form of an abstract formal specification
which has been partially implemented as a ‘concept demonstrator’ (Simone and
Schmidt, 1994; Simone et al., 1995a).

The development of the general notation for constructing coordination mecha-
nisms involves a range of research activities. Firstly, we need to understand how
cooperating actors devise and use coordinative constructs such as coordinative pro-
tocols and workflows and how such constructs are supported by artifacts. A series
of focused, in-depth field studies of coordinative practices in real-world cooperative
settings have therefore been undertaken with the specific objective of investigating
how the distributed activities of cooperative work arrangements are articulated and,
in particular, how prescribed procedures and artifacts are devised, appropriated, and
used for these purposes. On the basis of these and other investigations, we have
developed a general conceptual framework which provides a set of categories and
models which, in turn, form the basis of Ariadne. The whole process has been
highly iterative, of course, in that the development of Ariadne has raised questions
to the underlying conceptual framework which, again, has generated issues to be
investigated further in the field studies. On the other hand, the findings from the
field studies have be used to put the conceptual framework and the notation to
test; as a result the framework and the notation have been modified and refined
repeatedly.

While the research reported in this paper has been underway for several years
and has been reflected in a number of papers and reports, the purpose of the present
paper is to present a systematic exposition of the conceptual framework that has
been developed in the course of this research and which serves as the foundation
for the Ariadne notation.

The argumentation underlying this exposition is, unfortunately, rather intricate.
Thus, in order to help the reader to navigate the labyrinthine exposition, its flow
is punctuated by a number of propositions which highlight and offer a condensed
expression of the crucial points of the argumentation.

? In Greek mythology, Ariadne was the daughter of Minos, the king of Crete. She fell in love
with Theseus and helped him slay the Minotaur, the monster of the Labyrinth. She did that by giving
Theseus a thread that would help him to find his way in and out of the Labyrinth.



COORDINATION MECHANISMS 157

1. The Issue of Articulation Work

In the design of conventional computer-based systems for work settings the core
issues have been to develop effective computational models of pertinent structures
and processes in the field of work (data flows, conceptual schemes, knowledge
representations) and adequate modes of presenting and accessing these structures
and processes (user interface, functionality). While these systems typically were
used in cooperative work settings and even, as in the case of systems that are part of
the organizational infrastructure, were used by multiple users (e.g., administrative
database systems), the issue of supporting the articulation of cooperative work by
means of such systems was not addressed directly and systematically, as an issue in
its own right. If the underlying model of the structures and processes in the field of
work was ‘valid,’ it was assumed that the articulation of the distributed activities
was managed ‘somehow.’ It was certainly not a problem for the designer or the
analyst.?

Consider, for example, the booking system of an airline. It is a computer-
based system for the cooperative task of handling reservations. The database of
the booking system embodies a model of the seating arrangements of the different
flights. Taken together, the seating arrangements and the database model constitute
what we call the common field of work of the booking agents. Thus, the operators
of the booking agencies cooperate by changing the state of the field of work,
in casu, by reserving seats. Apart from providing a rudimentary access control
facility, the booking system does not in any way support the coordination and
integration of the interdependent activities of the operators. In this case, however,
the field of work can be treated as a system of discrete and extremely simple
(binary) state changes. A seat can only be assigned to one person at a time, there
are no interactions between processes, and the state of any given seat can be
ascertained unambiguously. Accordingly, even though a booking system does not
support articulation work, it is seemingly quite sufficient for the job.

However, some if not most cooperative work arrangements in modern industrial
society are faced with a far more complex field of work. The field of work may have
a multitude of possible states, the state of the field of work may be ambiguous, and
state changes may be interdependent in numerous ways, may occur intermittently
and concurrently, and may be dynamic and unpredictable. Since members of such
ensembles therefore are faced with complex interdependencies between individual
activities, they cannot rely on accomplishing their individual and yet interdependent
tasks merely by changing the state of the field of work. They must articulate their
distributed activities in other ways. With CSCW, these issues become crucial. In
fact, CSCW can be conceived of as a field devoted to exploring how computer-

? A similar point was made very early in CSCW by Anatol Holt: ‘Whatever has to do with task
inter-dependence – coordination – is left to the users to manage as best they can, by means of shared
databases, telephone calls, electronic mail, files to which multiple users have access, or whatever ad
hoc means will serve.’ (Holt, 1985).



158 K. SCHMIDT AND C. SIMONE

based systems can enhance the ability of cooperating actors in articulating their
activities (cf., e.g., Schmidt and Bannon, 1992; Fitzpatrick et al., 1995).

In order to be able to conceptualize and specify the support requirements of
cooperative work, we make an analytical distinction between ‘cooperative work’
and ‘articulation work.’ This distinction is fundamental to the approach presented
here – and, in our opinion, to CSCW in general (Schmidt, 1994). Cooperative work
is constituted by the interdependence of multiple actors who, in their individual
activities, in changing the state of their individual field of work, also change the
state of the field of work of others and who thus interact through changing the state
of a common field of work. Since it involves multiple actors, cooperative work is
inherently distributed, not only in the usual sense that activities are distributed in
time and space, but also – and more importantly – in the sense that actors are semi-
autonomous in terms of the different circumstances they are faced with in their
work as well as in terms of their strategies, heuristics, perspectives, goals, motives,
etc. (Schmidt, 1991a; Schmidt, 1991b). To deal with this source of confusion and
disorder, individual and yet interdependent activities must be coordinated, sched-
uled, aligned, meshed, integrated, etc. – in short: articulated.? That is, the orderly
accomplishment of cooperative work requires what has been termed articulation
work (Strauss et al., 1985; Gerson and Star, 1986; Strauss, 1988; Strauss, 1994).

PROPOSITION 1. Cooperative work is constituted by the interdependence of
multiple actors who interact through changing the state of a common field of work,
whereas articulation work is constituted by the need to restrain the distributed
nature of complexly interdependent activities.

The distinction between cooperative work and articulation work is recursive; that
is, an established arrangement of articulating a cooperative effort may itself be
subjected to a cooperative effort of re-arrangement which in turn also may need to
be articulated, and so forth. To take a simple, and perhaps simplistic, example: At
some point during a design meeting one of the participants interrupts the design
discourse to change the agenda for the meeting. Following that, the participants
discuss the proposal for some time, adopt it in an amended form, and resume the
design discourse where they broke off. In this case, the established arrangement
(the agenda) is treated as the field of work of another cooperative effort, namely
that of rearranging the agenda. This recursion is, in principle, infinite. For instance,
during the discussion about the proposed change to the agenda, someone may raise
the issue of floor control by, say, proposing that nobody should be allowed to speak
about the proposal more than once, which may in turn ignite yet another round of
exchanges at another level of recursion. While this could go on forever, the infinite
recursion is made finite and closed, to get the job done. The severe constraints
under which work takes place in the real world dictate that such recursions are

? The word ‘articulate’ is used in the sense of ‘to put together by joints’.



COORDINATION MECHANISMS 159

normally terminated well before they become frivolous.

PROPOSITION 2. Articulation work is a recursive phenomenon in that the man-
agement of an established arrangement of articulating a cooperative effort may
itself be conducted as a cooperative effort which, in turn, may also need to be
articulated.

2. The Complexity of Articulation Work

Cooperative work is, as noted above, inherently distributed. This distributed char-
acter of cooperative work varies, however, according to the complexity of the
interdependence, that is, depending on factors such the distribution of activities
in time and space, the number of participants in the cooperative ensemble, the
structural complexity posed by the field of work (interactions, heterogeneity), the
degree and scope of specialization among participants, the apperceptive uncertain-
ties posed by the field of work and hence the variety of heuristics involved, and so
on. The more distributed the activities of a given cooperative work arrangement,
the more complex the articulation of the activities of that arrangement is likely to
be.

With low degrees of complexity, the articulation of cooperative work can be
achieved by means of the modes of interaction of everyday social life. In fact,
under such conditions, the required articulation of individual activities in cooper-
ative work is managed so effectively and efficiently by our repertoire of intuitive
interactional modalities that the distributed nature of cooperative work is not man-
ifest. As demonstrated by the body of rich empirical studies of cooperative work
within CSCW, actors tacitly monitor each other; they perform their activities in
ways that support coworkers’ awareness and understanding of their work; they take
each others’ past, present and prospective activities into account in planning and
conducting their own work; they gesture, talk, write to each other, and so on, and
they mesh these interactional modalities dynamically and seamlessly (Harper et
al., 1989; Heath and Luff, 1992; Harper and Hughes, 1993; Heath et al., 1995).

However, in the complex work settings that characterize modern industrial,
service, and administrative organizations (hundreds or thousands of actors engaged
in myriads of complexly interdependent activities), the task of articulating the
interdependent and yet distributed activities is of an order of complexity where our
everyday social and communication skills are far from sufficient.

Faced with a high degree of complexity of articulation work, cooperating actors
typically use a special category of artifacts which, in the context of a set of con-
ventions and procedures, stipulate and mediate articulation work and thereby are
instrumental in reducing its complexity and in alleviating the need for ad hoc
communication. Consider, for example, the case of the S4000 project.

The S4000 project. Foss Electric is a Danish manufacturing company that
produces advanced equipment for analytical measurement of quality parameters



160 K. SCHMIDT AND C. SIMONE

of agricultural products, e.g., the compositional quality of milk in terms of fat
content and the count of protein, lactose, somatic cells, bacteria, etc. At the time of
the field study,? the company was engaged in a large design project called S4000
which aimed at building a new instrument for analytical testing of raw milk. The
S4000 project was the first project aiming at building an integrated instrument that
would offer a range of functionalities that previously had been offered by a number
of specialized instruments. In addition, as an innovation compared to previous
models, the S4000 system would introduce measurements of new parameters in
milk (e.g., urea and citric acid), and the performance was to be radically increased.
The instrument would consist of approximately 8,000 components grouped into a
number of functional units, such as cabinet, pipette unit, conveyer, flow-system, and
measurement unit. Finally, the S4000 was the first Foss instrument to incorporate a
personal computer (an Intel-based 486 PC) by means of which the configuration and
operation of the instrument were to be controlled (through a Windows interface).
Eventually, the first version of the software consisted of approximately 200,000
lines of source code. Altogether more than 50 people were involved in the S4000
project, which lasted approximately 30 months (for the first version).

The design team was faced with quite a challenge:
(1) The different subsystems, e.g., the software control system and the mechanical

and chemical processes in the flow and measurement system, were intricately
interdependent and might interact in unforeseen ways.

(2) The S4000 project introduced measurement of new parameters in raw milk for
which new technologies had to be developed and mastered.

(3) The different subsystems were developed concurrently and the requirements
to be satisfied by each subsystem would therefore change as other subsystems
were developed.

(4) Production facilities at the manufacturing plant were constantly changing as
the use of existing machines was optimized and new machines and processes
were introduced. Hence, the repertoire of manufacturing processes that the
production function could offer to designers and that designers thus had to
take into account in their decisions was continually changing.

(5) Because of its technological heterogeneity, the S4000 project involved a num-
ber of specialisms. The core design team consisted of designers from mechan-
ical engineering, electronics, software, and chemistry. In addition, a handful
of draught-persons and several persons from organizational entities such as
production, model shop, marketing, quality assurance, quality control, service,
and top management were involved to varying degrees at different stages in
the course of the project.

All in all, the project was significantly more complex than previous projects at
Foss.

? The field research of the S4000 project was done by Henrik Borstrøm, Peter Carstensen, and
Carsten Sørensen.



COORDINATION MECHANISMS 161

To survive these challenges, the participants took a number of measures to
reduce the complexity of managing the project:

As always at Foss, all project participants from the different technical depart-
ments were moved to the same office area to create a shared physical space by
means of which participants could develop and maintain shared awareness of the
state of the project. Furthermore, of course, a sequence of meetings was scheduled
at different intervals and, as the project took its course, a large number of ad-hoc
meetings were arranged as well.

However, the amount of detailed information that had to be communicated,
aligned, negotiated, etc., required more robust measures. A number of procedures
and artifacts were introduced to keep track of the state of affairs and to manage
relations and dependencies among actors, tasks, and resources: an ‘augmented’
bill of materials that identified actors responsible for parts in order to support
the coordination of mechanical design, process planning, and production in the
construction of prototypes (Sørensen, 1994a); a CEDAC board (Cause and Effect
Diagram with the Addition of Cards) for coordinating the diagnosis of faults
between mechanical design and process planning (Sørensen, 1994b); and a product
classification scheme supporting the distributed classification and retrieval of CAD
models (Sørensen, 1994c). Some of these procedures and artifacts were invented
for this project, some were redesigns of existing artifacts, and others were merely
adopted.

The most dramatic measures were taken with respect to the software design
process. In the early phases of the software strand of the S4000 project, the software
designers felt that their overview of the state of the project was quite defective and
that they needed much greater coordination. As one of the software designers put
it:

‘It has really been problematic that we did not have any guidelines and descrip-
tions for how to produce and integrate our things. The individual designers are
used to work on their own and have all the required information in their heads,
and to organize the work as they wish to [: : : ] When we started, we were only
a few software designers. And suddenly – problems! And, oops, we were quite
a few software designers and external consultants involved.’
At the height of the crisis the software design goals were almost abandoned. To

overcome the crisis, the software designers developed a repertoire of procedures
and artifacts to ensure the monitoring and control of the integration of software
components and modules.

An important component in this repertoire, was the ‘software platform’ institu-
tion. Initially, the ‘software platform’ was just a point in time at which all software
designers would stop coding in order to integrate their bits and pieces. For each
platform integration period, one of the designers was appointed as ‘platform mas-
ter’ which implied that he or she would be responsible for collecting information
on changes made to the software and for ensuring that the software was tested and
corrected before it was released. Before the software was released as a ‘platform’



162 K. SCHMIDT AND C. SIMONE

for further development, the project schedule was updated with revised plans and
tasks for the next three to six weeks. The establishment of the software platform
institution was considered absolutely necessary for the S4000 project.

Moreover, the software design team devised and introduced other procedures
and artifacts. Most importantly, a ‘bug report form’ with corresponding procedures
for reporting, classifying, and correcting faults were introduced to ensure that bugs
were properly registered, that corrected bugs were duly reported, and to make the
allocation of responsibilities clear and visible to all members. As a complementary
measure, copies of bug forms were collected in a publicly available repository in
the form of a simple binder. (For further details, cf. Carstensen et al., 1995a).

The software designers experienced the hard way that it was practically impos-
sible to handle the distributed testing and bug registration activities of some twenty
testers and designers without, inter alia, a bug report form and its associated pro-
cedures. By devising and introducing these constructs, they managed to alleviate
the coordination crisis in the project.

The case of the S4000 project is particularly valuable because we here wit-
ness the introduction of specialized artifacts for coordination purposes in response
to overwhelming problems encountered in coping with the complexities of artic-
ulating the distributed and interdependent activities of cooperative design under
conditions that are typical for contemporary industry. However, while daunting
to the participants, the complexity of the S4000 project is not exceptional. Such
complexities are an everyday occurrence in modern industrial, service, and admin-
istrative settings.

PROPOSITION 3. In cooperative work settings characterized by complex task
interdependencies, the articulation of the distributed activities requires specialized
artifacts which, in the context of a set of conventions and procedures, are instru-
mental in reducing the complexity of articulation work and in alleviating the need
for ad hoc deliberation and negotiation.

Artifacts have been in use for coordination purposes in cooperative settings for
centuries, of course – in the form of time tables, checklists, routing schemes, cat-
alogues, classification schemes for large repositories, and so on. Now, given the
infinite versatility of computer systems, it is our contention that such artifacts in the
form of computational coordination mechanisms can provide a degree of perspicu-
ity and flexibility to artifactually supported articulation work that was unthinkable
with previous technologies, typically based on inscriptions on paper or cardboard.
This opens up new prospects for moving the boundary of allocation of functionality
between human and artifact with respect to articulation work so that much of the
drudgery of articulation work (boring operations that have so far relied on human
effort and vigilance) can be delegated to the artifact, but also, and more impor-
tantly, so that cooperative ensembles can articulate their distributed activities more



COORDINATION MECHANISMS 163

effectively and with a higher degree of flexibility and so that they can tackle an
even higher degree of complexity in the articulation of their distributed activities!

As a generalization, we call these artifacts and the concomitant procedures and
conventions ‘coordination mechanisms.’? In the following sections of this paper,
we will expound this concept at length.

3. Coordination Mechanisms: Evidence and Concept

The concept of coordination mechanisms has been developed as a generalization
of phenomena described in different ways in numerous empirical investigations of
the use of artifacts for coordination purposes in different work domains:
� standard operating procedures in administrative work (Zimmerman, 1966;

Zimmerman, 1969b; Zimmerman, 1969a; Wynn, 1979; Suchman, 1983; Such-
man and Wynn, 1984; Wynn, 1991);

� classification schemes for large repositories (Bowker and Star, 1991; Andersen,
1994; Sørensen, 1994c);

� time tables in urban transport (Heath and Luff, 1992);
� flight progress strips in air traffic control (Harper et al., 1989; Harper and

Hughes, 1993);
� production control systems in manufacturing (Schmidt, 1994);
� schedules in hospital work (Zerubavel, 1979; Egger and Wagner, 1993);
� planning tools for manufacturing design (Bucciarelli, 1988; Sørensen, 1994a;

Carstensen et al., 1995a);
� fault correction procedures in engineering and software design (Carstensen,

1994; Pycock, 1994; Pycock and Sharrock, 1994; Sørensen, 1994b).
Consider, for example, the bug form as described in the study of the Foss Electric

S4000 project:
The bug report form. The bug report form (see Figure 1) was a two page form

(both sides of one sheet of paper). A new bug report was initiated and filled-in by
anyone involved in testing the software, which could be software designers, other
designers, quality assurance staff, or marketing people. The originator of the bug
report also provided a preliminary description and diagnosis of the problem. A
so-called ‘spec-team’, that is, a group of three software designers responsible
for diagnosing and classifying all reported bugs, then determined the module
which presumably was responsible for the fault and, by implication, identified
the designer responsible for that module and therefore for correcting the bug. The
‘spec-team’ also specified the platform integration period by which the bug should
be corrected, and classified the bug according to its perceived severity (as seen
from a software reliability perspective). Finally, each designer was responsible for
fixing the problems (handling ‘his’ or ‘her’ bugs) and reporting back to the Platform

? In earlier papers we used the term ‘mechanism of interaction’. The change of terminology
does not imply any conceptual changes and is merely motivated by our experience that the term
‘mechanism of interaction’ can have unintended connotations.



164 K. SCHMIDT AND C. SIMONE

Figure 1. The bug report form (translated from Danish), with indications of which actor (role)
is supposed to fill in which fields (Carstensen et al., 1995b).

Master, i.e., the designer responsible for the next software module integration and
verification period.

As noted above, all bug forms were filed in a public repository (‘the binder’)
which was organized according to the following categories: (1) non-corrected
‘catastrophes’, (2) non-corrected ‘semi-serious’ bugs, (3) non-corrected ‘cosmetic’
bugs, (4) postponed, (5) rejected, (6) corrected but not yet tested, and (7) corrected
bugs. The forms collected in the binder were successively re-classified and re-filed
according to decisions made by the spec-team, messages concerning specific bugs
from the designers, results from the verification of reported corrections, etc.

Finally, a list of not-yet-fixed bugs (category 1, 2, and 3) was produced continu-
ally and accessed by the software designers. It gave them an indication of the state
of the software system as a whole and supported them in being aware of design



COORDINATION MECHANISMS 165

Figure 2. A schematic illustration of the roles and information flows in software testing in
the S4000 project. The flows in the diagram indicate the intended flow according to the bug
handling protocol. The protocol follows seven major steps: (1) a tester sends a form, describing
a bug, to the ‘spec-team;’ (2) the ‘spec-team’ diagnoses the bug and sends the annotated form to
a software designer; (3) a copy is send to the manager of the ‘binder’, i.e., the repository of bug
forms; if a reported bug is rejected, the original is sent to the ‘binder’ manager; (4) the software
designer reports on corrected bugs and sends the form to the ‘binder’ manager; (5) the ‘binder’
manager sends a stack of forms of bugs to be verified to the ‘platform master’; (6) forms
of bugs that cannot be verified are sent to the ‘spec-team’; (7) verified forms are sent to the
‘binder’ manager. (Carstensen et al., 1995b).

activities concerning modules for which they were not responsible but with which
their own modules might interact.

Basically, five different roles were involved in coordinating the debugging activ-
ities in the S4000 project: the testers testing the software, the ‘spec-team’ diag-
nosing the reported bugs, the software designers correcting the diagnosed bugs,
the ‘platform master’ verifying the corrected bugs, and the designer maintaining
the bug form repository to keep track of the distributed debugging activities (see
Figure 2).

As illustrated by the case of the bug report form, a coordination mechanism can
be conceived of as constituted by two devices: On one hand we have a coordinative
protocol in the form of a set of agreed-to procedures and conventions which, to
competent members of the ensemble, stipulates the responsibilities of the different
roles, the possible classifications of bugs, the intricate flow of forms, acknowledg-
ments, reports of bugs corrected, etc. On the other hand we have the bug report
form as an artifact, i.e., as a distinct and persistent symbolic construct, in which
the protocol is imprinted and objectified.

PROPOSITION 4. A coordination mechanism is a construct consisting of a coor-
dinative protocol (an integrated set of procedures and conventions stipulating the



166 K. SCHMIDT AND C. SIMONE

articulation of interdependent distributed activities) on the one hand and on the
other hand an artifact (a permanent symbolic construct) in which the protocol is
objectified.

Coordination mechanisms are characterized by a specific and crucial relationship
between protocol and artifact. In the next sections we will analyze this relationship
by investigating the constituent parts in turn.

3.1. COORDINATION MECHANISMS: THE PROTOCOL

While the notion of protocols that stipulate the articulation of cooperative work is
crucial to the concept of coordination mechanisms, it is also contested. In a large
body of sociological literature, the notion of pre-defined organizational constructs
in general (formal structures, procedures, methods, plans) as determinants of action
has been subjected to critical examination. Study after study have demonstrated,
unambiguously and beyond any doubt, that the status of these formal organization-
al constructs in the actual course of work is problematic in that these constructs
are impoverished idealizations when taken as representations of actually unfold-
ing activities. In the words of Philip Selznick’s classic summary of this line of
sociological investigation:

‘The formal administrative design can never adequately or fully reflect the
concrete organization to which it refers, for the obvious reasons that no abstract
plan or pattern can – or may, if it is to be useful – exhaustively describe an
empirical totality. At the same time, that which is not included in the abstract
design (as reflected, for example, in a staff-and-line organization chart) is
vitally relevant to the maintenance and development of the formal system
itself.’ (Selznick, 1948, p. 25)
This conception of the status of formal constructs has been highly influential

in that it, as observed by Egon Bittner in a now classic paper, has ‘furnished the
necessary theoretical argument for an entire field of sociological investigations by
directing attention to a sphere of adaptive and cooperative manipulations, and to
the tensions typically found in it.’ (Bittner, 1965, p. 240)

The issue – for Bittner and for us – is: what is the status of these formal
organizational constructs? The problem with the received tradition of critical studies
of formal organizational constructs, however, is the almost ceremonial status it
implicitly ascribes to these formal constructs and the ensuing dichotomy of the
‘formal’ and the ‘informal,’ the notional and the corporeal. The argument implies
that members of the given organizational settings are somehow supposed to take
formal constructs literally – as if constructs such as procedural formulations are
supposed to be exhaustive specifications of how the work gets done.

In addressing this problem, Bittner makes some very cogent observations:
‘While Selznick quite clearly assigns the formal schemes to the domain of
sociological data, he does not explore the full range of consequences out of



COORDINATION MECHANISMS 167

this decision. By retaining Weber’s conception of them as normative idealiza-
tions, Selznick avoids having to consider what the constructions of rational
conduct mean to, and how they are used by, persons who have to live with
them from day to day. It could be, however, that the rational schemes appear
as unrealistic normative idealizations only when one considers them literally,
i.e., without considering some tacit background assumptions that bureaucrats
take for granted.’ (Bittner, 1965, p. 242 – emphasis added)

Bittner’s methodological recommendation is quite pertinent to the issue of
analyzing and designing coordination mechanisms. To be able to contribute con-
structively to the design of computational coordination mechanisms, we need to
understand not only ‘the tacit background assumptions’ that members take for
granted and without which any formal construct would be merely a rhetorical
statement but also ‘what the constructions of rational conduct mean to, and how
they are used by, persons who have to live with them from day to day.’

In the course of the following exposition and discussion, it is important to keep
in mind that we are not trying to address or solve the general problems of general
sociological theory. We are not investigating human action in general, merely the
means of articulating distributed and interdependent activities in work settings, that
is, under conditions of severe constraints. Nor are we investigating the nature of
tacit and implicit plans, rules, routines, habits, and so on in human social conduct
in general but, more specifically and modestly, the role of artifactually imprinted
protocols in the articulation of cooperative work.

However, since it is not merely the status of coordinative protocols that is
contested but the status of protocols in general, and since much of the evidence
produced for this discussion accordingly does not specifically refer to protocols
designed and used to support the articulation of cooperative work but to formal
organizational constructs in general, we cannot, in our investigation, avoid to refer
to and draw upon evidence of artifactually imprinted protocols that are not used in
the articulation of cooperative work. In doing that, our objective remains, however,
to understand the more specific problem of the role of artifactually imprinted
protocols in the articulation of cooperative work. To make this explicit we will use
the term ‘artifactually imprinted protocol’ to denote any protocol, coordinative or
otherwise, which is objectified in an artifact.

During the last 15 years or so, our understanding of how procedures and artifac-
tually imprinted protocols are used by actors in everyday work activities has been
greatly enriched by a number of outstanding studies (e.g., Wynn, 1979; Suchman,
1983; Suchman and Wynn, 1984; Bucciarelli, 1988; Wynn, 1991). The general
conclusion of these studies is that such procedures and artifacts serve as ‘map-
s’ (Suchman, 1987, pp. 188f.; Bucciarelli, 1988, p. 114). Consider, for instance,
Suchman’s study of the accounting office (Suchman, 1983):

The accounting office. This office was responsible for the orderly payment
of money due to outside organizations supplying goods and services to the orga-
nizational units in its charge. Orderly payment was documented through record-



168 K. SCHMIDT AND C. SIMONE

keeping, and accuracy was monitored by the auditing of invoices against records of
requisition and receipt. According to the standard procedure, items on a given pur-
chase order could be received and billed in separate installments over an extended
period. Again, if all went smoothly, the items marked off on the receiving report
from Shipping or Receiving would correspond to those on the invoice from the
vendor. The purchase order, receiver, and invoice would be matched and audited.
The payment for the items received would be recorded by margin notes on the
purchase order, which would then be returned to the temporary file to wait for the
next shipment and billing. Only after all bills had been received and paid was the
completed purchase order filed permanently in the paid file.

In the case presented and analyzed by Suchman, however, the record of what had
happened was incomplete: The original purchase order was missing. A completed
receiving document was found with eight items listed on it, all of which had been
marked as received. The two invoices found in the paid file showed only two items
as paid, however; there was no invoice or record of payment for the other items, yet
the vendor reported that the transaction would be completed with payment of the
past due invoice for only two of those items that seemingly had not yet been paid.
The study then shows how the two actors, the accounting clerk and the auditing
clerk, step by step solved the ‘mystery’: Of the invoice for one of the items, only
page two was on file; page one was missing. It thus transpired that four other items
were invoiced with this item and had already been paid.

This case shows convincingly that orderly records are not necessarily the result
of some prescribed sequence of steps and that it may involve the practice of
completing a record or pieces of it after the fact of actions taken: ‘once the legitimate
history of the past due invoice is established, payment is made by acting as though
the record were complete and then filling in the documentation where necessary.
The practice of completing a record or pieces of it after the fact of actions taken
is central to the work of record-keeping’ (Suchman, 1983, p. 326). Thus, precisely
because it is a case of recovery from error, the case gives a vivid impression of
the massive heuristic use of standard procedures even in a seemingly abnormal
situation. The two actors are able to solve the abnormal problem because of their
‘knowledge of the accounts payable procedure’ (Suchman, 1983, p. 322). Standard
procedures can thus be said to have a heuristic function in the sense that they ‘are
formulated in the interest of what things should come to, and not necessarily how
they should arrive there’ (Suchman, 1983, p. 327).

Taking this interpretation further, Suchman posits that a standard procedure
serves as an extraneous and subservient referent for situated action:

‘It is the assembly of orderly records out of the practical contingencies of actual
cases that produces evidence of action in accordance with routine procedure.
This is not to say that workers “fake” the appearance of orderliness in the
records. Rather, it is the orderliness that they construct in the record that
constitutes accountability to the office procedures.’ (Suchman, 1983, p. 327)



COORDINATION MECHANISMS 169

This interpretation is generalized in Suchman’s seminal book on Plans and
Situated Action (1987):

‘plans are resources for situated action, but do not in any strong sense determine
its course. While plans presuppose the embodied practices and changing cir-
cumstances of situated action, the efficiency of plans as representations comes
precisely from the fact that they do not represent those practices and circum-
stances in all of their concrete detail’ (Suchman, 1987, p. 52).

Suchman’s thesis that ‘plans are resources for situated action’ is of fundamental
importance to CSCW systems design and has served us as a guiding principle in
the development of the concept of coordination mechanisms, but it also leaves a
number of unsettling questions unanswered: What is it that makes plans such as
production schedules, office procedures, classification schemes, etc., useful in the
first place? What makes them ‘resources’? Furthermore, is it merely the fact that
plans are underspecified in comparison with the rich multiplicity of actual action
that makes them ‘resources’? Is that really all there is to it?? What, then, makes
one procedure or form or schedule more useful than another for a certain purpose
in a specific setting?

Later in the book, Suchman returns to these issues and suggests a rather apt
metaphor for the role of artifactually imprinted protocols, namely that of a ‘map’:

‘Just as it would seem absurd to claim that a map in some strong sense controlled
the traveler’s movements through the world, it is wrong to imagine plans as
controlling actions. On the other hand, the question of how a map is produced
for specific purposes, how in any actual instance it is interpreted vis-à-vis the
world, and how its use is a resource for traversing the world, is a reasonable
and productive one.’ (Suchman, 1987, pp. 188f.)

While the same irksome questions arise here as well, the ‘map’ analogy is a
fitting condensation of the role of artifactually imprinted protocols that have been
described in a number of studies. In Suchman’s study of the accounting office, for
example, the standard operating procedures were found to be ‘formulated in the
interest of what things should come to, and not necessarily how they should arrive
there.’ They were used as a general reference for orientation purposes, not as a
prescribed sequence of actions to be taken.

However, other studies lead to quite different conclusions as to how artifactually
imprinted protocols are used by actors in everyday work activities.

Checklists. Firstly, consider the relatively simple case of the ‘normal checklist.’
The checklist is an artifactually imprinted protocol that has been deliberately and
carefully designed to reduce local control in safety-critical environments. More
specifically, a checklist is used to organize tasks whenever it is essential that a
set of actions all be performed, typically where it is essential that the actions

? Is it indeed ‘precisely [: : : ] the fact that they do not represent those practices and circumstances
in all of their concrete detail’ that makes plans efficient and effective? Does that mean that the less
specific the better? Suchman probably does not intend to imply that.



170 K. SCHMIDT AND C. SIMONE

of the performance also be taken in a particular order, to ensure a high level of
operational safety. For example, the normal aircraft flight-deck checklist indicates
a set of different tasks the pilot must perform or verify during all flight segments in
order to configure the aircraft and prepare the flight crew for certain ‘macro-tasks’
such as ENGINE START, TAXI, TAKEOFF, APPROACH, LANDING, etc. For each one of
these macro-tasks there are several ‘items’ to be accomplished and verified by the
crew (Degani and Wiener, 1990).

In his analysis of the checklist, Don Norman observes that ‘The fact that the
preparation of the list is done prior to the action has an important impact upon
performance because it allows the cognitive effort to be distributed across time and
people’ (1991, p. 21). This preparatory task – which Hutchins aptly has dubbed
‘precomputation’ – can be done when more convenient, e.g., when there is no time
pressure and no safety and security risk, and by another actor, e.g., by a specialist.
‘In fact,’ Norman observes, ‘precomputation can take place years before the actual
event and one precomputation can serve many applications’ (1991, p. 21). The
concept of a precomputation of essential aspects of a task is crucial to understanding
the role of artifactually imprinted protocols: The flight-deck checklist, for instance,
provides a precomputed selection of safety-critical tasks, which all need to be
performed at the particular flight segment as well as a precomputed sequence for
their execution.

Now, the protocol of the flight-deck checklist does not stipulate the articulation
of cooperative activities but the activities themselves and it is therefore not a
coordinative protocol. For a case of the use of artifactually imprinted protocols that
stipulate the articulation of cooperative activities, consider the kanban system.

The kanban system. In 1990, Bjarne Kaavé conducted a study of cooperative
production control in a manufacturing company we can call Repro Equipment.?

The company manufactured specialized optical appliances and covered about 50%
of the world market for this category of equipment. At the time of the study,
the company produced about 6,000 units a year in fifteen models, each in seven
variants.

A manufacturing operation, like the one at Repro Equipment, involves multi-
tude discrete parts and processes that are complexly interdependent: Each product
consists of many component parts, in some cases tens or hundreds of thousands of
components, and their production may require a number of different processes in
a specific sequence. Different processes, such as cutting, bending, welding, etc.,
typically require specialized tools and skills which are distributed at different work-
stations and require hugely different set-up times. This is compounded by the fact
that, at any given time, a large number of products and their components coexist in
the production process at different stages of completion which means that differ-
ent parts for the same or for different products compete for the same workstations.
Thus, in the words of Harrington (1984, p. 4), manufacturing can be conceived of as

? This analysis is based on Bjarne Kaavé’s findings as reported in his thesis (Kaavé, 1990) as well
as in several joint analysis sessions with one of the present authors.



COORDINATION MECHANISMS 171

‘an indivisible, monolithic activity, incredibly diverse and complex in its fine detail.
The many parts are inextricably interdependent and interconnected.’ Accordingly,
for a manufacturing enterprise to be able to adapt to changing conditions, the entire
enterprise must react ‘simultaneously and cooperatively’ (Harrington, 1979, p. 35).

To deal with this complexity, Repro Equipment had introduced a kanban system
to coordinate processes in the production of cabinets. Kanban is a Japanese word
for ‘card’ or more literally ‘visible record’ (Schonberger, 1982, p. 219) and it
is now in widespread use in manufacturing to denote a just-in-time production
control system where a set of cards acts as the carrier of information about the state
of affairs as well as production orders conveying instructions to initiate certain
activities. The basic idea is that loosely interdependent production processes can
be coordinated by exchanging cards between processes. When a new batch of parts
or sub-assemblies has been produced and the batch is to be transported ‘down-
stream’ from the present work station to the station where it is to be used, for
instance, as components for a sub-assembly, a specific card is attached to the
container used for the transportation. When the operator at the work station down-
stream has processed this batch of parts, the accompanying card is sent back to the
operator who produces these parts. To the operator, receiving the card means that
he or she has now been issued a production order.

The basic set of rules of a kanban protocol is as follows (Schonberger, 1982,
p. 224):
(1) No part may be made unless there is a kanban authorizing it.
(2) There is precisely one card for each container.
(3) The number of containers per part number in the system is carefully calculated.
(4) Only standard containers may be used.
(5) Containers are always filled with the prescribed quantity – no more, no less.

Setting up a kanban system requires a careful configuration of the number
of containers per part number and the quantity per container. This configuration,
in effect, amounts to a precomputation of tasks in terms of batch size per part
number, task allocation in terms of work stations for different part numbers, and
task sequences.

However, a kanban system is not adequate for coordinating manufacturing
operations faced with severe demands on flexibility of volume: a kanban system
can only handle small deviations in the demand for the end product (Schonberger,
1982, p. 227; Monden, 1983). Accordingly, since Repro Equipment was faced
with extreme differences and fluctuations in demand for different models and
variants, operators recurrently experienced that the configuration of the kanban
system (the number of containers per part number and the quantity per container)
was inadequate. For instance, in a situation where a particular part number that
was only used for a special product variant had all been used, the protocol would
automatically generate a production order for this part number, although the part
number in question probably would not be needed in months and would thereby
absorb production facilities that would be needed for other, more pressing orders.



172 K. SCHMIDT AND C. SIMONE

In such situations, where the kanban system is ‘beyond its bounds’ (Roth
and Woods, 1989), operators at Repro Equipment would tamper with the kanban
protocol. For example, having heard of a new rush order from the girl in the order
office, the fork lift operator might put the card for a rarely used part for another
model in his back pocket or leave it on the fork-lift truck for a while. Similarly, in
order to rush an order, operators would occasionally order a new batch of parts for
this order before the container had actually been emptied and the card had been
released, or they would deviate from batch sizes as specified on the card, etc.

It is crucial to notice that instead of abandoning the kanban system altogether,
or at least temporarily, the operators changed the configuration of the system. That
is, when an operator pocketed a kanban, he or she was modifying the protocol,
not switching it off, and when the card was put back in circulation (or released
belatedly), the default configuration was in force again. The reason for this is that
the kanban system incorporates (implicitly, in the configuration of the system)
a precomputed model of crucial interdependencies of the manufacturing process
(routing scheme, set-up- times, etc.). Thus, even though the kanban system at Repro
was often used in situations where it was ‘beyond its bounds,’ it was not discarded
but merely modified locally and temporarily according to the requirements of the
situation.

In order to be usable in a setting like Repro Equipment, the kanban system
had to be managed (monitored, adapted, modified) continually. This was facilitated
by the formation of a network of clerks, planners, operators, fork-lift drivers, and
foremen in various functions such as purchasing, sales, production, shipping, etc.,
who kept each other informed about the state of affairs to be able to control the flow
of parts. A member of this network would for example explore the state of affairs
‘up-stream’ to be able to anticipate contingencies and, in case of disturbances
that might have repercussions ‘down-stream,’ issue warnings. That is, the indirect,
dumb, and formal kanban mechanism was subsumed under a very direct, intelligent,
and informal cooperative arrangement. The cooperative ensemble ‘appropriated’
the kanban system in order to increase its flexibility. They took over control of the
system and controlled production far more closely and effectively than warranted
by the design of the kanban system.

Coming back to the issue of the status of formal organizational constructs in
cooperative work, the kanban system illuminates several important points.

Suchman’s contention that the function of abstract representations such as plans
‘is not to serve as specifications for the local interactions, but rather to orient or
position us in a way that will allow us, through local interactions, to exploit some
contingencies of our environment, and to avoid others’ (Suchman, 1987, p. 188) is
not correct as far as the kanban system is concerned. When an operator receives a
card, he or she will produce the batch as specified by the card, in accordance with
the general rules of the protocol, without actively searching for reasons not to do
so and without deliberating or negotiating whether to do so or not.



COORDINATION MECHANISMS 173

In their individual activities, actors rely on the kanban system to issue valid and
sensible production orders, unless they have strong reasons to believe that its unmit-
igated execution in the particular situation at hand will have undesirable results.
Even then, they do not discard the system but alter its behavior by reconfiguring
it, after which the system is allowed to ‘switch back’ to the default configuration.
That is, in the case of the kanban system:
� actors coordinate their distributed activities by executing the kanban protocol

– unless they have strong reasons to act otherwise;
� when actors have reasons to doubt the rationality of executing a production

order issued by the system, they temporarily reconfigure the system, i.e.,
respecify the protocol, by withholding cards or introducing false cards;

� by reconfiguring the system, actors do not discard the system but alter its
behavior temporarily, upon which the system is allowed to ‘switch back’ to its
default configuration.

The kanban system thus determines action in a far stronger sense than the
map of a traveler determines the traveler’s movements (Suchman, 1987, pp. 188f.;
Bucciarelli, 1988, p. 114). In the kanban case the protocol conveys a specific
stipulation in the form of a production order to the particular actor instructing the
actor, under the conditions of social accountability, to take the particular actions
specified by the card according to the general rules of interpretation laid down in
the protocol. It is thus more like a script than a map. In fact, the kanban system
works well even though it does not provide a ‘map’ in the form of an overview of
interdependencies among processes.

The point is that the kanban protocol under normal conditions of operation
relieves actors of the otherwise forbidding task of computing myriad – partly inter-
dependent, partly competing – production orders and negotiating their priority.
They can, for all practical purposes, rely on the precomputed protocol to issue
valid production orders; they take it for granted. Thus, for an actor in Repro Equip-
ment to question the rationality of the protocol at every step in every situation
would be an utter waste of effort, and it does not happen.

As a generalization, we find that a protocol stipulates the articulation of distributed
activities by conveying affordances and constraints to the individual actor which the
actor, as a competent member of the particular ensemble, can apply without further
contemplation and deliberation unless he or she, again as a competent member, has
accountable reasons not to do so. That is, actors deviate from the stipulations of
the protocol if and when they have compelling reasons to do so, and only then.?

? ‘Even the simple checklist reduces the semantic distance for its users. Lacking the checklist, the
novice must discover the steps that need to be done and an order in which they can be applied. With
the checklist, the task is transformed: reading and following instructions take the place of procedural
reasoning.’ (Norman and Hutchins, 1988, p. 15)



174 K. SCHMIDT AND C. SIMONE

PROPOSITION 5. A coordinative protocol is a resource for situated action in that
it reduces the complexity of articulating cooperative work by providing a precom-
putation of task interdependencies which actors, for all practical purposes, can rely
on to reduce the space of possibilities by identifying a valid and yet limited set of
options for coordinative action in any given situation.

As demonstrated by the conflicting findings from different cases, artifactually
imprinted protocols, such as plans, conventions, procedures, and so forth, play
different roles in cooperative work. They may, on one hand, play the ‘weak’ role
of the ‘map’ of the traveler by providing a codified set of functional requirements
which provides a general heuristic framework for distributed decision making. On
the other hand, they may play the ‘strong’ role of a ‘script’ that offers a ‘precom-
putation’ of interdependencies among activities (options, sequential constraints,
temporal constraints, etc.) which, for each step, provides instructions to actors of
possible or required next steps. Which role is appropriate naturally depends on the
extent to which it is possible to identify, analyze, and model interdependencies in
advance.

Moreover, the role of a particular protocol may vary according to the situation.
Thus, in a situation where a standard operating procedure does not apply, the pro-
cedure may merely serve in its weak default capacity as a vehicle of conveying
heuristics (as, for instance, in the accounting office). In other cases, however, such
as the kanban case, the role of the protocol does not vary in the face of contingen-
cies; rather, because of the complexity of the interdependencies of discrete parts
production, the kanban protocol was not discarded, suspended, nor ‘weakened’ but
temporarily respecified (reconfigured) by operators to accommodate the passing
disturbance.

PROPOSITION 6. The role of coordinative protocols varies from case to case
and from situation to situation, according to the fitness and expressive power of the
precomputation of interdependencies as represented by the protocol, from weak
stipulations, as exemplified by ‘a map,’ to strong stipulations, exemplified by ‘a
script.’

However, whether weak or strong, a protocol only conveys stipulations within
a certain social context, within a certain community, in which it has a (more or
less) certain and agreed-to meaning and it only does so under conditions of social
accountability.

Moreover, as pointed out by Suchman with regard to office procedures, protocols
are characterized by ‘the inherent and necessary under-specification of procedures
with respect to the circumstances of particular cases’ (Suchman, 1982, p. 411).
Furthermore, Suchman observes, ‘the vagueness of plans is not a fault, but is
ideally suited to the fact that the detail of intent and action must be contingent
on the circumstantial and interactional particulars of actual situations’ (Suchman,



COORDINATION MECHANISMS 175

1987, pp. 185f.). However, the degree of vagueness of specific plans is itself
contingent:

‘While plans can be elaborated indefinitely, they elaborate actions just to the
level that elaboration is useful; they are vague with respect to the details of action
precisely at the level at which it makes sense to forego abstract representation,
and rely on the availability of a particular embodied response.’ (Suchman, 1987,
p. 188)

Thus, it is not only that a protocol, as a linguistic construct (Suchman, 1987,
p. 186), is inherently vague compared to the rich details of the actually unfolding
activities of the cooperative work arrangement in which it is applied, nor is it only
that a protocol is inherently decontextualized, but a protocol is deliberately under-
specified with respect to (a) factors that are immaterial for the purpose of the given
protocol or (b) factors that can more efficiently and effectively be left unspecified,
typically until a later stage. The protocol must, to use the apt phrase of Bowker
and Star, be defined at ‘an appropriate level of ambiguity’ (Bowker and Star, 1991,
p. 77).

PROPOSITION 7. As a preconceived plan for the articulation of the distributed
activities of a specific cooperative work arrangement, a coordinative protocol is
inexorably under-specified in the sense that the nominal preconception cannot
encompass and denote the infinite multiplicity of actual circumstances and occur-
rences unfolding during its situated enactment.

Thus, whether a protocol is weak or strong, its execution involves an unavoid-
able aspect of situated interpretation and improvisation – which, nonetheless, as
in the case of protocols used as scripts, may be inconsequential to competent
members.

On the other hand, whether weak or strong, the protocol will, inevitably,
encounter situations where it is beyond its bounds, its inherent vagueness and
appropriate ambiguity notwithstanding. This is eloquently illustrated by the case
of the kanban system. Similarly, the software designers intermittently experienced
situations where the bug form protocol they had devised and adopted did not seem
to provide adequate stipulations and where the execution of the bug form protocol
was modified accordingly. For example, testers would occasionally inform a soft-
ware designer directly of a detected bug, without filling-in a bug report form and
initiating a new instance of the protocol.

PROPOSITION 8. Whether weak or strong, a coordinative protocol will, inevitably,
encounter situations where it is beyond its bounds and where actors therefore must
deviate from or circumvent the execution of the protocol.

Let us now turn to the role of the artifact in coordination mechanisms.



176 K. SCHMIDT AND C. SIMONE

3.2. COORDINATION MECHANISMS: THE ARTIFACT

The role of the artifact in coordination mechanisms is, fundamentally, to objectify
and give permanence to the protocol for which it stands proxy. The artifact conveys
the stipulations of the protocol in a situation-independent manner. So far, the artifact
is conceived of merely as a written record of the protocol, e.g., as a standard
operating procedure.

While written language, as observed by Jack Goody, ‘is partly cut off from
the context that face-to-face communication gives to speech, a context that uses
multiple channels, not only the purely linguistic one, and which is therefore more
contextualized, less abstract, less formal, in content as in form.’ (Goody, 1987,
p. 287), written records (log books, recordings, minutes, memos, etc.) provide per-
sistence to decisions and commitments made in the course of articulation work:
‘The written language [reaches] back in time’ (Goody, 1987, p. 280). Written
records are, in principle, accessible to any member of the ensemble, whatever its
size and distribution in time and space. In the words of Stinchcombe, ‘Written
systems can provide a larger number of people with the same information at one
time’ and written messages are ‘portable, allowing interaction without spatial con-
straints.’ On the other hand, written systems ‘are much less dependent on physical
arrangements’ and ‘less time-dependent than oral systems.’ (Stinchcombe, 1974,
pp. 50f.). Written artifacts can at any time be mobilized as a referential for clari-
fying ambiguities and settling disputes: ‘while interpretations vary, the word itself
remains as it always was’ (Goody, 1986, p. 6). They are, for all practical purposes,
unceasingly publicly accessible.

PROPOSITION 9. The role of the artifact in a coordination mechanism is fun-
damentally to objectify and give permanence to the coordinative protocol so that
its stipulations are unceasingly publicly accessible.

Consider, for example, a standard operating procedure or a checklist. The state
of the artifact is completely static irrespective of the state of the execution of the
protocol it prescribes. Even when the artifactually imprinted protocol is used as
a script (actors are following the instructions of the procedure or the items of the
checklist step by step), it is entirely up to the actor to produce and maintain the
required dynamic representation of the state of the protocol with respect to the
unfolding cooperative activities.

In the case of the bug report, however, the state of the artifact changes according
to the changing state of the protocol. Firstly, the form is transferred from one actor to
another and this change of location of the artifact in itself conveys, to the recipient,
the stipulations of the protocol in a specified form, that is, the change of location
transfers to the particular actor the specific responsibility of taking such actions
on this particular bug that are appropriate according to the agreed-to protocol and
other taken-for-granted conventions. Secondly, at each step in the execution of the



COORDINATION MECHANISMS 177

protocol, the form is annotated and the thereby updated form retains and conveys
this change to the state of the protocol to the other actors – the state of each reported
bug is thus reflected in the successive inscriptions on the form made by different
actors. That is, a change to the state of the protocol induced by one actor (a tester
reporting a bug, for example) is conveyed to other actors by means of a visible
and durable change to the artifact. Insofar, the artifact can be said to provide a
‘shared space,’ a space with a particular structure that reflects salient features of the
protocol. Furthermore, this change is propagated within the ensemble according
to the stipulations of the protocol, and the state of the total population of reported
bugs is publicly visible in the public repository of bug forms (‘the binder’).

Similarly, in the case of the kanban mechanism, the artifact mediates articulation
work in the sense that the change of location of a card, that is, the fact that it is
transferred ‘up-stream’ from one actor to another, is equivalent to the arrival of a
production order at that work station. However, as opposed to the bug report, the
inscription on the kanban card is not changed and the state of the kanban protocol
is thus not reflected in any particular card. Hence, state changes to the protocol
under execution can not be inferred from the inscription on the cards, only from
their location.

In these cases, the artifact not only stipulates articulation work (like a standard
operating procedure) but mediates articulation work as well in the sense that the
artifact acts as an intermediary between actors that conveys information about state
changes to the protocol under execution.? By serving the dual function of stipu-
lating and mediating articulation work, the artifact is instrumental in reducing the
complexity of articulating a vast number of interdependent and yet distributed and
perhaps concurrently performed activities.

PROPOSITION 10. The artifact of a coordination mechanism may, in some form
and at a particular level of granularity, dynamically represent the state of the exe-
cution of the protocol and may thereby, among actors, mediate information about
state changes to the protocol as it is being executed.

By virtue of the artifact’s mediation of the changing state of the protocol between
actors, the coordination mechanism not only conveys the general stipulations of
the protocol but specifies the stipulations in the sense that the individual actor is

? Edwin Hutchins has a related but not identical analysis of artifactually imprinted protocols. In
his discussion, Hutchins suggests the term ‘mediating structures’ for artifacts that are not part of the
field of work (as tools are) and yet are instrumental in reducing the complexity of work by providing
some kinds of constraints to the conduct of the actor (Hutchins, 1986, p. 47). For Hutchins, the
artifact or structure serves as an intermediary between an actor planning or defining the protocol
for an activity and the actor performing the activity, whereas we, for our purposes, reserve the term
‘mediate’ to denote an artifact serving as an intermediary of horizontal propagation of state changes
to the protocol, i.e., within the cooperative work arrangement at hand. In other words, coordination
mechanisms can be conceived of as a special case of ‘mediating structures’, namely artifactually
embodied ‘mediating structures’ that are used to constrain the articulation of distributed activities in
cooperative work settings.



178 K. SCHMIDT AND C. SIMONE

instructed that it is he or she that has to take this or that specific action at this par-
ticular point in time. In other words, by representing and conveying the changing
state of the protocol, the artifact also mediates the transition from ‘nominal’ to
‘actual’ in the enactment of the protocol.

PROPOSITION 11. By mediating the changing state of the protocol, the arti-
fact of a coordination mechanism specifies the general stipulations of the protocol.

To provide permanence to the coordinative protocol and serve as a mediator, the
artifact upon which the protocol is imprinted must be distinct from the field of work
(Proposition 1). An artifact may, of course, be subjected to all sorts of unforeseen
use and an artifact that is involved in the transformation processes of the work
may at the same time be used for coordinative purposes, perhaps to support a
coordinative protocol. For example, actors writing a joint report may have adopted
a convention according to which their coordinative interactions (comments to the
evolving text as well as records of responsibilities, for example) be conveyed in
and through the text of the report. That is perfectly feasible, and may indeed be
very effective, but what happens, for instance, to the records of responsibilities and
schedules when the text of the report is changed, for instance reorganized? They
may have vanished as ‘the snows of yesteryear,’ to abuse the words of François
Villon. That is to say, artifacts that are part of the field of work or coupled to the
state of the field of work may be unreliable and treacherous as a material carrier of
a coordination mechanism.

PROPOSITION 12. The artifact of a coordination mechanism is distinct from
the field of work in the sense that changes to the state of the field of work are
not automatically reflected in the state of the artifact and, conversely, changes to
the state of the artifact are not automatically reflected in the state of the field of work.

Moreover, due to its mediating role with respect to the state of the execution of
the protocol, the artifact may support the development and maintenance of mutual
awareness among the actors within the cooperating ensemble. By reflecting the
state of the execution of the protocol, the artifact may convey information about
occurrences within the ensemble from which actors can make inferences about
likely or possible problems and develop an overview of the state of the protocol
in its totality. This potential is clearly illustrated by the case of software testing,
especially due to the successive inscriptions on the bug forms and the systematic
assembly of (copies of) bug forms in ‘the binder.’ The kanban system, on the
other hand, does not provide a facility for obtaining such an overview. In fact, the
information conveyed by the transfer of cards up-stream is drastically filtered and
distorted by the successive translations from card to card. The only interface to the
state of the protocol across the total population of cards in circulation is the (ever
changing) location of the myriad cards in the distributed manufacturing system.



COORDINATION MECHANISMS 179

That is, the kanban system does not provide facilities allowing actors to develop
and maintain a mutual awareness so as to, for instance, anticipate disturbances and
obtain an overview of the situation within the cooperative ensemble at large; they
are, so to speak, enveloped by an overwhelming and inscrutable quasi-automatic
coordination mechanism. In fact, in the kanban system, changes to the state of the
artifact are strongly coupled to state changes in the field of work. Information only
propagates ‘up-stream’ as parts are used down-stream: the speed and pattern of
propagation of information are thus restricted by the rate and pattern of changes
to the field of work at large. The kanban system does allow operators to control
the execution of the protocol, however, since that control is ultimately in the hands
of the operators: it is the operator who has used the parts in a particular container
who takes the card and sends it up-stream; it is the truck driver who delivers it; it is
the operator further up-stream who receives the card and decides to act on it. That
is, due to the operators’ control of the execution of the kanban protocol, the direct
coupling of the kanban system to the field of work can be severed whenever they
deem it appropriate to exercise that control.

An artifact is, of course, more than a permanent symbolic construct; it has a
specific material format which, in itself, is of importance to its use. For exam-
ple, consider the simple checklist again. The checklist can be conceived of as an
artifactually imprinted protocol that has been deliberately and carefully designed
to reduce local control, typically in safety-critical environments. The use of the
checklist requires the actor to employ a strategy for sequential execution which
permits him or her to ensure that the steps are done in the correct order and that
each step is done once and only once. The material format of the checklist as an
artifact may be of assistance to the actor in ensuring this:

‘The fixed linear structure of the checklist permits the user to accomplish this
by simply keeping track of an index that indicates the first unexecuted (or last
executed) item. Real checklists often provide additional features to aid in the
maintenance of this index: boxes to tick when steps are completed, a window
that moves across the checklist, etc.’ (Hutchins, 1986, pp. 47f.; cf. also Norman
and Hutchins, 1988, p. 9)

In a similar vein, Jack Goody, in a discussion of the specific affordances provid-
ed by the material format of written text, observes that writing introduces certain
spatio-graphic devices such as lists, tables, matrices by means of which linguistic
items can be organized in abstraction from the context of the sentence (Goody,
1987) and points out that the spatio-graphic format of an artifact can stipulate
behavior by reminding an actor of items to do and directing attention to missing
items: ‘The table abhors a vacuum’ (Goody, 1987, p. 276). This is, again, eloquent-
ly illustrated in the case of the bug form where the bug report form provides a set
of fields which match crucial points of the bug handling protocol and which are to
be filled in by the different actors in the course of the bug’s life (cf. Figure 1).



180 K. SCHMIDT AND C. SIMONE

PROPOSITION 13. By reflecting salient features of the protocol, the material
format of the artifact conveys coordinative stipulations and may provide a ‘shared
space,’ structured accordingly, for mediating changes to the state of the protocol in
compliance with the protocol.

By way of concluding this discussion, it is important to keep in mind that an
artifact only conveys stipulations within a certain social context, within a certain
community, in which the protocol and any change to the state of the protocol have
a (more or less) certain and agreed-to meaning and that it only does so under
conditions of social accountability. The point we want to make here, however, is
that the specific structural and behavioral properties of the artifact (its material
format as well as its protocol, if such have been incorporated in the artifact) are
formed to serve the purpose of conveying specific stipulations within this particular
context by constraining and forcing the actors’ behavior.

We can summarize our analysis of the constituent parts of the protocol-cum-
artifact dyad, by attempting a formal definition of coordination mechanisms:

PROPOSITION 14. A coordination mechanism is a specific organizational con-
struct, consisting of a coordinative protocol imprinted upon a distinct artifact,
which, in the context of a certain cooperative work arrangement, stipulates and
mediates the articulation of cooperative work so as to reduce the complexity of
articulation work of that arrangement.

3.3. COORDINATION MECHANISMS: ALIGNMENT

Consider, again, the case of software testing in the S4000 project. As observed
previously, in addition to the bug report mechanism, the software designers intro-
duced and used a variety of protocol-cum-artifact dyads to handle the complexity
of coordinating the distributed activities of software testing, each of them devised
to serve specific purposes in the setting. However, the different protocols intersect
and must therefore be aligned somehow by the actors.

For example, a project schedule in the form of a spreadsheet was used to capture
and display the relationships between actors, responsibilities, tasks, and schedules.
In handling bug reports, participants would consult the project schedule to obtain
information about who would be responsible, as ‘platform master,’ for verifying
the corrected bug; this was indicated in the bug report form by the number of the
platform period. Similarly, an integration period number inscribed in the bug report
form also indicated a deadline for the correction task to be finished. Neither the
name of the platform master nor the deadline were explicitly stated but could be
derived from the project schedule, a spreadsheet where the name of the platform
master and the date for that integration period number would be inscribed, at
some point. That is to say, from the point of view of the involved coordination
mechanisms, one coordination mechanism (the bug report mechanism) subscribed



COORDINATION MECHANISMS 181

Figure 3. The interacting coordination mechanisms of the software testing case. (‘P.M.’ denotes
the Platform Master, i.e., the actor in charge of the integration of modules and verification of
corrections at the end of the current platform period).

to the specification of a role and a date to be provided by another mechanism (the
project schedule). Thus, an array of multiple protocols-cum-artifacts that intersect at
various points makes it possible to instantiate a particular protocol (e.g., a particular
bug report) while it still not completely specified; the missing specifications can be
‘filled-in’ later by consulting another artifact. Thus actors do not need to specify
explicitly what can be inferred from other mechanisms at some point in time.

The case also demonstrates a more active form of alignment between protocols,
namely in the form of one protocol inciting the execution of another when a certain
condition occurs (see Figure 3). For example, when a reported bug was accepted
as a bug, a new task was announced and inscribed in the project schedule. That is,
the change of the state of one mechanism (the bug report) instructed actors to make
certain inscriptions on the artifact of another mechanism (the project schedule).
Similarly, when a bug was reported to have been corrected yet another task were
to be announced, namely the task of verifying the correction.

In the case of software testing, the continual alignment of multiple, specialized
mechanisms seemed to be seamless and achieved effortlessly. This can largely be
attributed to the fact that all designers would assume all roles, simultaneously or
in turn. They could thereby develop and maintain a high degree of awareness of
the intersections of the many mechanisms involved. In a larger or more complex



182 K. SCHMIDT AND C. SIMONE

arrangement this would not be as easily achieved and the alignment of the involved
coordination mechanisms may thus require more effort and be less seamless.

Finally, while the array of protocol-cum-artifact dyads intersect at various points
and therefore need to be aligned by the actors in the course of their work, they are
only loosely coupled. Each mechanism addresses a very narrow set of coordinative
activities. Because of that, each coordination mechanism can be constructed rela-
tively independently of the others. Thus, in designing a mechanism for a specific
purpose, one does not need to have an overview of the totality of work processes
in the setting at large. In fact, because coordination mechanisms can be designed
and introduced to serve limited purposes, the array of coordination mechanisms
of the work arrangement at large can be designed and maintained in a distributed
and bottom-up manner. The concept of coordination mechanisms thus suggests an
approach to the design of workflow systems which, in line with Davenport’s sug-
gestions (Davenport, 1993), may result in composite workflow systems that are far
less brittle in the face of the vicissitudes of contemporary business environments
than workflow systems often seem to be.

Hence,

PROPOSITION 15. Coordination mechanisms are specialized constructs that are
devised to support certain aspects of the articulation of a specific category of dis-
tributed activities within a particular cooperative work arrangement and the use
of a coordination mechanism may therefore require that it is aligned with other
mechanisms devoted to different aspects of the articulation of those activities or to
related activities.

4. Computational Coordination Mechanisms

As noted above, coordination mechanisms based on paper artifacts (e.g., forms,
catalogues, time tables) have been around for ages and are used on a massive
scale in modern work settings. While mundane and unassuming, they have crucial
affordances: (a) the artifact can represent and convey stipulations among actors
in a permanent and publicly accessible form; (b) the protocol and the artifact can
be defined and specified by the actors themselves – operators, clerks, managers,
auditors, etc. – by means of the ordinary skills of their professions; (c) actors have
total control of the interpretation and execution of the protocol and can, under
conditions of social accountability, modify or deviate from the protocol; (d) the
artifact can dynamically represent state changes to the protocol and mediate these
among actors, and (e) multiple coordination mechanisms can be aligned, seamlessly
and smoothly, by actors.

Nonetheless, such mechanisms have serious inherent limitations: (a) state
changes to the protocol are conveyed by paper and similar unwieldy artifacts
and the speed and pattern of propagation of changes to the state of the protocol
are thus severely limited; (b) the protocol is only immediately visible to actors to



COORDINATION MECHANISMS 183

the extent that the protocol is mapped onto the symbolic construct of the artifact
that serves as an intermediate; (c) modifications to the protocol only take effect
when or if actors become aware of them through other channels; (d) maintain-
ing a conventional, paper-based coordination mechanism involves a plethora of
mind-numbing operations; (e) it involves massive housekeeping efforts and it may
thus be practically impossible for actors to obtain an overview of the state of the
protocol, and (f) the seamless and smooth alignment of multiple intersecting coor-
dination mechanisms is only feasible insofar as the same actors are involved with
the coordination mechanisms in question.

These limitations with conventional coordination mechanisms become increas-
ingly problematic as modern industrial, service, and administrative organizations
need to be able to operate in a radically flexible and adaptive and yet highly coor-
dinated fashion. In view of these issues, it seems obvious to explore whether it is
possible to construct computational coordination mechanisms in which the alloca-
tion of functionality between actor and artifact is changed in such a way that the
coordination mechanism, as a software device, incorporates the artifact in a com-
putational form as well as aspects of the protocol which, again in a computational
form, operates on the artifact.?

PROPOSITION 16. A computational coordination mechanism can be defined as a
software device in which the artifact (in the sense of a permanent symbolic con-
struct) as well as aspects of the protocol are incorporated in such a way that changes
to the state of the protocol induced by one actor are conveyed, in accordance with
the protocol, by the computational artifact to other actors.

Notice that, as far as the computational protocol is concerned, only aspects of the
protocol are incorporated. As observed above, a protocol only has its (more or less)
certain and agreed-to meaning within a certain social context, and it is inescapably
under-specified. A computational coordination mechanism is invariably embedded
within a social context of conventions and routines which competent members take
for granted but which are not amenable to incorporation in a computational proto-
col. Hence, a computational protocol cannot simply replace members’ more or less
tacit conventions and social competencies. For every computational coordination
mechanism, there will exist facets of the protocol which are not incorporated in the
computational protocol. That is, in the construction of a computational coordina-
tion mechanism, the protocol is split into a computational protocol and a residual
non-computational or ‘social’ protocol. Furthermore, the precise allocation of func-
tionality between human actors and computational coordination mechanism is a

? The term artifact can create misunderstandings since it can refer to two different phenomena
here: On one hand we have a computational artifact in the previously defined narrow sense of a
permanent symbolic construct. But on the other hand one can, of course, conceive of the computational
coordination mechanism as a software artifact which then would incorporate the computational
protocol. For the sake of clarity, we will in this context restrict the use of the term ‘artifact’ to denote
the permanent symbolic construct.



184 K. SCHMIDT AND C. SIMONE

non-trivial analysis and design task. A computational coordination mechanism is
not an immaculate reincarnation of a coordination mechanism.

PROPOSITION 17. The specific allocation of functionality between human actors
and a given computational coordination mechanism reflects the extent to which it
is feasible to incorporate the various aspects of the conventions and routines of the
social context into a computational protocol.

Now, ‘no representation of the world is either complete or permanent’ and coor-
dination mechanisms are thus ‘local and temporary closures’ (Gerson and Star,
1986). That is, no computational coordination mechanism will be able to handle
all aspects of articulation work in all work domains. Particular computational coor-
dination mechanisms will be designed to support cooperating actors in specific
aspects of their articulation work which are particularly complex and which, most
likely, are specific to the given work domain. A computational coordination mech-
anism should thus be conceived of as a specialized software device that, while it is
distinct from the field of work, interacts with a particular software application (e.g.,
a CASE tool, an office information system, a CAD system, a production control
system, etc.) so as to support the articulation of the distributed activities of multiple
actors with respect to that application.

PROPOSITION 18. A computational coordination mechanism should be con-
ceived of as a specialized software device which interacts with a specific software
application so as to support articulation work with respect to the field of work as
represented by the data structures and functionalities of that application.

On the basis of the analysis of the empirical studies of artifactually imprinted
protocols in general and in particular coordinative protocol-cum-artifact dyads,
a set of requirements for computational coordination mechanisms can be identi-
fied. The requirements can be organized into two categories: ‘malleability’ and
‘linkability.’

4.1. MALLEABILITY

Since coordination mechanisms are ‘resources for situated action’ (Suchman,
1987), a computational coordination mechanism must be malleable in the sense
that users are supported in defining its behavior.

Organizational demands and constraints change, and procedures and conven-
tions change accordingly. In the case of the bug form mechanism, for example,
the entire mechanism – the artifact as well as the procedures and conventions –
was designed from scratch by the actors themselves and the actors were later on
discussing various modifications to the protocol, for example the introduction of
the role of a project manager in the protocol. It should thus be possible for actors



COORDINATION MECHANISMS 185

to design and develop new computational coordination mechanisms and to make
lasting modifications to existing ones. Accordingly:

PROPOSITION 19. Actors should be able to define the protocol of a new coordi-
nation mechanism as well as to redefine it by making lasting modification to it, so
as to be able to meet changing organizational requirements.

On the other hand, in view of the inexorably contingent nature of work, actors
must be able to control the execution of the protocol, for instance by suspending
a step, and to make local and temporary changes to the protocol, for instance by
bypassing a step, by ‘rewinding’ a procedure, by escaping from a situation, or even
by restarting the protocol from another point. For example, the bug form protocol
was deviated from during its execution as erroneous classifications of bugs were
discovered, as designers rejected the responsibility ascribed to them, etc. In other
words, actors must be able to exercise local control over the execution of the pro-
tocol.

PROPOSITION 20. A computational coordination mechanism must be construct-
ed in such a way that actors are able to control its execution and make local and
temporary modifications to its behavior to cope with unforeseen contingencies.

More generally stated, the specification (or instantiation) of an already defined
protocol should not be conceived of as a singular act of creation. As stated in
proposition 7, a protocol is in principle under-specified. Thus, a protocol will typ-
ically be specified incrementally, at least to some extent, while it is executed in
the course of the work. Furthermore, a protocol can be invoked implicitly, without
any explicit announcements, for instance by certain actors taking certain actions
(Strauss, 1985; Schäl, 1996). Thus, in order to allow for implicit understanding
of certain aspects of articulation work as well as incomplete and not-yet complete
specification, and also in order not to force actors to have to specify a coordination
mechanism more explicitly than deemed necessary, a computational mechanism
must be constructed in such a way that a partial specification of the protocol is
possible. That is, it should be feasible for attributes of the protocol specification to
be left un-specified and for the missing specification to be provided, at a later stage,
perhaps by another mechanism or by inference from actions taken by actors (cf.
Proposition 15). For example, if actor A starts performing taska, it may be assumed
that he or she is committed to accomplish task a and it may also be inferred that
he or she has assumed the role x defined as responsible for task a.

Hence,

PROPOSITION 21. A computational coordination mechanism must be constructed
in such a way that its behavior can be specified while it is being executed, at least
partially, so as to allow for incomplete initial specification of the protocol.



186 K. SCHMIDT AND C. SIMONE

From these requirements (Propositions 19–21) follows that the definition and spec-
ification of the protocol must be ‘visible’ to actors, not only in the sense that it is
accessible but also, and especially, that it makes sense to actors in terms of their
articulation work:

PROPOSITION 22. In order for actors to be able to define, specify, and control the
execution of the mechanism, the protocol must be perspicuous, i.e., accessible and
intelligible to actors at the semantic level of articulation work.

We are not here addressing the issue of which modality of presentation is most
appropriate: graphs, trees, nets, matrices, or standardized prose. The point is that
the protocol must be perceptible at a semantic level, at a level of granularity, and
in a modality which is appropriate for the specific work domain at hand. That is,
the objects and functional primitives available to actors for defining or specifying
the protocol must be expressed in terms of categories of articulation work such as
roles, actors, tasks, activities, conceptual structures, resources, and so on that are
meaningful to the participants involved in terms of their everyday work activities.

Moreover, as a specialized software device supporting the articulation of dis-
tributed activities with respect to a particular field of work, as represented by the
data structures and functionalities of a particular application, a computational coor-
dination mechanism must be distinct from the other software components of that
application (Proposition 12) in order for the mechanism to be malleable to actors
at the semantic level of articulation work. If the coordination mechanism cannot be
defined and specified independently of the other components of the system, mal-
leability cannot be bounded and actors will thus be confronted with a vast space of
possibilities at innumerable semantic levels, which will lead to utter confusion.

On the other hand, articulation work is always fundamentally conceived of
with respect to the common field of work and in terms of the specific ordering of
objects and processes constituting this field of work. The bug report protocol, for
example, refers to entities of the field of work such as ‘module name,’ whereas
the kanban protocol refers to such entities as ‘part name’ and ‘number of parts,’
etc. Accordingly, a computational coordination mechanism must be constructed
in such a way that its stipulations can be related to and expressed in terms of
the objects and processes of the field of work. For example, a computational
coordination mechanism interacting with a collaborative-writing application to
support the coordination of the flow of distributed activities of writing, editing,
evaluating, reviewing, proofreading, and accepting contributions to a technical
report would need to be able to relate to the usual data structures of the word
processor application: text strings, formatting instructions, document components
(paragraphs, sections, headings, tables, headers, footnotes, etc.). The same, of
course, applies to the data structures and functionalities of the various domain-
specific information systems such as MIS, OIS, CIM, and CASE systems which
are part of the (wider) field of work of the cooperative work arrangement in question.



COORDINATION MECHANISMS 187

PROPOSITION 23. A computational coordination mechanism must be constructed
in such a way that actors, in defining and specifying the mechanism, can establish
relationships between components of the mechanism and the field of work as rep-
resented by the data structures and functionalities of the target applications.

Since articulation work, as we noted earlier (Proposition 2), is a recursive function,
changing a coordination mechanism may itself be done cooperatively, as part and
parcel of the cooperative effort. That is, changing a coordination mechanism (per-
manently or temporarily) may itself be a cooperative activity which may need to be
supported. Accordingly, it should be possible for actors to control the propagation
of changes in terms of factors such as: When should a given change take effect?
Which instances of the (previous) protocol should be affected, and how? Which
actors should be notified, and how? Which complementary actions should be taken
pursuant to the change, by whom? And so forth.

PROPOSITION 24. Since a computational coordination mechanism must be mal-
leable, it must be constructed in such a way that actors are supported in controlling
the propagation of changes to the protocol within the cooperative work arrange-
ment.

4.2. LINKABILITY

Coordination mechanisms are local and temporary closures, as we have frequently
noted. A given cooperative work arrangement will – in all but the most extreme
circumstances – be working with multiple CSCW applications and they will need to
articulate their distributed activities with respect to these different applications (as
well as to many other aspects of their environment, of course). For example, in the
domain of engineering design, the cooperative ensemble may be using applications
such as project management tools, CAD tools, and process planning tools as well as
generic ‘groupware’ tools such as departmental calendar systems and collaborative
writing tools. To regulate articulation work with respect to these application an array
of specialized coordination mechanisms may be devised. And, to confound matters,
multiple mechanisms may be required to address specific aspects of articulation
work with respect to each application. This may pose problems.

In the case of paper-based coordination mechanisms, the artifact is completely
inert and any changes to the state of the protocol or the artifact are exclusively
the result of actions by human actors (even when, as in the kanban case, it may
appear the result of a monstrous, distributed machinery). Because actors are totally
involved in the execution of paper-based mechanisms – they are completely ‘in
the loop’ –, they are also relatively well placed to align the different coordination
mechanisms with respect to each other, at least in so far as the different actors
generally are equally involved in the use of the different mechanisms. When the
allocation of functionality between artifact and actor changes, however, as a result



188 K. SCHMIDT AND C. SIMONE

of the introduction of computational coordination mechanisms, the ability of actors
to align protocols in the former intuitive way may deteriorate.

Thus, as multiple coordination mechanisms are introduced to regulate artic-
ulation work with respect to multiple applications users will be inundated with
overhead activities of aligning the different mechanisms: aligning each mechanism
with changes to other mechanisms. In order not to create an impedance between
the multitude of interlaced – individual and cooperative – coordinative activities, it
should be possible for actors to link different coordination mechanisms addressing
the different applications to facilitate a seamless alignment of articulation work
with respect to these applications.

PROPOSITION 25. A computational coordination mechanism should be con-
structed in such a way that it can be linked to other coordination mechanisms in its
organizational context.

The requirement of linkability is not limited to links to other computational
coordination mechanisms in the strict sense but applies to the relationship of a
computational coordination mechanism to computational representations of the
organizational context in which the given cooperative work arrangement is embed-
ded. In constructing a coordination mechanism it may for instance be appropriate
to provide links to indices to common repositories (previous designs, components,
work in progress, drawings, patents, etc.), indices to technical resources (processes,
tools, machinery), indices to available personnel (skills, competencies, schedules),
indices to statutory constraints, and so on (De Michelis and Grasso, 1993; Fuchs
and Prinz, 1993; Prinz, 1993). The challenge is, as Ellis and Keddara aptly put it,
to make groupware ‘organizationally aware’ (Ellis et al., 1995).

Since computational coordination mechanisms must be able to interact in a
concerted fashion, they must be constructed by means of the same set of elements,
at the same semantic level. To ensure that, a general notation for constructing
computational coordination mechanism is required.

PROPOSITION 26. To ensure comprehensive linkability of computational coordi-
nation mechanisms, a general notation for constructing computational coordination
mechanism is required.

Now, malleability and linkability are evidently contradictory requirements, since
the former hinges upon the possibility of changing the behavior of a mechanism
while the latter hinges upon the stability of the behavior of other mechanisms. This
conflict is unavoidable since no representation of the world is either complete or
permanent. Nevertheless, the conflict can be alleviated in different ways: Basical-
ly, coordination mechanisms can be made tolerant of limited and relatively trivial
modifications of other mechanisms by means of interface agents. However, when
modifications are too radical to be handled by such interfaces, and the problem



COORDINATION MECHANISMS 189

therefore recurses (Bowker and Star, 1991), the affected cooperative ensembles of
course have to sort out the mess and negotiate a new arrangement. In line with
the recursive nature of articulation work, such negotiations may themselves be
governed by a suitable coordination mechanism. In that case, one coordination
mechanism would take another cooperative work arrangement and perhaps also its
coordination mechanisms as its field of work. This suggestion is not the fruit of idle
speculation on our part but is grounded in the field study evidence. For example,
in a study of the cooperative production of technical documentation in a Danish
manufacturing company we have observed cases where one coordination mecha-
nism, a ‘construction note’ which was normally used for governing the distributed
process of negotiating proposed changes to designs, was now used for governing
the process of negotiating proposed changes to another coordination mechanism,
namely a ‘classification scheme’ that was used to govern the distributed production
and dissemination of the technical documentation within the company (cf. Schmidt
et al., 1995). In other words, the problem recurses, but so does the solution.

In Lieu of a Conclusion: The Ariadne Notation

On the basis of the conceptual framework outlined in the preceding sections of this
paper, especially the general requirements for computational coordination mech-
anisms (Propositions 19–25), a general notation for constructing computational
coordination mechanisms has been implemented under the name Ariadne. As not-
ed in the introduction, a proper description of the Ariadne notation is beyond the
scope of this paper and has been published elsewhere (Simone and Schmidt, 1994;
Simone et al., 1995a). Nonetheless, it seems appropriate to conclude our exposition
by sketching very briefly the general shape of the Ariadne notation as derived from
the empirical investigations and theoretical analyses.

The crucial point in developing a notation for constructing computational coor-
dination mechanisms is to determine a repertory of elemental categories, at the
semantic levels of articulation work (Proposition 22), by means of which coordi-
native protocols can be expressed. Taking Anselm Strauss’ quite informal lexicon
of articulation work (who, what, where, when, how, how soon, for how long, etc.
(Strauss, 1985)) as our baseline, a set of elemental categories was derived from the
studies of how artifactually imprinted protocols are designed and used by actors
in everyday work activities, as shown in the table of Figure 4.? These categories
represent the minimal set of categories required to express the protocols examined
in these field studies.

Two qualifications are required here. Firstly, for the purpose of developing the
Ariadne notation it was assumed that the set of elemental categories of articulation

? A similar idea of selecting objects and related operations has been suggested by Malone and
others (Malone and Crowston, 1990) as an initial foundation for an interdisciplinary ‘coordination
theory’. This effort has evolved into the current attempt to define ‘tools for inventing organizations’
(Malone et al., 1993).



190 K. SCHMIDT AND C. SIMONE

Figure 4. Elemental categories of articulation work model: The table identifies the elemental
categories of articulation work and their predicates.



COORDINATION MECHANISMS 191

work identified in Figure 4 is complete and definite. Nevertheless, this set of cate-
gories has been derived empirically through an iterative process of induction, and
the repertory is undoubtedly neither complete and nor definite. For the construc-
tion of a computational notation the assumption of completeness and definiteness is
necessary, however, but this does not preclude the lexicon from evolving over time,
as long as the set of categories at any given point in time can be taken to be finite.
Secondly, this lexicon is not intended to be a particularly useful or comprehensive,
terminology for ethnographic field work or for other kinds of empirical investiga-
tions of cooperative work (and, in fact, it is far too crude for such purposes). The
set of categories of Figure 4 has been derived solely for the purpose of defining
coordinative protocols with a view to constructing computational protocols.

In the table of elemental categories of articulation work, the categories and
predicates are ordered along two dimensions: vertically, categories of articulation
work with respect to the cooperative work arrangement versus the field of work
(Proposition 1); horizontally, categories of nominal versus actual articulation work
(Proposition 7). Two aspects require elaboration, albeit very briefly:
(1) The category termed ‘conceptual structures’ denotes the various constructs

needed to express the conceptualizations of the field of work (definitions, clas-
sifications, etc.) that the members of the cooperative ensemble have adopted
to be able to refer to the multifarious objects and processes of their common
field of work in an orderly fashion.

(2) The distinction between nominal and actual (Proposition 7) identifies cate-
gories pertaining to the definition and specification of the computational coor-
dination mechanism, respectively (Propositions 19 and 20–21). The point of
this distinction is that the transition from nominal to actual status is not merely
a refinement, since the categories are qualitatively different. An activity, for
example, denotes a work process as an unfolding course of action in terms of
those aspects of a work process that are relevant to doing the work with the
currently available resources. By contrast, a task denotes an operational intent,
irrespective of how it is implemented (Andersen et al., 1990). In other words,
a task is expressed in terms of what, an activity in terms of how.

The categories of articulation work are the basic building blocks made available
by Ariadne whereas the elemental predicates are used to identify, and to define the
meaning of, the attributes which characterize the categories and relations among
them within the Ariadne notation.

The provision of a notation at the semantic level of articulation work distin-
guishes Ariadne from many proposed environments for the development of CSCW
applications. These environments are typically based on partial repertoires of cat-
egories of articulation work. In some case, though, CSCW environments offer
languages at the semantic level of the manipulation of general-purpose objects
(e.g. Malone et al., 1992). To use such an environment for constructing a coordi-
nation mechanism, actors have to specialize these general purpose objects, that is,
define a set of objects at the level of articulation work. This transformation involves



192 K. SCHMIDT AND C. SIMONE

Figure 5. The architecture of the Ariadne notation.

the effort of defining an ad hoc model of articulation work and often leads to the
definition of partial articulation work models, since the effort normally is under-
taken in the context of developing a specific application. The ad hoc and partial
character of these models becomes problematic when the resulting computational
coordination mechanisms need to be modified and linked during the distributed
and evolutionary construction process of their life cycles. By contrast, Ariadne
provides a finite and expressive framework for developing a shared understanding
across the activities of the distributed and evolutionary construction process. In
this framework, the lexicon of articulation work plays the fundamental role of gov-
erning the design of computational coordination mechanisms, of allowing for their
malleability and linkability, of governing the impact of changes, of supporting the
handling of partial specifications and, finally, of making the notation perceptible
and hence usable to all categories of actors.

Finally, to meet the requirements of malleability and linkability the Ariadne
notation has been given an internal structure organized into three levels that are
called �, �, and 
, as illustrated in the central part of Figure 5.

The three levels are not hierarchical, and going from one level to the lower
level is not identical to a refinement, since the information handled at each level
is of a different nature. Rather, each level defines the ‘space of possibility’ for the
lower one: the 
-level provides the grammars that can be applied at the �-level to
define protocols, whereas the protocols defined at the �-level can be specified at
the �-level. More specifically:

At the 
-level, it is possible to define or modify a grammar which can then
be used to construct an infinite variety of protocols at the �-level. Building a
grammar means determining the expressive power of a language for defining a
class of computational coordination mechanisms, that is, the components that will
constitute the computational coordination mechanism together with their structural



COORDINATION MECHANISMS 193

interrelationships (for instance, to construct workflows or classification schemes)
as well as the operational semantics associated to the elements of the grammar.
The ‘space of possibility’ within which grammars can be defined at the 
-level is
determined by the set of categories of articulation work underlying Ariadne at any
point in time, and by the available set of formal structures for representing various
relations (causal, hierarchical, instrumental, etc.) among the categories (the Basic
Elements of Figure 5).

At the �-level, it is possible to define or modify the protocol itself according to
the chosen grammar. For instance, a bug report protocol can be specified with more
or less emphasis on its distributed features by choosing an appropriate grammar. In
this context, the user can determine the allocation of functionality between human
actor and protocol, select methods for handling partial specifications, and make
permanent changes to an existing protocol as part of its evolutionary design.

At the �-level, finally, it is possible to instantiate and activate the protocol
in a particular situation and to do so in an incremental fashion (Proposition 21).
The same protocol, e.g., the bug form protocol, can be executed repeatedly and
concurrently by different actors. Moreover, the primitives at this level allow for the
management of local changes (Proposition 20).

The different levels of Ariadne will typically be accessed by users with different
skills. At the �- and �-level, the use of the notation does not require specialized
skills, at least not skills more specialized than those required to use a spreadsheet
application to construct a model, for example a household budget. That is, at
these levels the use of the notation will merely require the ability of selecting and
combining predefined items according to the rules of a relevant grammar and the
associated semantics. The �- and �-levels are typically needed by end-users who,
as part of their everyday work activities, use and design coordination mechanisms.
The 
-level, on the other hand, is typically the realm of the ‘application designer’ or,
in our framework, actors who define grammars needed by a particular community
of end-users for defining their protocols.?

While the distinction between the �-level and the �-level of the notation can
be recognized in almost all recent CSCW applications, the 
-level is unique.
There are two reasons for the introduction of the 
-level. First of all, the 
-level
makes it possible to define an appropriate language for constructing a family of
computational coordination mechanisms, for instance for a particular work domain.
The aim is to overcome a certain limitation of workflow systems, and of CSCW
applications in general, namely that they impose a particular modelling approach.
For example, the dynamic aspects of the protocols are in most applications and
environments described through partial models of articulation work, of which the
most common focus on the flow of objects across organizational units (individuals,
tasks, etc.), on the flow of control across actions, on some communication patterns

? Notice that while the construction of grammars could be performed by end-users with a specific
aptitude and competence for modelling, the design of new elements for the notation is a pure
programming activity that requires specialized technical skills.



194 K. SCHMIDT AND C. SIMONE

among roles (negotiation), or on some predefined combination of these (Ellis,
1979; Cook, 1980; Shepherd et al., 1990; Medina-Mora et al., 1992; Swenson et
al., 1994). Since the adequacy of the language strongly depends on which aspects
of articulation work are to be supported and on the organizational environment in
which the planned coordination mechanisms are intended to operate, Ariadne does
not impose a preconceived modeling approach. Rather, Ariadne allows designers
to adopt a particular interpretation of the underlying repertory of categories of
articulation work.

The second reason for introducing a 
-level of the notation is the requirement
of linkability of computational coordination mechanisms. In fact, the 
-level of
Ariadne offers an Interoperability Language that the designer can make an integrat-
ed part of the language for constructing computational coordination mechanisms
(Divitini et al., 1995; Simone et al., 1995a).

Referring again to Figure 5, the arrows on the left-hand side connect the basic
elements at the 
-level with the framework in which they are developed. The
connection to the Programming Environment is intended to stress that the notation
is in a dynamic but disciplined relationship with its development environment,
in the sense that any increase of the expressive power of Ariadne is realized by
enriching the sets of basic elements of the notation while otherwise preserving the
properties of the notation.

The notation also has an obvious connection with the user interface service. The
design of Ariadne is concerned with the definition of the information necessary to
design computational coordination mechanisms (that is, the appropriate expressive
power of the language) and not with how this information is requested by or
presented to the users. By this choice we are not denying the crucial role of the
‘material format of the artifact,’ as it is represented at the user interface. To the
contrary, we realize and acknowledge that the design of the material format of
computational coordination mechanisms requires a specialized and demanding
research effort that is beyond the scope of Ariadne. However, some requirements
of the user interface service are obvious. Firstly, of course, appropriate multi-
modal representations must be devised for the various types of elements of the
notation, the syntactic rules of their combination as well as their behavior. These
representations should exhibit the same properties that characterize the notation,
namely compositionality, malleability, linkability. Secondly, in accordance with
the layered structure of the notation, the representations should be tailorable to
different organizational roles in different application domains.

The arrows on the right-hand side of Figure 5 connect the computational coor-
dination mechanism to the field of work and to the cooperative work arrangement,
that is, to its context of use (Proposition 23). At the 
-level there are no connec-
tions to the context of use. In fact, the grammars are independent of the particular
contexts of use in that they simply define the expressive power of the grammars
to be used to define specific protocols. By contrast, the definition and specification
of a protocol are related to a given (class of) field of work and work arrangement.



COORDINATION MECHANISMS 195

The objects of the field of work and of the work arrangement are related to the
categories of articulation work: as ‘types’ at the �-level and as ‘instances’ at the �
level. In protocols, ‘types’ are imported together with the related ‘methods’ which
are then conveyed to the ‘instances’ in the standard way. Thus, Ariadne explicitly
requires a clear interface between the computational coordination mechanisms and
their context of use and provides facilities for defining such an interface.

We conclude this section with some comments on the realization of Ariadne. In
the initial development of the Ariadne notation, a considered decision was made to
postpone the implementation and concentrate on developing a formal specification
of its elements and on evaluating it against the requirements and scenarios derived
from field studies. This strategy was adopted, consciously and explicitly, in order
to avoid having the notation influenced, in an implicit and uncontrollable manner,
by the inevitable limitations of currently available implementation platforms. The
formal specification showed that it was feasible to construct malleable coordination
mechanisms by means of the notation. Subsequently, a ‘concept demonstration’
of the formal specification of the notation was implemented in an environment
which is particularly suitable to managing relational structures and their behavior.
This partial implementation has established that the layered structure and com-
positionality of the Ariadne notation are workable (Simone et al., 1995a) and has
demonstrated that an agent-based architecture is most suitable for Ariadne (Divitini
et al., 1995; Simone et al., 1995b). A new implementation of Ariadne, based on
such an architecture, is envisioned.

Acknowledgments

The development of the framework outlined in this paper was supported by Esprit
Basic Research through Action 6225 (COMIC or Computer-based Coordination
mechanisms in Cooperative Work) and by the Danish Scientific Research Council.
The framework has been developed in collaboration with our colleagues in the
COMIC project, especially our colleagues at Risø and Milano: Hans Andersen,
Peter Carstensen, Monica Divitini, Betty Hewitt, Alberto Pozzoli, Tuomo Tuikka,
and Carsten Sørensen. We are especially indebted to Peter Carstensen and Bjarne
Kaavé for generously sharing their field study findings with us and to Liam Bannon
and many others for invaluable comments on the manuscript.

References

Andersen, Hans H. K. (1994): Classification schemes: Supporting articulation work in technical docu-
mentation. In H. Albrechtsen (ed.): ISKO ’94. Knowledge Organisation and Quality Management,
Copenhagen, Denmark, June 21–24, 1994.

Andersen, N. E., F. Kensing, J. Lundin, L. Mathiassen, A. Munk-Madsen, M. Rasbech, and P. Sørgaard
(1990): Professional Systems Development – Experience, Ideas, and Action. Englewood Cliffs,
New Jersey: Prentice-Hall.

Bittner, Egon (1965): The Concept of Organization. Social Research, Vol. 32, pp. 239–255.



196 K. SCHMIDT AND C. SIMONE

Bogia, Douglas P., William J. Tolone, Celsina Bignoli, and Simon M. Kaplan (1996): Issues in the
Design of Collaborative Systems: Lessons from ConversationBuilder. In D. Shapiro, M. Tauber,
and R. Traunmüller (eds.): The Design of Computer Supported Cooperative Work and Groupware
Systems. Amsterdam: North Holland, pp. 401–422.

Bogia, Douglas P., William J. Tolone, Simon M. Kaplan, and Eric de la Tribouille (1993): Supporting
Dynamic Interdependencies among Collaborative Activities. In S. Kaplan (ed.): COOCS ’93.
Conference on Organizational Computing Systems, Milpitas, California, November 1–4, 1993.
New York: ACM Press, pp. 108–118.

Bowker, Geoffrey and Susan Leigh Star (1991): Situations vs. Standards in Long-Term, Wide-Scale
Decision-Making: The Case of the International Classification of Diseases. In J. F. Nunamaker,
Jr. and R. H. Sprague, Jr. (eds.): Proceedings of the Twenty-Fourth Annual Hawaii International
Conference on System Sciences, Kauai, Hawaii, January 7–11, 1991. IEEE Computer Society
Press, Vol. IV, pp. 73–81.

Bucciarelli, Louis L. (1988): Engineering Design Process. In F. A. Dubinskas (ed.): Making Time.
Ethnographies of High-Technology Organizations. Philadelphia: Temple University Press, pp. 92–
122.

Carstensen, Peter (1994): The bug report form. In K. Schmidt (ed.): Social Mechanisms of Interaction.
Lancaster, UK: Computing Department, Lancaster University, pp. 187–219. [COMIC Deliverable
3.2. Available via anonymous FTP from ftp.comp.lancs.ac.uk].

Carstensen, Peter H., Carsten Sørensen, and Henrik Borstrøm (1995a): Two is Fine, Four is a Mess:
Reducing Complexity of Articulation Work in Manufacturing.COOP ’95. International Workshop
on the Design of Cooperative Systems, Antibes-Juan-les-Pins, France, 25–27 January 1995.
INRIA Sophia Antipolis, France, pp. 314–333.

Carstensen, Peter H., Carsten Sørensen, and Tuomo Tuikka (1995b): Let’s Talk About Bugs! Scan-
dinavian Journal of Information Systems, Vol. 7, No. 1, pp. 33–54.

Cook, Carolyn L. (1980): Streamlining office procedures - An analysis using the information control
net model. National Computer Conference, 1980, pp. 555–565.

Davenport, Thomas H. (1993): Process Innovation: Reengineering Work through Information Tech-
nology. Boston, Mass.: Harvard Business School Press.

De Michelis, Giorgio and M. Antonietta Grasso (1993): How to put cooperative work in context:
Analysis and design requirements. In L. Bannon and K. Schmidt (eds.): Issues of Support-
ing Organizational Context in CSCW Systems. Lancaster, UK: Computing Department, Lan-
caster University, pp. 73–100. [COMIC Deliverable 1.1. Available via anonymous FTP from
ftp.comp.lancs.ac.uk].

Degani, Asaf and Earl L. Wiener (1990): Human Factors of Flight-Deck Checklists: The Normal
Checklist. National Aeronautics and Space Administration, Ames Research Center, Moffett Field,
California, May, 1990. [NASA Contractor Report 177549; Contract NCC2-377].

Divitini, Monica, Carla Simone, Kjeld Schmidt, and Peter Carstensen (1995): A multi-agent approach
to the design of coordination mechanisms, Roskilde University, DK-4000 Roskilde, Denmark,
1995. [WPCS–95–5].

Egger, Edeltraud and Ina Wagner (1993): Negotiating Temporal Orders: The Case of Collaborative
Time Management in a Surgery Clinic. Computer Supported Cooperative Work (CSCW). An
International Journal, Vol. 1, No. 4, pp. 255–275.

Ellis, Clarence A. (1979): Information Control Nets. Proceedings of the ACM Conference on Simu-
lation, Measurement and Modeling, Boulder, Colorado, August 1979.

Ellis, Clarence A., Karim Keddara, and Grzegorz Rozenberg (1995): Dynamic Change Within Work-
flow Systems. In N. Comstock, C. Ellis, R. Kling, J. Mylopoulos, and S. Kaplan (eds.): COOCS
’95. Conference on Organizational Computing Systems, Milpitas, California, August 13–16,
1995. New York: ACM Press, pp. 10–21.

Fitzpatrick, Geraldine, William J. Tolone, and Simon M. Kaplan (1995): Work, Locales and Dis-
tributed Social Worlds. In H. Marmolin, Y. Sundblad, and K. Schmidt (eds.): ECSCW ’95. Pro-
ceedings of the Third European Conference on Computer-Supported Cooperative Work, 10–14
September 1995, Stockholm, Sweden. Dordrecht: Kluwer Academic Publishers, pp. 1–16.



COORDINATION MECHANISMS 197

Flores, Fernando, Michael Graves, Brad Hartfield, and Terry Winograd (1988): Computer Systems
and the Design of Organizational Interaction. ACM Transactions on Office Information Systems,
Vol. 6, No. 2, pp. 153–172.

Fuchs, Ludwin and Wolfgang Prinz (1993): Aspects of Organizational Context in CSCW. In L.
Bannon and K. Schmidt (eds.): Issues of Supporting Organizational Context in CSCW Systems.
Lancaster, UK: Computing Department, Lancaster University, pp. 11–47. [COMIC Deliverable
1.1. Available via anonymous FTP from ftp.comp.lancs.ac.uk].

Gerson, Elihu M. and Susan Leigh Star (1986): Analyzing Due Process in the Workplace. ACM
Transactions on Office Information Systems, Vol. 4, No. 3, pp. 257–270.

Goody, Jack (1986): The Logic of Writing and the Organization of Society. Cambridge: Cambridge
University Press.

Goody, Jack (1987): The Interface between the Written and the Oral. Cambridge: Cambridge Uni-
versity Press.

Harper, Richard H. R. and John A. Hughes (1993): What a f-ing system! Send ’em all to the same
place and then expect us to stop ’em hitting. Managing technology work in air traffic control.
In G. Button (ed.): Technology in Working Order. Studies of work, interaction, and technology.
London and New York: Routledge, pp. 127–144.

Harper, Richard R., John A. Hughes, and Dan Z. Shapiro (1989): The Functionality of Flight Strips in
ATC Work. The report for the Civil Aviation Authority. Lancaster Sociotechnics Group, Depart-
ment of Sociology, Lancaster University, January, 1989.

Harrington, Joseph (1979): Computer Integrated Manufacturing. Malabar, Florida: Krieger.
Harrington, Joseph (1984): Understanding the Manufacturing Process. Key to Successful CAD/CAM

Implementation. New York: Marcel Dekker.
Heath, Christian, Marina Jirotka, Paul Luff, and Jon Hindmarsh (1995): Unpacking Collaboration: the

Interactional Organisation of Trading in a City Dealing Room. Computer Supported Cooperative
Work (CSCW). An International Journal, Vol. 3, No. 2, pp. 147–165.

Heath, Christian and Paul Luff (1992): Collaboration and Control. Crisis Management and Multimedia
Technology in London Underground Control Rooms. Computer Supported Cooperative Work
(CSCW). An International Journal, Vol. 1, Nos. 1–2, pp. 69–94.

Holt, Anatol W. (1985): Coordination Technology and Petri Nets. In G. Rozenberg (ed.): Advances
in Petri Nets 1985, Vol. 222. Berlin: Springer-Verlag, pp. 278–296.

Hutchins, Edwin (1986): Mediation and Automatization. Quarterly Newsletter of the Laboratory of
Comparative Human Cognition [University of California, San Diego], Vol. 8, No. 2, pp. 47–58.

Johnson, Philip (1992): Supporting Exploratory CSCW with the EGRET Framework. In J. Turner and
R. Kraut (eds.): CSCW ’92. Proceedings of the Conference on Computer-Supported Cooperative
Work, Toronto, Canada, October 31 to November 4, 1992. New York: ACM Press, pp. 298–305.

Kaavé, Bjarne (1990): Undersøgelse af brugersamspil i system til produktionsstyring. M.Sc diss.
Technical University of Denmark, 1990.

Kaplan, Simon M., William J. Tolone, Douglas P. Bogia, and Celsina Bignoli (1992): Flexible,
Active Support for Collaborative Work with Conversation Builder. In J. Turner and R. Kraut
(eds.): CSCW ’92. Proceedings of the Conference on Computer-Supported Cooperative Work,
Toronto, Canada, October 31 to November 4, 1992. New York: ACM Press, pp. 378–385.

Kreifelts, Thomas, Elke Hinrichs, Karl-Heinz Klein, Peter Seuffert, and Gerd Woetzel (1991a):
Experiences with the DOMINO Office Procedure System. In L. Bannon, M. Robinson, and
K. Schmidt (eds.): ECSCW ’91. Proceedings of the Second European Conference on Computer-
Supported Cooperative Work, 24–27 September 1991. Amsterdam: Kluwer Academic Publishers,
pp. 117–130.

Kreifelts, Thomas, Frank Victor, Gerd Woetzel, and Michael Woitass (1991b): A Design Tools for
Autonomous Agents. In J. M. Bowers and S. D. Benford (eds.): Studies in Computer Supported
Cooperative Work. Theory, Practice and Design. Amsterdam: North-Holland, pp. 131–144.

Malone, Thomas W. and Kevin Crowston (1990): What is Coordination Theory and How Can It Help
Design Cooperative Work Systems CSCW ’90. Proceedings of the Conference on Computer-
Supported Cooperative Work, Los Angeles, Calif., October 7–10, 1990. New York, N.Y.: ACM
press, pp. 357–370.



198 K. SCHMIDT AND C. SIMONE

Malone, Thomas W., Kevin Crowston, Jintae Lee, and Brian Pentland (1993): Tools for inventing
organizations: Toward a handbook of organizational processes. Proceedings of the 2nd IEEE
Workshop on Enabling Technologies Infrastructure for Collaborative Enterprises, Morgantown,
West Virginia, April 20–22, 1993.

Malone, Thomas W., Hum-Yew Lai, and Christopher Fry (1992): Experiments with Oval: A Radically
Tailorable Tool for Cooperative Work. In J. Turner and R. Kraut (eds.): CSCW ’92. Proceedings
of the Conference on Computer-Supported Cooperative Work, Toronto, Canada, October 31 to
November 4, 1992. New York: ACM Press, pp. 289–297.

Malone, Thomas W., Hum-Yew Lai, and Christopher Fry (1995): Experiments with Oval: A Radically
Tailorable Tool for Cooperative Work. ACM Transactions on Office Information Systems, Vol. 13,
No. 2, pp. 177–205.

Medina-Mora, Raul, Terry Winograd, Rodrigo Flores, and Fernando Flores (1992): The Action
Workflow Approach to Workflow Management Technology. In J. Turner and R. Kraut (eds.):
CSCW ’92. Proceedings of the Conference on Computer-Supported Cooperative Work, Toronto,
Canada, October 31 to November 4, 1992. New York: ACM Press, pp. 281–288.

Monden, Yasuhiro (1983): Toyota Production System. Practical Approach to Production Manage-
ment. Norcross, Georgia: Industrial Engineering and Management Press, Institute of Industrial
Engineers.

Norman, Donald A. (1991): Cognitive Artifacts. In J. M. Carroll (ed.): Designing Interaction. Psy-
chology at the Human-Computer Interface. Cambridge: Cambridge University Press, pp. 17–38.

Norman, Donald A. and Edwin L. Hutchins (1988): Computation via Direct Manipulation. Institute
for Cognitive Science, University of California, San Diego, La Jolla, California, 1 August, 1988.
[ONR Contract N00014–85-C–0133].

Prinz, Wolfgang (1993): TOSCA: Providing organisational information to CSCW applications. In G.
De Michelis, C. Simone, and K. Schmidt (eds.): ECSCW ’93. Proceedings of the Third European
Conference on Computer-Supported Cooperative Work, 13–17 September 1993, Milan, Italy.
Dordrecht: Kluwer Academic Publishers, pp. 139–154.

Pycock, James (1994): Mechanisms of interaction and technologies of representation: Examining a
case study. In K. Schmidt (ed.): Social Mechanisms of Interaction. Lancaster, UK: Computing
Department, Lancaster University, pp. 123–148. [COMIC Deliverable 3.2. Available via anony-
mous FTP from ftp.comp.lancs.ac.uk].

Pycock, James and Wes Sharrock (1994): The fault report form: Mechanisms of interaction in
design and development project work. In K. Schmidt (ed.): Social Mechanisms of Interaction.
Lancaster, UK: Computing Department, Lancaster University, pp. 257–294. [COMIC Deliverable
3.2. Available via anonymous FTP from ftp.comp.lancs.ac.uk].

Roth, Emilie M. and David D. Woods (1989): Cognitive Task Analysis: An Approach to Knowledge
Acquisition for Intelligent System Design. In G. Guida and C. Tasso (eds.): Topics in Expert
System Design. Methodologies and Tools. Amsterdam: North-Holland, pp. 233–264.

Schäl, Thomas (1996): System Design for Cooperative Work in the Language Action Perspective: A
Case Study of The Coordinator. In D. Shapiro, M. Tauber, and R. Traunmüller (eds.): The Design
of Computer Supported Cooperative Work and Groupware Systems. Amsterdam: North Holland,
pp. 377–400.

Schmidt, Kjeld (1991a): Cooperative Work. A Conceptual Framework. In J. Rasmussen, B. Brehmer,
and J. Leplat (eds.): Distributed Decision Making. Cognitive Models for Cooperative Work.
Chichester: John Wiley & Sons, pp. 75–109.

Schmidt, Kjeld (1991b): Riding a Tiger, or Computer Supported Cooperative Work. In L. Bannon,
M. Robinson, and K. Schmidt (eds.): ECSCW ’91. Proceedings of the Second European Confer-
ence on Computer-Supported Cooperative Work, 24–27 September 1991. Amsterdam: Kluwer
Academic Publishers, pp. 1–16.

Schmidt, Kjeld (1994): Modes and Mechanisms of Interaction in Cooperative Work. Risø National
Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark, 1994. [Risø-R-666(EN)].

Schmidt, Kjeld and Liam Bannon (1992): Taking CSCW Seriously: Supporting Articulation Work.
Computer Supported Cooperative Work (CSCW). An International Journal, Vol. 1, Nos. 1–2,
pp. 7–40.



COORDINATION MECHANISMS 199

Schmidt, Kjeld, Carla Simone, Monica Divitini, Peter Carstensen, and Carsten Sørensen (1995): A
‘contrat sociale’ for CSCW systems: Supporting interoperability of computational coordination
mechanisms, Roskilde University, DK-4000 Roskilde, Denmark, 1995. [WPCS-95-7].

Schonberger, Richard J. (1982): Japanese Manufacturing Techniques. Nine Hidden Lessons in Sim-
plicity. New York: Free Press.

Selznick, Philip (1948): Foundations of the Theory of Organization. American Sociological Review,
Vol. 13, pp. 25–35.

Shepherd, Allan, Niels Mayer, and Allan Kuchinsky (1990): Strudel - An Extensible Electronic
Conversation Toolkit. CSCW 90, Los Angeles, CA, October 7–10 1990, New York, N.Y. ACM
press, pp. 93–104.

Simone, Carla, Monica Divitini, and Kjeld Schmidt (1995a): A notation for malleable and inter-
operable coordination mechanisms for CSCW systems. In N. Comstock, C. Ellis, R. Kling,
J. Mylopoulos, and S. Kaplan (eds.): COOCS ’95. Conference on Organizational Computing
Systems, Milpitas, California, August 13–16, 1995. New York: ACM Press, pp. 44–54.

Simone, Carla, Monica Divitini, Kjeld Schmidt, and Peter Carstensen (1995b): A Multi-Agent
Approach to the Design of Coordination Mechanisms. In V. Lesser (ed.): Proceedings of the
First International Conference on Multi-Agent Systems, San Francisco, Calif., USA, June 12–14,
1995. Menlo Park, Calif.: AAAI Press.

Simone, Carla and Kjeld Schmidt (eds.) (1994): A Notation for Computational Mechanisms of
Interaction. Lancaster, UK: Computing Department, Lancaster University. [COMIC Deliverable
3.3. Available via anonymous FTP from ftp.comp.lancs.ac.uk].

Stinchcombe, Arthur L. (1974): Creating Efficient Industrial Administrations. New York and London:
Academic Press.

Strauss, Anselm (1985): Work and the Division of Labor. The Sociological Quarterly, Vol. 26, No. 1,
pp. 1–19.

Strauss, Anselm (1988): The Articulation of Project Work: An Organizational Process. The Socio-
logical Quarterly, Vol. 29, No. 2, pp. 163–178.

Strauss, Anselm (1994): Continual Permutations of Action. New York: Aldine de Gruyter.
Strauss, Anselm, Shizuko Y. Fagerhaugh, Barbara Suczek, and Carolyn Wiener (1985): Social Orga-

nization of Medical Work. Chicago and London: University of Chicago Press.
Suchman, Lucy A. (1982): Systematics of Office Work. Office Studies for Knowledge-Based Systems,

Digest. Office Automation Conference, San Francisco, April 5–7, 1982, pp. 409–412.
Suchman, Lucy A. (1983): Office Procedures as Practical Action: Models of Work and System

Design. ACM Transactions on Office Information Systems, Vol. 1, No. 4, pp. 320–328.
Suchman, Lucy A. (1987): Plans and situated actions. The problem of human-machine communica-

tion. Cambridge: Cambridge University Press.
Suchman, Lucy A. and Eleanor Wynn (1984): Procedures and Problems in the Office. Office: Tech-

nology and People, Vol. 2, pp. 133–154.
Swenson, K. D., R. J. Maxwell, T. Matsumoto, B. Saghari, and K. Irwin (1994): A business process

environment supporting collaborative planning. Collaborative Computing, Vol. 1, No. 1, pp. 15–
24.

Sørensen, Carsten (1994a): The augmented bill of materials. In K. Schmidt (ed.): Social Mecha-
nisms of Interaction. Lancaster, UK: Computing Department, Lancaster University, pp. 221–236.
[COMIC Deliverable 3.2. Available via anonymous FTP from ftp.comp.lancs.ac.uk].

Sørensen, Carsten (1994b): The CEDAC board. In K. Schmidt (ed.):Social Mechanisms of Interaction.
Lancaster, UK: Computing Department, Lancaster University, pp. 237–245. [COMIC Deliverable
3.2. Available via anonymous FTP from ftp.comp.lancs.ac.uk].

Sørensen, Carsten (1994c): The product classification scheme. In K. Schmidt (ed.): Social Mecha-
nisms of Interaction. Lancaster, UK: Computing Department, Lancaster University, pp. 247–255.
[COMIC Deliverable 3.2. Available via anonymous FTP from ftp.comp.lancs.ac.uk].

Winograd, Terry (1986): A language/action perspective on the design of cooperative work. CSCW ’86.
Proceedings. Conference on Computer-Supported Cooperative Work, Austin, Texas, December
3–5, 1986. ACM, New York, N. Y., pp. 203–220.

Winograd, Terry and Fernando Flores (1986): Understanding Computers and Cognition: A New
Foundation for Design. Norwood, New Jersey: Ablex Publishing Corp.



200 K. SCHMIDT AND C. SIMONE

Wynn, Eleanor (1991): Taking Practice Seriously. In J. Greenbaum and M. Kyng (eds.): Design
at Work: Cooperative Design of Computer Systems. Hillsdale, New Jersey: Lawrence Erlbaum,
pp. 45–64.

Wynn, Eleanor H. (1979): Office conversation as an information medium. Ph.D. Dissertation, Uni-
versity of California, Berkeley, 1979.

Zerubavel, Eviatar (1979): Patterns of Time in Hospital Life: A Sociological Perspective. Chicago
and London: University of Chicago Press.

Zimmerman, Don H. (1966): Paper work and people work: A study of a public assistance agency.
Ph.D. Dissertation, University of California, Los Angeles, Los Angeles, 1966.

Zimmerman, Don H. (1969a): Record-Keeping and the Intake Process in a Public Welfare Agency.
In S. Wheeler (ed.): On Record: Files and Dossiers in American Life. New York: Russell Sage
Foundation, pp. 319–354.

Zimmerman, Don H. (1969b): Tasks and Troubles: The Practical Bases of Work Activities in a Public
Assistance Agency. In D. A. Hansen (ed.): Explorations in Sociology and Counseling. New York:
Houghton-Mifflin, pp. 237–266.


