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Coordination of gene expression noise with cell size: analytical results for

agent-based models of growing cell populations
Philipp Thomasa) and Vahid Shahrezaei
Department of Mathematics, Imperial College London, UK

The chemical master equation and the Gillespie algorithm are widely used to model the reaction kinetics inside
living cells. It is thereby assumed that cell growth and division can be modelled through effective dilution reactions
and extrinsic noise sources. We here re-examine these paradigms through developing an analytical agent-based
framework of growing and dividing cells accompanied by an exact simulation algorithm, which allows us to quantify
the dynamics of virtually any intracellular reaction network affected by stochastic cell size control and division
noise. We find that the solution of the chemical master equation – including static extrinsic noise – exactly agrees
with the agent-based formulation when the network under study exhibits stochastic concentration homeostasis, a
novel condition that generalises concentration homeostasis in deterministic systems to higher order moments and
distributions. We illustrate stochastic concentration homeostasis for a range of common gene expression networks.
When this condition is not met, we demonstrate by extending the linear noise approximation to agent-based
models that the dependence of gene expression noise on cell size can qualitatively deviate from the chemical master
equation. Surprisingly, the total noise of the agent-based approach can still be well approximated by extrinsic noise
models.

I. INTRODUCTION

Cells must continuously synthesise molecules to grow and
divide. At a single cell level, gene expression and cell size
are coordinated but heterogeneous which can drive pheno-
typic variability and decision making in cell populations1–5.
The interplay between these sources of cell-to-cell variabil-
ity is not well understood since they have traditionally been
studied separately. A general stochastic theory integrating
size-dependent biochemical reactions with the dynamics of
growing and dividing cells is hence still missing.
Many models of noisy gene expression and its regulation

are based on the chemical master equation that describes
the stochastic dynamics of biochemical reactions in a fixed
reaction volume6–8. The small scale of compartmental sizes
of cells implies that only a small number of molecules is
present at any time leading to large variability of reaction
rates from cell to cell, commonly referred to as gene ex-
pression noise9–11. Another factor contributing to gene ex-
pression noise is the fact that cells are continuously growing
and dividing causing molecule numbers to (approximately)
double over the course of a growth-division cycle. A com-
mon approach to account for cell growth is to include extra
degradation reactions that describe dilution of gene expres-
sion levels due to cell growth9–13 akin to what is done in de-
terministic rate equation models14,15. We will refer to this
approach as the effective dilution model (EDM, see Fig. 1a).
However, little is known of how well this approach repre-
sents the dependence of gene expression noise on cell size
observed in a growing population.
Cells achieve concentration homeostasis through coupling

reaction rates to cell size via highly abundant upstream fac-

a)Electronic mail: p.thomas@imperial.ac.uk

tors like cell cycle regulators, polymerases or ribosomes that
approximately double over the division cycle3,16,17. Cell size
fluctuates in single cells, however, providing a source of ex-
trinsic noise in reaction rates that can be identified via noise
decompositions18,19. A few studies combined EDMs with
static cell size variations as an explanatory source of ex-
trinsic noise20–22. In brief, the total noise in these models
amounts to intrinsic fluctuations due to gene expression and
dilution, and extrinsic variation across cell sizes in the pop-
ulation. We refer to this class of models as extrinsic noise
models (ENMs, see Fig. 1b). Yet it remains unclear how re-
liably these effective models describe cells that continuously
synthesise molecules, grow and divide.

An increasing number of studies are investing efforts
towards quantifying the dependence of gene expression
noise on cell cycle progression and growth, either exper-
imentally via ergodic principles or pseudo-time23,24 and
time-lapse imaging22,25,26 or theoretically through noise
decomposition27–29, master equations including cell cycle
dynamics4,17,30–35 and agent-based approaches including
age-structure of growing populations35–40. The essence of
agent-based models (ABMs) is that each cell in a popula-
tion is represented by an agent whose physiological state is
tracked along with their molecular reaction networks. In
principle, these models are able to predict gene expression
distributions of cells progressing through well-defined cell
cycle states as measured by time-lapse microscopy and snap-
shots of heterogeneous populations. The unprecedented de-
tail of these models must cast doubt on the predictions of
master equation models (EDMs and ENMs) in which growth
and division are modelled by effective dilution reactions.
Yet it is presently unclear why these effective models have
fared reasonably well in predicting gene expression noise re-
ported by single-cell experiments10,17,41.

Nevertheless, most ABMs still ignore cell size, a ma-
jor physiological factor affecting both intracellular reactions
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and cell division dynamics alike. Since cell size varies at
least two-fold as required by size homeostasis in a growing
population, and it scales some reaction rates as required by
concentration homeostasis, it is expected that cell size must
significantly contribute to gene expression variation across
a population. In this article, we bridge the gap between the
chemical master equation and agent-based approaches by
integrating cell size dynamics with the stochastic kinetics of
molecular reaction networks.
The outline of the paper is as follows. First, we explain

the analytical framework for EDMs, ENMs and ABMs (II).
Then we introduce the concept of stochastic concentration
homeostasis, a rigorous condition under which the chemi-
cal master equations of the EDM and ENM agree exactly
with the ABM (Sec. III A). This new condition is met by
some but not all common models of gene expression. We
show that when these conditions are not met, the effective
models agree with the ABM only on average (Sec. III B).
To address this problem, we propose a comprehensive theo-
retical framework extending the linear noise approximation
to agent-based dynamics with which we quantify cell size
scaling of gene expression in growing cells (Sec. III C). Our
findings indicate that the EDM can qualitatively fail to pre-
dict this dependence but our novel approximation method
accurately describes gene expression noise in the presence of
cell size control variations and division errors. We further
show that ENMs present surprisingly accurate approxima-
tions for the total noise statistics (Sec. IIID).

II. METHODS

We consider a biochemical reaction network of N molecu-
lar species S = (S1, S2, . . . , SN )T embedded in a cell of size
s. The network then has the general form:

N∑

i=1

ν−irSi
kr−→

N∑

i=1

ν+irSi, r = 1, . . . , R, (1)

where ν±r = (ν±1r, ν
±
2r, . . . , ν

±
Nr)

T are the stoichiometric co-
efficients and kr is the reaction rate constant of the rth re-
action. In the following, we outline deterministic, effective
dilution and extrinsic noise models and develop a new agent-
based approach coupling stochastic reaction dynamics to
cell size in growing and dividing cells (Fig. 1).

A. Effective dilution models, extrinsic noise models and the

chemical master equation

1. Rate equation models and concentration homeostasis

Deterministically, the vector of molecular concentrations
X̄ = (X̄1, X̄2, . . . , X̄N )T is governed by rate equation mod-
els in balanced growth conditions. The balanced growth

condition states that there exists a steady state between
reaction and dilution rates

αX̄ =
R∑

r=1

(ν+r − ν−r )fr(X̄). (2)

Here, fr(X̄) are macroscopic reaction-rate functions and α
is the exponential growth rate of cells determining the dilu-
tion rate due to growth. Since these quantities are indepen-
dent of cell size, the balanced growth condition (2) implies
concentration homeostasis in rate equation models.

2. Effective dilution model

The chemical master equation6 and equivalently the
stochastic simulation algorithm7 are state-of-the-art
stochastic models of reaction kinetics inside cells. Al-
though well-established, they are strictly valid only when
describing cellular fluctuations at constant cell size s. A
straight-forward approach to circumvent this limitation is
to supplement (1) by additional degradation reactions of
rate α that model dilution of molecules due to cell growth:

Si
α−→ ∅, i = 1, 2, . . . , N, (3)

akin to what is traditionally for reaction rate equations (2).
The chemical master equation of this effective dilution model
(EDM) then takes the familiar form

0 =
∂ΠEDM(x|s)

∂t
= [Q(s) + αD]ΠEDM(x|s), (4)

governing the conditional probability of molecule numbers
x = (x1, x2, . . . , xN )T of the species S in a cell of size s and
where

Qx,x′(s) =
R∑

r=1

wr(x
′, s)(δx,x′+ν+

r −ν−

r
− δx,x′), (5)

are the elements of the transition matrix of the molecu-
lar reactions (1) and we included the extra dilution reac-

tions (3) via Dx,x′(s) =
∑N
i=1 x

′
i(δxi,x

′

i−1 − δxi,x
′

i
). We are

here interested in the stationary solution and hence set the
time-derivative in Eq. (4) to zero. Such effective models are
motivated through the fact6,42 that when the microscopic
propensities wr are linked to the macroscopic rate functions
fr of the rate equation models via mass-action kinetics

wr(x, s) ≈ sfr(X), (6)

where X = x/s is the concentration, the mean concentra-
tions of EDMs follow the concentrations X̄ of the rate equa-
tions (2) (see Sec. II A 4).
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FIG. 1. Modelling approaches for cell size dependence of gene expression. (a) The effective dilution model describes cells at
constant size with intracellular reactions coupled to effective dilution reactions. (b) The extrinsic noise model incorporates static cell
size variability as a source of extrinsic noise coupled with effective dilution models (c) The agent-based approach models intracellular
reactions occurring across a growing and dividing cell population without the need for effective dilution reactions.

3. Extrinsic noise model

A common way to incorporate static size variability be-
tween cells in the model is to consider cell size s to be
distributed across cells according to a cell size distribution
Π(s). We will refer to this approach as the extrinsic noise
model (ENM), which leads to a mixture model of concen-
trations X = x/s,

ΠENM(X) =

∫ ∞

0

dsΠEDM(x = Xs|s)Π(s), (7)

and analogous expressions for the molecule number distri-
butions.

4. Analytical solutions and noise decomposition

The advantage of the EDM and ENM is that its noise
statistics can be approximated in closed-form using the lin-
ear noise approximation6,43,44. In this approximation, the
mean concentrations are approximated by the solution X̄
of the rate equations (2) and the probability distribution
ΠEDM(x|s) is approximated by a Gaussian. In the same
limit, the covariance matrix ΣY can be decomposed into in-
trinsic and extrinsic components, Σint

Y and Σext
Y , using the

law of total variance18,19

ΣY = Σint
Y

︸︷︷︸

gene expression

+ Σext
Y

︸︷︷︸

cell size variation

, (8)

which correspond to molecular fluctuations due to gene
expression and cell size variation, respectively, for Y ∈
{EDM,ENM}. Specifically, for molecule numbers x, we
have Σint

Y = EΠ[CovΠY
[x|s]] and Σext

Y = CovΠ[EΠY
[x|s]],

where EΠ denotes the expectation value with respect to the
distribution Π, and analogously for concentrations. The in-
trinsic components Σint

Y satisfy a Lyapunov equation called
the linear noise approximation:

0 = JdΣint
Y +Σint

Y J T
d +Ω−1

Y Dd(X̄), (9)

where ΩY has to be chosen depending on whether concen-
tration or number covariances are of interest:

ΩY concentration numbers

EDM s s−1

ENM EΠ[s
−1]−1 EΠ[s]

−1

. (10)

The matrix Jd is the Jacobian of the rate equations (2) and
Dd denotes the diffusion matrix obeying

Jd(X̄) = J (X̄)− α1, Dd(X̄) = D(X̄) + α diag(X̄), (11)
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where J (X̄) =
∑R
r=1(ν

+
r − ν−r )∇T

X̄
fr(X̄) and D(X̄) =

∑R
r=1 fr(X̄)(ν+r − ν−r )(ν

+
r − ν−r )

T . The extrinsic compo-
nents Σext

Y follow from the dependence of the mean on cell
size, which features only in the molecule number variance
of the ENM:

Σext
Y concentration numbers

EDM 0 0

ENM 0 VarΠ(s)X̄X̄
T

, (12)

where the last cell follows from Σext
ENM = CovΠ[EΠ[x|s]] with

EΠ[x|s] = sX̄.
As a concrete example, we consider transcription of mR-

NAs with a size-dependent transcription rate that are trans-
lated into stable proteins:

∅
k0s−−→M

kdm−−→ ∅, M
ktl−−→M + P. (13)

We then account for dilution through the additional reac-
tions

M
α−→ ∅, P

α−→ ∅. (14)

The mean protein concentration is given by P̄ = k0b/α and
the coefficient of variation predicted by the EDM and ENM
models follow the familiar expression10

CV2
Y =

1

ΩY P̄

(

1 + b
δ

1 + δ

)

+
Σext
Y

P̄ 2
, (15)

where we account for size-variability via ΩY and Σext
Y given

by Eqs. (10) and (12), respectively, and the parameters

δ = 1 +
kdm
α
, b =

ktl
kdm + α

, (16)

correspond to the ratio of mRNA and protein degrada-
tion/dilution rates and the translational burst size, respec-
tively. From Eq. (15), (10) and (12), it is clear that size
variation acts on the intrinsic noise component of molecule
concentrations (via EΠ[s

−1] ≈ EΠ[s]
−1(1 + CV2

Π[s])) but
the extrinsic noise component of molecule numbers (via Σext

Y

(12)).

B. Agent-based modelling

Little is known about the accuracy of EDMs and ENMs
in predicting cellular noise in growing populations. In the
following, we introduce an agent-based modelling approach
that serves as a gold standard to assess the validity of these
effective models. The ABM represents cells as agents that
progressively synthesise molecules via intracellular reactions
(1), grow in size and undergo cell division. Every division
gives rise to two daughter cells of varying birth sizes, each
of which inherits a proportion of molecules from the mother
cell via stochastic size-dependent partitioning at division.

The ABM simulation algorithm is given in Box 1, which
combines the First-Division algorithm, previously intro-
duced for agent-based cell populations38, with the Extrande
method adapted to simulate reaction networks embedded in
a growing cell45. In the following, we describe the exact an-
alytical framework with which we characterise the snapshot
distributions that underlie such a population of agents.

Master equation for agent-based populations

We consider the number of cells n(τ, s, x, t) with age τ
(time since the last division), cell size s and molecule counts
x in a snapshot at time t, which evolves as
(
∂

∂t
+

∂

∂τ
+

∂

∂s
αs+ γ̄(s, τ)

)

︸ ︷︷ ︸

growth

n(τ, s, x, t) = Q(s)n(τ, s, x, t)
︸ ︷︷ ︸

stochastic reactions

,

n(0, s, x, t)
︸ ︷︷ ︸

# newborn cells

= 2
∞
∫
0
dτ ′

∞
∫
0
ds′ B(s|s′)

︸ ︷︷ ︸

division error

×
∑

x′

B(x|x′, s/s′)
︸ ︷︷ ︸

partitioning of molecules

γ̄(s′, τ ′)n(τ ′, s′, x′, t)
︸ ︷︷ ︸

# dividing cells

, (17)

and describes cell growth, stochastic reaction kinetics and
a boundary condition for cell division that ensures that the
number of newborn cells is twice the number of dividing
cells after partitioning their size and molecular contents.
These evolution equations have been derived in38,39 for age-
dependent snapshots but here we extend such agent-based
models to include also cell size dynamics and size-dependent
reaction dynamics. We allow for the following generalisa-
tions: (i) size increases exponentially in single cells, (ii) cells
divide with rate γ̄(s, τ) that is both size- and age-dependent,
(iii) the transition matrix Q(s) of the molecular reactions
depends on cell size s via the propensities (see definition
after Eq. (4)), and (iv) the molecular partitioning kernel
B(x|x′, s/s′) depends on the inherited size fraction s/s′ of
a daughter cell. We now describe in detail how we model
the individual noise sources associated with cell size control,
division errors, and molecule partitioning.
a. Cell size control fluctuations. Recent studies46,47

have shown that the distribution of sizes with which cells
divide does not explicitly depend on cell age but on the
birth size s0. Assuming that γ̄(s, τ) = αsγ(s, s−ατ ), where
γ(s, s0) is the division rate per unit size (see also48,49), the
division-size distribution is given by

ϕ(sd|s0) = γ(sd, s0)e
−

∫
sd
s0

dsγ(s,s0). (18)

As a concrete example of (18) we consider a model where
the division size is linearly related to birth size49–51

sd = as0 +∆. (19)

The division rate can be calculated from the distribu-
tion ϕ̃(∆) of the noise term ∆ in (19) via γ̃(∆) =
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ϕ̃(∆)/(
∫∞
∆

duϕ̃(u)) and setting γ(s, s0) = γ̃(s− as0), which
gives the correct division-size distribution ϕ(sd|s0) = ϕ̃(sd−
as0) as expected. The model generalises the sizer (a = 0)
to concerted cell size controls such as the adder (a = 1) and
timer-like (2 > a > 1) models46,47,52. In the following, we
will refer to CVϕ[∆] as the size-control noise.
b. Division errors. After division, size is partitioned

between cells and the birth size of the two daughter cells is
obtained from s′0 = θsd and s′′0 = (1 − θ)sd where θ is the
inherited size fraction, a random variable between 0 and 1
with distribution π̄(θ) (see Box 1). This can be modelled
using the division kernel

B(s0|s′) =
∫ 1

0

dθ π(θ)δ(θ − s0/s
′),

where π(θ) = 1
2 π̄(θ)+

1
2 π̄(1− θ) including the case of asym-

metric division. We will refer to CVπ[θ] as the division error
about the centre Eπ[θ] =

1
2 .

c. Molecule partitioning at cell division. The partition-
ing kernel B(x|x′, θ) denotes the probability that a cell in-
herits x molecules from a total of x′ molecules from its
mother and this probability depends on the daughter’s in-
herited size fraction θ. We assume that cells are sufficiently
well mixed and each molecule is partitioned independently
with probability θ such that the division kernel is binomial

B(x|x′, θ) =
N∏

i=1

(
x′i
xi

)

θxi(1− θ)x
′

i−xi . (20)

To make analytical progress, we assume that the pop-
ulation establishes a long-term stationary distribution
Π(s, s0, x) characterising the fraction of cells with molecule
numbers x, cell size s and birth size s0 that is invariant in
time. To this end, we let n(τ, s, x, t) ∝ eαtΠ(s, τ, x) and
change variables from cell age τ to birth size s0 such that
Π(s, s0, x) = (αs)−1Π(s, τ = ln(s/s0)/α, x). We find that
this transformation reduces the PDE (17) to an integro-
ODE:
(

α+
∂

∂s
αs+ αsγ(s, s0)

)

Π(s, s0, x) = Q(s)Π(s, s0, x)

(21a)

s0Π(s0, s0, x) =

2
∑

x′

∫∞
0

ds′
∫ s′

0
ds′0B(x|x′, s0/s′)B(s0|s′)s′γ(s′, s′0)Π(s′, s′0, x

′).

(21b)

We finally characterise the marginal cell size distribution
Π(s, s0) and the conditional molecule number distribution
Π(x|s, s0) via Bayes’ formula

Π(s, s0) =
∑

xΠ(s, s0, x), Π(x|s, s0) =
Π(s, s0, x)

Π(s, s0)
, (22)

which together provide the full information about the pop-
ulation snapshot.

Cell size distribution

The evolution of the size distribution Π(s, s0) is obtained
by summing Eqs. (21) over all possible x, which yields:

(

α+
∂

∂s
αs+ αsγ(s, s0)

)

Π(s, s0) = 0 (23a)

s0Π(s0, s0) =

2
∫∞
0

ds′
∫ s′

0
ds′0B(s0|s′)s′γ(s′, s′0)Π(s′, s′0). (23b)

Eqs. (23) can be solved analytically

Π(s, s0) =
2

Z
ψbw(s0)Φ(s|s0)

1

s2
, (24)

where ψbw(s0) is the birth size distribution in a backward
lineage (see48 for details), Φ(s|s0) = exp(−

∫ s

s0
ds′γ(s′, s0))

is the probability that a cell born at size s0 has not divided
before reaching size s, and Z = Eψbw

[s−1
0 ] is a normalising

constant.

Molecule number distributions for cells of a certain size

The conditional molecule number distribution Π(x|s, s0)
gives the probability to find the molecule numbers x in a
cell of size s that was born at size s0 and satisfies

αs
∂

∂s
Π(x|s, s0) = Q(s)Π(x|s, s0), (25a)

Π(x|s0, s0) =
∑

x′

∫∞
0

ds′
∫ s′

0
ds′0B(x|x′, s0/s′)ρ(s′, s′0|s0)Π(x′|s′, s′0).

(25b)

Eqs. (25) follow directly from substituting Eq. (22) into (21)
and using (18) and (23). The solution of these equations
depends implicitly on the ancestral cell size distribution ρ,

ρ(s′, s′0|s0) =
1

ψbw(s0)

s0
s′
B(s0|s′)ϕ(s′|s′0)ψbw(s

′
0), (25c)

that gives the probability of a cell born at size s0 having an
ancestor with division size s′ and birth size s′0. The main
difference between the molecule number distributions of the
ABM and the EDM/ENM is the boundary condition at cell
division, which as we shall see can have a significant effect
on the reaction dynamics.

III. RESULTS

We here introduce the concept of stochastic concentra-
tion homeostasis (SCH) as a generalisation of concentra-
tion homeostasis in deterministic systems (see Sec. IIA 1)
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FIG. 2. Distributions of CME and agent-based models agree for reaction networks with stochastic concentration
homeostasis. (a-c) The EDM (solid lines, analytical solution53,54) agrees with agent-based simulations (shaded areas) for a range
of gene expression models. Panels show (a) bursty transcription53 with transcription rate proportional to cell size, (b) bursty
translation54 , and (c) bursty transcription and translation54 with geometrically distributed bursts ms whose average is proportional
to cell size s (see main text for details). (d) mRNA distributions simulated using the ABM (shaded areas) are shown for cells of
sizes s = s0 (red), s = 1.5s0 (orange) and s = 2s0 (green), which agree with the effective dilution model (dots, Poisson distribution).
(e) Simulated protein distributions (shaded areas) disagree with the effective dilution model (solid lines, solution in Ref.55). (f)
Absolute error (ℓ1) of the effective dilution model as a function of cell size for mRNA (teal) and protein (red) distributions. ABM
simulations were obtained using the First-Division Algorithm (Box 1) assuming an adder model (a = 1) and parameters k0 = 10,
kdm = 9, ktl = 100, α = 1. Cell cycle noise assumes gamma distribution ϕ̃(∆) with unit mean and CVϕ[∆] = 0.1, while division
noise assumes symmetric beta distribution with CVπ[θ] = 0.01.

to higher moments and distributions in stochastic reaction
networks. SCH is a homeostatic condition for the distri-
bution p(x|s) of a size-dependent stochastic process to be
expressed as a mixture of Poisson random variables drawn
from an underlying continuous stochastic concentration vec-
tor κ = (κ1, κ2, . . . , κN )T that is statistically independent
of s:

p(x|s) =
∫

K
dκχ(κ)

N∏

i=1

(κis)
xi

xi!
e−sκi . (26)

The fact that κ and its density χ(κ) are independent of s
ensures concentration homeostasis in the stochastic sense.

A. The effective dilution model is valid for reaction networks

with stochastic concentration homeostasis

Theorem 1 (Appendix A) is a central result of our analysis
and it states that if the EDM (4) satisfies SCH, i.e., Eq. (26)
holds for ΠEDM(x|s), then its stationary solution is also a
solution of the ABM (25):

Π(x|s, s0) = ΠEDM(x|s), (27)

and the solution is independent of the birth size s0. Equiv-
alently (Appendix A), we can say that the EDM/ABM sat-
isfies SCH if the factorial-moment generating function is of
the form

GEDM(z|s) =
∑

x

N∏

i=1

zxi

i ΠEDM(x|s) = F (s(z − 1)), (28)

where F (t) = Eχ[e
∑N

i=1 tiκi ], the moment-generating func-
tion of the concentration vector, is cell-size (s) indepen-
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FIG. 3. Comparing the statistics of the effective dilution and agent-based models. (a) Simple model of mRNA transcription
and protein translation transcriptional size-scaling (13). (b) Mean mRNA (top) and protein levels (bottom) agree with the EDM
(solid grey lines) and ABM simulations (blue dots). (c) mRNA statistics display unit Fano factor indicating Poisson statistics in
agreement with EDM. (d) ABM simulations (dots, Box 1) display non-monotonic cell size scaling of protein noise, which are predicted
by the agent-based theory (solid red) but not by the EDM (solid grey). Parameters are k0 = 10, kdm = 10, ktl = 100, α = 1. Cell
size control parameters are as in Fig. 2.

dent. An interesting observation is that SCH implies that
the mean numbers and coefficients of variation for cells of
the same size s are given by

EΠ[x|s] = sEχ[κ], CV2
Π(x|s) =

1

sEχ[κ]
+ CV2

χ(κ). (29)

Since κ is independent of s, SCH implies homeostasis of
the mean concentrations in (29) but concentration home-
ostasis on average does not necessarily imply SCH. The
coefficients of variation coincide both for concentrations
and molecule numbers and have size-dependent and size-
independent components. In the following, we provide ex-
amples of reaction networks for which SCH holds for all
values of the rate constants and demonstrate the validity of
the EDM by comparing its distribution solutions to ABM
simulations.
It can be seen from (26) and (29) that when the EDM’s

stationary distribution is Poissonian with deterministic con-
centration vector κ, this distribution satisfies SCH and
hence is also a solution of the ABM. More generally,
SCH can be checked without solving for GEDM(z|s) (or
ΠEDM(x|s)). Assuming mass-action kinetics (6), for exam-
ple, a sufficient condition for SCH is that the network con-
sists entirely of mono-molecular reactions (see Appendix A)
of the form:

∅
D(t)s−−−→ S1, or ∅

D(t)−−−→ ms × S1,

or ∅
s−→ S1, or S1 −→ ∅, or S1 −→ S2, (30)

where S1 and S2 denote any pair of species that are parti-
tioned at cell division and D(t) is a exogenous stationary
stochastic process modelling a genetic state which is copied
but not partitioned at cell division and does not scale with
cell size. The propensities of zero-order reactions in SCH

networks must either be proportional to cell size or include
size-dependent random bursts ms whose burst distribution
satisfies SCH itself. We illustrate the predictive power of
this result by demonstrating SCH for common gene expres-
sion models involving reactions of the form (30) and show
that the analytical solution of the chemical master equations
agrees exactly with the agent-based models (Fig. 2a-c).

mRNA expression involving a two-state promoter53

(Fig. 2a),

Doff
kon−−⇀↽−−
koff

Don
sk0−−→ Don +M, M

kdm−−→ ∅

satisfies SCH for all parameter values since the network is
of the form (30) whenever the transcription rate is propor-
tional to cell size. The stochastic concentration variable is
distributed as κ ∼ k0

(kdm+α)Beta
(

kon
(kdm+α) ,

koff
(kdm+α)

)

.

Bursty protein expression (Fig. 2b) of a stable (non-
degrading) protein arising from a two-stage model of gene
expression can be modelled using stochastic bursts:

∅
k0−→ ms × P.

According to (30) the model satisfies SCH for all param-
eter values when the burst distribution obeys SCH. This
is the case for geometrically distributed bursts ms whose
mean is proportional to cell size, E[ms|s] = bs. It can
be shown that the stochastic concentration variable follows
κ ∼ Gamma(k0/α, b).
Similarly, bursty protein expression from a two-state pro-

moter arising from a three-stage gene expression model54,56

(Fig. 2c),

Doff
kon−−⇀↽−−
koff

Don
k0−→ Don +ms × P,
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also satisfies SCH for geometrically distributed
bursts (with mean bs) but the concentration vari-
able is doubly stochastic57 κ ∼ Gamma(a−

α
, br),

r ∼ Beta(a−
α
, a++kon+koff

α
) where a± = koff + kon +

k0 ±
√

(koff + kon + k0) 2 − 4k0kon. We observe excellent
numerical agreement between the ABM simulations and
analytical EDM solutions in all these cases validating our
theoretical predictions (Fig. 2a-c).
A complex example of the reactions (30) that obeys SCH

for all parameter values but yet defies analytical solution is

Di

gij−−→ Dj ∀i, j = 1, . . . , ND

Di
sti−−→ Di +M1, ∀i = 1, . . . , ND

M1
k1−→M2

k2−→ . . .
kS−−→MS , Mi

δi−→ ∅ ∀i = 1, . . . , NM

where the exogenous genetic states Di undergo switching
with rates gij but are not partitioned at cell division, tran-
scription rates sti are assumed to be proportional to cell
size s, and processing of transcripts Mi follows a multi-step
process with rates ki and degradation with rates δi. For
example, it can be checked that for NM = 1 we recover the
2m-multistate model58 as a special case whose EDM has a
factorial-moment generating function (compare Eq. (7) in58

with (28)) satisfies SCH precisely when the transcription
rates are proportional to cell size.
On the other hand, discrepancies between the EDM and

ABM solutions will be apparent when reactions do not obey
SCH. To illustrate this point, we return to the gene ex-
pression model with transcriptional size-scaling and explicit
protein translation reaction (13). Note that in the EDM
extra reactions are being added for the dilution of mR-
NAs and proteins, while for the ABM proteins are diluted
through growth and divisions. Using our condition (28),
it is straight-forward to verify that the Poissonian mRNA
distributions of the EDM coincide exactly with the distri-
butions of the ABM (Fig. 2d). However, this condition is
not met for the protein distribution since the translation re-
action is not a monomolecular reaction of the form (30). To
demonstrate the breakdown of the EDM, we compare the
analytical steady state distributions obtained by Bokes et
al.55 against ABM simulations at various cell sizes (Fig. 2e).
We observe that the error of the EDM (as quantified by the
ℓ1-distance of the two distributions, Fig. 2f) is pronounced
both for newborn and dividing cells. The remainder of this
article is dedicated to investigate the sources and conse-
quences of these discrepancies.

B. The EDM approximates the mean concentrations of

ABMs lacking SCH

SCH provides a general criterion with which to probe the
validity of the EDM probability distributions. In practice,
however, approximate agreement of the first few moments,
e.g., mean and variances, often suffices. Here, we establish

that under the mass-action scaling assumption (6) the mean
concentrations of the ABM and EDM agree approximately,
and they satisfy concentration homeostasis on average. This
can be seen by multiplying Eq. (25) by x and averaging,
which yields ODEs for the mean numbers:

αs
∂

∂s
EΠ[x|s, s0] =

R∑

r=1

(ν+r − ν−r )EΠ[wr(x)|s, s0], (31a)

and the boundary conditions

EΠ[x|s0, s0] = Eρ

[
s0
s′
EΠ[x|s′, s′0]

∣
∣
∣
∣
s0

]

. (31b)

Unfortunately, Eqs. (31) are not necessarily closed since the
equation for the mean may involve higher order moments
when wr(x) depends nonlinearly on x and we need to re-
sort to approximations. Analogously to the linear noise ap-
proximation, we set E[x|s, s0] = sX̄ and EΠ[wr(x)|s, s0] ≈
sfr(X̄) and insert the resulting expression into Eqs. (31). It
follows that X̄ is independent of size and satisfies the rate
equations (2). We conclude that, for mass-action kinetics,
the EDM agrees exactly with the ABM on average for net-
works with linear propensities and approximately for large
cell size for nonlinear reaction networks.

C. Scaling of fluctuations with size in individual cells

manifests the breakdown of the EDM lacking SCH

Next we investigate the scaling of fluctuations with cell
size. Under the linear noise approximation the covariance
matrix Σ(s, s0) = CovΠ[x|s, s0] evolves according to

αs
∂

∂s
Σ(s, s0) = JΣ(s, s0) + Σ(s, s0)J T + sD(X̄), (32a)

where J (X̄) and D(X̄) are the Jacobian and diffusion ma-
trices defined after Eq. (11). To make analytical progress we
assume for now that cell division is deterministic (CVϕ[∆] =
CVπ[θ] = 0), which implies the following boundary condi-
tion

4Σ(s0, s0) = 2s0diag(X̄) + Σ(2s0, s0). (32b)

The first term is due to binomial partitioning of molecules
and the second stems from gene expression noise at divi-
sion. It is implicit in the deterministic division assumption
(CVϕ[∆] = CVπ[θ] = 0) that the birth size s0 across cells is
fixed and that the size distribution in Eq. (24) reduces to

Π(s) = Π(s|s0) =
2s0
s2

(33)

for s0 ≤ s ≤ 2s0 and zero otherwise, in agreement with
previous results59,60. Similarly, the ancestral distribution
(25c) reduces to ρ(s′, s′0|s0) = δ(s′ − 2s0)δ(s

′
0 − s0).
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FIG. 4. Effect of noise in cell size control and division on gene expression noise in single cells. (a-d) Protein noise as
a function of cell size s for various noise levels in added size CV[∆]. For comparison, the prediction without cell cycle noise (dashed
black line, Eq. (36)) and the cell size distributions (shaded grey) are shown. (e-h) Same as (a-d) but with division noise affecting the
inherited size fraction CV[θ]. Analytical predictions (solid lines, Eq. (38a) with (36) and (38b)) and ABM simulations (dots) using
the First-Division Algorithm (Box 1) are shown. Gene expression model and all other parameters are as given in Fig. 3. Added size ∆
assumes a gamma distribution with unit mean and CV[∆] = 0.01 (e-f) while division errors θ followed a symmetric beta distribution
with CV[θ] = 0.01 (a-d).

Eqs. (32) can be solved in closed form using the eigende-
composition of the Jacobian J . The solution to (32a) that
respects the boundary condition (32b) is (Appendix D)

Σ(s, s0) =
∑

ij

s ûiû
†
j

(
α− λi − λ∗j

)×

[

D̃ij +
D̃ij + X̃ij(λi + λ∗j − α)

2
λi+λ∗

j
α

−1 − 2

(s0
s

)1−
λi+λ∗

j
α

]

, (34)

where † denotes the conjugate-transpose and we defined the
matrices D̃ = U−1DU−†, X̃ = U−1diag(X̄)U−† and U =
(û1, . . . , ûN ) whose columns are the eigenvectors of J such
that U−1JU = diag(λ).
We demonstrate the implications of this result using the

gene expression example with transcriptional size-scaling
and explicit translation reaction (13). The mean of mRNA
numbers m and protein numbers p are

EΠ[m|s] = s
k0
αδ
, EΠ[p|s] = s

bk0
α
, (35)

where the constants are defined in Eq. (16). These expres-
sions hold both for the EDM and the ABM, and they exhibit
concentration homeostasis on average as shown in the previ-
ous section. The exact agreement between EDM and ABM
is also confirmed by ABM simulations (Fig. 3b).

Using Eq. (32) we find that the cell size dependent fluc-
tuations satisfy

VarΠ[m|s, s0] = EΠ[m|s],

CovΠ[m, p|s, s0] =
sbk0
αδ

(

1 +
(s0
s

)δ 2δ

1− 2δ+1

)

,

VarΠ[p|s, s0] = EΠ[p|s]×
(

1 + 2b− s0
s

4bδ

3(δ − 1)
+
(s0
s

)δ b

δ − 1

2δ+1

(2δ+1 − 1)

)

.

(36)

We note that the mRNA variance of the ABM agrees pre-
cisely with the EDM (Fig. 3c). The agreement is a direct
consequence of SCH exhibited by the mRNA transcription
and degradation reactions (cf. (30)). However, the expres-
sions for the predicted mRNA-protein covariance and pro-
tein variance disagree with their EDM counterpart since the
reactions involving the protein violate SCH. To explore this
dependence, we compare the corresponding coefficients of
variation of both models (Fig. 3d). The EDM overestimates
cell-to-cell variation of small cells but underestimates it for
large cells. Moreover, the EDM’s coefficient of variation de-
creases monotonically with cell size, but this is not the case
for the ABM.

Strikingly, the coefficient of variation peaks as cells
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progress through the cell cycle (Fig. 3d, solid red line),
which is in excellent agreement with the ABM simulations
(blue dots) but is not seen in the EDM (solid grey). This
can be seen directly from Eqs. (36) for which protein fluc-
tuations can be approximated in the limit of fast mRNA
degradation (δ ≫ 1) as

CV2
ABM[p|s, s0] ≈

1

EΠ[p|s]

(

1 + b

(

2− s0
s

4

3

))

, (37)

which has a maximum at a cell size of s = s0
8b

3(2b+1) as

confirmed by agent-based simulations (Fig. 3d). Depending
on the burst size b, the peak shifts from s = s0 for b = 3/2
to s = 4/3s0 for b ≫ 1. The qualitative difference between
the scalings of gene expression noise with cell size of EDMs
and ABMs manifests the breakdown of the EDM, which
is observed both for concentrations and molecule numbers
since their coefficients of variation coincide when considering
cells of the same size.

Effect of cell size control on gene expression dynamics

Next, we ask how fluctuations in the cell size control af-
fect gene expression noise. It may be intuitively expected
that noise in cell size control and division errors cause vari-
able birth sizes, variable division times and hence noisy ex-
pression levels. mRNA fluctuations in the gene expression
model with transcriptional size-scaling (13) obey SCH and
hence are unaffected by these noise sources. The effect on
protein noise remains yet to be elucidated.
To this end, we assume small birth-size variations and

approximate the actual birth size with an averaged estimate
EΠ[s0|s] of the retrospective birth size for a cell of size s.
The covariance matrix (or any other moment) can then be
approximated as

Σ(s) = EΠ[Σ(s, s0)|s] ≈ Σ(s, EΠ[s0|s])). (38a)

This simplification can formally be justified through a
saddle-point approximation as the joint distribution Π(s, s0)
has a maximum at Π(s, EΠ[s0|s])). Generally no analytical
expression of EΠ[s0|s] can be derived from Eq. (24) in the
presence of cell size control fluctuations, however, and we
approximate EΠ[s0|s] by a matched asymptotic expansion
(Appendix C):

EΠ[s0|s] ≈ s̄0 − σ

√
2
π
e−

(s−s̄0)2

2σ2

1 + erf
(
s−s̄0√

2σ

)

︸ ︷︷ ︸

small cells

+2aσ2γ(s− as̄0)
︸ ︷︷ ︸

large cells

, (38b)

which holds for the linear cell size control model (19). The
first term is the average birth size in the absence of cell size
control fluctuations, the second term denotes the contribu-
tions from small cells, while the third term stems from large

cells. The interpretation of this conditional expectation is
that small cells were born with sizes smaller than average
while larger cells were born with sizes above average de-
pending on their size control (Fig. 6 in Appendix C). The
parameters in Eq. (38b) are given by the mean birth size s̄0
and variance σ2 in a backward lineage tracing the ancestors
of a random cell in the population (see Ref.48 for details):

s̄0 =
(2− a)

(

1 + CV2
θ

)

2− a(1 + CV2
θ)

,

σ2 = s̄20
CV2

∆

(

1 + 3CV2
θ

) (

2− a(1 + CV2
θ)
)2

+ 4CV2
θ

(

1− CV2
θ

)

(

CV2
θ + 1

)2 (
4− a2(1 + 3CV2

θ)
)

.

(38c)

Eqs. (38) provide a closed form approximation of the cell size
dependence of any given moment accurate to order O(σ3).
To verify the accuracy of proposed approximation, we test

the theory for various strengths of size control noise and
division errors (Fig. 4). We observe that increasing noise
results in the monotonic decrease of gene expression noise
with cell size (Fig. 4a-d) in good agreement with ABM sim-
ulations, even for large cell size fluctuations. We further
ask about the effects of partitioning noise, which shows a
similar dependence but agrees less well with the ABM sim-
ulations for cells smaller than the mean birth size (Fig. 4e-
h), presumably since the effect of large variability in birth
sizes is not captured in our approximation. Nevertheless,
the present approximation qualitatively captures the over-
all cell size dependence of the ABM simulations (Fig. 4).
Our findings confirm that birth size variation contributes
significantly to the cell size dependence of gene expression
noise of networks lacking SCH.

D. ENMs provide surprisingly accurate approximations of

total noise in ABMs lacking SCH

We go on to compare the ENM introduced in Sec. II with
the ABM. In contrast to the EDM, the ENM predicts the
total noise statistics including the variability introduced by
the cell size distribution. It is clear that the ENM agrees
exactly with the ABM whenever the network obeys SCH. In
particular, the marginal factorial-moment generating func-

tion of the ABM’s molecule numbers G(z) = EΠ

[
∏N
i=1 z

xi

i

]

(irrespective of cell size) follows from Eq. (26) as

G(z) = Eχ

[
N∏

i=1

K(κi(zi − 1))

]

, (39)

when the concentration distribution χ has been identified
(as we did for the models in Sec. III A) and the moment-
generating function K(t) = EΠ[e

ts] of the cell size distribu-
tion (24) is known. When SCH does not hold, the ABM
statistics can in principle be obtained through integrat-
ing Eq. (34) against the size distribution Π(s, s0). Specif-
ically, denoting molecule numbers by x and concentrations
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FIG. 5. The extrinsic noise model approximates gene expression noise with size control and division errors. (a) Scaling
of mRNA concentration noise with mean concentrations for various noise levels in added size CV[∆] and partition noise CV[θ] when
the transcription rate k0 is varied (top). Corresponding scaling is shown for mRNA numbers (bottom). Analytical predictions of
the ENM (solid lines, Eq. (8) with (10) and (12)) and ABM simulations using the First-Division Algorithm (dots, Box 1) are shown.
The inset shows the relative error in CV of the EDM compared to ABM simulations [100%× (CVENM/CVABM − 1)]. (b) Scaling of
protein noise with mean protein concentration (top) and numbers (bottom) when the translation rate ktl is varied. (c) Same as (b)
but varying the transcription rate ktl. For comparison, the ABM predictions without cell cycle noise are shown (dashed black lines,
Eq. (41)) and the error bounds of 2% predicted by the theory (solid grey). See caption of Fig. 3 for the remaining parameters.

by X = x
s
, as before, we have

CovΠ[X] = EΠ[Σ(s, s0)/s
2],

CovΠ[x] = EΠ[Σ(s, s0)] + VarΠ(s)X̄X̄
T , (40)

where Σ(s, s0) is the size-dependent covariance matrix dis-
cussed in Sec. III C.
To illustrate this dependence, we consider the gene ex-

pression model with transcriptional size-scaling (13) and
integrate Eq. (36) numerically against the size distribution
(24). We observe that the mRNA noise-mean relationship
of the ABM follows exactly the ENM predictions when the
mean varies through the transcription rate (Fig. 5a). This
agreement is confirmed for various strengths of cell size con-

trol fluctuations and division errors, both for mRNA con-
centrations and numbers, which validates our theoretical
predictions that the mRNA distribution satisfies SCH and
hence the ENM is exact.

However, the protein noise-mean relationships of the
ABM and ENM differ (Fig. 5b). The discrepancy, albeit
small, exists even for deterministic divisions (CVϕ[∆] =
CVπ[θ] = 0) for which the averages (40) over the size dis-
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tribution can be carried out analytically and result in:

CV2
ABM[P ] =

1

ΩP P̄






1 +

2b

(

12− 24(2δ−1−1)
(2δ+1−1)(δ−1)

+ 13δ

)

27(δ + 2)






,

CV2
ABM[p] = CV2

Π[s]+

1

ΩpP̄






1 +

2b

(
2(2δ−1−1)

(2δ+1−1)(δ−1)
+ δ(ln(8)− 1)− 1

)

3δ ln(2)






, (41)

where ΩP = EΠ[s
−1]−1 and Ωp = EΠ[s] and δ, b are de-

fined as in Eq. (16). It can be verified by optimising (41)
over δ that the ENM underestimates ABM noise of pro-
tein numbers by at most 2%, while it overestimates noise in
protein concentrations by the same amount. The difference
between the ENM and ABM predictions increases with cell
size control noise for concentration measures but appears to
be practically independent of cell size control noise for pro-
tein number fluctuations (Fig. 5b, insets). The protein num-
ber noise, but not concentration noise, exhibits an extrinsic
noise floor (CV2

Π[s] in (41)) for large mean numbers due to
extrinsic cell size variability across the population and this
noise floor increases with noise in size control (CVϕ[∆]) and
division errors (CVπ[θ]) as it is also predicted by the ENM
(Fig. 5b).
Similar conclusions hold for the noise-mean relation-

ship when the mean is varied through translation rate
(Fig. 5c) but there appears an additional intrinsic noise
floor due to stochastic bursting (Fig. 5c and Eq. (41)) that is
present both in the protein concentration and number noise.
This phenomenon is in qualitative agreement with previous
findings27,35,40 and similarly predicted by the ENM (15).
Presumably, the better quantitative agreement for molecule
numbers as compared to concentrations (Fig. 5b and c) is
due the fact that the ENM and ABM predictions are dom-
inated by extrinsic noise, which has the same effect in both
models. Our observations suggest that, surprisingly, the
ENM provides much more accurate approximations of the
ABM statistics than the EDM.

IV. DISCUSSION

We presented an agent-based framework to study gene ex-
pression noise coupled to cell size dynamics across growing
and dividing cell populations. The framework consists of
an exact algorithm for simulating the stochastic dynamics
of dividing cells (Box 1), which generalises previous algo-
rithms for isolated lineages4,17,32,61–63 towards growing cell
populations, and a master equation framework (Sec. II) that
exactly characterises the snapshot-distribution of gene ex-
pression and cell size across such a agent-based population.

Our theory shows that the newly defined stochastic con-
centration homeostasis (SCH) (cf. Sec. III A and Theo-
rem 1) provides a necessary and sufficient condition for
the stationary distributions of the chemical master equation
(EDMs and ENMs) to agree exactly with the snapshot dis-
tributions of detailed agent-based models (ABM). A broad
class of gene networks (30), involving mono-molecular reac-
tions, multi-state promoters and bursting, satisfy SCH irre-
spective of network parameters when the reaction rates scale
with cell size according to the law of mass-action. SCH is
however not restricted to this particular class of network and
can generally be checked on a case-by-case basis using the
generating function equations, which can be accomplished
without solving the chemical master equation analytically
(see Appendix A).
SCH guarantees that gene expression distributions for

cells of a given size are entirely independent of extrinsic
noise sources affecting birth size such as cell size control and
division noise. They thus reveal whether a network embed-
ded in a growing cell can be insulated against such noise
sources, an important feature that can guide the design of
synthetic circuits.
Nevertheless, most gene regulatory networks of interest do

not obey SCH. To address this issue, we developed the lin-
ear noise approximation for ABMs lacking SCH embedded
in growing and dividing cells. The theory provides ODEs for
the mean molecule numbers (31) and their covariances (32),
which – unlike the conventional linear noise approximation
describing EDMs6,43 – describe their evolution across sizes
and features a boundary condition describing the stochastic
partitioning of molecules at cell division. We showed that,
when the reactions follow mass-action size-scaling, the mean
concentrations of EDMs and ABMs agree, because they
exhibit concentration homeostasis (Sec. III B). The theory
further provides closed-form analytical expressions for the
covariance matrix of gene expression fluctuations in the ab-
sence of SCH. We note that like the conventional linear noise
approximation, the linear noise approximation for ABMs is
exact for linear reaction networks but represents an approx-
imation for nonlinear reaction networks (Sec. III C).
While the EDM always predicts birth-size-independent

noise, the ABM’s covariance matrices generally depend on it
(Sec. III C), both for concentrations and molecule numbers.
This means that, unlike in SCH conditions, size-control
noise and division errors can propagate to gene expression
levels, and we unveiled quantitative and qualitative differ-
ences between EDMs and ABMs regarding the dependence
of expression noise on cell size. Such differences prevail
even for relatively simple gene networks involving protein
expression (see (13)) for which our linear noise approxima-
tion readily provides exact expressions for mean and noise
statistics.
Despite these discrepancies, we found that the ENM

of these simple gene expression models provides surpris-
ingly accurate total noise estimates (Sec. IIID). In fact, we
showed analytically that the ENM (and EDM) of bursty
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production with translational size-scaling agrees exactly
with the ABM since it obeys SCH. For transcriptional size-
scaling, which implies the absence of SCH, the ENM devi-
ates at most a few percent from ABM’s total protein noise
prediction. To resolve such small differences experimentally,
one would need to probe on the order of 10, 000 cells for mea-
suring the squared coefficient of variation accurate to three
leading digits (assuming sampling errors inversely propor-
tional to cell number), which is achievable only with high-
throughput techniques.
An outstanding question is whether the good agreement

we observed is specific to the particular model or parameter
values we have chosen or whether the ENM is more gener-
ally valid. We have made an initial step in this direction
by providing closed-form expressions for the ABM’s linear
noise approximation of any single-species reaction network
with deterministic size-distribution (Appendix D). These re-
sults demonstrate that the ENM overestimates the ABM’s
coefficient of variation of concentrations by at most 8%
but underestimates it by at most 2%, and vice versa for
molecule numbers, and these bounds hold independently of
the choice of parameters. This suggests that ENMs could
be surprisingly accurate approximation of ABMs. Other
effective models of bursty protein production without any
size-scaling as proposed in64 cannot obey SCH since they
ignore cell size and generally produce larger errors than the
ENM even for deterministic cell cycles.
A limitation of our study is that we assumed the validity

of the linear noise approximation for the noise statistics of
networks lacking SCH. Mean and covariance of the linear
noise approximation are exact for linear reaction networks,
as those we have studied here, but it represents an approx-
imation for networks with nonlinear propensities valid in
the limit of large molecule numbers. To improve the esti-
mates of our theory, one could consider higher-order terms
in the system size expansion44, resort to moment-closure
approximations65, or to compute moment bounds66 for non-
linear reaction networks.
Another limitation is that we neglected growth rate vari-

ability, which is a significant source of noise at the single-
cell level47. It would be interesting to include these features
in our ABMs, compare them to the effective models, and
investigate whether SCH can be generalised to this case.
Previous studies3 have investigated the dependence of gene
expression noise on growth rate dynamics in isolated lin-
eages using small noise approximations similar to the one
used here. Nevertheless, it may be expected that selection
plays a pronounced role in populations where cells compete
for growth unlike in isolated lineages, which in turn may
lead to significant deviations of ENMs from ABMs38,67,68

that we have not studied here.
In summary, we proposed SCH as a general condition

for exactness of EDMs. In the absence of SCH, we found
that despite qualitative differences in the predictions of
EDMs, ENMs closely approximate the total noise statistics
of ABMs. Our results reinstate the validity of effective mod-

els as approximations of the agent-based dynamics, and thus
they significantly extend the scope of state-of-the-art mas-
ter equation methods to a broad range of single-cell analyses
in growing cell populations.
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Appendix A: Stochastic concentration homeostasis and the

validity of EDMs and ENMs

Appendices A and B use multi-index notation. In brief, a
multi-index is a N -tuple α = (α1, α2, . . . , αN ). One defines
powers of a vector x via xα = xα1

1 xα2
2 . . . xαN

N , derivatives

∂αx = ∂α1

∂xα1

∂α2

∂xα2
. . . ∂

αN

∂xαN
, sum of components |α| = α1 +

α2 + · · · + αN , and the factorials α! = α1! · α2! · · ·αN ! and
analogously

(
α
β

)
= α!

β!(α−β)! .

Definition 1 (Stochastic concentration homeostasis). A
probability mass function Π(x|s) with state space X obeys
SCH if for all s ∈ [0,∞) there exists a random variable κ
on K with density χ(κ) satisfying:

Π(x|s) =
∫

K
dκχ(κ)

(κs)x

x!
e−s|κ|, ∀x ∈ X . (A1)

Definition 1 implies that if κ has a moment-generating

function F (t) = Eχ[e
tTκ] then using (A1) one finds the

factorial-moment generating function

EΠ[z
x|s] =

∑

x∈X
zxΠ(x|s) =

∫

K
dκχ(κ)e−s|κ|

∑

x∈X
zx

(κs)x

x!

= Eχ[e
s(z−1)Tκ] = F (s(z − 1)) (A2)

and similarly the factorial moments

µn(s) = EΠ

[
x!

(x− n)!

∣
∣
∣
∣
s

]

= (∂nzEΠ[z
x|s])z=1 = s|n|Eχ[κ

n],

(A3)

for a multi-index n. Since the factorial-moment generat-
ing function uniquely determines the distribution, Eqs. (A2)
and (A3) may equivalently serve as definitions of SCH. Fur-
thermore, when {x(s)}s∈[0,∞) is interpreted as a point pro-
cesses along the size coordinate s, SCH emphasises the fact
that it is mixed Poisson process with stationary concentra-
tion vector κ.

Theorem 1. Assume that the partitioning kernel B(x|x′, θ)
is binomial with probability θ given by the ratio of daughter
birth size and mother division size. A stationary solution
of the EDM (4), if it exists, is also a solution of the ABM
(25):

Π(x|s, s0) = ΠEDM(x|s), (A4)

if and only if the EDM’s solution (4) obeys SCH.

The utility of the theorem is that SCH can be checked
without solving the chemical master equation. We demon-
strate this aspect for a general reaction network of
the form (1) with mass-action propensities wr(x, s) =

s1−|ν−

r |kr
x!

(x−ν−

r )!
, whose factorial-moment generating func-

tion (see Chapter 7 in69) obeys:

αs
∂

∂s
G(z|s, s0)

=
R∑

r=1

krs
1−|ν−

r |
(

zν
+
r − zν

−

r

)

∂
ν−

r
z G(z|s, s0) (A5)

Substituting G(z|s, s0) = F (s(z−1)) and x = s(z−1) gives

αx · ∇F (x)

=
R∑

r=1

krs
(

(x+ s)ν
+
r s−|ν+

r | − (x+ s)ν
−

r s−|ν−

r |
)

∂
ν−

r
x F (x).

It can now be seen that the right-hand side of the above
equation is independent of s if either (i) |ν−r | = 0 and |ν+r | =
1 , (ii) |ν−r | = 1 and |ν+r | = 0, or (iii) |ν−r | = |ν+r | = 1. Thus
the EDM and the ABM solutions coincide for mass-action
reaction networks (1) when they comprise only the mono-
molecular reactions given in (30).
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Similarly, we check that adding bursty reactions of the

form ∅
k−→ ms ×X leads to a generating function equation

αs
∂

∂s
G(z|s, s0) = k[g(z|s)− 1]G(z|s, s0) + . . . , (A6)

where g(z|s) = E[zms |s] is the factorial-moment generating
function of the burst distribution. Eq. (A6) transforms to
αx · ∇F (x) = k[g(x/s + 1|s) − 1]F (x) after substituting
G(z|s, s0) = F (s(z − 1)) and x = s(z − 1). Hence, bursty
reactions obey SCH if and only if the burst distribution
obeys SCH, i.e., if there exist a moment-generating function
f satisfying f(x) = g(x/s+ 1|s) as in (A2).

Appendix B: Proof of Theorem 1

The proof of Theorem 1 is divided in three steps. The first
step shows that a general condition (B1) guarantees snap-
shot distributions that are independent of birth size. We
then show that (B1) satisfies the effective dilution model
and reduces to SCH for binomial partitioning at cell divi-
sion. The proof also clarifies that the assumption of bino-
mial partitioning cannot be removed under biological con-
straints conserving the total number of molecule numbers
at cell division. General conditions for the existence of the
EDM’s stationary distributions have been discussed in70.

Step 1: Distributions invariant of birth size

The conditional distribution Π(x|s, s0) is independent of
birth size s0 if and only if

Π(x|θs, s0) =
∑

x′

B(x|x′, θ)Π(x′|s, s0), (B1)

where B(x|x′, θ) is the partitioning kernel in Eq. (25b) that
depends only the inherited size fraction θ = s0/s

′. This fact
can be verified using (B1) in the boundary condition (25b),
which leads to

Π(x|s0, s0) =
∫∞
0

ds′
∫ s′

0
ds′0 ρ(s

′, s′0|s0)Π(x|s0, s′0).

This implies that Π(x|s, s0) must be independent of birth
size

Π(x|s, s0) = Π(x|s).

In the following, we show that under condition (B1) Π(x|s)
coincides with the EDM solution.

Step 2: Transformation into an effective dilution model

Let us denote the factorial-moment generating function
of the partitioning kernel by GB(z|x′, θ) =

∑

x z
xB(x|x′, θ)

such that the invariance condition (B1) becomes

G(z|θs) =
∑

x′

GB(z|x′, θ)Π(x′|s). (B2)

Assume that additionally

θ∂θGB(z|x′, θ) =
N∑

i=1

(zi − 1)∂ziGB(z|x′, θ), (B3)

which holds for the binomial partition kernel GB(z|x′, θ) =
(1 − θ + θz)x

′

. Differentiating Eq. (B2) with respect to θ
then gives

θ∂θG(z|θs) =
∑

x′

θ∂θGB(z|x′, θ)Π(x′|s)

=
N∑

i=1

(zi − 1)∂ziG(z|θs), (B4)

where in the last line we used assumption (B3). Changing
variables (θs→ s) in (B4) yields

s∂sG(z|s) =
N∑

i=1

(zi − 1)
∂

∂zi
G(z|s),

or equivalently the EDM

(

αs
∂

∂s

)

Π(x|s)

= −α
N∑

i=1

[(xi + 1)Π(x1, ..., xi + 1, ..., xN |s)− xiΠ(x|s)]

= −DΠ(x|s). (B5)

Using the above relation, we see that (25a) coincides with
(4) and (A4) follows.

Step 3: SCH and the necessity of binomial partitioning

Finally, we show that condition (B3) required for the va-
lidity of the EDM implies independent binomial partitioning
of molecules. (B3) is a linear PDE that can be solved using
the method of characteristics, which leads to

θ
∂zi
∂θ

= (1− zi), θ
∂GB
∂θ

= 0.

The general solution is GB(z|x′, θ) = J(1 − θ + θz) where
the function J is fixed by the condition that for θ = 1 all
molecules are partitioned deterministically, i.e., J(z) = zx

′

.
Hence, we obtain

GB(z|x′, θ) = (1− θ + θz)x
′

,
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which corresponds to independent binomial partitioning of
molecules in (20). It then follows that (B2) (and (B1)) are
equivalent to

G(z|θs) = G((1− θ) + θz|s). (B6)

Finally, we show that (B6) is equivalent to G(z|s) =
F (s(z − 1)) for binomial partitioning. Expanding (B6)
around z = 1 and identifying the series coefficients with the
factorial moments µn(s) in (A3), we find that the factorial
moments are homogeneous functions of order |n| =

∑

i ni:

µn(θs) = θ|n|µn(s). Then by Euler’s homogeneous function
theorem, it follows that the factorial moments with index n,
satisfy s ∂

∂s
µn(s) = |n|µn(s) and hence µn(s) = s|n|µn(1).

This implies that the factorial-moment generating function
is

G(z|s) =
∑

n

s|n|µn(1)
(z − 1)n

n!
= F (s(z − 1)),

with F (x) =
∑

n x
nµn(1)/n!. It remains to be shown that

F is indeed a moment-generating function. To this end, we

note that ∂kG(z|s)
∂zk

= s|k|F (k)(s(z − 1)) ≥ 0 for z ∈ (1,−∞)
and hence F (−x) is a completely monotone function on
x ∈ (0,∞), which implies that there exists a distribution χ
for which F (−x) = Eχ[e

−sx] is a Laplace transform, which
concludes the proof of Theorem 1.

Appendix C: Approximation of birth size moments

We here derive an analytical approximation (38b) for
the conditional birth size moments. We start by rewrit-
ing EΠ[s0|s] in terms of the backward lineage distribution
ψbw using Eq. (24):

EΠ[s0|s] =
∫ s

0

ds0 s0Π(s0|s)

=

∫ s

0
ds0 s0Π(s0, s)

∫ s

0
ds0 Π(s0, s)

=
Eψ[s0Φ(s|s0)1s0≤s]
Eψ[Φ(s|s0)1s0≤s]

. (C1)

We now apply matched asymptotic expansion to this ex-
pression.

1. Large cell asymptotics

For large cells s ≫ s0, we can extend the range of inte-
gration in Eq. (C1) and compute the expectation value as
follows

Eψ[f(s0, s)] =

∫ ∞

0

ds0ψbw(s0)f(s0, s)

=

∫ ∞

0

ds0

∫ ∞

−∞

dk

2π
e−ik(s0−s̄0)

(

1− k2σ2

2

)

f(s0, s) +O(σ3)

= f(s̄0, s) +
σ2

2

∂2f(s̄0, s)

∂s̄20
+O(σ3).

Using f(s0, s) = s0Φ(s|s0) and f(s0, s) = Φ(s|s0) in
Eq. (C1), the conditional moments of birth size can be ap-
proximated by

Elarge
Π [s0|s] = s̄0

(

1 +
2σ2

s̄0

∂ lnΦ(s|s̄0)
∂s̄0

)

+O(σ3)

=
(
s̄0 + 2aσ2γ(s− as̄0)

)
+O(σ3),

where the last equality follows from γ(s, s0) = γ(s − as0)
for the linear cell size control model (19), and s̄0 and σ are
the mean and standard deviation of the backward lineage
distribution ψbw given by Eqs. (38c).

2. Small cell asymptotics

Next we consider small cells by noting that Φ(s|s0) is
practically constant when s ≈ s0, the integral in (C1) can
be approximated by

EΠ[s0|s] ≈
Eψ[s01s0≤s]

Eψ[1s0≤s]
, (C2)

Assuming that ψ, is approximately Gaussian with mean s̄0
and variance σ2, we find that near s ≈ s̄0, we have

Eψ[s01s0≤s] ≈
1

2
s̄0

(

1 + erf

(
s− s̄0√

2σ

))

−σe
− (s−s̄0)2

2σ2

√
2π

Eψ[1s̄0≤s] ≈
1

2

(

1 + erf

(
s− s̄0√

2σ

))

(C3)

and hence

Esmall
Π [s0|s] = s̄0 −

√
2
π
σe−

(s−s̄0)2

2σ2

1 + erf
(
s−s̄0√

2σ

) +O
(
σ3

)
,

which is accurate to order σ3.

3. Global asymptotics

The two asymptotic solutions can be matched at the
boundary layer. Since

lim
s→∞

Esmall
Π [s0|s] = lim

s→s0
Elarge

Π [s0|s] = s̄0,

the uniformly valid matched asymptotic expansion is

EΠ[s0|s] ≈ Esmall
Π [s0|s] + Elarge

Π [s0|s]− s̄0,

which gives Eq. (38b).
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FIG. 6. Retrospective averages of birth size. Matched asymptotic expansions of EΠ[s0|s] (Eq. (38b), lines) for the adder size
control (a = 1, s0 = 1) and agent-based simulations (dots) for (a) varying size control noise CV[∆] and (b) division errors CV[θ].

Appendix D: Analytical solutions and error bounds using the

linear noise approximation for deterministic cell division

We begin by outlining the solution of (32). Defining

Σ̃(s, s0) = U−1Σ(s, s0)U
−†, Eq. (32) of the main text be-

comes

αs∂sΣ̃ij = (λi + λ∗j )Σ̃ij + sD̃ij (D1)

4Σ̃ij(s0, s0) = Σ̃ij(2s0, s0) + 2s0X̃ij . (D2)

Eq. (D1) has the solution

Σ̃ij(s, s0) = cijs
λi+λ∗

j
α +

D̃ijs
α
(

1− λi+λ∗

j

α

) , (D3)

where the constants cij are fixed using the boundary condi-
tion (D2) which gives the solution of the EDM, Eq. (34) of
the main text.

Using Eq. (40) and averaging (D3) over the determinis-
tic size distribution (33), we find the covariance matrix of
concentrations X,

CovΠ[X] =
1

Ω

N∑

i,j=1

ûiû
†
j

βij
(
coth

(
1
2βij ln 2

)
+ 3

)

3(βij + 1)

αX̃ij

ξij

+
βij

(
3βij − coth

(
1
2βij ln 2

))

3
(
β2
ij − 1

)
D̃ij
ξij

, (D4)

where ξij = 2α− λi − λ∗j , βij =
ξij
α
, Ω−1 = EΠ[s

−1] = 3
4

1
s0
,

and ûi are the eigenvectors of the Jacobian J introduced
before Eq. (34). Similarly, considering molecule numbers x,
we have CovΠ[x] = Σint

ABM +VarΠ(s)X̄X̄
T where the intrin-

sic noise contribution is given by

Σint
ABM = Ω

N∑

i,j=1

ûiû
†
j

[ (
2βij − 2

)
βij

(2βij − 1) (βij − 1) ln 4

αX̃ij

ξij
+

βij
((
2βij − 1

)
βij ln 4− 2βij (1 + ln 4) + 2 + ln 4

)

(2βij − 1) (βij − 1)2 ln 4

D̃ij
ξij

]

,

(D5)

with Ω = EΠ[s] = s0 ln 4.
The expressions greatly simplify for a single species since

û = ûi, β = βij and ξ = ξij . We note that in this case
(D4) increases monotonically with β while (D5) decreases
monotonically with β. Using the limits β → 0 and β →
∞, we find that the ABM’s coefficients of variation can be
bounded by the EDM’s coefficients:

6

7
≤ CV2

ENM[X]

CV2
ABM[X]

≤ 3

2
ln 2, (D6)

2 ln2(2) ≤ CV2
ENM[x]

CV2
ABM[x]

≤ 4 ln 2

1 + ln 4
, (D7)

where we have used the fact that D(X̄) ≥ αX̄ and the ENM

solution of (9) is Σint
ENM = αX̄

Ωξ + D
Ωξ . The result implies that

the ENM overestimates the ABM’s coefficient of variation
of concentrations by at most 8% but underestimates it by
at most 2%, and vice versa for molecule numbers.
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Box 1: First-Division Algorithm for agent-based simulations of size-dependent gene regulatory networks

Exact simulation algorithm of general stochastic reaction networks within growing cells (agents) undergoing binary cell
division according to cell size control rules46,50,52. The algorithm combines the Extrande method45 for simulating re-
action networks embedded in a growing cell and the First-Division algorithm38 for the population dynamics. The
state of each cell is given by birth time t0, birth size s0, present cell size s and the vector of molecule numbers x.

Algorithm 1: First-division algorithm simulating
agent-based population dynamics

Input: Cell states {t0,i, s0,i, si, xi}i=1,...,M for
population of M cells.

Output: Cell states at time T > 0.
Require: Growth rate α, cell size control model (19)

and division error distribution π.
Initialise t← 0;
while t < T do

Compute division times td,i = t0,i + α ln(sd,i/s0,i)
for i = 1, ..,M where sd,i is computed from (19);

Compute the first division time t∗d = mini td,i and
index i∗ = argminitd,i;

if t∗d < T then
Grow all cells until t = t∗d using Algorithm 2;
Draw a random number θ ∼ π̄ and divide the
cell i∗ according to s0,i∗ , si∗ ← θsi∗ and
s0,M+1, sM+1 ← (1− θ)si∗ ;

Partition molecules binomially xnew
i∗ ∼ B(xold

i∗ , θ)
and assign the rest to the other daughter cell
xM+1 ← (xold

i∗ − xnew
i∗ ) ;

Set M ←M + 1;

else
Grow all cells until t = T using Algorithm 2;

end

end

Algorithm 2: Extrande algorithm simulating
reaction networks in a growing cell

Input: Cell state (t0, s0, s, x) at time T0.
Output: Cell state at time T ′ > T0.
Require: Growth rate α, stoichiometric vectors

(ν±
r )r=1,..,R and propensities (wr)r=1,..,R.

Initialise t← T0 and let a0(x, s) =
∑R

r=1 wr(x, s);
while t < T ′ do

Compute bound B = maxt′∈[T0,T
′] a0(x, s0e

αt′);
Generate putative reaction time τ ∼ exp(1/B);
if t+ τ ≥ T ′ then

Set time t← T ′ and cell size s← s0e
α(T ′

−t0);
else

Update time t← t+ τ and cell size
s← s0e

α(t−t0);
Generate random number u ∼ U(0,1);
if a0(x, s) ≥ Bu then

Choose reaction associated with the smallest
positive integer j less than or equal to R
satisfying

∑j

r=1 wr(x, s) ≥ Bu and update

molecular state x← x+ ν+
j − ν−

j ;

end

end

end

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2020.10.23.352856doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.23.352856
http://creativecommons.org/licenses/by-nc-nd/4.0/



