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In this study, we develop two Ant Colony Optimization (ACO) models as new metaheuristic models for solving the time-
constrained Travelling Salesman Problem (TSP). Here, the time-constrained TSP means a TSP in which several cities have
constraints that the agents have to visit within prescribed time limits. In our ACO models, only agents that achieved tour under
certain conditions de	ned in respective ACOmodels are allowed to modulate pheromone deposition. �e agents in one model are
allowed to deposit pheromone only if they achieve a tour satisfying strictly the above purpose. �e agents in the other model is
allowed to deposit pheromone not only if they achieve a tour satisfying strictly the above purpose, but also if they achieve a tour
satisfying the above purpose in some degree. We compare performance of two developed ACOmodels by focusing on pheromone
deposition. We con	rm that the later model performs well to some TSP benchmark datasets from TSPLIB in comparison to the
former and the traditional AS (Ant System) models. Furthermore, the agent exhibits critical properties; i.e., the system exhibits
complex behaviors. �ese results suggest that the agents perform adaptive travels by coordinating some complex pheromone
depositions.

1. Introduction

M. Dorigo proposed Ant Colony Optimization (ACO) as
a metaheuristic for solving combination optimization prob-
lems [1, 2]. ACO was inspired by indirect communications
collective of real ants interacting with each other using
chemical elements (pheromones).

ACO models have been applied to the Travelling Sales-
man Problem (TSP) which demands the shortest tour under
the condition that travelling agents are allowed to transit
each city only once and return to the start city. �en, ACO
might be a powerful solving tool for TSP and some dynamic
manufacturing problems in the real world [3–7]. Further, it is
well known that TSP is related to some scheduling problems
[6, 8].

�e time-dependent/constrained TSP is widely studied
as an important problem because, in natural conditions,
the cost between any two cities can be varied based on
the time evolutions [8, 9]. �is problem can be concerned
with scheduling time-dependent tasks, such as the process of

scheduling manufacturing jobs. Bioinspired or metaheuristic
models have been proposed for the time-dependent/ time-
constrained TSP and related problems [10–12]. ACO models
have been also proposed for such problems [13–15]. In fact,
advanced ACO models have been proposed for various
problems [16–18].

Previous ACO models reveal that both exploiting and
exploring the solution space can be an e
ective searching
manner on the time-dependent/constrained TSP [13, 14].
However, those models seem to adopt the transcendental
point of view, i.e., using the global best solution for the
pheromone update event, which is incompatible to real ants’
behaviors. As a swarm intelligent system, arti	cial ants must
make a decision individually using limited local information.

To this end, we propose ACO models for the time-
constrained TSP in which individual agents judge whether
or not they deposit pheromones a�er each tour. In our
time-constrained TSP, several cities have to be visited within
individual prescribed time spans; i.e., each agent must 	nd
an optimal tour under the constraints of visiting certain
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cities within respective speci	ed times. �is situation means
a delivery problem with speci	ed delivery-time constraints.

�e ACO models imitate positive feedback of real ants
and eventually lead all the ants to a single path. How-
ever, further positive feedback might be needed for above
time-constrained TSP. Real ants deposit pheromone more
o�en when they encounter pro	table resources [19, 20]. We
therefore add similar mechanism into our ACO models and
propose two di
erent models.

In the 	rst ACO model, agents are allowed to update
pheromone if and only if they achieve a tour in which the
agents visited all time-constrained cities within a speci	ed
period time and that tour was better than any tour each agent
found until then. Although the system based on this rule for
pheromone update attracts rapidly the agents to one solution,
diversity of solutions in the system will be lost because this
rule for pheromone update obstructs that the agents deviate
from one solution. Real ants allow multiple food locations
to be exploited simultaneously when they encounter the
ambiguous situation, by upregulating pheromone deposition
[21]. In that sense, ants might coordinate the deposition of
pheromones.

With reference to this feature, we construct the second
ACO model in which agents deposit pheromones positively
when they 	nish a tour by visiting not all cities with time
constraints but some cities within a speci	ed period of time.

�e rule for the deposition of pheromone in the 	rst
model means the strict learning procedure corresponding to
the requirement of the strict satisfaction of constraints in
the mathematical programing. On contrast, the rule for the
deposition of pheromone in the secondmodel corresponds to
the tolerant learning procedure in so� computing. We found
the “upregulated pheromone” in the second ACO model
could serve as a key in order to 	nd better solutions.

2. Materials & Methods

2.1. Ant Colony Optimization for TSP. Ant system (AS) is
basic ACO model. Here, we demonstrate concepts of AS in
this section.

Firstly, the city that the agent is assigned means the start
city and goal city in circuit tour of this agent. �e agent �
determines next city based on the following probability:

���� (�) =
[��� (�)]

� [��� (�)]
�

∑�∈	� [��� (�)]
� [��� (�)]�

, (1)

where �� represents the set of cities that the agent � has not
yet visited at present time in tour �. �en, 
 and � mean the
present city and candidate city as next-visit city included in

the nonvisit city set��, respectively. Further, ��� indicates the
pheromone amount between cities 
 and �. �e parameter
��� indicates the heuristic information de	ned as an inverse
number of distance between two cities 
 and �.�eparameters
� and � indicate the weights of the pheromone and distance
function in the city selection, respectively.

A�er all agents 	nish one tour, pheromone amounts ���
are updated as follows:
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Here, ��(�) represents the circuit tour length that the agent �
travelled in tour �, and ��(�) indicates a set of city pairs on
the circuit route that the agent � travelled in tour �. Further,
� represents the pheromone evaporation rate satisfying 0 <
� < 1, and # indicates the number of agents.

2.2. De�nition of the Time-Constrained TSP. We apply ACO
models to the time-constrained TSP. �ere is the classical
time-dependent TSP as a version of TSP in which the
transition cost between one city and another city depends on
the period of the day [8]. In this paper, however, we introduce
the time-constrained TSP where several cities have respective
time constraints where agents must visit such a city within a
prescribed time as a di
erent version of the time-dependent
TSP. For example, delivery workers must arrange a time
to deriver if costumers specify the delivery time. Here, we
introduce time-constrained cities as the following manners.

In the beginning of each trial, the start city is randomly
chosen. All agents are arranged on the same start city. �ere-
a�er, several cities are randomly chosen as time-constrained
cities. Agents must visit those cities in limited time duration.
More speci	cally, chosen time-constrained city 
 is assigned
following value as limited time duration:

$
"�%&'&�#�*�#,� × 5 + 5 ×  *, (4)

where $
"�%&'�#�*�#,� indicates the distance between the
start city of agents and the constrained city 
 and “#” means
a tentative number of the start city. Further,  * indicates
random number satisfying [0.0, 1.0].

When the agent � visits the time-constrained city 
, it is
regarded that the agent visits that city within a speci	ed time
only if its tour length up to that time is smaller than limited
time duration of that city.

2.3. Details of Our Models. Here, we describe the details of
our models. �e 	rst one is named as the strict ACO model
for time-constrained TSP. In the strict ACO model, agents
are allowed to add pheromone on their paths only if they
visit all time-constrained cities within limited time duration
and update their own best-so-far solution. �e second one
is named as the tolerant ACO model for time-constrained
TSP. In the tolerant ACO model, agents are tolerated to add
pheromone positively on their paths if they visit several cities
out of all time-constrained cities within limited time duration
and update their own best-so-far solution.

We explain submodels for tour iteration of each ACO
models. Please note that we adopt synchronous updates in
respective ACOmodels.
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Table 1: Parameters for the calculation.

(�,�) � N of agents � '�*"� &
*�$ � ��%� &*�
Strict ACOmodel (1, 5) 0.9 N of cities 4 -

Tolerant ACOmodel (1, 5) 0.9 N of cities 4 2 or 3

Ant System (1, 5) 0.9 N of cities 4 -

Table 2: �e number of trials of the shortest tour of each model. Here, we focus on the tours in which all time-constrained cities are visited
within limited time duration. One hundred trials are conducted.

Strict ACOmodel Tolerant ACOmodel Ant System

eil 51 32 49 11

berlin 52
(� ��%� &*� = 2) 32 46 5

berlin 52
(� ��%� &*� = 3) 37 27 11

Step 1 (city selection). �e agent � chooses a city from a set
of unvisited cities using (1).

Step 2 (on time?). If the agent � choses a time-constrained
city and succeeds to visit that city within limited time
duration, then

� "-''�""� = � "-''�""� + 1, (5)

where� "-''�""� describes the number of time-constrained
cities that the agent � succeeds to visit within limited time
duration. �en update its position.

Step 3 (tour 	nished?). If the agent � 	nished a tour, then go
to Step 4. If not, go to Step 1.

Step 4 (pheromone update). In case of the strict ACOmodel,

if� "-''�""� = � '�*"� &
*�$ and ��(�) < /�"��,

then the agent � adds pheromone based on (2)
and (3).

Remark that � '�*"� &
*�$ indicates the number of time-
constrained cities.

On the other hand in case of the tolerant ACO model,

if� "-''�""� ≥ � tolerance and ��(�) < /�"��,

then the agent � adds pheromone based on (2)
and (3).

Remark that� ��%� &*�means the allowable number of cities
that each agent has to succeed to visit within constrained
time duration. Please note that the tolerant model could be
matched to the strict ACOmodel if and only if� ��%� &*� =
� '�*"� &
*�$. Please remark that the pheromone update in
the strictACOmodel and the tolerantACOmodel di
er from
the usual AS.

Step 5 (reset). � "-''�""� is reset to 0, /�"�� is reset to ��(�)
if ��(�) < /�"��. �en, go to Step 1.

3. Results

We solved the time-constrained TSP using two symmetric
TSP dataset (eil 51, berlin 52) from the TSPLIB. In this
paper, we only used benchmark data described distances as
Eucrid-2D (EDGE WEIGHT TYPE: EUC 2D). Please also
see Table 1 for parameters in respective ACO models.

Table 2 presents the number of trials in which each
model performs the best solution (including equivalence)
among three models. Here, we focused on tours in which the
agents succeeded to visit all time-constrained cities within a
constrained time. �ese data were obtained from 100 trials.
We found that the tolerant ACO model performed better
than other twomodels (vs. the strictACOmodel, chi-squared
test, eil51: 62 = 10.39, $� = 1, 7 < 1.008 − 03, berlin52:
62 = 4.18, $� = 1, 7 < 0.05, vs. the AS model, chi-squared

test, eil51: 62 = 34.22, $� = 1, 7 < 1.008 − 03, belrin52:
62 = 45.79, $� = 1 7 < 1.008 − 03). Please note that we
replaced the parameter � ��%� &*� from 3 with 2 in case of
berlin 52 because the former could not show any signi	cant
di
erences between the tolerant ACOmodel and strict ACO
model (62 = 2.21, $� = 1 7 = 0.14,�?).

Figure 1 represents the tour interval between two consec-
utive pheromone depositions of individual agents, which fol-
lowed a power-law distribution (Akaike Information Crite-
rion (AIC)weights for the power-law against the exponential-
law = 1.00, n of data = 69, @ = 1.39). Here, we used the dataset
from eil 51. �is result suggests that the tolerant ACO model
di
ers from the regular-transitionmodels inwhich the agents
switch rules of pheromone deposition regularly.

Finally, we would like to comment on parameter e
ects
by conducting additional analysis using eil 51 datasets. �e
upper raw of Table 3 represents the number of trials in which
each model performs the best solution among three models
in the case that (4) is replaced by (4’):

$
"�%&'&�#�*�#,� × 10 + 10 ×  *, (4’)
Even a�er this replacement, the tolerant ACO model is not
inferior to any other model (vs. strict ACO, Chi-squared test,

62 = 0.088, $� = 1, 7 = 0.77, �? vs. AS, Chi-squared test,

62 = 52.03, $� = 1, 7 < 1.08 − 03). In contrast, the lower
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Table 3: �e number of trials of the shortest tour of each model by replacing a certain equation. Eil 51 was used for these analyses. One
hundred trials are conducted.

Strict ACOmodel Tolerant ACOmodel Ant System

Equation (4’) 45 42 0

� '�*"� &
*�$ = 6 24 26 10
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Figure 1: Tour period between any two consecutive pheromone
depositions for agents.

raw of Table 3 represents the number of trials in which each
model performs the best solution among three models when
� '�*"� &
*�$ = 4 is replaced with � '�*"� &
*�$ = 6.
�e tolerant ACO model is again not inferior to any other

models (vs. strict ACO, Chi-squared test, 62 = 0.035, $� = 1,
7 = 0.85, �?, vs. AS, Chi-squared test, 62 = 14.98 $� =
1 7 < 1.008 − 03). �ese results suggest that the tolerant
ACOmodel performs to solve time-constrained TSP �exibly
to some extent.

4. Discussion

In this paper, we developed the ACO models to deal with
the time-constrained TSP.We proposed two di
erentmodels.
�e one was the strict ACO model in which the agents
deposited pheromone if and only if agents found a tour that
all the time-constrained cities were visited within limited
time duration and that tour was better than any tours individ-
uals achieved until then. �e other one was the tolerant ACO
model in which the agents sometimes deposited pheromone
positively even if they did not achieve above tours strictly. We
found that the latter model output better solutions compared
with the former model and the AS model.

It is known that the ACOmodels fall into a local solution
[22]. To overcome such a problem, our models imitate the
system of real ants. Ants seem to deal with the overcrowd
population on a certain path by modulating pheromone
deposition [21]. Agents appear to face di�cult problems that
they cannot judge whether obtained information is pro	table
for their system or not. In that sense, agents exploring the
di
erent possibilities might enable to prevent their system
from being attracted to a local solution. We found that the
interval between two consecutive pheromone depositions fol-
lowed a power-law in the tolerant model. Complex evolutions
regarding the interval between pheromone depositionsmight

be essential to achieve an optimal tour. While obeying a
power-law tailed distribution, agents might o�en deposit
pheromones on certain tours but occasionally stop depositing
pheromones. Such a balance regarding pheromone deposi-
tions enables the system both to attract a local solution and
to deviate that solution.

�e tolerant ACOmodel is not inferior to any other mod-
els when some parameters are replaced. However, we might
be able to improve our proposed model when considering
parameter e
ects. Proposing ACO models in which agents
modify their own parameters adaptively would enable the
system to perform �exibly in various conditions. �at will
become an issue in the future.
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