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The ability of human immunodeficiency virus type 1 (HIV-1) to develop high levels of genetic diversity, and thereby
acquire mutations to escape immune pressures, contributes to the difficulties in producing a vaccine. Possibly no
single HIV-1 sequence can induce sufficiently broad immunity to protect against a wide variety of infectious strains, or
block mutational escape pathways available to the virus after infection. The authors describe the generation of HIV-1
immunogens that minimizes the phylogenetic distance of viral strains throughout the known viral population (the
center of tree [COT]) and then extend the COT immunogen by addition of a composite sequence that includes high-
frequency variable sites preserved in their native contexts. The resulting COTþ antigens compress the variation found
in many independent HIV-1 isolates into lengths suitable for vaccine immunogens. It is possible to capture 62% of the
variation found in the Nef protein and 82% of the variation in the Gag protein into immunogens of three gene lengths.
The authors put forward immunogen designs that maximize representation of the diverse antigenic features present in
a spectrum of HIV-1 strains. These immunogens should elicit immune responses against high-frequency viral strains as
well as against most mutant forms of the virus.
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Introduction

The failure of AIDS vaccine efforts in the past 20-plus years
is thought to be due, in part, to the enormous viral antigenic
diversity found within and among patients with human
immunodeficiency virus type 1 (HIV-1) infection. However,
until recently, relatively little effort had been devoted to
choosing particular viral variant sequences or designing
sequences to include within vaccines [1,2]. There were early
attempts to design vaccines by concatenating commonly
recognized T cell and antibody epitopes [3], but these did not
produce a viable vaccine candidate. New methods of
combining epitopes are being explored in vaccine design,
including production of pseudoprotein strings of T cell
epitopes [4], and the synthetic scrambled antigen vaccine
(SAVINE) [5], which employs consensus overlapping peptide
sets from HIV-1 proteins scrambled together. Focusing on the
use of whole viral protein sequences, natural strains (NSs) as
well as consensus (CON) sequences are being used as a means
to minimize the abrogating effect of antigenic diversity in
vaccine antigens [2,6,7], as are the inferred most recent
common ancestors (MRCA, or ANC) [6,8–10] of targeted virus
populations defined as sequences that reside at the basal node
of the set of in-group sequences in a phylogenetic tree
reconstruction [11]. HIV-1 env sequences representing both
the CON and ANC have been prepared and studied, but
neither has generated exceptionally broad humoral immune
reactivity in initial small animal studies [7,12].

In an effort to develop antigens that capture both the
summary of circulating variation found in CON estimates,
and the coupling of mutations generated with inferred ANC
sequences, we have developed an alternative computational
method that reconstructs the ancestral state sequence at the
center of tree (COT) ([13] and Rolland M, Jensen MA, Nickle

DC, Learn GH, Heath L, et al., unpublished data). The COT
sequence explicitly minimizes genetic distance, as does the
CON, and because it is derived from a phylogenetic tree, it
embodies the most likely mutational coupling relationships
found in the ANC. Despite these efforts, it may be that no
single unit-length antigen, including any NS, CON, ANC, or
COT, will encompass sufficient antigenicity to elicit protec-
tive immune responses against a broad array of viruses [7,12],
as will be required of an AIDS vaccine. This led us to
hypothesize that we would need more than one antigenic
sequence, or greater than one gene length of the antigen, to
elicit protection against the broad antigenic diversity
encountered in natural infections. However, cocktails of
large numbers of native, full-length NS antigens would
quickly become unmanageably complex for practical use as
vaccines.

Here, we propose a means to cope with HIV-1 diversity by
engineering vaccine antigen constructs to include short
protein sequences present at high frequencies in natural
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viral populations. Currently, this method is explicitly directed

toward developing CD8þ cytotoxic T lymphocyte (CTL)

responses, which are critical to controlling viremia during

infection [14–17]. Because the cumulative strength of the

CTL-mediated immune response depends on the presence of

recognizable epitopes (often approximately nine amino acids

in length) in the target proteins, it is logical to seek to

maximize epitope coverage within a vaccine antigen. How-

ever, although substantial, our current catalog of known CTL

epitopes appears to be woefully incomplete [18], hence our

strategy relies on the universe of HIV sequences and not

solely on known epitope content. Thus, here we will define

coverage as the sum of the frequencies of all nine amino acid

segments (9mers) where the frequency is derived from

random independent HIV-1 subtype B isolates found in the

vaccine construct. As our epitope catalog increases and our

knowledge of protein degradation, CTL epitope binding, and

HLA presentation is expanded, this epitope-specific data can

be integrated into the measure of coverage (e.g., by weighting

epitope frequencies in accordance to their relative ‘‘impor-

tance’’ when computing coverage). In this study, we applied

our method to Nef because it is highly variable and is

potentially very difficult to design an immunogen against,

and to Gag because it is immunologically important yet more

conserved. We considered subtype B sequences because more

immunological information is available about this subtype

than any other. This clearly makes the vaccine construct

described here as region-specific because of the biogeo-

graphic nature of the distribution of viral subtypes across the

globe [19]. However, our purpose is to illustrate and

demonstrate that this method has promise at producing a

vaccine against highly variable infectious agents such as HIV.

Methods

Vaccination with all known viral sequences would capture

all known viral sequence variation, but realistic vaccine

constructs might at best include several sequence lengths,

each length containing major variants for immune presenta-

Table 1. GenBank IDs of Sequences Used

Gag Sequences Nef Sequences

AB078005 AF538307 AY206660 AY751406 AY835762 DQ127542 AB012824 AF129350 AF203153 AF538302 AY786750 L15518

AB078703 AJ271445 AY206661 AY751407 AY835764 DQ127548 AB034257 AF129351 AF203161 AF538304 AY835748 M17451

AB078704 AJ437030 AY206662 AY779550 AY835765 DQ295192 AB034272 AF129352 AF203165 AF538305 AY835751 M21098

AB078709 AJ437033 AY206663 AY779553 AY835766 DQ295193 AB078005 AF129354 AF203172 AF538306 AY835753 M26727

AB078711 AJ437038 AY206664 AY779556 AY835769 DQ295195 AB221005 AF129355 AF203180 AJ271445 AY835762 M58173

AB097870 AJ437039 AY247251 AY779557 AY835770 DQ487188 AF004394 AF129362 AF203188 AJ430664 AY835765 M93259

AB221005 AJ437044 AY275555 AY779563 AY835772 DQ487189 AF011471 AF129364 AF203192 AY037269 AY835770 U03295

AF003887 AJ437047 AY275556 AY779564 AY835774 DQ487190 AF011474 AF129369 AF203194 AY037282 AY835772 U03338

AF004394 AJ437050 AY275557 AY786790 AY835776 DQ487191 AF011481 AF129370 AF203198 AY116676 AY835776 U03343

AF042100 AJ437051 AY308760 AY786830 AY835777 K02007 AF011487 AF129372 AF219672 AY116713 AY835779 U12055

AF042101 AJ437058 AY308762 AY786870 AY835778 L02317 AF011493 AF129373 AF219685 AY116714 AY835780 U16863

AF042102 AY173951 AY314044 AY786910 AY835779 M13136 AF042101 AF129375 AF219691 AY116727 AY857022 U16875

AF042103 AY173952 AY314063 AY786919 AY835780 M17451 AF047082 AF129376 AF219729 AY116781 AY857144 U16934

AF042104 AY173954 AY331283 AY786920 AY839827 M19921 AF063926 AF129377 AF219755 AY116805 AY899356 U23487

AF042105 AY173955 AY331285 AY786949 AY857022 M26727 AF069139 AF129378 AF219760 AY116830 AY899382 U24455

AF049494 AY173956 AY331287 AY786952 AY857144 M38429 AF120745 AF129379 AF219765 AY121441 DQ007902 U26087

AF049495 AY180905 AY331290 AY786962 AY857165 M38431 AF120772 AF129382 AF219771 AY173951 DQ085869 U26110

AF069140 AY206647 AY331292 AY818644 AY970946 M93258 AF120840 AF129388 AF219782 AY308762 DQ121815 U26119

AF075719 AY206648 AY331297 AY819715 AY970950 U21135 AF120851 AF129389 AF219792 AY314063 DQ121883 U26138

AF086817 AY206649 AY332236 AY835748 CQ958304 U23487 AF120867 AF129390 AF219800 AY331285 DQ127537 U34603

AF146728 AY206651 AY352275 AY835751 D10112 U26546 AF120887 AF129392 AF219812 AY331290 DQ127548 U43106

AF224507 AY206652 AY423387 AY835753 DQ085869 U34603 AF120898 AF129394 AF219819 AY331293 DQ487191 U44444

AF256204 AY206653 AY560107 AY835754 DQ097739 U34604 AF120909 AF203108 AF219845 AY352275 DQ659737 U44450

AF286365 AY206654 AY560108 AY835755 DQ097744 U39362 AF129334 AF203111 AF238268 AY444311 L07422 U44462

AF538302 AY206656 AY560109 AY835757 DQ097745 U43096 AF129335 AF203116 AF252897 AY713408 L15482 U44468

AF538303 AY206657 AY560110 AY835758 DQ097747 U43141 AF129342 AF203126 AF252910 AY739040 L15489 U66543

AF538304 AY206658 AY679786 AY835759 DQ127536 U69584 AF129343 AF203137 AF462708 AY779550 L15500 U69584

AF538305 AY206659 AY682547 AY835761 DQ127539 U71182 AF129346 AF203141 AF462753 AY786630 L15515 U71182

AF538306 AF129347

doi:10.1371/journal.pcbi.0030075.t001
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Author Summary

The ability of human immunodeficiency virus type 1 (HIV-1) to
acquire mutations that preserve virus viability yet evade immune
responses contributes to the current failure in producing a vaccine.
We describe the generation of candidate HIV-1 immunogens that
include multiple forms of variable elements of the virus including
some that retain colinearity with the virus and thus are expected to
retain protein function. These antigens compress the variation
found in many viral strains into lengths suitable for vaccine
immunogens. For example, we can capture 62% of the variation
found in the Nef protein and 82% of the variation in the Gag protein
into immunogens of three gene lengths. We put forward
immunogen designs that maximize representation of the diverse
antigenic features present in a spectrum of HIV-1 strains. These
immunogens should elicit immune responses against high fre-
quency viral strains as well as against most mutant forms of the
virus.

HIV Vaccine Design



tion. To quantify variant representation and rationally
choose the included variation on this basis, Jojic and
colleagues have proposed a method based on machine-
learning for the compression of sequence variation into a
sequence of minimal length (the ‘‘epitome’’; [20,21]). Below,
we describe an alternative, more transparent algorithm also
designed to attain optimized sequence coverage over a fixed-
length antigen. We refer to the constructs generated by our
method as COTþ because they consist of COT antigens
augmented by the addition of high-frequency 9mers. We
demonstrate the performance of our approach on the highly
variable and epitope-rich viral Nef protein as well the
epitope-rich major structural protein, Gag. The algorithm
consists of five steps applied to a sample of viral nucleotide
sequences, each isolated from a separate patient. We started
with all publicly available nef and gag gene sequences from
HIV-1 subtype B [22]. By excluding sequences with more than
two stop codons and with large indels, and including only
independent single sequences from a given individual to
avoid sampling bias, we obtained a 169-sequence dataset for
Gag; the Nef data set was also constrained to 169 sequences
for comparative purposes (Table 1 includes the GenBank IDs
of all sequences used). The algorithm, however, can rapidly
process datasets with thousands of sequences when such
datasets become available.

The Algorithm
(1) A COT sequence is calculated as described ([13 and

Rolland M, Jensen MA, Nickle DC, Learn GH, Heath L, et al.,
unpublished data) from a phylogenetic tree that captures the
relationships among genes in the sample using maximum
likelihood methods [23]. Briefly, from aligned sequences we
estimate a maximum likelihood tree under a HKY þ C þ I
model of evolution in PAUP*v4beta10 [24]. The resulting tree

is re-rooted at the point that describes the least-squares

distance to all the tips on the phylogeny (the COT node). We

then infer the maximum likelihood state using the same

model of evolution as above.

(2) A table of unique 9mer peptides [20,21] with their

corresponding frequencies (the 9mer distribution) is con-

structed from translated protein sequences. To illustrate this,

note that if our sample contained N identical sequences of

length L each, but every 9mer in the COT peptide library was

unique, then each peptide would be at equal frequency 1
L�8.

On the other hand, if every sequence were different from all

others, to the extent that no 9mer was represented twice, the

frequency for each peptide would equal 1
NðL�8Þ. Actual

samples will yield an intermediate distribution that can be

exploited for vaccine design (see Figure 1). We used this

distribution to compute ‘‘coverage’’; that is, as we select

candidate fragments to be included in the potential vaccine,

we will select only those fragments that are highly repre-

sented under the 9mer curve.

(3) Unique or rare 9mers, which by definition are unlikely

to be common in circulating viral strains, are likely to derive

from low-fitness variants [25,26] and, because of their low

frequency, have low probability of being incorporated in our

vaccine constructs. Specifically, we calculate the frequency of

all observed mutations at each site, and revert any mutation

with a frequency below a fixed ‘‘smoothing’’ threshold, M, to

the corresponding character in the COT sequence. All 9mers

present in the COT sequence are then removed from the

9mer distributions before proceeding to the next step.

(4) Given a fixed window size F (ranging from 9 to L, where

L ¼ the length of the protein sequence [we start with 9

because that is the size of the peptide that is most often found

to encode epitope sequences] and a stride parameter S

Figure 1. 9mer Peptide Distribution Derived from 169 HIV-1 Subtype B Gag and Nef Protein Sequences

Each bin in the histogram represents the number of 9mers from a particular frequency class plotted on a log scale. There are only a few peptides found
at high frequencies, whereas most of the 9mers occur only once or twice. The score of a given frame is the sum of the frequencies of each unique 9mer
contained by the frame. The possible extreme value frequencies for each peptide from all rare to all common is 1.1983 10�5� 0.0020 for Gag (black
bars) and 2.9883 10�5 � 0.0051 for Nef (gray bars). The differences in the two distributions can be explained by the differences in gene length and
levels of conservation.
doi:10.1371/journal.pcbi.0030075.g001
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Figure 2. The Effects of Stride versus Window Length on the Measure of Coverage

In each graph a three-gene-length COTþ construct is evaluated for coverage. Cold (blue) colors indicate high levels of coverage, and hot (red) colors
indicate low levels of coverage. The diagonal in the topography represents the transition from strides shorter than window length to strides longer than
window length. The maximal coverage at three gene lengths occurs with a window size of 17 with a stride of 1 with no smoothing for both genes—
where 82% of the 9mer area is captured for Gag (A) and 62% of the 9mer area is captured for Nef (B). It should be noted that in the area of window of 17
and a stride of 1 the surface is quite flat, and there are several pairs of parameters that give similar results.
doi:10.1371/journal.pcbi.0030075.g002
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[ranging from 1 to L, the length of the protein]), we generate
all sequence fragments from the sampled sequence by
iteratively shifting the frame S residues at a time. We then
compute the coverage for each sequence fragment not
already present in the COT sequence, and append the
sequence fragment to the COT string, compressing with
possible overlap to yield a COTþ molecule with the highest
ratio of coverage per length. Specifically, fragments are
chosen by their level of coverage and whether or not they
have differences with respect to the COT sequences. The
highest coverage fragments are chosen first, with subsequent
fragments with lower coverage being chosen subsequently.
This process is repeated until the sequence of desired length
is derived. The length of the COTþ sequence is arbitrarily
chosen by taking into account plasmid size limitations for
producing and delivering an antigen construct and the
amount of variability that can be efficiently incorporated as
the length is extended, which in turn depends on the
variability found in circulating strains that have been
sampled for a particular gene. We note that it is possible to
arrange the order in which sequence fragments are added to
COTþ to maximize the overlap of consecutive fragments,
thereby further compressing the antigen.

(5) The values of window size F, stride step S, and
smoothing threshold M are varied to achieve maximum
coverage (Figure 2A and 2B).

Comparison with Random Sequences
We compared our constructs of various lengths to

randomly drawn sequences from the curated dataset of 169
sequences using the optimal values for F and S. We generated
COTþ for both Gag and Nef at ever-increasing unit protein
lengths until we reached 100% coverage. For comparison, we
concatenated randomly sampled protein sequences 100 times
at ever-increasing unit protein lengths from both Gag and
Nef and measured 9mer coverage across the same gene
lengths (Figure 3A and 3B). We chose protein unit length for
our comparison, but COTþ can be derived for any partial unit
protein length desired.

Cross-Validation
To ensure that we were not overestimating the coverage of

our constructs due to the finite size of our dataset, we
repeated our approach using 10-fold cross-validation. We
partitioned the data into ten sets, and for each we estimated
COTþ from the remaining 90% of the data and then
measured its coverage of the sequences in the chosen set.
Thus, given that our assessment of coverage is on a set of
sequences not seen in training, we yield an estimated lower
bound on the coverage we would obtain for a larger
population. We report this lower bound as a percentage of
similarity to the estimated upper-bound COTþ, derived from
training and testing on all 169 sequences for both Gag and
Nef. This study is geared to understand the effect of sample
size on the on the COTþ estimation and to show that we are
not overfitting the estimations.

Known Epitope Coverage

Although the list of known HIV-specific CD8 T-cell
epitopes is far from complete [18], we sought to determine
how well our 9mer coverage-based constructs identified
known epitopes. To this end, we obtained all available HIV
CTL epitopes from the Los Alamos National Laboratory
(LANL) HIV immunology database [27] and counted the
perfect matches to our constructs. Because many true
epitopes are listed multiple times and larger peptides are
reported frequently where the true epitope is embedded, we
curated the database to remove any larger epitope that had a
smaller embedded known epitope with the same supertype
HLA response pattern, and removed any duplicates.

Results

We inferred COT sequences from databases of Gag and Nef
protein sequences from HIV-1 subtype B from 169 inde-
pendently infected individuals, and then added frequently
observed variant 9mer peptides to create COTþ sequences.
The frequencies of unique 9-mer peptides are shown in
Figure 1. We find that maximal coverage occurs when the
window size, F, is 17, the stride length, S, is 1, and when
smoothing M is 0 (Figure 2A and 2B). One possible reason for
why an S value equal to 1 leads to the highest coverage is that
it gives every amino acid in the sequences a chance to be in
every possible position in a high-scoring peptide. Counter-
intuitive to this is the observation that S values greater than 1
do not get penalized with big drops in 9mer coverage. We
think the explanation for this observation has to do with the
fact that even with S larger than 1, every amino acid in the

Figure 3. Coverage Comparison between COTþ and 100 Randomly

Sampled (without Replacement) Sets of Sequences of the Same Length

The comparison at the single gene length is for HIV-1 subtype B Gag and
Nef, and measures the COT sequence against randomly sampled
database sequences. The COTþ captures all known variation in the
training dataset at 33 gene lengths for Gag (A) and 67 gene lengths for
Nef (B). Neither Gag nor Nef randomly sampled datasets will reach 100%
coverage until 100% of the data is sampled.
doi:10.1371/journal.pcbi.0030075.g003
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sequences is still considered when building a construct. This
is exemplified by the fact that the biggest drops in 9mer
coverage come when S is larger than F, because it is in this
parameter space that some amino acids have the probability
of not being considered at all in the resulting construct.

Adding peptides to generate a three-gene-length COTþ

construct achieved 82% 9mer coverage for Gag and 62% for
Nef, whereas an antigen constructed from several random
concatenated database sequences [22] needed to achieve the
same level of coverage required ten gene lengths for Gag and
approximately 11 for Nef (Figure 3A and 3B). When COTþ is
compared with 100 constructs of the same length obtained by
concatenating randomly selected sequences from the Los
Alamos National Laboratory database [22], the COTþ

estimate had a higher level of coverage in every case
(randomization test, p , .01) for both Gag and Nef. The
flattening of the curves in Figure 3A and 3B suggests that
after the COTþ construct has grown past a few gene lengths,
the benefit of adding more length is dramatically reduced.
For example, the extension of the COTþ construct from one
to three gene lengths results in a 16% increase in coverage for
Gag and a 13% increase in coverage for Nef. However,
extending COTþ from three to five gene lengths yields only
5% additional coverage for both Gag and Nef. The COTþ

sequence reaches 100% coverage at 33 gene lengths for Gag
and 67 gene lengths for Nef, while the randomly sampled sets
reach 100% coverage only after all 169 sequences are
included. The latter observation is due to the fact that many
of the mutations found in HIV are private (i.e., found only
within the lineage infecting a particular person).

When applied to small datasets, our algorithm generates
COTþ constructs with high coverage. An extreme example is
making a three-gene construct from just three genes in the
training set. In this scenario, we can trivially achieve 100%
coverage. The larger the training set, the lower the coverage
in a three-gene-length vaccine construct. A 10-fold cross-
validation study was therefore designed to determine the

effects of sample size on our COTþ constructs. Specifically, at
three protein lengths, the cross-validated coverage of Gag and
Nef are 96% and 93%, respectively. This suggests that for
both proteins these inferences are generalizable across HIV-1
subtype B and that adding more sequence data into the
training dataset would add very little to these estimations.
That is to say, 10% of the original 169 sequences produce
estimations of the COTþ that are highly consistent with the
estimations from the entire dataset, supporting the notion
that there is a saturation effect and that adding sequences
beyond the 169 will not give rise to better estimations.

Assessing the inclusion of functional CTL epitopes in our
constructs is problematic. The majority of the known CTL
epitopes were mapped using peptides derived from a limited
number of HIV strains (e.g., laboratory-adapted strains and
consensus sequences). The CTL database is also incomplete
(e.g., a recent study that used a subset of autologous peptides
from a single patient enabled recognition of 28% more
epitopes in the virus than were previously reported [18]), and
it is unclear whether characterized epitopes form an unbiased
sample of naturally occurring antigenic peptides. It is also
necessary that the epitope be presented in the proper context
of adjacent amino acids for efficient immunoproteasome
cleavage. We therefore assessed the overall size of the
peptides needed to obtain maximal coverage of included
9mers. As shown in Figure 2A and 2B, maximal coverage of
both the Gag and Nef datasets was obtained with a window
size of 17 amino acids and a stride of one amino acid and no
smoothing required (see Methods). Hence, we are able to
construct immunogens that preserve much of the extended
local amino acid environment of the epitope without
sacrificing coverage. This enhances the likelihood that the
desired peptide epitope will be properly cleaved by cellular
proteases and presented efficiently on HLA molecules.

Next, we assessed the inclusion of known CTL epitopes in
our constructs by comparing the number of known HIV-1
Nef and Gag epitopes [27] contained in the three-gene-length

Figure 4. The Distribution of the Number of Known Epitopes in Three Randomly Chosen Gag (Right-Side Distribution) and Nef (Left-Side Distribution)

Genes from the Los Alamos National Laboratory Database

The COTþ sequence at three gene lengths for Gag has 98 out of 102 known CTL epitopes, and Nef has 40 out of 49 known CTL epitopes.
doi:10.1371/journal.pcbi.0030075.g004
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COTþ constructs to that of 1,000 combinations of three

randomly selected database sequences (Figure 4). Sequences

from the viral strains used to map these epitopes were

excluded from the randomization study. Although our

algorithm does not attempt to explicitly enrich for known

CTL epitopes, the number of known epitopes in COTþ is

significantly higher than in a random three-gene construct (p

, 0.001) for both Gag and Nef. This suggests that COTþ

provides a substantial boost in the number of epitopes shared

between the immunogen and a random circulating database

variant, and thus may have enhanced potential as an

immunogen.

Discussion

COTþ constructs provide a means to extensively compress

epitope variation into an immunogen of minimal size. Much

of the known variation of both the relatively conserved HIV-1

Gag gene and the quite variable Nef gene can be successfully

compressed into COTþ constructs of a few gene lengths. Little

increases in variation coverage are noted, however, beyond

three to four gene lengths. Coverage grows with length

approximately in a y ¼ mlog(x) þ b form where y is coverage

and x is length of the construct. The difference between

COTþ construct of Gag and Nef can be broken down into

these terms. The coverage intercept parameter b is higher for

Gag constructs than for Nef simply because Gag is a more

conserved protein than Nef. However, the parameter m is

larger for Nef than it is for Gag because the benefits of 9mer
compression on coverage are higher with constructs made
from variable proteins.

Our COTþ generation algorithm is a rapid, computation-
ally efficient heuristic approximation, though it is not
guaranteed to find the antigen that achieves maximal epitope
coverage for a fixed length. More computationally intensive
approaches, such as genetic algorithm searches or approx-
imate solutions to the classic Traveling Salesman problem
(see http://mathworld.wolfram.com/TravelingSalesmanPro-
blem.html), could also be brought to bear on the problem
of antigen design. Surprisingly, selecting the high-frequency
9mers alone and appending them to the COT sequence does
poorly in terms of total coverage (unpublished data). This
observation is due to the fact that many of the 9mers do not
overlap, and therefore the fragments cannot be efficiently
joined. By going back and selecting high-coverage peptide
windows from the original data, we obtain better compres-
sion in the vaccine construct leading to higher coverage
constructs for the same length.

It is a reasonable assumption that the retention of native
protein structures might be advantageous in generating CTL
epitopes, since epitopic peptides are generated in vivo by
protein degradation within infected cells. Nef and Gag COT
clearly adopt a native structure, as they retain biological
activity (Rolland M, Jensen MA, Nickle DC, Learn GH, Heath
L, et al., unpublished data). However, the extended COTþ

component of antigens generated in the manner proposed

Figure 5. Possible Configurations for Vaccine Constructs

Each bar represents one unit-length gene. The fill intensity of each bar represents the density of unique peptides and known CTL epitopes. The
coverage that each construct captures of the amino acid diversity of the dataset is shown on the right for both 9mers and epitopes.
(A) COTþ, composed of the estimated COT plus the appended high-frequency peptides (HFPs) composing the second and third gene lengths.
(B) COT plus HFPs placed into a gene collinear fashion on the second and third gene lengths.
(C) COT plus two NSs chosen to maximize 9mer coverage.
(D) All NSs of Gag and Nef sequences chosen such that 9mer coverage is maximized and for comparative reasons (E) is average coverage across all NSs.
The GenBank IDs of the NSs are written inside each bar.
doi:10.1371/journal.pcbi.0030075.g005
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here does not preserve a sequence that is necessarily collinear
with the native gene over the second and third gene lengths
(Figure 5A). Hence, we have also considered additional means
of optimizing immunogen structures that also preserve native
structure. First, we can assemble high-frequency variable
elements in a pattern collinear with the native gene, with
some segments redundant with COT to retain collinearity
(Figure 5B). We can also use NS sequences in combination
with the COT sequence to optimize coverage (Figure 5C). We
can also do very well in generating coverage by exclusive use
of NS sequences that maximize 9mer coverage (Figure 5D).
Although it is not guaranteed, these additional constructs
(Figure 5B–5D) should have biologically acceptable tertiary
structures. The COTþ approach captures more of the 9mer
distribution and more of the known CTL epitopes than any of
the potential constructs presented here. Applying high-
frequency peptides onto COT to create a collinear pattern
provides the second highest level of diversity and epitope
enrichment, but the use of COT plus two NSs is not beneficial
relative to judicious choice of three NSs. Last, it should be
noted that all of these methods substantially exceed the
coverage afforded by the use of a single strain as a vaccine.

Immunodominance gives rise to a rank order of immune
responses to specific epitopes [28], and the underlying
biological mechanisms giving rise to these rank orders are
poorly understood. The antigen designs we report here do
not take immunodominance into account. One can argue
that the combination of epitopes we have derived could elicit
an immunodominant response that does not reflect what is
found in circulating HIV strains and hence could be a poor
choice for vaccine design. However, since the strings of
peptides in our immunogen design are captured by their
frequency in the circulating viral population, we surmise that
these antigens have epitopes that are shared across many
potential challenge strains and could thus lead to potentially
broad immune response. However, immunodominance rank

order patterns can be partially illuminated by expressing

epitopes from different vaccine vectors [29–31]. By vaccinat-

ing with different combinations of vectors encoding a single

or more antigens, they found that using separate vectors

elicited broader CD8þ T cell responses. Because COTþ is

directed towards capturing high-frequency fragments from a

variable protein, it is well-suited to being expressed as

segments on separate vectors. The COTþ algorithm can be

generalized to produce sets of immunogens that can take

advantage of this phenomenon.

COTþ constructs are able to capture significantly more

known epitopes and potential antigen variability than much

longer constructs composed by combining circulating strains.

Considering the substantial expense and difficulty involved in

production and testing of candidate vaccines, careful crafting

of potential antigens using computational methods, including

that shown here, may be beneficial. Furthermore, this

approach is applicable not only to HIV vaccine design, but

to the design of vaccines targeting any pathogen capable of

rapid escape from immune recognition.
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