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Abstract: Vehicular edge computing (VEC) is emerging as a prospective technology in the era
of 5G and beyond to support delay-sensitive and computation-intensive vehicular applications.
However, designing an efficient approach for joint computation offloading and resource allocation
is challenging due to the limited resources of VEC servers, the highly dynamic vehicular networks
(VNs), different priorities of vehicular applications, and the threat of privacy disclosure. In this work,
we propose a cooperative optimization for privacy-preserving and priority-aware offloading and
resource allocation in VEC network (VECN) based on deep reinforcement learning (DRL). Firstly, we
employed a privacy-preserving framework where the certificate authority (CA) is integrated into
the VEC architecture. Furthermore, we formulated the dynamic optimization problem as a Markov
decision process (MDP) by constructing a weighted cost function that integrates the priority of
stochastic arrival tasks, privacy-preserving of offloading, and dynamic interaction between the edge
servers and intelligent connected vehicles (ICVs). To solve this problem, a cooperative optimization
for privacy and priority based on deep deterministic policy gradient (COPP-DDPG) is proposed by
learning the optimal actions to minimize the weighted cost function. The simulation results show
that COPP-DDPG has good convergence and outperforms the other four comparison algorithms in
many aspects.

Keywords: computation offloading; DRL; privacy preservation; vehicular edge network

1. Introduction

The development of beyond 5G (B5G) networks [1] and vehicular networks (VNs) and
the ever-increasing vehicles on the road hasten the flourishing of vehicular applications,
such as online gaming [2], autonomous driving [3], and augmented reality [4], which is
generally computation intensive and delay-sensitive [5–7]. Although cloud computing
provides powerful computational capabilities, remote resources could lead to high latency
due to unpredictable transmission latency. By deploying the cloud capabilities close to the
end-users, mobile edge computing (MEC) is emerging as a promising solution to reduce
the long latency between the users and the cloud [8]. Vehicular edge computing (VEC) is
further emerging as a prospective way to support the stringent requirements of vehicular
applications by installing the MEC servers on roadside units (RSUs) to support the stringent
requirements of vehicular applications [9]. Thanks to the closely deployed resources, the
communication and computing delay could be significantly reduced by offloading the tasks
to the VEC servers [10].

However, the VEC network is characterized by the salient features of both MEC and
VNs, which brings several challenges for efficient task offloading and resource allocation
in the VEC network (VECN) [11]. First, compared to conventional cloud servers, VEC
servers have limited resources, which may be insufficient to meet the strict requirements of
vehicular applications, especially for the explosive arrival of applications in dense scenarios.
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Second, the high mobility and dynamics of VNs lead to spatial-temporally dynamic and
uneven distribution of tasks, which further brings difficulties for designing a dynamic
and elastic task offloading and resource allocation mechanism for a VECN [12]. Third,
some vehicular applications are safety-related and life-critical and should be processed
preferentially, and some are non-safety related (such as the entertainment applications)
and could be deferred, which makes the traditional offloading strategy infeasible for the
heterogenous tasks with different priorities [13]. Fourth, besides the above-mentioned
concerns on the quality of service (QoS), the privacy issue is critical but generally isolated
from task offloading and resource allocation in VECNs [14,15]. The highly dynamic and
open nature of VN channels, together with the frequent task offloading behaviors of
vehicles, make it possible for an attacker to infer the location or personal information of
the vehicle users, leading to the threat of privacy disclosure [16]. The leakage of privacy
information poses significant risks to the social privacy of drivers. Therefore, designing
an efficient and dynamic task-offloading and computational-resource-allocation approach
that is able to ensure the stringent and heterogenous requirements of vehicles, satisfy the
resource constraints of VEC servers, and protect the privacy of vehicles in real-time is a
fundamental problem.

In this work, we propose a dynamic task-offloading and computational-resource-
allocation approach based on decentralized multi-agent deep reinforcement learning (DRL),
where privacy preservation for computation offloading, the priority of different tasks, the
high mobility of ICVs, and the random arrival of the vehicular tasks are jointly considered.
The main contributions of this work follow:

1. We employ a privacy-preserving computation-offloading framework that integrates
the security component of the certificate authority (CA) into the edge-servers-assisted
vehicular network, which involves multiple RSUs and intelligent connected vehicles
(ICVs). In this proposed system model, due to the high mobility of multi-ICVs with
random arrival tasks, the offloading strategies, computational resources assigned to
the ICVs, and the pseudonym-changing decisions vary with time slots.

2. Based on the architecture, we formulated the cooperative optimization problem of
computation offloading and resource allocation with the consideration of privacy
preservation and task priority as a Markov decision process (MDP) based on three
aspects: the end-to-end delay, the computational resource cost, and the ICV’s privacy
level to minimize the weighted cost in the VEN system. Furthermore, the state, action,
and reward states are designed subsequently.

3. In order to effectively solve the above-mentioned problem with continuous variables
and meet the requirement of convergence, cooperative optimization for privacy and
priority based on DDPG (COPP-DDPG) is proposed.

4. The convergence of the proposed approach is verified by the simulation results.
Furthermore, the sets of simulation results of the performance comparison demon-
strate the proposed approach exhibits superior performance to the other four base-
line algorithms.

2. Related Work

A growing number of works have been devoted to computation offloading and re-
source allocation for delay minimization [17,18], the trade-off between delay and fair-
ness [19], handover management [20], and under-utilized resource exploration [21–23].
Zhang et al. [17] proposed a load-balancing computation offloading scheme for VECNs
to reduce the task-processing delay by efficiently utilizing the edge resources. To cope
with the dynamic and uncertain environment of VECNs, Sun et al. [18] aimed to enable
vehicles to decide on the optimal offloading strategy by learning the offloading delay
performance of their neighbors. An adaptive-learning-based task offloading mechanism
was designed based on the multi-armed bandit theory to minimize the average offloading
delay. Zhou et al. [24] designed a two-stage VFC framework for joint resource management
and task offloading, which consists of a contract theory-based vehicular computational
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resource management scheme and a matching-learning-based task offloading mechanism.
Tong et al. [19] proposed a collaborative method for optimal task offloading and resource
allocation in VECN to achieve the trade-off between delay and fairness of collaboration.
Considering the highly dynamic of VECN, the authors of [20] designed an intelligent task
offloading scheme based on deep Q-learning to deal with the frequent handover with rapid
changes in communication and computing. The studies in [21–23] aimed to exploit the
under-utilized resources of the nearby vehicles. In [21], the authors focused on exploiting
multi-hop vehicle computational resources for a task-offloading approach in VECNs based
on the mobility analysis of vehicles. Wei et al. [22] focused on resource allocation and task
assignment jointly by designing a cooperative vehicular fog computing architecture from
an overlapping perspective, to fully utilize the under-explored resources of nearby vehicles.
In [23], the authors proposed a joint offloading and resource allocation scheme for the
parked-and-moving-vehicles-assisted VECN. This work aims to minimize the total offload-
ing delay by employing a two-stage heuristic algorithm to determine the optimal strategies
for offloading, channel allocation, and resource allocation. However, the above-mentioned
works mainly focus on computation offloading without considering the threat of privacy
disclosure during computation offloading.

Some studies are aware that user privacy leaks during the computation offload-
ing [25–28]. Wei et al. [25] aimed at minimizing the offloading action and transmitting
power with the objective of minimizing the system’s cost under the privacy requirement
of task offloading. Wang et al. [26] proposed a privacy-preserving VEC framework to
minimize the delay of task execution by jointly optimizing the task offloading and resource-
allocation algorithm. Xu et al. [27] adopted the non-dominated sorting genetic algorithm II
(NSGA-II) for multi-objective optimization of execution time, energy consumption, and the
privacy of the computing tasks in the VECN. A privacy-oriented task offloading method
was designed in [28] based on deep reinforcement learning to resist attacks from privacy
attackers with prior knowledge. However, these mechanisms formulate the privacy level as
an indicator or the constraint of the optimization problem but lack the design of a privacy
protection strategy for vehicles to defend the offloading actively against the privacy threats.

From the perspective of theoretical mechanisms that are applied for problem solu-
tions, most of the above studies adopted the methods of game theory [17,23,25], contract
theory and a matching mechanism [19], heuristic approaches [23,24,27], or an optimization
approach [22,26]. However, because of the high mobility of the ICVs and the dynamics
of communication connection in VECN, these mechanisms are insufficient to enable the
strategies of computation offloading, resource allocation, and privacy preserving to adapt
to the dynamic environment in real time. Unlike the previous studies, we studied the
cooperative computation offloading, resource allocation, and privacy preservation in a
VEC network based on decentralized multi-agent deep reinforcement learning, where the
priority of different tasks, the mobility of vehicles, and the stochastic arrival of tasks are
jointly considered.

3. Model of VEN with Privacy Preservation
3.1. Scenario Description

In this work, we implemented a vehicular edge network (VEN) including an MEC
server, a set of RSUs denoted byR = {1, 2, . . . , R}, and a set of ICVs, which are denoted
as V = {1, 2, . . . , V}, on a length L multi-lane road.

As shown in Figure 1, a regional MEC server receives and transmits workloads
between several RSUs via the optical fiber link. Each RSU’s coverage range is assumed as r,
which equally divides the road into R segments. The ICVs are randomly and independently
distributed in lanes on the road with an arrival rate λ. Within the coverage of the RSU, ICV
transmits task data between RSU by V2I communication. RSU is assumed as a traditional
communication node in the VEN without computation capacity, which is considered as
an equipment for message forwarding between the MEC server and the ICVs. Equipped
with an onboard unit (OBU) and massive sensors such as cameras, mmWave radar, and
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lidar, ICV has a certain amount of computation capacity, collecting information from the
surrounding environment and sending different types of messages periodically to the RSU
or other ICVs within its communication range.
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Suppose that the speed of the ICVs follows a truncated Gaussian distribution, which
is more appropriate with the practical environment to avoid dealing with the negative
speeds [29]. In addition, the ICVs in the single lane follow the Poisson spatial distribution
with density V

L [17], which makes the ICVs’ equivalent speed s = Lλ
V [30]. The driving

characteristics {pi, si} for ICV-i are periodically broadcasted to RSU and other ICVs with
wireless links, where pi represents the position coordinates of ICV-i on the road space and
si is the immediate speed of ICV-i at its current position; min{si} ≤ s ≤ max{si}, i ∈ V.
In our proposed road segment, the distance between different lanes is relatively small
compared with the road length; therefore, the distance difference between different lanes
is not considered in this work. Here, we assume that pi is a one-dimensional position
coordinate and that the starting point of the road is zero. In this case, pi represents the
distance between the position of ICV-I and the starting point of the road.

Assume that each ICV produces a computation task in a certain time period. The vehic-
ular task developed by ICV-i is denoted as Ti, and the task arrival probability is denoted as
Parr

task. The key parameters of Ti can be characterized by a quintuple
{

Ci, Din
i , Dout

i , tmax
i , Qi

}
to characterize the profile of a mobile application, where Ci is the computing resource
required to finish the vehicular task. The sizes of input and output data generated by the
task execution Din

i and Dout
i are related to the data bits for the task’s input and output.

The maximum completion deadline tmax
i denotes the maximum number of successive time

slots before the vehicular task must be completed. The priority variable of the vehicular
task Qi is associated with the security level and urgency of the vehicular task. According
to the existing standards and use cases of the vehicular network, we divided the vehicu-
lar tasks into three categories: traffic-safety-related tasks, traffic-efficiency-related tasks,
and other vehicular entertainment tasks. Tasks related to ICV safety concern the lives of
drivers and occupants; therefore, these vehicular tasks have the highest priority. Although
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traffic-efficiency-related tasks have strict delay requirements, which may not involve se-
curity threats, we define these vehicular tasks as having normal priority. Other vehicular
entertainment tasks provide value-added services, which can tolerate the completion delay
exceeding the maximum deadline but with some degradation of data availability.

In this work, the ICV tasks are assigned to be executed locally, offloaded to another ICV
with spare computational resources, or offloaded to the MEC server. ICVs with available
computing capacity for task offloading are regarded as the vehicular edge computing
(VEC). The offloading decision of ICV-i is defined as X = {xi|xi ∈ {0, 1, 2}, i ∈ N}. The
ICV-i chooses the local execution strategy of task Ti when xi = 0. The offloading decision of
calculating the task Ti on VEC is selected when xi = 1. Task Ti is offloaded and processed
on the MEC server when xi = 2. In addition, the delay-sensitive vehicular tasks are not
suitable for the situation of the binary offloading [31]. Partial offloading is introduced
in this work to make better usage of the computational resources, which means that the
vehicular task Ti can be executed separately onboard and edge computing as two portions.
The offloading ratio λi(0 ≤ λi ≤ 1) is depicted as the offloading part ratio to the entire
vehicular task Ti. ICV-i computes λiDin

i locally and offloads the rest (1 − λi) Din
i to the

VEC or MEC server [32]. For the limited computing and communication capacity of the
ICV, each VEC is considered to only be able to execute one offloaded task from another ICV.
The main notation is shown in Table 1.

Table 1. List of main notations.

Notation Definition

R/R Set/number of RSUs
V/V Set/number of ICVs

i/ j The ICV index i ∈ V/the RSU index j ∈ R
λ ICVs’ arrival rate

pi/si ICV’s position/speed

Ci/Din
i /Dout

i /tmax
i /Qi

Vehicular task T′i s required computational resource/input data size/output data size/maximum
completion deadline/priority

tlink
ij /tlink

ik Link duration of V2I communication/V2V communication

rUL/DL
ij , /rik/ki Transmission rate of V2I communication/V2V communication

f ICV/ fVEC/ f MEC
j /F Computation resource of the ICV/VEC/allocated to MEC-j/MEC server

Ni(t)/N(t) ICV-i pseudonym changing decision/number of ICVs changing the pseudonym at time t

Pmax/Ploss/Pi(t) ICV’s maximum privacy/privacy loss/actual privacy at time slot t

U ICV
i , UVEC

i , UMEC
i Weighted cost function of ICV-i under different offloading strategies

X/A/N Offloading strategy/computational resource allocation/pseudonym changing decision sets of ICVs

3.2. Mobility Model

In a VEN, the high mobility of the ICVs may lead to changes in communication
connection and affect the task offloading progress. When the ICV is out of the coverage
of the RSU, the connection between the ICV and the MEC server for task offloading
through V2I communication is disconnected. tlink

ij is described as the duration of the V2I
transmission link between ICV-i, i ∈ V and RSU-j, j ∈ R, given by

tlink
ij =

(
r
⌈ pi

r
⌉
− pi

)
·V

Lλ
. (1)

When the distance between two ICVs exceeds their maximum communication range,
the V2V communication will be disconnected. The duration between ICV-i and VEC-k
staying connected is represented as tlink

ik , which can be calculated as [33]
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tlink
ik = χ(|pi − pk| ≤ Tr)

Tr − (pi − pk)sign(vi − vk)

|vi − vk|
, (2)

where Tr is the V2V transmission range under the fixed transmission power P. χ(·) is the
indicator function. If z is false, then χ(·) = 0, indicating ICV-i and VEC-k are disconnected.
sign(·) is the sign function, when (pi − pk)sign(vi − vk) < 0 indicates that ICV-i and
VEC-k are approaching; (pi − pk)sign(vi − vk) > 0 indicates that ICV-i and VEC-k are
moving apart.

3.3. Communication Model

Two wireless communication modes, vehicle-to-vehicle and vehicle-to-infrastructure
(V2V and V2I), are involved in the proposed VEN. The V2V communication mode is
adopted when the ICV-i decides to offload the vehicular task Ti to the surrounding ICV
within one hop. The available ICV, which has spare computational resource VEC-k, pro-
cesses the computational task and returns the calculation results to ICV-i. The transmission
rate rik/ki between ICV-i and VEC-k is

rik/ki = Bik/ki log2

[
1 +

ρ0Pi/Pk

σ2[dik/ki]
ε

]
. (3)

The two-way communication delay between ICV-i and VEC-k is obtained as

tVEC
comm =

λiDin
i

rik
+

λiDout
i

rki
. (4)

After offloading the vehicular task to the MEC server, the communication process
includes the communication between the RSUs and the MEC server, and between the ICVs
and the RSUs. In general, the optical fiber transmission time between the RSUs and the
MEC server is negligible [17]. In this work, the ICVs and the RSUs communicate in the
mode which is assumed to use the protocol of IEEE 802.11p. According to [34], the uplink
and downlink transmission rate between ICV-i and RSU-j is

rUL/DL
ij =

λiDin
i /Dout

i Njτij$(
1− τij

)Nj σ + Tsuccess
ij Njτij$ + 1−

(
1− τij

)Nj − Njτij$(RTS + AIFS + δ)
, (5)

where Nj is the number of ICVs offloading the vehicular task to the MEC server through
the RSU-j. τij is the connection probability between ICV-i and RSU-j in the random time

slot. σ is a time slot duration, $ =
(
1− τij

)Nj−1, and δ is the propagation delay. Tsuccess
ij is

the successful transmission period between ICV-i and RSU-j, which is expressed as

Tsuccess
ij = Φ +

λiDin
i /Dout

i
ωj log

(
1 + Pihij

) , (6)

where Φ is related to the media access control protocol. ωj is the RSU-j’s bandwidth, Pi
stands for the ICV-i’s transmission power, and hij denotes the channel gain between ICV-i
and RSU-j.

The uplink and downlink transmission time between ICV-i and RSU-j is calculated as

tMEC
UL/DL =

λiDin
i /Dout

i

rUL/DL
ij

. (7)

The two-way communication delay between ICV-i and RSU-j is given by

tMEC
comm = tMEC

UL + tMEC
DL . (8)
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3.4. Computation Model

There are three different modes with which to calculate the computation time accord-
ing to the above-mentioned different offloading strategies. We assume that each ICV is
equipped with the same OBU which provides the vehicular computation capacity as f ICV .
In terms of computational resources, the VEC is essentially an ICV, and fVEC = f ICV . The
MEC server’s whole computation is depicted as F.

3.4.1. Local Computation

When the ICV-i executes the vehicular task Ti locally, xi = 0. The computation delay
tICV
i of the vehicular task Ti is only dependent on the ICV-i’s computational resource. The

local computation time tICV
comp is given as

tICV
i = tICV

comp =
λiCi
f ICV

. (9)

3.4.2. VEC Offloading

In the situation of the vehicular task Ti offloaded to the VEC-k, xi = 1, considering
the VEC-k has spare computational resources, the computation time of the ICV-i for the
offloaded vehicular task Ti to VEC-k is formulated as

tVEC
comp =

(1− λi)Ci
(1− λk) fVEC

. (10)

The total delay between the ICV-i and the VEC-k involves the task computation time
and the communication time, which can be written as

tVEC
i = tVEC

comp + tVEC
comm. (11)

3.4.3. MEC Offloading

In the situation of the vehicular task Ti offloaded to the MEC server, xi = 2, the com-
putational time of ICV-i offloading the vehicular task Ti to the MEC server is obtained by

tMEC
comp =

(1− λi)Ci

f MEC
j

, (12)

where f MEC
j is the computational resource allocated to the RSU-j, which is considered as

the transmission link between the ICV-i and the MEC server, which is related to the MEC
server’s CPU cycle frequency. The total delay between the ICV-i and the MEC server is
expressed as

tMEC
i = tMEC

comp + tMEC
comm. (13)

3.5. Privacy Model

In the secure communication of VEN, the privacy protection of ICV’s identity and
location are very important. There are two privacy preservation schemes in the Internet
of Vehicles, pseudonymous-based scheme, and signature-based scheme. According to the
European Telecommunications Standards Institute (ETSI) standard, pseudonyms are con-
sidered a main method for the security and privacy preservation in secure communication
of intelligent transportation system [35]. The pseudonym is a digital certificate issued to an
ICV by the Certificate Authority (CA) based on its real identity after the ICV is registered
with the CA. Using pseudonyms rather than real identities in the process of vehicular
communication can effectively protect the identity and the location privacy of the ICV to
some extent.

Pseudonymous privacy preservation scheme is widely used in the IoV. Pseudonym
exchanging and pseudonym changing are two methods in this scheme. Pseudonym
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exchanging is when an ICV’s pseudonym expires, the ICV negotiates with another ICV
to exchange their pseudonyms. Although pseudonym exchanging saves on pseudonym
resources, the situation where the ICV cannot reach an agreement with its surrounding
ICVs may occur, which may not be able to meet the ICV’s timely pseudonym update
requirement. By contrast, it is much simpler to implement ICV’s pseudonym updating by
pseudonym changing. The CA has to suffer more computational and communicational
stress and requires additional storage in the method of pseudonym changing. However, in
our considered model, the CA is integrated into the MEC server, which provides the CA’s
required computation, communication, and storage resources. In addition, the signature
privacy preservation scheme in the IoV includes the group signature and ring signature.
The group signature scheme can effectively implement anonymous communication, but it
is difficult to update system parameters effectively when new members join the group and
remove malicious members. Ring signatures can provide spontaneous anonymity, but the
difficulty is how to form a ring between ICVs.

Therefore, pseudonym changing is the most appropriate method pf the above-mentioned
methods for the proposed VECN scenario. Here we assume that ICVs should change their
pseudonyms under certain conditions to reduce the risk of a single pseudonym being
associated with the real identity of the ICV [36].

Let Ni(t) indicate whether the ICV-i changes its pseudonym at time slot t.

Ni(t) =

{
0, ICV− i does not change the pseudonym

1, ICV− i changes the pseudonym
. (14)

N(t) depicts the number of ICV units changing the pseudonym at time slot t.

N(t) =
V

∑
i=1

Ni(t). (15)

According to the information entropy principle, the maximum privacy Pmax that an
ICV can obtain at time slot t is [37]

Pmax =
N

∑
a=1

Pa|b log2 Pa|b, (16)

where Pa|b is the case that the pseudonym is changed from b to a, and the pseudonym is
available when Pa|b = 1

N(t)
.

There is a certain cost when changing the ICV’s pseudonym. Here, we comprehen-
sively consider the cost in two parts. One part is the cost of changing the radio’s routing
and addressing table when acquiring a new pseudonym, and another is the time cost of
keeping silent during the process of changing the pseudonym [38]. It is assumed that there
is no limit to the number of pseudonym changing in this work, and the costs are collectively
denoted as Ploss, The real-time loss of ICV-i’s privacy at time slot t is

Ploss = ϑ ∗ (t− tc,i), (17)

where ϑ represents the location privacy loss constant, and tc,i indicates the last time slot
that the pseudonym has been changed. The privacy of ICV-i at time slot t is

Pi(t) = Pmax − Ploss = ∑V
d=1

1
N(t)

log2
1

N(t)
− ϑ ∗ (t− tc,i). (18)

4. Problem Formulation

We formulated the cooperative optimization problem of computation offloading and
resource allocation with privacy preservation to minimize the weighted system cost. In this
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work, the cost function is negatively correlated with the ICV’s satisfaction. The satisfaction
function is a term in economics and has been widely used by recent studies [39].

Firstly, the total delay of the ICV’s task is negatively correlated with satisfaction. With
the increment of the delay, the vehicular tasks’ information become less valuable. Even
for some security-related tasks, delay beyond their required maximum execution deadline
will endanger the safety of vehicles. When the task end-to-end delay exceeds the vehicular
task’s completion deadline, the satisfaction of the ICV is considered to be extremely poor,
and the corresponding penalty will be imposed. Therefore, the longer the total delay of the
vehicular task, the lower the satisfaction of the ICV.

Secondly, there is no cost for ICVs to use their own configured computing resources.
As a supplement to the ICV’s own computing resources, the computing resources obtained
by the ICV from the VEC or MEC server are considered to require the payment. Therefore,
the more computational resources consumed that are not ICVs, the lower the satisfaction of
the ICV.

Thirdly, privacy is also a reference quantity that affects the ICV’s satisfaction. The
ICV’s privacy concerns the vehicle safety and the driver’s personal privacy. A low privacy
level will lead to the disclosure of the ICV’s related information. Therefore, the lower the
amount of privacy the ICV has, the lower the satisfaction of the ICV.

In addition, the sensitivity of the vehicular task priority to delay is also different. We
also take the priority into the consideration. Therefore, the cost function for ICV-i to process
the task locally is given by

U ICV
i =


βQi log

(
1 +

(
tactual
i − tICV

i

)+)
+γρ f ICV − (1− β− γ)Pi(t), tICV

i ≤ tmax
i

P, tICV
i > tmax

i

, (19)

where β ∈ (0, 1) is the weight of the delay part and γ represents the weigh of computational
resource cost part. (·)+ = max(·, 0) guarantees Ul

i to be non-negative. The unit cost of the
computational resource unit cost is depicted as ρ. Additionally, P denotes the penalty for
the vehicular task’s total delay exceeding its maximum execution deadline.

The cost function of ICV-i offloaded the task to the VEC is

UVEC
i =


βQi log

(
1 +

(
tactual
i−VEC − tVEC

i

)+)
+γρ fVEC − (1− β− γ)Pi(t), tVEC

i ≤ tmax
i

P, tVEC
i > tmax

i

, (20)

where tactual
i−VEC = min

{
tlink
ik , tmax

i

}
is denoted as the delay actually generated by ICV-i. As

soon as the V2V transmission connection is disconnected, the task offloading process of the
ICV-i to the VEC-k will be terminated.

The cost function of ICV-i offloaded the task to the MEC server is

UMEC
i =


βQi log

(
1 +

(
tactual
i−MEC − tMEC

i

)+)
+γρ f MEC

i − (1− β− γ)Pi(t), tMEC
i ≤ tmax

i

P, tMEC
i > tmax

i

. (21)

Similarly, tactual
i−MEC = min

{
tlink
ij , tmax

i

}
is described as the actual delay of the vehicular

task. The task offloading to the MEC server interrupt occurs when the V2I communication
is disconnected.
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Combining (19), (20), and (21), the ICV-i’s cost function is generated as

Ui =


U ICV

i , xi = 0,

UVEC
i , xi = 1,

UMEC
i , xi = 2.

(22)

In this work, to minimize the total cost of all the ICVs in the VEN by determining
three objects—the offloading strategies of ICVs, the computational resource allocation
from the MEC server, and the pseudonym-changing decisions by ICVs—the cooperative
optimization problem with corresponding constraints can be described as follows:

min
X ,A,N

∑V
i=1 Ui,

s.t.C1 : 0 ≤ f ICV < F,

C2 : 0 ≤ fVEC < F,

C3 : 0 ≤ f MEC
i ≤ xiF, ∀i ∈ V , ∀j ∈ R,

C4 : ∑R
j=1 f MEC

i ≤ F, ∀j ∈ R,

C5 : xi = {0, 1, 2}, ∀i ∈ V .

(23)

Constraints C1 and C2 exact the constraints on the available computational resources of
ICV and VEC, which should be non-negative and less than the MEC server’s computational
resources. Constraint C3 limits the computational resources assigned by the MEC server to
each ICV. Constraint C4 guarantees that the sum of the computational resources assigned
to ICV’s offloading tasks should not exceed the total computational resources of the MEC
server. Constraint C5 ensures that there are only three offloading strategies provided to
ICV-i for the vehicular task.

5. Cooperative Optimization for Privacy and Priority Based on DDPG

For the above problems, a large number of time-varying variables makes the problem
become nonlinear and have high computational complexity. DDPG is a model-free method
that relies on the actor–critic structure. DDPG can be used to solve the DRL problems
on continuous-action spaces steadily to obtain the optimal solution instead of the deep
Q-network (DQN) which is used to deal with the discrete action problems. Therefore, we
propose a cooperative optimization for privacy and priority based on DDPG, i.e., COPP-
DDPG, to solve the above optimization problem. As shown in Figure 2, the si(t), ai(t)
and ri(t) in the structure of COPP-DDPG represent the state, action, and reward in the
MDP, respectively.

5.1. State Space

The state of the ICV-i at time slot t is denoted as si(t), which consists of the parameters
of the vehicular task Ti, such as partial offloading ratio λi(t), the computational resource
required by the vehicular task Ci(t), the sizes of input and output data generated by the
task execution Din

i(t) and Dout
i(t), the maximum completion deadline tmax

i(t) , and the vehicular
task priority Qi(t). The ICV-i’s time-variable driving characteristics at time slot t as the
current position and speed pi(t) and si(t) are also the components of si(t). In addition,
si(t) involves the allocated RSU-j’s computational resource f mec

j(t) and two privacy-related
variables, N(t) and tc,i(t), which represent the ICV number of the pseudonym changing
and the last time slot ICV-i changed its pseudonym, respectively. The state si(t)ε S can be
written collectively as

si(t) =

{
λi(t), Ci(t), Din

i(t), Dout
i(t), tmax

i(t) , Qi(t),

pi(t), si(t), f MEC
j(t) , N(t), tc,i(t)

}
∀i∈V ,∀j∈R

. (24)
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5.2. Action Space

The agent ICV-i selects an action ai(t) from the action space at time slot t by state
si(t). The action considers the cooperative strategies of computation offloading, resource
allocation, and privacy preservation. The offloading strategy for vehicular task xi(t) needs to
be selected from three ways, local calculation, offloading computation at VEC, or execution
of the offloaded task on the MEC server. The computational resource is allocated to the
ICV-i by the MEC server via its connected RSU once the task is offloaded to the MEC
server. Considering the privacy of ICV, pseudonym changing decision Ni(t) should also be
determined in this process. The action ai(t)ε A is depicted as

ai(t) =
{

xi(t), f MEC
i(t) , Ni(t)

}
∀i∈V

. (25)

5.3. Reward Space

The reward is used to evaluate the performance of the selected action. All the ICVs
are assumed to use the same reward function. To achieve the goal of minimizing the cost
function in the optimal problem, we designed the reward function ri(t) of the agent ICV-i
during the period T as

ri(t) = − lim
T→∞

1
T ∑T

t=1 Ui(t)
∣∣∣si(t) . (26)
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The average reward of multi-agent ICVs in time slot t is given by

r(t) =
1
V ∑V

i=1 ri(t), ∀i ∈ V . (27)

The overall flow of COPP-DDPG algorithm is based on DDPG, as shown in Algorithm 1.
DDPG algorithm is widely used and introduced in a large number of studies [40]. Here we
will not describe the details of the algorithm. The goal of DDPG is to make the agents obtain
the maximum reward, which is guided by the rewards observed by the interaction with the
environment. Due to the interaction between multiple ICVs in the VEN environment, the
behavior of one ICV has the potential to influence and change the decisions of other ICVs.
Therefore, multi-agent DDPG is considered in this work to meet the increasing complexity
of environment and task requirements, which takes full account of the cooperation and
competition between agents to maximize joint returns. However, with the preliminary
experiments, we found that the centralized multi-agent DDPG leads to the problem of poor
convergence. Therefore, the COPP-DDPG we finally chose is a decentralized multi-agent
DDPG method.

Algorithm 1: Cooperative Optimization for Privacy and Priority based on Deep
Deterministic Policy Gradient COPP-DDPG

1 Randomly initialize the critic network Q(s, a
∣∣∣θQ

i ) and the actor network µ(s
∣∣∣θµ

i ) with

weights θQ
i and θ

µ
i ;

2 Initialize the target critic network Q′ and the target actor network µ′ with weights θQ′
i

and θ
µ′

i ;
3 Initialize the memory replay buffer B;
4 for episode k = 1, 2, . . . , K do
5 Initialize a random process nt;

6 Receive initial observation state S =
{

si(1), si(2), . . . , si(N)

}
;

7 for i= 1, 2, . . . , N do
8 for t= 1, 2, . . . , T do
9 Select action ai(t) = µ(si(t)

∣∣∣θµ
i ) + nt according to the current

10 policy and exploration noise nt;
11 Execute action ai(t) and observe reward ri(t), the next state si(t+1);
12 Store all transitions (si(t), ai(t), ri(t), si(t+1)) in B;
13 Sample a random mini-batch of Z transitions from B;
14 Set
15

yi = ri(t) + YQπ(si(t), ai(t)

∣∣∣θQ)
∣∣∣
ak+1′

i =µ′(sk 6=1
i )

(28)

16 Update the critic network Q(s, a
∣∣∣θQ

i ) by minimizing the loss

17

L
(
θQ) = 1

Z ∑
i

yi −Qπ (si, ai(t)

∣∣∣θQ
i )

2 (29)

18 Update the actor policy by using the sampling policy gradient
19

∇θa
i
J ≈ 1

Z ∑
i
∇aQ(si(t), ai(t)|θ

Q
i )|ai=µ(si)∇θ

µ
i µ(si(t) |θ

µ
i )

(30)

20 Update the target networks for each agent i:
21

θ
Q′/µ′
i ← ηθ

Q/µ
i + (1− η)θ

Q′/µ′
i (31)

22 end
23 end
24 end
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6. Numerical Results
6.1. Simulation Setup

The system hardware configuration required for constructing the experimental envi-
ronment was as follows: the CPU was i9 9900K, the GPU was a NVIDIA RTX GEFORCE
2080TI, and the memory capacity was 32GB. The system software configuration for the
experimental environment was as follows: the experimental environment was simulated
through TensorFlow1.15.0 and ran under the PyCharm-integrated development environ-
ment. The parameters of COPP-DDPG are given in Table 2.

Table 2. Main hyperparameters of the De-DDPG.

Parameters Value

Size of the first hidden layer for actor and critic 300
Size of the second hidden layer for actor and critic 300

Learning rate of actor and critic α′/α 0.0001/0.001
Size of experience memory B 20,000

Parameters for OU noise θ, µ, σ 0.15, 0.15, 0.10
Discount factor γ 0.95

Penalty for failed tasks execution P 8
Total number of all episodes K 1000

Total time periods of one episode T 110

There was an MEC server with sufficient computational resources and communication
resources. Two groups of RSUs were connected to the MEC server and two RSUs were
designed in each group, which included a primary RSU and a secondary RSU. As the
multi-agent model, 20 ICVs were randomly driving on the proposed road segment. We set
the time slot as t = 1. The required computational resource for completing the vehicular
task Ti was set as Ci = 0.48. The size of all the arrival vehicular tasks’ input data in each
time slot t follows Uniform distribution with Din

i ∼ U(2.0, 4.8). The size of output data for
vehicular tasks computation were set as Dout

i = 0.05× Din
i . Meanwhile, the vehicular tasks’

arrival probability was set to 0.45. The maximum completion deadline of the vehicular
task was set as tmax

i = 4t. The available uplink and downlink transmission rate of V2I
communication were derived as rUL

ij ∼ U(1.1, 1.25) and rDL
ij ∼ U(1.0, 1.15), respectively.

The probability of successful connection between ICV-i and RSU-j in the random time slot
was set as τij = 0.95. The propagation delay was set as δ = 0.1t and the RSU-j’s bandwidth
was set as ωj = 10. The ICV’s, VEC’s and MEC server’s computational resources were
set as 0.5, 0.9 ∼ 1.75 and 4.0 Gigacycles, respectively. The unit cost of the MEC server’s
computational resource was set as ρ = 0.58 Gigacycles/Mb. In terms of the priority of the
arrival vehicular tasks, we set three priorities in this work as Qi = 0.6 + 0.3i, i = 1, 2, 3.
The partial offloading ratio of the vehicular task λi and the initial probability of vehicle
updating pseudonym P(Ni(t)) about privacy preservation will be discussed in Section 6.3.

6.2. Performance Comparison

We set four algorithms (benchmarks) to compare the performance and advantage of
COPP-DDPG, including binary offloading policy with DDPG (BOP-DDPG), offloading all
tasks to MEC (OT-MEC), offloading all tasks to VEC (OT-VEC), and local execution all tasks
by ICV’s processor (LE-VP).

1. BOP-DDPG: Although we adopt the DDPG algorithm, BOP-DDPG does not consider
the situation of partial offloading, but only offloading all tasks to the MEC server,
VEC, or local execution. However, the neural network has the same structure as each
network as COPP-DDPG and the allocated computational resources for the vehicles
from all RSUs are the same as COPP-DDPG.
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2. OT-MEC: The vehicular tasks generated by the ICVs are all offloaded and executed
to the MEC server through their linked RSUs. The VEC is not considered in the
simulation environment.

3. OT-VEC: The vehicular tasks generated by the ICVs are all offloaded and calculated
to VEC with spare computational resources. The MEC offloading strategy is not
considered in the simulation.

4. LE-VP: All computation tasks are executed by the local processor of ICV. VEC and the
MEC server are not applicable for offloading tasks.

6.3. Simulation Results

Firstly, the analysis of the COPP-DDPG algorithm’s convergence is given in Section 6.3.1,
and then we compare the performance and advantage of COPP-DDPG with those of
the other four baseline algorithms in Section 6.3.2. Here, we consider using the average
cumulative reward of each episode to evaluate the convergence of COPP-DDPG and the
average cumulative reward of all 1000 episodes to compare the performance of COPP-
DDPG to that of other four baseline algorithms.

6.3.1. Convergence Performance

Figure 3 reveals the convergence of COPP-DDPG with different actor learning rates,
αa. The choice of learning rate αa can obviously affect the convergence effect and the speed
of COPP-DDPG. From Figure 3, COPP-DDPG cannot be convergent due to the greater
learning rate when αa = 0.01. The convergence of COPP-DDPG is obviously improved
when αa = 0.005, but the result is not satisfactory. When αa = 0.0005 and αa = 0.00001,
COPP-DDPG can converge on certain results, and the proposed algorithm does not perform
well. Considering the stability and performance of COPP-DDPG, we set the actor’s learning
rate as αa = 0.0001, which is shown as the blue curve in Figure 3.
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In this paper, we consider the priority of arriving tasks generated by ICVs in each
time slot. Figure 4 shows the convergence of the proposed COPP-DDPG with three dif-
ferent priorities, Qi. As described in subsection V.A, the values of priorities were set as
Qi = 0.6 + 0.3i; that is to say, Q1 = 0.9, Q2 =1.2, and Q3 = 1.5. As illustrated in Figure 4,
due to the fewer values of low priority, the performance of the vehicular task with pri-
ority Q1 is better than the cases where the vehicular task priority is Q2 or Q3. The fewer
the values of the priorities are, the greater the immediate reward and the less the cost.
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It can be observed in Figure 4 that COPP-DDPG converges under the situation of three
different priorities.
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In terms of the patrial offloading for vehicular edge computing, Figure 5 illustrates
the convergence of proposed COPP-DDPG with different partial offloading rates λi. When
λi = 0.1, the convergence of COPP-DDPG can be satisfied. However, from the perspective
of the average cumulative rewards, the performance of COPP-DDPG whose offloading rate
was set as 0.1 was not good due to the local processor of ICVs having remaining resources.
When λi = 0.4, the patrial offloading ratio of vehicular tasks reserved locally was too
large, which led to the shortage of the local processor resources. Furthermore, due to more
incomplete tasks, which caused the punishment, the performance of COPP-DDPG was
greatly reduced. When λi = 0.2, it made better use of the computational resources of the
ICV’s processor and the resources of the VEC and MEC server. Its performance was the
best. Therefore, we set the ratio for tasks offloading as λi = 0.2 in this work.
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6.3.2. Performance Comparison

Figures 6–9 verify the performance and advantages of the COPP-DDPG compared
to the other four algorithms described in Section 6.2: BOP-DDPG, OT-RSU, OT-VEC,
and LE-VP.
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Figure 6 indicates the comparison of five algorithms with different arrival probabilities
of tasks Parr

task. The vehicular task arrival rate represents the probability that ICVs can
generate computation tasks in each time slot. When the vehicular task arrival rate is low,
the vehicular task is processed in a timely pattern due to the small number of vehicular
tasks, so that the computational tasks’ delay is low and the proportion of tasks not processed
is greatly reduced, which means that there is less punishment, so the average cumulative
reward is greater. As shown in Figure 6, the COPP-DDPG algorithm keeps the best
performance no matter what the vehicular task arrival rate is. As ICV’s local processing
capacity is the lowest, the performance of LE-VP is the worst. Compared with all vehicular
tasks offloaded to the MEC server strategy, although the transmission rate of VEC is better,
its computing capacity is lower. Therefore, when the task arrival rate is low, such as
Parr

task = 0.25, the performance of OT-VEC is better than that of OT-RSU. However, when the
task arrival rate is high, the performance of OT-VEC is worse than that of OT-RSU.
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Figure 7 shows the comparison of all five algorithms with different computation
capacities of VEC fVEC. We set the range of average computation capacity of all available
VECs as [0.9, 1.2, 1.5, 1.8, 2.1] GHz. The curves of OT-RSU and LE-VP show that although the
computational capacity of VECs is time-varying, the performances of these two algorithms
cannot be affected because the average cumulative rewards of them are independent of
the computational capacity of V2V. The performances of COPP-DDPG and BOP-DDPG are
better than those of other algorithms due to their outstanding learning ability.

Besides the uplink and downlink transmission rate of the V2I communication between
ICV-I and RSU-j, rUL

ij influences the performances of the five algorithms; see Figure 8. The
transmission rates between ICV and VEC (V2V communication) are also significant for
all algorithms. Figure 8 shows the performances of the five algorithms with the different
transmission rates of V2V. Given the curves of OT-RSU and LE-VP, the communication
between V2V does not affect the performances of the two algorithms. However, with the
increase in the transmission rate of V2V, the average cumulative rewards of COPP-DDPG,
BOP-DDPG, and OT-VEC increased gradually, because the higher the transmission rate is,
the lower the delay is, and the average cumulative reward increases.

Furthermore, we will verify the performances of the algorithms considering the pri-
vacy preservation of ICVs. As mentioned in Section 3.5, pseudonym changing is an effective
means for ICV privacy preservation. Figure 9 displays the comparison of the ratios of
incomplete tasks for two learning algorithms with different priorities Qi. As shown in
Figure 9a, we set the change in the ICV’s pseudonym to follow the Bernoulli distribu-
tion with parameter 0.5—that is, the probability of the ICV changing pseudonyms is 0.5;
P(Ni(t)) = 0.5. In terms of average cumulative rewards, COPP-DDPG’s performance is
better than that of BOP-DDPG. In addition, the completion rate of tasks with high priority
is significantly higher than that of tasks with low priority. This is because the setting of
the reward function r(t), which is related to the cost functon Ui, can guide the training
of the two learning algorithms (COPP-DDPG, BOP-DDPG). As shown in Figure 9b, the
probability of ICV changing pseudonyms was set as P(Ni(t)) = 0.6. With the incrementing
of pseudonym change probability, the higher the privacy-preserving level of ICV, which
can be used as VEC, the higher its corresponding privacy cost, resulting in higher cost and
smaller average cumulative return.

7. Conclusions

In a VECN, there are massive dynamic cooperative and competitive interactions be-
tween ICVs, and the privacy exposure will threaten the security of ICVs, especially for
the high-priority security-related tasks. Therefore, we propose a privacy-preserving and
priority-aware task offloading and computational-resource-allocation approach based on
DRL to satisfy the stringent requirements of QoS and privacy for vehicles in dynamic
VECN while guaranteeing the constraints of the limited resources for VEC servers. First,
we employ a privacy-preserving framework that integrates the CA into the VECN. Further-
more, the cooperative optimization problem is formulated as an MDP to minimize the total
weighted cost of the system. To solve the problem, we propose an approach named COPP-
DDPG to learn the optimal actions of task offloading, resource allocation, and pseudonym
changing decision in the dynamic VEC networks. The simulation results demonstrated
the converge and superior performance of the proposed approach in comparison with
the benchmark methods. In the future, we will continue to research using ring signature
to further improve the VECN system’s privacy protection under greater ICV density in
the environment.
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