Supporting Information to

Copper-catalyzed cascade annulation of unsaturated α-bromocarbonyls with enynals: a facile access to ketones from aldehydes
 Chao Che, Qianwen Huang, Hanliang Zheng and Gangguo Zhu*
 Department of Chemistry, ZhejiangNormalUniversity, 688 Yingbin Road, Jinhua 321004, China
 gangguo@zjnu.cn

Table of Contents
\qquad
General. S2
General Procedure for Experiments and Analytical Data S2-S18
NMR Spectra S19-S62

General. Unless otherwise noted, materials obtained from commercial suppliers were used directly without further purification. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were measured on a 600 MHz or 400 MHz NMR spectrometer using CDCl_{3} as the solvent with tetramethylsilane (TMS) as the internal standard. Chemical shifts (δ) are given in parts per million relative to TMS, and the coupling constants are given in hertz. High-resolution mass spectrometry (HRMS) analyses were carried out using a TOF MS instrument with APCI or ESI source. Column chromatography was performed using silica gel (100-200 mesh).

General Procedure for the Copper-Catalyzed Cascade Annulation of Unsaturated

 α-Bromocarbonyls with Enynals:

To a mixture of $\mathrm{Cu}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.025 \mathrm{mmol})$, pentamethyldiethylenetriamine $(\mathbf{L 1})(8.7 \mathrm{mg}$, $0.050 \mathrm{mmol})$, DEAD ($8.7 \mathrm{mg}, 0.050 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(34.6 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added a solution of 1a ($32.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) and 2a $(83.4 \mathrm{mg}, 0.30 \mathrm{mmol})$ in 3 mL of MeCN under a nitrogen atmosphere. After stirring at $80{ }^{\circ} \mathrm{C}$ for 10 h , the reaction mixture was quenched with water, extracted with EtOAc, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Column chromatography on silica gel (EtOAc/petroleum ether $=1: 10$) gave 71 mg of 3aa (yield: $86 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.25-1.33(\mathrm{~m}, 6 \mathrm{H}), 2.12(\mathrm{dd}, J=8.4,13.3$ Hz, 1H), $2.50(\mathrm{dd}, J=14.0,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.61(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.30(\mathrm{~m}$, $4 \mathrm{H}), 6.37(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.71(\mathrm{~m}, 1 \mathrm{H})$, $7.90-8.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.0,14.0,39.2,42.3,45.6,61.8,61.8,66.3$, 122.4, 125.5, 127.3, 129.0, 131.1, 133.7, 135.1, 143.7, 167.0, 171.0, 196.9; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$329.1389, found 329.1392.

Compound $3 \boldsymbol{b} \boldsymbol{b}$. 76% yield (73 mg); colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24-1.30(\mathrm{~m}$, $6 \mathrm{H}), 2.12$ (dd, $J=8.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=13.9,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-3.10(\mathrm{~m}, 2 \mathrm{H})$,
$3.42-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.13-4.26(\mathrm{~m}, 4 \mathrm{H}), 6.48(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.80(\mathrm{~m}, 1 \mathrm{H})$, 8.14-8.18 (m, 1H), 8.58-8.61 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,13.9,39.1,42.0,45.3$, $52.2,61.8,61.9,66.3,125.0,125.7,128.8,130.5,130.9,133.9,138.6,142.8,165.8,169.5,170.5$, 195.8; $\mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 387.1444$, found 387.1437 .

Compound 3ca.75\% yield (74 mg); white solid, $\mathrm{mp} 97-99^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.26-1.33(\mathrm{~m}, 6 \mathrm{H}), 2.16(\mathrm{dd}, J=8.3,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=13.9,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-3.12(\mathrm{~m}$, $2 \mathrm{H}), 3.51-3.59(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.30(\mathrm{~m}, 4 \mathrm{H}), 6.51(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.85(\mathrm{~m}, 2 \mathrm{H}), 8.28(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,14.0,39.1,42.1,45.3,62.0,62.0,66.4,123.5(\mathrm{q}, J=$ $272.6 \mathrm{~Hz}), 124.7(\mathrm{q}, J=3.9 \mathrm{~Hz}), 125.2,126.2,129.8(\mathrm{q}, J=3.4 \mathrm{~Hz}), 131.1(\mathrm{q}, J=33.2 \mathrm{~Hz}), 131.2$, 138.0, 142.4, 169.6, 170.6, 195.5; ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.0 ;$ HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$397.1263, found 397.1255.

Compound 3da. 81% yield (70 mg); white solid, mp $96-98^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.26-1.33(\mathrm{~m}, 6 \mathrm{H}), 2.13(\mathrm{dd}, J=8.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=13.9,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-3.10(\mathrm{~m}$, 2H), 3.49-3.58(m, 1H), 4.19-4.30(m, 4H), $6.33(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 1 \mathrm{H})$, $7.60-7.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.0,14.0,39.1,42.3,45.3,61.8,61.9,66.2$, $113.3(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 121.3(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 122.2(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 127.8(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 131.5$ $(\mathrm{d}, J=3.2 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 142.6(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 162.9(\mathrm{~d}, J=251.1 \mathrm{~Hz}), 169.9,170.9$, 195.8; ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.2$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FO}_{5}(\mathrm{M}+\mathrm{H}){ }^{+}$ 347.1295 , found 347.1293 .

Compound 3ea. 76% yield (69 mg); white solid, mp $141-143^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$1.27-1.32(\mathrm{~m}, 6 \mathrm{H}), 2.12(\mathrm{dd}, J=8.3,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=13.9,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-3.08(\mathrm{~m}$, 2H), 3.46-3.57 (m, 1H), 4.17-4.29 (m, 4H), $6.40(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=1.9,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,14.0$, $39.2,42.3,45.4,61.9,61.9,66.3,123.9,125.3,129.1,129.3,129.4,136.5,140.1,142.6,169.8$, 170.7, 195.8; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClO}_{5}(\mathrm{M}+\mathrm{H})^{+} 363.0999$, found 363.0995 .

Compound 3 fa. 80% yield (73 mg); white solid, mp $136-138^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.26-1.32(\mathrm{~m}, 6 \mathrm{H}), 2.12(\mathrm{dd}, J=8.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=13.9,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-3.09(\mathrm{~m}$, 2H), 3.46-3.56 (m, 1H), 4.15-4.30 (m, 4H), $6.37(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=2.3,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,14.0$, $39.1,42.2,45.3,61.8,61.9,66.3,123.1,127.1,127.1,132.1,133.4,133.6,135.3,142.6,169.8$, 170.7, 195.6; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClO}_{5}(\mathrm{M}+\mathrm{H})^{+}$363.0999, found 363.0988 .

Crystal data for 3fa $\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClO}_{5}, 362.79\right)$: triclinic, space group $P-1$, $a=7.9475(16) \AA, b=$ $10.528(2) \AA, c=11.586(3) \AA, U=911.0(3) \AA^{3}, Z=2, T=296(2) \mathrm{K}$, absorption coefficient 0.235 mm^{-1}, reflections collected 30570, independent reflections $3197[R(\mathrm{int})=0.047]$, refinement by full-matrix least-squares on F^{2}, data/restraints/parameters 4195/0/214, goodness-of-fit on $F^{2}=$ 1.042, final R indices $[I>2 \sigma(I)] R_{1}=0.0619, w R_{2}=0.1631, R$ indices (all data) $R_{1}=0.0832, w R_{2}=$ 0.1874, largest diff. peak and hole 0.376 and $-0.358 e^{\cdot} \AA^{-3}$. Crystallographic data for the structure 3fa have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC1439849.

Compound 3ga. 81% yield (69 mg); white solid, mp $91-93^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.26-1.33(\mathrm{~m}, 6 \mathrm{H}), 2.11(\mathrm{dd}, J=8.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.51(\mathrm{~m}, 4 \mathrm{H}), 2.91-3.10(\mathrm{~m}, 2 \mathrm{H})$, $3.40-3.60(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.30(\mathrm{~m}, 4 \mathrm{H}), 6.35(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}$, $1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,14.0,21.7,39.2,42.4,45.6$,
$61.7,61.8,66.2,122.1,125.7,127.4,128.9,130.1,135.1,143.8,144.5,170.0,171.0,196.7 ;$ HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 343.1545$, found 343.1538 .

Compound 3ha. 90% yield (81 mg); white solid, mp $101-103^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.25-1.32(\mathrm{~m}, 6 \mathrm{H}), 2.09(\mathrm{dd}, J=8.6,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=13.8,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-3.10(\mathrm{~m}$, $2 \mathrm{H}), 3.46-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.13-4.30(\mathrm{~m}, 4 \mathrm{H}), 6.23(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=$ $2.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 14.0,14.0,39.2,42.4,45.5,55.5,61.7,61.7,66.2,108.9,120.3,122.2,127.1,128.5,132.3$, 143.3, 160.2, 170.2, 171.1, 196.9; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 359.1495$, found 359.1489.

Compound 3ia. 84% yield (78 mg); white solid, mp $135-137^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.24-1.31(\mathrm{~m}, 6 \mathrm{H}), 2.08(\mathrm{dd}, J=8.5,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=13.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-3.10(\mathrm{~m}$, $2 \mathrm{H}), 3.40-3.53(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.30(\mathrm{~m}, 4 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H}), 6.22(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H})$, $7.41(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.0,14.0,39.2,42.4,45.2,61.7,61.8,66.1,101.9$, 104.4, 106.2, 121.4, 127.0, 132.1, 143.7, 148.9, 152.3, 170.0, 171.0, 195.3; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}$373.1287, found 373.1293.

Compound 3ja. 73% yield (74 mg); white solid, $\mathrm{mp} 81-83^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.26-1.33(\mathrm{~m}, 6 \mathrm{H}), 2.14(\mathrm{dd}, J=8.5,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=14.0,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-3.10(\mathrm{~m}$, $2 \mathrm{H}), 3.52-3.59(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.29(\mathrm{~m}, 4 \mathrm{H}), 6.41(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.83(\mathrm{~m}, 2 \mathrm{H}), 8.26(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 14.0,14.1,39.3,42.3,45.7,61.8,61.9,66.3,122.4,125.6,126.1$,
$127.0,128.0,128.9,131.4,132.2,133.9,139.5,141.8,143.4,170.0,171.0,197.0 ;$ HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 405.1702$, found 405.1693.

Compound 3ka. 79% yield (83 mg); white solid, $\mathrm{mp} 87-89^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.26-1.33(\mathrm{~m}, 6 \mathrm{H}), 2.13(\mathrm{dd}, J=8.5,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.56(\mathrm{~m}, 1 \mathrm{H}), 3.00-3.10(\mathrm{~m}$, 2H), 3.52-3.59 (m, 1H), 4.17-4.29 (m, 4H), $6.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.82(\mathrm{~m}, 2 \mathrm{H}), 8.24(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 14.0,14.1,21.1,39.2,42.3,45.7,61.8,61.8,66.3,122.2,125.2,126.1,126.8,129.6,131.4$, 131.9, 133.7, 136.6, 137.9, 141.7, 143.5, 170.0, 171.0, 197.0; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{5}$ (M $+\mathrm{H})^{+} 419.1858$, found 419.1850 .

Compound 3la. 83% yield (90 mg); white solid, $\mathrm{mp} 99-101^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.26-1.33(\mathrm{~m}, 6 \mathrm{H}), 2.13(\mathrm{dd}, J=8.5,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=13.9,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-3.09(\mathrm{~m}$, 2H), 3.52-3.59 (m, 1H), $3.86(\mathrm{~s}, 3 \mathrm{H}), 4.16-4.29(\mathrm{~m}, 4 \mathrm{H}), 6.38(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-7.01(\mathrm{~m}$, $2 \mathrm{H}), 7.57-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.80(\mathrm{~m}, 2 \mathrm{H}), 8.20-8.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $14.0,14.0,39.3,42.4,45.7,55.4,61.8,61.8,66.3,114.4,122.1,124.9,126.1,128.1,131.4,131.7$, 132.0, 133.4, 141.5, 143.5, 159.7, 170.1, 171.0, 197.1; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$ 435.1808, found 435.1799.

Compound 3ma. 72% yield (68 mg); white solid, $\mathrm{mp} 133-135^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.49(\mathrm{dd}, J=4.3,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=$ $13.4,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=8.7,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=5.8,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.68(\mathrm{~m}$,
$1 \mathrm{H}), 4.18-4.40(\mathrm{~m}, 4 \mathrm{H}), 6.50(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.89(\mathrm{~m}, 2 \mathrm{H})$, 8.00-8.10 (m, 1H), 8.56-8.60 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,14.1,36.4,45.8,47.4$, $61.9,62.0,67.8,122.7,127.0,127.4,127.7,128.6,128.7,128.9,129.6,129.6,136.0,136.3,142.3$, 170.8, 171.1, 197.0; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 379.1545$, found 379.1547.

Compound 3na. 74% yield (70 mg); white solid, mp $151-153^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.27-1.33(\mathrm{~m}, 6 \mathrm{H}), 2.16(\mathrm{dd}, J=8.5,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-3.10(\mathrm{~m}, 2 \mathrm{H})$, $3.60-3.70(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.30(\mathrm{~m}, 4 \mathrm{H}), 6.48(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.64(\mathrm{~m}$, $1 \mathrm{H}), 7.72-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.95-7.97(\mathrm{~m}, 1 \mathrm{H}), 9.30-9.33(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $14.0,14.0,39.1,42.8,47.9,61.8,61.9,66.3,122.6,123.7,126.1,126.8,127.1,128.3,129.1,130.7$, 133.9, 134.4, 135.9, 145.1, 169.9, 170.9, 199.7; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$ 379.1545, found 379.1548 .

Compound 3oa. 78\% yield (80 mg); white solid, mp 176-178 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.27-1.33(\mathrm{~m}, 6 \mathrm{H}), 2.14(\mathrm{dd}, J=8.5,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{t}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-3.08(\mathrm{~m}, 2 \mathrm{H})$, $3.60-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 4.17-4.29(\mathrm{~m}, 4 \mathrm{H}), 6.42(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.25(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,14.1,39.1,42.8,48.0,55.2,61.8,61.8,66.3,106.9$, $121.0,122.6,123.3,125.9,126.2,128.8,133.2,133.8,135.7,145.1,158.0,170.0,171.0,199.9$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$409.1651, found 409.1642.

Compound 3pa. 68\% yield (70 mg); white solid, mp $133-135^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.26-1.33(\mathrm{~m}, 6 \mathrm{H}), 2.12(\mathrm{dd}, J=8.5,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.55(\mathrm{~m}, 1 \mathrm{H}), 3.00-3.09(\mathrm{~m}, 2 \mathrm{H})$, $3.50-3.57(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.30(\mathrm{~m}, 4 \mathrm{H}), 6.38(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=3.7,5.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.34(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=1.8,8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,14.1,39.2,42.3,45.6,61.8 ;$ $61.9,66.3,122.4,124.0,124.1,125.8,126.2,128.3,130.7,131.4,133.8,135.2,142.8,143.3$, 167.0, 171.0, 196.8; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 411.1266$, found 411.1258.

Compound 3qa. 64% yield (76 mg); white solid, mp $64-66^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.26-1.34(\mathrm{~m}, 6 \mathrm{H}), 2.16(\mathrm{dd}, J=8.3,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=13.9,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-3.13(\mathrm{~m}$, 2H), 3.54-3.62 (m, 1H), 4.16-4.31 (m, 4H), $6.44(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.86(\mathrm{dd}, J=3.1,5.3 \mathrm{~Hz}, 3 \mathrm{H}), 8.01(\mathrm{dd}, J=3.0,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.0,14.1,39.2,42.3,45.5,61.9,61.9,66.4,122.9,123.7,124.0$, $126.5,128.5,130.0,131.5,134.8,136.1,136.5,142.9,166.7,169.8,170.8,196.0 ;$ HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{7}(M+\mathrm{H})^{+} 474.1553$, found 474.1552.

Compound 3ra. 80\% yield (66 mg); colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24-1.30(\mathrm{~m}$, $6 \mathrm{H}), 1.51-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{dd}, J=9.2,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.21(\mathrm{~m}, 1 \mathrm{H})$, $2.28(\mathrm{dd}, J=13.6,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=5.9,15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.93(\mathrm{dd}, J=7.1,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.36(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.27(\mathrm{~m}, 4 \mathrm{H}), 5.98(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,14.0,21.5,21.6,22.9,26.9,39.3,41.6,44.6,61.7,61.8$, 66.0, 123.3, 135.5, 145.2, 145.7, 169.9, 171.0,198.1; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}$ 333.1702, found 333.1697.

Compound 3ab. 92% yield (82 mg); white solid, $\mathrm{mp} 86-88^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.94$ $(\mathrm{s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.33(\mathrm{~m}, 6 \mathrm{H}), 2.35(\mathrm{dd}, J=8.2,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=8.2,13.8$
$\mathrm{Hz}, 1 \mathrm{H}), 3.34-3.39(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.31(\mathrm{~m}, 4 \mathrm{H}), 6.39(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.44(\mathrm{~m}, 1 \mathrm{H})$, $7.51-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.97-8.01(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0$, $14.0,18.9,21.8,31.9,45.9,51.9,61.7,61.8,66.3,122.8,125.0,128.2,129.2,129.9,133.1,134.3$, 142.4, 170.3, 171.0, 202.5; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 357.1702$, found 357.1697.

Compound 3ac. 80% yield (69 mg); colorless oil; $\mathrm{dr}=88: 12 ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ date of the major isomer $\delta 1.25-1.33(\mathrm{~m}, 9 \mathrm{H}), 2.14(\mathrm{dd}, J=8.5,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.52(\mathrm{~m}, 1 \mathrm{H}), 3.07$ (dd, $J=7.2,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3,21(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.31(\mathrm{~m}, 4 \mathrm{H}), 6.39(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.97-8.01(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(151$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$)date of the major isomer $\delta 12.4,14.0,14.0,38.5,49.0,49.1,61.8,61.8,66.0,122.2$, 125.3, 127.5, 129.0, 131.3, 133.3, 134.7, 143.6, 170.0, 171.0, 199.1; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 343.1545$, found 343.1540 .

Compound 3af. 39% yield (33 mg); colorless oil; $\mathrm{dr}=61: 39 ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ date of the major isomer $\delta 1.22-1.36(\mathrm{~m}, 9 \mathrm{H}), 2.45(\mathrm{dd}, J=13.8,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.78(\mathrm{~m}, 1 \mathrm{H}), 3.02$ (dd, $J=5.5,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.17(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.35(\mathrm{~m}, 4 \mathrm{H}), 6.40(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-8.01(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) date of the major isomer $\delta 13.9,14.1,14.2,44.1,47.9,48.8,61.6,61.6,69.5$, 123.1, 125.2, 127.3, 129.0, 131.1, 133.7, 135.1, 143.4, 169.3, 170.5, 197.2; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 365.1365$, found 365.1358 .

Compound 3ag.76\% yield (51 mg); colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.92(\mathrm{dd}, J=8.5$, $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{dd}, J=13.8,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=5.5,15.7$
$\mathrm{Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=7.3,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.44(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.45$ $(\mathrm{m}, 1 \mathrm{H}), 7.55-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=1.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 27.0,27.1,37.1,42.1,45.7,80.9,122.0,125.3,127.5,129.3,131.2,133.8$, 134.8, 144.3, 196.6, 202.8, 205.2; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+} 269.1178$, found 269.1172.

Compound 3ah. 78% yield (58 mg); colorless oil; $\mathrm{dr}=55: 45 ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ date of the major isomer $\delta 1.27-1.33(\mathrm{~m}, 6 \mathrm{H}), 2.05-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.53(\mathrm{~m}, 1 \mathrm{H})$, $2.98-3.08(\mathrm{~m}, 2 \mathrm{H}), 3.37-3,46(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.29(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) date of the major isomer $\delta 14.1,26.6,37.8,42.2,45.7,61.9,73.2,122.2,125.3$, 127.4, 129.2, 131.1, 133.7, 135.0, 144.4, 170.4, 196.8, 201.3; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{4}$ (M $+\mathrm{H})^{+}$299.1283, found 299.1277.

Compound 3ai. 80% yield (54 mg); colorless oil; $\mathrm{dr}=60: 40 ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ date of the major isomer $\delta 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{dd}, J=8.7,12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.42-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.95-3.02(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.55(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.68(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) date of the major isomer $\delta 14.1,25.5,42.8,43.6,46.3,55.5,60.8$, $125.2,127.2,128.4,129.1,131.0,133.5,135.8,140.8,175.6,197.6$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$271.1334, found 271.1327.

Compound 3ak.74\% yield (63 mg); colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.32(\mathrm{t}, J=7.1$ Hz, 6H), $2.10(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 4.22-4.33(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J$
$=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.2,14.0,36.5,62.5$, $65.5,124.3,127.0,128.7,129.5,130.4,130.7,131.4,135.0,138.4,154.0,169.1,184.5$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 341.1389$, found 341.1383.

Compound 3al.70\% yield (67 mg); colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.38-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.56(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.58(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{~s}$, $2 \mathrm{H}), 4.24-4.32(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,14.0,22.9,26.9,30.6,36.2,62.4,65.5,124.3,127.0$, $129.5,130.4,130.9,131.4,133.3,134.9,138.6,153.9,169.1,184.0$; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 383.1858$, found 383.1840 .

Compound 3am. 53\% yield (49 mg); colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.31(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 6 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 4.24-4.30(\mathrm{~m}, 4 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,36.4,58.6,62.5,65.8,66.3,124.4,127.2,128.4,129.7,130.3,130.6,131.8$, 137.2, 138.7, 158.0, 168.9, 183.5; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 371.1495$, found 371.1486.

Compound 3an. 35\% yield (32 mg); colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90-0.95(\mathrm{~m}$, $2 \mathrm{H}), 1.03-1.07(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.65-1.71(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 4.24-4.32(\mathrm{~m}$, 4H), $7.13(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.0,10.5,14.0,36.5,62.4,65.5,124.2,126.8$,
129.5, 130.1, 131.3, 131.3, 132.3, 134.5, 138.7, 154.9, 169.2, 184.3; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 367.1545$, found 367.1537 .

Compound 3ap. 81% yield (69 mg); white solid, mp $158-161^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.27-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.61-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.46(\mathrm{~m}, 1 \mathrm{H})$, $2.52-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.89(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.32(\mathrm{~m}, 4 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 14.0,14.1,27.2,27.2,34.7,45.4,55.6,61.8,61.9,121.8,124.8,126.9,128.5,131.3,133.8$, 138.0, 140.1, 170.0, 170.8, 197.0; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 343.1545$, found 343.1542.

Crystal data for 3ap $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{5}, 342.38\right)$: triclinic, space group $P-1, a=8.1720(19) \AA$, $b=9.085(2)$ $\AA, c=13.302(3) \AA, U=867.4(4) \AA^{3}, Z=2, T=296(2) \mathrm{K}$, absorption coefficient mm^{-1}, reflections collected 5137, independent reflections $2385[R(\mathrm{int})=0.039]$, refinement by full-matrix least-squares on F^{2}, data/restraints/parameters 3166/13/238, goodness-of-fit on $F^{2}=1.076$, final R indices $[I>2 \sigma(I)] R_{1}=0.0687, w R_{2}=0.1835, R$ indices (all data) $R_{1}=0.0787, w R_{2}=0.1891$, largest diff. peak and hole 0.284 and $-0.306 \mathrm{e}^{-} \AA^{-3}$. Crystallographic data for the structure 3ap have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC1439850.

Compound $\mathbf{3 s a}$. It was prepared from $\mathbf{1 s}$ and $\mathbf{2 a}$ in 47% yield (68 mg) using the general procedure except that 6 equivalents of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was used; pale yellow solid, mp $59-61^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.28-1.33(\mathrm{~m}, 12 \mathrm{H}), 2.09-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.56(\mathrm{~m}, 2 \mathrm{H}), 3.00-3.11(\mathrm{~m}, 4 \mathrm{H})$, $3.48-3.55(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.29(\mathrm{~m}, 8 \mathrm{H}), 6.53(\mathrm{dd}, J=2.3,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.32(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,14.1,14.4,39.2,39.2,42.0,42.0,45.5,45.6,61.9,61.9,62.0,62.0,66.4$,
$66.4,124.4,124.5,125.0,125.1,133.9,134.0,135.0,135.0,142.4,169.7,169.7,170.7,170.7$, 196.4, 196.4; HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{O}_{10}(\mathrm{M}+\mathrm{H})^{+}$579.2230, found 579.2249.

Compound $3 \boldsymbol{s} \boldsymbol{p}$. It was prepared from $\mathbf{1 s}$ and $\mathbf{2 p}$ in 38% yield (58 mg) using the general procedure except that 6 equivalents of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was used; pale yellow solid, mp $66-68^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.27-1.33(\mathrm{~m}, 12 \mathrm{H}), 1.62-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.92-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.16(\mathrm{~m}, 2 \mathrm{H})$, $2.43-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.94(\mathrm{~m}, 4 \mathrm{H}), 4.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~m}, 6 \mathrm{H}), 6.75-2.86(\mathrm{~m}, 2 \mathrm{H})$, $8.42(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,14.0,14.4,27.2,27.2,34.4,34.4$, $45.3,45.4,55.8,55.9,61.9,61.9,62.0,62.3,123.0,123.1,123.8,123.9,134.3,134.3,136.7,136.9$, 139.2, 139.4, 167.0, 167.0, 170.5, 170.5, 196.7, 196.7; HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{O}_{10}(\mathrm{M}+\mathrm{H})^{+}$ 607.2543, found 607.2540.

Experimental Procedure for the Synthesis of 4a from 1a and 2a:

Compound $\mathbf{4 a}$. It was obtained from $\mathbf{1 a}$ and $\mathbf{2 a}$ under the reaction conditions in the presence of 2 equivalents of TEMPO in 51% yield $(55 \mathrm{mg})$ as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.15(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.21(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.29(\mathrm{td}, J=2.2,7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.31-1.62(\mathrm{~m}$, $6 \mathrm{H}), 2.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.16-4.25(\mathrm{~m}, 4 \mathrm{H}), 5.05(\mathrm{dd}, J=13.6,22.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.86-5.97(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.5,13.5,16.4,20.2,20.2,32.7,32.7,38.3,40.6,40.6,60.3$, $60.6,60.6,88.1,117.3,132.8,168.6$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{+} 356.2437$, found 356.2433 .

Compound $\mathbf{4} \boldsymbol{b}^{1}$. It was obtained from 1a and 2a under the reaction conditions in the presence of 2 equivalents of BHT in 35% yield (18 mg) as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.24(\mathrm{~m}, 4 \mathrm{H}), 5.03-5.17(\mathrm{~m}$, 2H), 5.72-5.83 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,32.8,51.6,61.4,117.5,134.0,168.9$.

Compound $\mathbf{4 c}$. It was obtained from $\mathbf{1 a}$ and $\mathbf{2 b}$ under the reaction conditions in the presence of 2 equivalents of 1,1-diphenylethylene in 68% yield $(83 \mathrm{mg})$ as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.78(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.32(\mathrm{~m}, 6 \mathrm{H}), 2.05(\mathrm{dd}, J=10.4,13.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56(\mathrm{dd}, J=7.6,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-3.01(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.23-4.33(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.38(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 13.9,14.0,23.9$, $30.8,37.8,45.1,50.5,61.3,61.4,61.6,62.7,65.3,123.0,125.7,126.6,126.7,127.0,127.7,128.0$, 146.1, 148.8, 150.9, 171.3, 172.6; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{4}(\mathrm{M}-\mathrm{Br})^{+} 407.2222$, found 407.2222.

Compound $\mathbf{6 a} .62 \%$ yield $(53 \mathrm{mg})$; colorless oil; $\mathrm{dr}=68: 32 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ date of the major isomer $\delta 1.24-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.92-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.27$ $(\mathrm{m}, 1 \mathrm{H}), 2.93-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.41(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.26(\mathrm{~m}, 4 \mathrm{H}), 6.17-6.19(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.25-7.34 (m, 2H), 7.55-7.59 (m, 1H), 7.62-7.66(m, 1H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) date of the major isomer $\delta 14.0,29.7,38.5,41.4,45.2,61.5,65.8,70.3,119.6,125.6,126.2,127.9,129.1$, 140.7, 146.3, 170.6, 171.6; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 345.1702$, found 345.1697 .

Experimental Procedure for the Preparation of 6b via Reduction of 3aa:

[^0]

To a solution of $\mathbf{3 a a}(164 \mathrm{mg}, 0.5 \mathrm{mmol})$ in 3 mL of EtOH was added $\mathrm{NaBH}_{4}(28 \mathrm{mg}, 0.75 \mathrm{mmol})$. After stirring at room temperature for 30 min , the reaction mixture was quenched with water, extracted with EtOAc, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Column chromatography on silica gel (EtOAc/petroleum ether $=1: 5$) gave 145 mg of $\mathbf{6 b}$ (yield: 88%) as a colorless oil; the stereochemistry of $\mathbf{6 b}$ was determined by the NOE measurements. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25-1.32(\mathrm{~m}, 6 \mathrm{H}), 1.48-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.50$ $(\mathrm{m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=7.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.23(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.30(\mathrm{~m}, 4 \mathrm{H}), 4.89-4.92(\mathrm{~m}$, $1 \mathrm{H}), 6.19(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=7.7,15.7$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 14.0,14.1,39.0,40.5,41.6,61.5,61.6,65.7,69.5,119.0$, $125.0,126.3,127.4,128.9,129.3,140.4,145.9,170.4,171.5$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{5}$ $(\mathrm{M}+\mathrm{Na})^{+} 353.1365$, found 353.1371.

Experimental Procedure for the Synthesis of 3aj from 3aa: ${ }^{2}$

A mixture of 3aa ($164 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{LiCl}(63 \mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ in 1 mL of dimethyl sulfoxide was heated at reflux for 5 h . After cooling to room temperature, the reaction mixture was quenched with water, extracted with EtOAc, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Column chromatography on silica gel (EtOAc /petroleum ether $=1: 15$) gave 103 mg of 3aj (yield: 80%) as a colorless oil; $\mathrm{dr}=54: 46 ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ date of the major isomer $\delta 1.28-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.91-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=13.8,15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.62-2.69(\mathrm{~m}, 1 \mathrm{H}), 3.00-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.84(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.26(\mathrm{~m}, 2 \mathrm{H})$, 6.32-6.36 (m, 1H), $7.40(\mathrm{dd}, J=7.1,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.73(\mathrm{~m}, 1 \mathrm{H})$, $8.00-8.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) date of the major isomer $\delta 14.2,34.6,42.9,46.0$, $50.6,61.0,123.3,125.0,127.3,128.5,130.8,133.6,135.7,141.6,173.8,197.6$; HRMS (ESI)

[^1]calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$257.1178, found 257.1174.

Experimental Procedure for the Epoxidation of Tricyclic Ketones:

To a mixture of 3aa ($164 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(84 \mathrm{mg}, 1.0 \mathrm{mmol})$ in 5 mL of DCM was added m - $\mathrm{CPBA}(172 \mathrm{mg}, 1.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring at $25^{\circ} \mathrm{C}$ for 24 h , the reaction mixture was quenched with water, extracted with EtOAc, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Column chromatography on silica gel $(\mathrm{EtOAc} /$ petroleum ether $=1: 15)$ gave 141 mg of $7 \mathbf{a}$ (yield: 82%) as a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.95-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.98(\mathrm{~m}$, $1 \mathrm{H}), 4.19-4.35(\mathrm{~m}, 4 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.62(\mathrm{~m}, 2 \mathrm{H}), 8.05-8.13(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 14.0,14.0,32.5,36.2,40.3,60.9,62.0,62.1,63.4,64.9,125.8$, 127.9, 129.7, 134.0, 134.8, 135.7, 168.4, 168.8, 196.2; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$ 345.1338 , found 345.1333 .

Compound $7 \boldsymbol{b} .76 \%$ yield (144 mg); white solid, $\mathrm{mp} 83-85^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.94-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.82(\mathrm{~m}$, $2 \mathrm{H}), 2.90-3.00(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.37(\mathrm{~m}, 4 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=$ $2.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,14.0,32.3,36.0$, $40.1,60.8,62.1,62.1,63.5,64.3,127.5,127.9,134.0,134.0,136.1,136.3,168.2,168.7,194.8 ;$ HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClO}_{6}(\mathrm{M}+\mathrm{H})^{+} 379.0948$, found 379.0952.

Crystal data for 7b $\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClO}_{6}, 378.79\right)$: triclinic, space group $P-1, a=9.9793(12) \AA, b=$ $11.9540(15) \AA, c=15.515(2) \AA, U=1814.8(4) \AA^{3}, \mathrm{Z}=4, \mathrm{~T}=296(2) \mathrm{K}$, absorption coefficient $0.243 \mathrm{~mm}^{-1}$, reflections collected 8218 , independent reflections $4660[R(\mathrm{int})=0.0639]$, refinement by full-matrix least-squares on F^{2}, data/restraints/parameters 8218/26/470, goodness-of-fit on $F^{2}=$
1.017, final R indices $[I>2 \sigma(I)] R_{1}=0.0720, w R_{2}=0.1765, R$ indices (all data) $R_{1}=0.1273, w R_{2}$ $=0.2177$, largest diff. peak and hole 0.870 and $-0.352 \mathrm{e} \cdot \AA^{-3}$. Crystallographic data for the structure 7b have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC1439851.

Experimental Procedure for the Synthesis of α-BromoDiketone 7c: ${ }^{3}$

To a solution of $\mathbf{3 a a}(82 \mathrm{mg}, 0.25 \mathrm{mmol})$ in 1 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added NBS $(445 \mathrm{mg}, 2.5 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{OAc}(19 \mathrm{mg}, 0.25 \mathrm{mmol})$. After stirring at room temperature for 1.5 h , the reaction mixture was quenched with water, extracted with EtOAc, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Column chromatography on silica gel $(\mathrm{EtOAc} /$ petroleum ether $=1: 15)$ gave 80 mg of $7 \mathbf{c}$ (yield: 76%) as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24-1.28(\mathrm{~m}, 3 \mathrm{H})$, $1.34-1.38(\mathrm{~m}, 3 \mathrm{H}), 3.30(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.38(\mathrm{~m}, 4 \mathrm{H}), 5.95$ $(\mathrm{s}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.15(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 13.8,14.0,34.7,51.8,62.6,62.9,64.7,126.6,130.1,130.8,131.0,131.4,135.6,135.7$, 153.8, 166.2, 168.7, 178.2, 179.1; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrO}_{6}(\mathrm{M}+\mathrm{H})^{+} 421.0287$, found 421.0274.

Experimental Procedure for the Preparation of 1-Naphthol 7d via Reduction of 3ak:

To a solution of $\mathbf{3 a k}(170 \mathrm{mg}, 0.5 \mathrm{mmol})$ in 2 mL of $\mathrm{MeOH} / \mathrm{THF}(\mathrm{v} / \mathrm{v}=1: 1)$ was added $\mathrm{NaBH}_{4}(23$ $\mathrm{mg}, 0.6 \mathrm{mmol}$). After stirring at $25^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was quenched with water, extracted with EtOAc, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated.

[^2]Column chromatography on silica gel $(\mathrm{EtOAc} /$ petroleum ether $=1: 10)$ gave 154 mg of $\mathbf{7 d}$ (yield: $92 \%)$ as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 3.69$ ($\mathrm{s}, 2 \mathrm{H}$), $3.89(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 5.23(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.40-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.3,14.0,39.2,40.8,59.6,61.8$, 113.5, 121.7, 123.9, 124.0, 124.5, 125.7, 126.8, 128.8, 137.5, 148.2, 172.0; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+} 343.1545$, found 343.1535 .

200 \begin{tabular}{lllllllllll}

180 \& 160 \& 140 \& 120 \& | 100 |
| :---: |
| $\mathrm{f} 1(\mathrm{ppm})$ | \& 80 \& 60 \& 40 \& 20 \& 0

\end{tabular}

200 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

200 \begin{tabular}{lllllllllll}

180 \& 160 \& 140 \& 120 \& | 100 |
| :---: |
| $\mathrm{f} 1(\mathrm{ppm})$ | \& 80 \& 60 \& 40 \& 20 \& 0

\end{tabular}

$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{1}{N} \\ & \stackrel{\circ}{\prime} \end{aligned}$		 	 	

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1										
200	180	160	140	120	100 $\mathrm{f} 1(\mathrm{ppm})$	80	60	40	20	0

-199.0958
143.5732
133.3136
f 131.3345
-129.0402
-127.4602
$\begin{array}{r}77.2117 \\ \hline 76.9998\end{array}$
76.7879
${ }^{6} 65.9957$
61.8030
61.7834
$\chi_{49.0332}^{49.1175}$
${ }_{\sim}^{14.0433} 14.0102$

200 \begin{tabular}{lllllllllll}

180 \& 160 \& 140 \& 120 \& | 100 |
| :---: |
| $\mathrm{f} 1(\mathrm{ppm})$ | \& 80 \& 60 \& 40 \& 20 \& 0

\end{tabular}

	$\begin{aligned} & \text { 导 } \\ & \stackrel{\text { R }}{2} \end{aligned}$				กั๊

	\cong 0 0 0 0	N $\stackrel{\circ}{\circ}$ \sim	엉ㅇㅇ © M M F ল্ল゙	mస్ On No 	N

	 $\checkmark-5-5 \square$		

| 1 | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 200 | 180 | 160 | 140 | 120 | 100
 $\mathrm{f} 1(\mathrm{ppm})$ | 80 | 60 | 40 | 20 | 0 |

		 へべゥ	

$\begin{aligned} & \overline{0} \\ & \text { © } \\ & \dot{O} \end{aligned}$		す No No No 	 	
T			NNOCOOOO	

[^0]: ${ }^{1}$ K.-T. Yip, N.-Y. Zhu and D. Yang, Org. Lett., 2009, 11, 1911.

[^1]: ${ }^{2}$ A. P. Krapcho, J. F. Weimaster, J. M. Eldridge, E. G. E. Jahngen, Jr., A. J. Lovey and W. P. Stephens, J. Org. Chem., 1978, 43, 138.

[^2]: ${ }^{3}$ K. Tanemura, T. Suzuki, Y. Nishida, K. Satsumabayashi and T. Horaguchi, Chem. Commun., 2004, 470.

