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The catalytic asymmetric aminooxygenation of olefins is a very important process due to the
significance of the products as building blocks in the synthesis of drugs and natural products.
1 The enantioselective intermolecular osmium-catalyzed aminohydroxylation developed by
Sharpless and co-workers has proven to be an extremely useful method, as exemplified by its
use in numerous syntheses of biologically active compounds.2 Surprisingly, an
enantioselective intramolecular olefin aminooxygenation, which would result in the direct
synthesis of chiral nitrogen heterocycles, has not previously been reported. While regio- and
diastereoselective intramolecular osmium-3 and palladium-catalyzed4 olefin
aminooxygenation reactions have been reported, no successful ligand-based asymmetric
variants have been disclosed.5 Herein we report a novel and mechanistically distinct copper-
catalyzed enantioselective intramolecular aminooxygenation of olefins.5f This method allows
for the synthesis of chiral indolines and pyrrolidines, common components in biologically
active molecules.

We recently reported an enantioselective copper-catalyzed intramolecular carboamination of
olefins which results in the synthesis of chiral sultams.6 Mechanistic analysis of the racemic,
copper-promoted version of this reaction indicated the presence of a primary carbon radical
species that was trapped with tetramethylaminopyridyl radical (TEMPO) in excellent yield
(cf 1 → 2).7 This process, signifying a net aminooxygenation reaction, inspired us to ascertain
whether a catalytic enantioselective variant could be achieved.

Our study commenced by adding TEMPO (3 equiv) to the optimal catalytic enantioselective
carboamination reaction conditions, which uses MnO2 as stoichiometric oxidant (Table 1, entry
1). Upon further examination we found that TEMPO alone could be used for copper turnover
[Cu(I) to Cu(II)]. As shown in Table 1, the yield and enantioselectivity both increased upon
removal of additional oxidants (entry 3). A variety of other nitrogen protecting groups were
also surveyed (Table 1, entries 4–6). The tosyl group proved superior to the unreactive methyl
sulfonamide, benzamide and carbamate.

Our next objective was to identify an optimal ligand for asymmetric induction (Table 2). An
early screen of commercially available bisoxazoline ligands revealed that the 5-phenyl
substitution pattern is essential. Other aryl substituents such as 2-naphthalene,8 as well as cis
and trans 4,5-disubstituted phenyl bisoxazoline derivatives9 were also examined. When used
in slight excess, both antipodes of the 4,5-cis-diphenyl bisoxazoline ligand were optimal
(entries 5 and 6).

The generality of the reaction was examined as shown in Table 3. N-Sulfonyl-2-allyl aniline
substrates 1 cyclized in 57 – 97% yield providing indolines 2 in 50 – 91% ee. A variety of
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functional groups on the aniline were tolerated with the exception being a slight decrease in
ee for the electron withdrawing nitrile 1i.

The nature of the sulfonamide significantly effects the enantioselectivity where the tosyl was
superior to the mesyl substrate 1b (Table 1, entry 4) and the nosyl substrate 1k (Table 3,
compare entries 1,8, and 9). Worth noting, ortho substituted aniline derivatives (R = OMe, Cl)
were unreactive.

The 4-pentenylamine substrates 3 cyclized in 74–97% yield providing pyrrolidines 4 in 75–
92% ee (entries 10–16).10 O2 (1 atm) as a co-oxidant was necessary in order to drive these
reactions to completion. The unsubstituted aliphatic substrate 3e, nosylate 3f, and the 1,1-
disubstituted olefin substrate 5 all required higher catalyst loading in order to obtain an
appreciable yield and ee (Table 3, entries 14–16). In the latter case, chiral tertiary amine 6 is
formed in good enantioselectivity. The reaction of the nosylate 3f (86% yield, 89% ee) is
notable since this sulfonyl group is easier to remove than the corresponding tosylate.11

The absolute configuration was assigned by conversion of 2a and 4e to their corresponding
known chiral N-tosyl amino alcohols (Scheme 1 and supporting information). The observed
stereochemistry is consistent with a proposed transition state model where the substrate’s N-
substituent is trans to the nearest oxazoline’s phenyl groups (Scheme 1).6,12 The TEMPO
adduct 4a was converted to the aminoalcohol13 7 and oxidized to aldehyde14 8 without
diminished enantioselectivity (Scheme 1). Furthermore, removal of the tosyl group followed
by TEMPO reduction provided the known chiral amino alcohol 9.15

This aminooxygenation method provides efficient access to a variety of chiral pyrrolidines and
indolines of interest to synthetic organic and medicinal chemists. Its further optimization and
application towards the syntheses of such compounds is underway.
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Scheme 1.
Transition state model and TEMPO functionalization
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Table 1
Oxidant and N-substituent screena

entry R oxidant yieldb (%) %eec

1 1a, R = Ts MnO2 (3 eq) 71 72

2 1a O2 (1 atm) 96 81

3 1a - 97 83

4 1b, R = SO2Me - NR -

5 1c, R = Bz - NR -

6 1d, R = Cbz - NR -

a
Conditions: Cu(OTf)2 (0.2 equiv) and ligand (0.2 equiv) were combined, dissolved in PhCF3 (0.07 M w/r to 1) and heated at 50 °C for 2 h. Substrate

1 (1 equiv), oxidant, TEMPO (3 equiv) and K2CO3 (1 equiv) were added. The reaction was heated at 110 °C for 24 h.

b
Yield refers to amount of isolated 2 after purification by flash chromatography on SiO2.

c
Enantiomeric excesses were determined by chiral HPLC analysis [Chiralcel (S,S) Whelk]. NR = No reaction.
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Table 2
Chiral ligand screena

entry ligand(equiv) yieldb (%) %ee(config)c

1 R = (S,S)-Phbox (0.2) 97% 83% (R)

2 R = (S,S)-2-Napthbox (0.2) 47% 43% (R)

3 R = (4R,5R)-Bis-Phbox (0.2) 97% 77% (S)

4 R = (4S,5R)-Bis-Phbox (0.2) 97% 88% (S)

5 R = (4R,5S)-Bis-Phbox (0.25) 97% 84% (R)

6 R = (4S,5R)-Bis-Phbox (0.25) 97% 90% (S)

a
Conditions: Cu(OTf)2 (0.2 equiv) and ligand were combined, dissolved in PhCF3 (0.07 M w/r to 1a) and heated at 50 °C for 2 h. Substrate 1a (1 equiv),

TEMPO (3 equiv) and K2CO3 (1 equiv) were added. The reaction was heated at 110 °C for 24 h.

b,c
Same as Table 1.
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Table 3
Scope of Enantioselective Aminooxygenation with (1S,2R)-Bis-Phbox liganda

entry substrate Product yield(%)d ee(%)e

1 1a, R1 = H, R2 = Ts 2a 97 90

2 1e, R1 = p-F, R2 = Ts 2e 83 89

3 1f, R1 = p-Cl, R2 = Ts 2f 73 91

4 1g, R1 = p-OMe, R2 = Ts 2g 82 86

5 1h, R1 = p-Me, R2 = Ts 2h 75 85

6 1i, R1 = p-CN, R2 = Ts 2i 88 76

7 1j, R1 = m-OMe, R2 = Ts 2j 61 87

8 1k, R1 = H, R2 = Ns 2k 75 61

9 1b, R1 = H, R2 = Ms 2b 57 50
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entry substrate Product yield(%)d ee(%)e

10b 3a, R1 = Me, R2 = Ts 4a 97 88f

11b 3b, R1 = Ph, R2 = Ts 4b 97 92

12b 3c, R1 = −CH2O(Si(tBu)2)OCH2−, R2 = Ts 4c 87 89

13b 3d, R1 = −CH2O(CH3)2OCH2−, R2 = Ts 4d 88 89

14c 3e, R1 = H, R2 = Ts 4e 74 75

15c 3f, R1 = Me, R2 = Ns 4f 86 89

16c 5 6 61 82

a
Conditions: Cu(OTf)2 (0.2 equiv) and ligand (0.25 equiv) were combined, dissolved in PhCF3 (0.07 M w/r to substrate) and heated at 50 °C for 2 h.

Substrate (1 equiv), TEMPO (3 equiv) and K2CO3 (1 equiv) were added. The reaction was heated at 110 °C for 24 h.

b
Reaction was run at 120 °C under O2 (1 atm).

c
0.4 equiv of Cu(OTf)2 and 0.5 equiv of ligand were used.

d
Yield refers to amount of isolated product after purification by flash chromatography on SiO2.
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e
Enantiomeric excess were determined by chiral HPLC analysis. Each reaction was run at least 2 times.

f
A range of 86–90% ee was obtained.
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