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Abstract. An efficient strategy for the synthesis of α,β-unsaturated enaminones by the nucleophilic addition of
N -heterocycles such as indole and imidazoles onto electronically bias alkynones under mild reaction conditions
is described. Key feature of this reaction is the chemoselective addition of N -heterocycles onto ynones without
affecting the 1o amino groups (aromatic and aliphatic) of 5-aminoindole and tryptamine. The stereochemistry of
the products was controlled by the tuning of reaction time. The mechanism of the reaction involves the Michael
type addition of N -heterocycles on ynones via allene formation.
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1. Introduction

For more than a century, 1,3-dicarbonyl compounds and
their derivatives have been one of the most versatile
and frequently employed C-3 synthons in organic syn-
thesis.1 Among them, enaminones2 have been used in
synthetic chemistry since a long time. One reason for
their widespread application is their versatile reactiv-
ity, both as electrophiles and nucleophiles. Enaminones
are the vinylogous amides that are resonance-stabilized
and known to have high nucleophilicity. They are the
enamines of carbonyl compound resembling chalcones
and are well known for their intrinsic pharmacolog-
ical and biological properties.3 Many reports on the
antioxidants, antiproliferative, antibacterial, anticancer,
cytotoxic agents and chemopreventive properties of
enaminones have been discussed in the literature.4

Enaminones occupy an important place as interme-
diates in target oriented organic synthesis.5 They are
considered as vital synthetic targets because of the sub-
sequent reactivity of their double bond, often working as
substrates for addition or redox reaction. Enamine and
imines both function as reagents for the introduction of
N -containing moieties into a synthetic sequence. The π-
electron delocalization and presence of α,β-unsaturated
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bond are the two specific characteristic of enaminones
which makes them reactive. Due to their significant util-
ity in organic synthesis, a number of methods have been
developed for the preparation of enaminones.6,7 For
decades, enaminones were prepared by the general reac-
tion of amines and 1,3-diketones which are established
substrates in heterocyclic chemistry.8 However; the con-
ventional methodology suffers from various drawbacks.
The utilization of ynones is a common strategy in the
synthesis of many biologically important compounds.9

In 2003, Muller and co-workers5b described Sono-
gashira coupling of acid chloride followed by addition
of non-heterocyclic amines on to alkynone (Scheme 1a).
Later, Jiang group10 reported the multicomponent
domino synthesis of tetrahydropyridine using l-proline
as a catalyst (Scheme 1b). Subsequently, Chauhan and
researchers11 reported the two-step synthesis of chal-
cones derivatives via reaction of indolyl acetophenone
with carbonyl substrate (Scheme 1c). In 2012, Trofimov
and co-workers12 demonstrated the superbase promoted
α-vinylation of aliphatic, alicyclic, and alkyl aromatic
ketones with arylacetylenes for the synthesis of β,γ-
unsaturated ketones (Scheme 1d). In reference to the
above approaches and ongoing research of our group on
hydroamination chemistry,13,14 herein we report copper-
catalyzed nucleophilic addition of N -heterocycles onto
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Scheme 1. Previous strategies vs. present work.

alkynones to synthesize α,β-unsaturated enaminones
(Scheme 1e).

2. Experimental

2.1 Material and physical measurements

The chemicals and reagents used for the synthesis were
obtained from commercial sources. Solvents were distilled
from an appropriate drying agent. Heterocycles, benzoyl chlo-
ride and alkynes (Sigma Aldrich) were used as received. All
other chemicals and solvents were of analytical grade. All
the reactions were performed in an oven-dried Schlenk flask
under an argon atmosphere. Column chromatography was
performed using neutral and basic alumina. TLC analysis was
performed on commercially prepared 60 F254 silica gel plates.
Visualization of spots on TLC plate was accomplished with
UV light (254 nm) and staining over the I2 chamber. 1H NMR
(400 MHz) and 13C NMR (100 MHz) spectra were recorded
in CDCl3 and DMSO-d6. Chemical shifts for carbons are
reported in ppm from tetramethylsilane and are referenced
to the carbon resonance of the solvent. Data are reported as

follows: chemical shift, multiplicity (s = singlet, d = dou-
blet, t = triplet, q = quartet, m = multiplet, dd = doublet
of doublet, br s = broad), coupling constants in Hertz, and
integration. High-resolution mass spectra were recorded with
q-TOF electrospray mass spectrometer, and Infrared spectra
were recorded on an FT-IR spectrophotometer.

2.2 Synthesis of alkynone 2

The alkynone 2 was prepared by the Sonogashira coupling
reaction of corresponding benzoyl chloride with terminal
alkynes. To a solution of Pd(PPh3)2Cl2 (2 mol%) and CuI
(4 mol%) in THF under an inert atmosphere, alkyne (0.5
mmol), benzoyl chloride (0.5 mmol) and base triethyl amine
(0.5 mmol) were added. Resulting mixture was stirred at
25 ◦C (room temperature) for 30–45 min. The progress of
the reaction was monitored by TLC. After the complete
consumption of the starting substrate, the reaction mixture
was extracted with ethylacetate (5 mL × 3) and evaporated
under reduced pressure. The crude reaction mixture was
purified using silica gel column chromatography (EtOAc:
Hexane ::5: 95).
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2.3 Synthesis of enaminones 3

To a solution of N -heterocycle 1 (0.5 mmol) in DMSO and
finely crushed KOH (0.2 equiv.), alkynone 2 (0.3 mmol) and
CuI (2 mol%) was added. Resulting mixture was heated at
80 ◦C for 10–15 min. Progress of the reaction was monitored
by TLC. After the complete consumption of the starting sub-
strate, reaction mixture was brought to room temperature. The
reaction mixture was extracted with ethylacetate (5 mL × 3)
and evaporated under reduced pressure. The crude reaction
mixture was purified using silica gel column chromatography.

2.4 Characterization of alkynone 2a

1-(3-(Trifluoromethyl)phenyl)-3-(trimethylsilyl)prop-2-y
n-1-one. The product was obtained as a pale white oil (117.4
mg, 87%); 1H NMR (400 MHz, CDCl3) δ 8.38 (s, 1H), 8.30
(d,J = 7.3 Hz, 1H), 7.84 (d,J = 9.5 Hz, 1H), 7.65–7.60
(m, 1H), 0.32 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 176.1,
136.9, 132.6, 130.4, 129.3, 126.3 (q, J = 3.8 Hz, 1C), 102.4,
100.1, −0.8. HRMS (EI) [M]+ Calcd. for [C13H13F3OSi]
270.0688, found 270.0688.

2.5 Characterization of compound 3a

(Z)-3-(1H-Indol-1-yl)-1-(3-(trifluoromethyl)phenyl)prop
-2-en-1-one

Compound 3a was prepared by the addition of 0.2 equiv.
of KOH and CuI (2 mol%) in the solution of indole
1a and 1-(3-(trifluoromethyl)phenyl)-3-(trimethylsilyl)prop-
2-yn-1-one 2a in DMSO. The reaction mixture was heated
at 80 ◦C for 15 min. The structure of compound 3a was
established on the basis of its spectral data analysis. Its
high-resolution mass spectrum showed [M]+ peak at m/z
315.0871, which confirmed its molecular formula to be
C18H12F3NO. In the 1H NMR spectrum in CDCl3 at
400 MHz, the characteristic peaks of the styryl protons at
Cα and Cβ appeared at δ 8.14 and 7.74 ppm with a coupling
constant J of 7.7 and 7.8 Hz, respectively, suggesting the
formed isomer as a Z -isomer. Similarly, the 13C NMR spec-
trum in CDCl3 at 100 MHz, appearance of the quartet carbon
at δ 125.1 ppm shows the formation of an addition product.
The peaks of all other protons and carbons of the molecule
were present in 1H and 13C NMR spectra of the molecule in
Supplementary Information.

3. Results and Discussion

3.1 Optimization of the reaction condition

To identify the optimal reaction conditions, we have
screened various bases and solvents under certain

interval of time at different temperatures. We began our
investigation using indole 1a and 1-(3-(trifluoromethyl)
phenyl)-3-(trimethylsilyl)prop-2-yn-1-one 2a as our
model substrates (Table 1).

Inspired by our previous conditions for hydroamina-
tion, we performed the reaction of 1a with 2a in the
presence of 0.2 equiv. of KOH in DMSO at 120 ◦C for
30 min yielded 24% of the E-isomer 3a (Table 1, entry
1). Decreasing the reaction temperature from 100 ◦C to
80 ◦C provided the desired product 3a in 44% and 54%
yield, respectively (entries 2 and 3). Lowering the reac-
tion time from 30 min to 20 min leads to a mixture of
E and Z stereoisomers (entry 4). On tuning the reac-
tion time to 15 min, the Z -isomer 3a was obtained in
59% yield (entry 5). Further lowering the reaction time
leads to the incompletion of the reaction (entries 6 and
7). Enhancing the amount of KOH to 0.5 equiv. did not
make any significant effect on the yield of the reaction
(entry 8). Interestingly, the addition of 2 mol% of CuI
improved the yield of hydroaminated product 3a to 74%
(entry 9). However, no significant change in the yield of
the product was observed when 5 mol% of CuI was
used (entry 10). Other inorganic bases such as NaOH,
CsOH·H2O, and K+OtBu were found to be ineffective
for the reaction (entries 11–13). Inferior results were
obtained when Et3N was used as a base (entry 14). Next,
we screened the solvents for the designed reaction and
to our interest moderate yield was obtained with NMP,
though other solvents like toluene, DMF and MeCN
failed to give the desired product (entries 15–18).

3.2 Hydroamination of alkynones with
N-heterocycles

Our preliminary investigation revealed that the optimal
reaction condition for the synthesis of diversely sub-
stituted styryl enaminones was 2 mol% of CuI and
0.2 equiv. KOH in DMSO at 80 ◦C for 15 min. Addition
of N -heterocycles 1a–h on alkynones 2a–f provided the
corresponding hydroaminated products 3a–u in mod-
erate to good yields (Table 2, entries 1–21). It was
noticed that the nature of the heteroarenes and the
substituents attached to the triple bond has a major
impact on the success of the process. It was motivating
to find that reaction of heterocycles 1a with electron-
withdrawing alkynone 1-(3-(trifluoromethyl)phenyl)-3-
(trimethylsilyl)prop-2-yn-1-one 2a provided Z-isomer
3a as major product with the hydrolysis of TMS within
15 min in 74% yield (entry 1). High temperature
and longer reaction time led to the decomposition of
product. Intermolecular addition of indole 1a on to inter-
nal alkynone 2b–d provided the hydroaminated prod-
ucts 3b–d in 70%, 72% and 70% yields, respectively
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Table 1. Optimization of the reaction conditions.a

Entry Alkyne Base (equiv.) Solvent Time(min)/ T ◦C Yield (%)b

3a(E :Z)c

1 2a KOH (0.2) DMSO 30/120 24 (95:05)
2 2a KOH (0.2) DMSO 30/100 44 (95:05)
3 2a KOH (0.2) DMSO 30/80 54 (95:05)
4 2a KOH (0.2) DMSO 20/80 52 (60:40)
5 2a KOH (0.2) DMSO 15/80 59 (00:100)
6 2a KOH (0.2) DMSO 10/80 45 (00:100)
7 2a KOH (0.2) DMSO 05/80 33 (00:100)
8 2a KOH (0.5) DMSO 15/80 56 (00:100)
9d 2a KOH (0.2) DMSO 15/80 74 (00:100)
10e 2a KOH (0.2) DMSO 15/80 75 (00:100)
11d 2a NaOH (0.5) DMSO 15/80 69 (00:100)
12d 2a CsOH·H2O (0.5) DMSO 15/80 62 (00:100)
13d 2a K+OtBu (0.5) DMSO 15/80 60 (00:100)
14d 2a Et3N (0.5) DMSO 15/80 NR
15d 2a KOH (0.2) Toluene 15/80 NR
16d 2a KOH (0.2) DMF 15/80 NR
17d 2a KOH (0.2) MeCN 15/80 Trace
18d 2a KOH (0.2) NMP 15/80 56 (00:100)

aReactions were performed using N -heterocycle 1a (0.5 mmol), alkyne 2a (0.3
mmol) in 2.0 mL of solvent under nitrogen atmosphere. bTotal yield of two isomers.
cSterioisomeric ratio. dCuI (2 mol%).eCuI (5 mol%).

(entries 2–4). Electron-rich amines like 3-methylindole
1b reacted smoothly with alkynones 2b–d and provid-
ing the desired products 3e–g in good yields (entries
5–7). Interestingly, chemoselective hydroamination was
obtained when tryptamine 1c and 5-aminoindole 1d
were used as substrates without affecting the pri-
mary amine group (entries 8–15). The 5-methoxyindole
1e and 5-bromoindole 1f were compatible under our
screened conditions and afforded the Z-styryl alkynones
3p–r in 63–59% yield (entries 16–18). The NOE stud-
ies of the enaminone 3p confirm the orientation of
the rings in the product. Subtle switching from indole
nucleus to imidazole moiety 1g successfully gave the
addition product 3s in 67% yield (entry 19). Similarly,
the reaction of sterically hindered heterocycle 1h with
1-(2-bromophenyl)-3-(p-tolyl)prop-2-yn-1-one 2b and
3-(m-tolyl)-1-(3-(trifluoromethyl) phenyl)prop-2-yn-1-
one 2f afforded the styrylenaminones 3t and 3u in 61 and
60% yield respectively (entries 20 and 21). However,
the alkyl ynone 2g failed to provide the hydroaminated
product 3v instead an inseparable complex mixture was
obtained (entry 22).

3.3 Plausible mechanism

The addition of N -heterocycle 1 to the corresponding
alkynone 2 takes place in accordance with Michael addi-
tion reaction (Scheme 2). The hydroxide generates a
nucleophile P that attacks the electrophilic alkyne conju-
gated with the carbonyl group giving rise to an allene Q
via polarization of Cu. Species Q rearranges into species
R which undergoes protometal leading to the formation
of enaminone 3.

4. Conclusions

We have developed an efficient and simple strategy
for the synthesis of α,β-unsaturated enaminones by the
nucleophilic addition of N -heterocycles onto alkynones
under mild reaction conditions. The addition of catalytic
amount of copper facilitates the attack of nucleophile
onto alkynones. The developed protocol provides regio-,
stereo- and chemoselective syntheses of Z -styryl enam-
inones. The chemoselective addition of N -heterocycles
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Table 2. Synthesis of styrylenaminones by the addition of N -heterocycles and alkynones.a

Entry N-heterocycle 1 Alkynones 2 Product 3 Yield (%)b

1

1a 2a 3a

74

2 1a

2b
3b

70

3 1a

2c
3c

72

4 1a

2d
3d

70

5

1b

2b

3e

71

6 1b 2c

3f

69

7 1b 2d

3g

71
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Table 2. (contd.)

8

1c

2a

3h

65

9 1c

2e
3i

68

10 1c 2d

3j

61

11

1d
2a

3k

69

12 1d 2b

3l

69

13 1d 2c

3m

67

14 1d 2e

3n

69

15 1d 2d

3o

62
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Table 2. (contd.)

16

1e

2b

3p

60

17 1e 2e

3q

63

18

1f

2d

3r

59

19
1g

2b

3s

67

20

1h
2b

3t

61

21 1h

2f
3u

60

22 1h

2g

3v

-c

aThe reactions were performed using N -heterocycle 1 (0.5 mmol), alkyne 2 (0.3 mmol), CuI (2 mol%) and KOH
(0.2 equiv.) as base in 2.0 mL of DMSO at 80 ◦C for 15 min under nitrogen atmosphere. bYield of isolated
product. cInseparable complex mixture.
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Scheme 2. Probable mechanism via Michael addition.

onto alkynones proceeds without affecting 1◦ amino
groups (aromatic and aliphatic) present in the substrate
and provides a synthetically useful handle in the prod-
ucts for further elaboration. The method involves a
facile route, utilizing simple and easily accessible start-
ing materials under non-toxic environment increases the
synthetic utility of the developed protocol.

Supplementary Information (SI)

Characterization data and copies of 1H, 13C NMR and HRMS
spectra for selected compounds are reported, which available
free of charge at www.ias.ac.in/chemsci.
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