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Heating the catalysts chemically at a cold start is indeed an approach to achieving catalytic performance. The purpose of this effort
is to reduce cold flow emissions to background levels during regular engine operation. To address this issue, a thermal model was
created, and a temperature study of various configurations was performed utilizing the computational dynamics method. This was
followed by a regression model to confirm the results of the experiment. The article discusses how using a computational fluid
dynamic to simulate the transient temperature profile of a chemically heated catalytic converter (CHCC) in exhaust may aid in
the development of a much more powerful and energy-efficient catalytic converter. In this research, nanoparticles have been
used as a heat transfer enhancement agent to improve the thermal conductivity of the exhaust gases. This work has been
proposed to calculate the flow behaviour and heat transfer of nanoparticles in the proposed catalytic converter. The
nanomaterial composite, created by incorporating copper oxide nanoparticles (CuO2) on the surfaces of metal mesh, is used in
the catalytic converter. The analytical technique has previously demonstrated its use in better predicting and comprehending
the dynamic behaviour of a tightly linked catalyst and its thermally light-off period. The converter was evaluated in this study
together with the SI (spark ignition) engine, and the data collected has been verified using analysis of regression. It is seen that
in the converter with nanocopper oxide configuration, 50% carbon monoxide (CO) conversion efficiency is possible when the
temperature of the main converter reaches 250°C and the CO is initially 2.7% Vol, and after reaching light off, it is 1.95% Vol.
The time it takes to reach 250°C is 48 seconds after a cold start. In the case of hydrocarbons (HC), 50% HC conversion is
reached during the test period of 168 seconds after the cold start. The HC is 605 ppm initially, and after light off, it is 130 ppm.
The time taken to reach the HC light-off temperature is 300°C, with nanocopper oxide reaching this temperature in 168 seconds.
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1. Introduction

The automotive sector is critical to emerging countries’ eco-
nomic stability and development. For a long period in our
country, individual transport was seen as a privilege and a
demand of the rich. However, as private transportation is
now a fundamental and universal feature of contemporary
life, India’s automotive segment is all set to take off in a
big way. The majority of the world’s automobiles are estab-
lishing manufacturing facilities in India. Such rapid growth
in the automotive sector brings numerous difficulties to
light, one of which is vehicle emissions. It is not necessary
to stress the significance of clean air in maintaining a decent
and healthy lifestyle. As a result, emissions must be signifi-
cantly reduced in order to preserve a relatively secure planet
for future generations [1–7].

Global ecological degradation has prompted academics
to concentrate on the construction of LEV (low emission
vehicles) and ULEV (ultralow emission vehicles). Automo-
biles produce large amounts of HC (hydrocarbons), CO
(carbon monoxide), and PM (particulate matter) [8–10].
Catalytic emission controls are universally acknowledged as
one of the most economical methods of pollution reduction.
A catalyst exhaust control system transforms the toxic com-
ponents of the vehicle’s emissions chemically into innocuous
gases using a precious metal catalyst. This method is likely to
lower carbon and hydrocarbon emissions by up to 80% and
particulate matter by more than 50% [11].

The current generation of gasoline automobiles evalu-
ated as shown in the FTP (Federal Test Procedure) generates
between 70% and 80% of exhaust within the first 1 or 2
minutes after cold starting. It is mostly owing to the catalytic
converter’s lack of effectiveness until it hits light-off temper-
ature. Thus, immediately raising the catalytic converter’s
temperature during the cold start of the vehicle is critical
for lowering carbon and hydrocarbon emissions [12]. The
problem of complying with ULEV and LEV standards has
led to the development of a variety of novel converter ideas
aimed at reducing cold-start emission levels. However, one
novel notion is the pre-cold-start electrothermal catalyst
method. The primary challenge in using the electrothermal
catalyst technique is the significant electrical energy con-
sumption and heat-up time [13]. Significant advancements
have been achieved in the last several years to lower usage
of power to the 2 and 3 kW range. To generate between
two and three kW from 12-volt batteries, huge wire widths
and a complex switching power system are required. Even
a little power need of two kilowatts does have a noticeable
effect on the life of the battery. Even more likely would be
to heat the catalyst with energy from renewable sources, like
electricity, heat, or the chemical energy in the exhaust [14].

Placing the hot catalyst nearer to the primary converter
enhances the engine’s backpressure. The primary converter
and hot catalyst being located nearer the engine accelerated
the thermal deterioration of the catalyst and backpressure.
The reduced mass of the hot catalyst results in a lower elec-
trical power requirement and a shorter heat-up time. The
rate of temperature rise is proportional to the mass of the
converter [15]. By maximizing the hot mass, it is possible

to accelerate the rate of temperature rise, which results in
an exothermic reaction [16]. When the exothermic reaction
occurs, a large amount of chemical energy is generated,
which functions as a heat source for the primary converter.
As a result, the time necessary to activate the catalyst is
slightly decreased. This energy depends on the temperature
of the catalyst. You can utilize this energy by starting the cat-
alytic activity as quickly as possible. One way to start the cat-
alytic activity as quickly as possible is to produce a more
rapid temperature rise in the converter. The exothermic
reaction from the oxidation of HC and CO releases an abun-
dance of chemical energy. This energy must be added rap-
idly and be sufficient to maintain an effective catalyst
temperature for high conversion efficiency. The quantity of
energy stored in the electrically heated catalyst (EHC) and
light-off converter (LOC) is critical because it determines
the operating temperature of these components. Recent
EHC activities have focused efforts on electrical energy
reductions. To achieve a high conversion rate at low electric
power, the electric energy has to be used to heat small por-
tions of the catalyst intensively and rapidly, thus inducing
the catalytic reaction within a few seconds. The reactions
not only reduce emissions but also add a significant amount
of exothermic energy to the gas stream. The rate of temper-
ature rise is proportional to the mass of the converter. By
optimizing the heated mass, it is possible to greatly increase
the rate of temperature rise. Thus, by heating only a small
volume of catalyst, it is possible to reach the temperature
where catalytic activity begins and releases the chemical
energy of the exhaust very rapidly. Once the exothermic
reaction begins, an abundance of chemical energy is
released, which acts to heat the main converter (1.5% CO
removal results in a 220K Temperature rise). The chemically
heated catalytic converter (CHCC) rapidly achieves high
temperatures, and the heat created by exothermic oxidation

QStore, LOC

QChem, out

QTher, out

QChem, in

QTher, in

QLoss

QElec

QStore, EHC

Figure 1: Energy balance diagram.

Table 1: Properties of nanoparticle copper oxide.

Item Specifications

Name (chemical) Copper oxide (CuO2)

Molecular weight 79.545 g/mol

Color Black

Density 6.4 g/cm4

Thickness 30-50 nm

Purity 99.90%
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is transferred by the exhaust gas to the primary converter,
where it achieves a faster light off, resulting in reduced emis-
sions at power levels in the range of 1.5 kW [17]. The walls
of the metal mesh are incorporated with copper oxide nano-
composite to enhance the conduction rate. The goal of this
work is to look at how well CHCC works using CFD analysis
and regression analysis.

One technique to get the catalytic activity started as
quickly as possible is to increase the converter’s temperature.
The rate of temperature rise is proportional to the mass of
the converter. It is feasible to considerably accelerate the rate
of temperature rise by optimizing the heated mass. Catalytic
activity can be initiated, and exhaust chemical energy is
released extremely quickly by heating a small volume cata-
lyst to a high temperature. A large amount of chemical
energy is released during the exothermic reaction, which in
turn heats the primary converter. Figure 1 schematically
depicts the system’s energy balance. The catalytic converter
produces chemical energy and thermal energy, as can be
seen in the energy balance. In terms of energy equation

(1), we can say

QChem,out: +QTher,out: =QChem,in +QTher,in +QElec

−QStore,EHC –QStore,LOC −QLoss,
ð1Þ

where QChem,out is the chemical energy that comes out of the
converter, QTher,out is the thermal energy that comes out of
the converter, QChem,in is the chemical energy that enters
the converter, QTher,in is the thermal energy that enters the
converter, QElec is the electrical energy supplied, QStore,EHC
is the energy stored in the EHC converter, QStore,LOC is the
energy stored in the LOC converter, and QLoss is the loss of
energy that goes out of the converter.

These are the energy sources available to heat the con-
verter. The electrically heated catalytic (EHC) converter is
extremely effective in lowering cold-start CO and HC emis-
sions. EHC preheating or postheating reduced emissions sig-
nificantly. These systems typically require 600-700A current
and a high electrical output of more than 4 kW. A heavy-
duty alternator, either a big-size battery or a separate battery
for EHC, large diameter wires, and a heavy-duty semicon-
ductor switch are required to supply this high power of
4 kW to a conventional EHC [18]. As a result of the added
weight, the cost rises, and the fuel economy suffers. Recent
EHC operations have focused on reducing the amount of
electrical energy required. 1.5 kW of heating is possible with
the available battery. The EHC and LOC are coated with
CuO2 nanoparticles at a size of 30–50nm. The properties
of nanoparticles are given in Table 1. The experimental
setup is also shown in Figure 2.
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Air tank

Engine

CHCCExhaust pipe
Analyzer

Data logger

Main CC

Thermocouple

Flow meter

Pressure gauge

Flow regulator

Air compressor

Printer

Loading
device
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Figure 2: Experimental setup.

Figure 3: New proposed CHCC model.
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2. Analysis of the New Proposed Model

This CFD analysis is aimed at determining the temperature
at the outlet of the manifold for the varying inlet tempera-
ture that varies unsteadily. There is a heater kept in the path
of the fluid which heats the fluid, which leads to a further
increase in the temperature of the fluid at the outlet as
shown in Figure 3.

The models detailed are indeed part of an initial study to
investigate the significance of accounting for multidimen-
sional impacts in designing vehicle catalytic converters [19].
Although simulating a single system of a catalytic converter
is useful in analyzing core difficulties, it is far from suitable
for comprehensive catalytic converter modeling and evalua-

tion. For CFD (computational fluid dynamics) to create an
influence on building designs within the automobile industry,
it is of greatest significance to be capable of simulating the full
catalytic converter, as compared to a traditional channel of the
catalyst. CHCC is represented as a porous block.

The heater element (EHC) and LOC are assumed to be
made of copper with a density of 8978 kg/m3, Cp = 381 J/
kg-k, and thermal conductivity of 387.6W/m-k. The CFD
domain is discretized into 1385443 triangles and 708987 tet-
rahedrons. The problem is assumed to be unsteady, com-
pressible, and turbulent. Fluent is used to solve the
problem. The K-ε (K-epsilon) standard model, which is a
two-equation model in nature, is used to model turbulence.
The energy equation is activated to see the conjugate heat
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3.29e+01
3.13e+01
2.96e+01
2.80e+01
2.63e+01
2.47e+01
2.30e+01
2.14e+01
1.98e+01
1.81e+01
1.65e+01
1.48e+01
1.38e+01
1.16e+01
9.91e+00
8.27e+00
6.63e+00
4.99e+00
3.34e+00
1.70e+00
6.03e+00

Y

Z

X

Figure 4: Velocity contours.
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transfer, which solves heat transfer with convection. The
unsteady profile is given at the inlet using a profile file
option. The scheme of second-order discretization is used.
The heater element (EHC) is set to 400°C [20]. It is discov-
ered through pressure distribution. The backpressure devel-
oped due to this configuration is slightly higher between the
outlet of the engine and the inlet of CHCC. Figures 4 and 5
show how the speed of CHCC changed at different times
during the simulation.

It is found from the velocity contour that the velocity is
higher at the inlet and outlet of CHCC. It is also found that
the velocity is remarkably high near the conical surface and
the centerline of the outlet exhaust pipe. It is found from
velocity vector distribution that the conical portion helps

to divert the exhaust effectively and creates better turbulence
for maximum heat transfer from the heater element. A vor-
tex is formed at all four corners of the CHCC, and the swirl
motion is desirable for better mixing of the exhaust with any
incoming secondary air. The introduction of secondary air
helps the unburnt hydrocarbons react with the incoming
air to oxidize into CO2 and H2O [21]. It is also found that
the vortex created in front of the conical section is not desir-
able, which must be removed by modifying the outer case of
the CHCC design. The velocity vector also indicates that the
flow finally passes through the center portion of the LOC,
which is also desirable to activate the LOC as quickly as pos-
sible so that more will be generated and carried to the main
catalytic converter. The velocity contour depicts that the
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Figure 7: Temperature path lines 120 sec after engine start.

6.76e+02
6.75e+02
6.73e+02
6.71e+02
6.70e+02
6.68e+02
6.66e+02
6.65e+02
6.63e+02
6.61e+02
6.60e+02
6.58e+02
6.56e+02
6.55e+02
6.53e+02
6.51e+02
6.50e+02
6.48e+02
6.46e+02
6.45e+02
6.43e+02

Y

Z

X

Figure 6: Temperature distribution 120 sec after engine start.
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exhaust gas needs some residence time to convert CO to
CO2. The model was proposed to give enough time and
required temperature to attain.

Figure 6 indicates that the heat created due to the nano-
particles carried down to the main catalytic converter heats
it more effectively than the previous configuration.
Figure 7 depicts the temperature path lines, which show
the way the heat is carried away to heat the main converter.
Once the main converter is heated up to the light-off tem-
perature, its efficiency is around 98% as per the previous
work [22].

3. Theoretical Investigation: Multiple
Regression Analysis

The benefit of this strategy would be that no prior predic-
tions about the correlation’s shape are required. The tech-

nique is validated based on preliminary results. Regression
is a method for determining the shape of the finest corre-
lation, including its constants, while genetic algorithms are
one approach to accomplish this. Comparisons based on
empirical results are frequently used to estimate the rate
of heat generation in thermoelectric elements. Most of
the time, this transition from empirical observations to
correlations is done by first choosing a certain functional
form of the relationship and then figuring out the con-
stants [23].

The efficiency of CO conversion rate, CHCC is
temperature-dependent on the emission well before CHCC,
the temperature of both MC and the duration of the engine’s
cold start, all of which are managed as independent factors.
The following data from a trial run of 1.5 kW heating and
90 lpm air supply is being used to correlate the condition
required for CHCC.
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With this method, the experimental data is used to test
the procedure. Regression is a way to find the best-fitting
correlation’s shape and constants, and genetic programming
gives you a way to do it. The heat rate in thermal compo-
nents is estimated by using correlations that were found
through experiments. This process of turning experimental
data into correlations is done by first choosing a specific
functional form of the correlation and then figuring out
the constants for that form.

The CO conversion rate, which is a measure of how well
the converter works, depends on the temperature of the

exhaust before the converter, the temperature of the main
converter (MC), and how long it has been since the engine
was cold started. These factors are treated as independent
variables, and data from a test run with 1.5 kW of heating
is shown in

CO %conversionð Þ = 51:87132 − 0:24151t − 0:0009Tin + 0:173323 Tmc,

ð2Þ

where t is the number of seconds since the engine was
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Figure 11: Differences in CO experimental and projected values.

Table 2: Time to reach light off for different configurations.

Catalytic converter configuration
Time taken to reach light-off
temperature for CO reduction

Time taken to reach light-off
temperature for HC reduction

145 cubic centimeter EHC catalytic converter
without copper oxide nanoparticle coating

156 seconds after the engine started 180 seconds after the engine started

145 cubic centimeter EHC catalytic converter
with copper oxide nanoparticle coating

48 seconds after the engine started 168 seconds after the engine started
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Figure 10: Variation in the rate of CO conversion as a function of MC temperature.
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turned on cold, Tin is the exhaust temperature before the
converter in °C, and Tmc is the main converter’s surface
temperature in °C.

This equation is a useful engineering tool for figuring out
how well the converter will work with the nanocopper oxide.

The above method is a useful engineering method for
quantifying the CHCC’s performance under specified condi-
tions. Figures 8–10 illustrate the projected and empirical rate
of conversion in CO vs. period in seconds after a cold start,
engine exhaust temperatures before CHCC, and main cata-
lytic converter temperature, respectively. By setting the third
independent variable and the matching rate of conversion of
CO, all two independent variables may be predicted [24]. As
can be seen from the graphs, the projected values and exper-
imental data are very congruent.

The projected and observed results of the rate of CO con-
version are shown in Figure 11. According to a study of the
sample data, the projected results are quite similar to the
experimental standards [25]. As a result, the establishedmodel
may be utilized confidently to assess the condition required.
The time to reach light off for the catalytic converter coated
with copper oxide nanoparticles is given in Table 2.

According to Table 2, the main catalytic converter
reaches the light-off temperature at different times after the
cold start for different configurations. The MC quickly
approaches the CO and HC light-off temperatures. This
could be because the heat made by the oxidation reactions
raises the temperature of the exhaust gas, making the cata-
lyst light off faster. According to Figure 12, the CO percent
by volume is larger at the start of the engine in all situations
and subsequently drops as the duration after the cold start
increases. It is also seen that, except for engine exhaust and
MC alone, the CO decrease in percent by volume is more
than 50% before the CO light-off temperature is reached.
This could be because of CO oxidation in the presence of
air and a copper oxide nanocatalyst. According to
Figure 13, the hydrocarbon concentration in ppm is higher
at the start of the engine and subsequently drops over time

for all configurations examined. The hydrocarbon content
in ppm is lower for EHC and even lower for EHC with
nanocopper oxide. This could be because there is enough
oxygen in the exhaust, which raises the temperature at which
the light goes out and makes the conversion process more
efficient.

4. Conclusion

The new proposed model has analyzed the thermal conduc-
tivity and flow characteristics of copper oxide nanoparticles
incorporated in the metal mesh used to enhance the heat
transfer performance of the catalytic converter. The newly
created model is very effective at receiving heat from EHC
while passing through it. The velocity vector and magnitude
show that the flow pattern creates turbulent and vortex space
in the CHCC. The heat from the EHC is shown to be carried
by the flow, which then accumulates it as required towards
the conclusion of the CHCC. It is seen that the analyses give
a better picture of the internal flow of the exhaust gas and
heat transfer path. This program may be utilized for con-
verter modelling and evaluation, although exothermic heat
generation is far more essential than catalytic converter tem-
perature analysis, even though exothermic heat generation is
much more important than the temperature analysis in the
catalytic converter. The regression analysis shows that the
experimental value and predicted values are conformed in
the validation.
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