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Olefin diamination methods provide powerful access to vicinal diamines useful in drug
discovery, materials and catalysis.[1] A number of impressive diastereoselective,
enantioselective and catalytic olefin diamination methods have been recently reported.[2–7]

The intramolecular olefin diamination forms nitrogen heterocycles directly and has
predominantly been accomplished by using tethered amine nucleophiles wherein both amine
additions occur in intramolecular fashion (cf. Scheme 1). This olefin diamination strategy
has been reduced to practice by using palladium,[4a] nickel[4b] and gold[4c] catalysts and
stoichiometric copper reagents[3] and has resulted in the synthesis of a number of interesting
compounds such as bicyclic sulfamides, ureas and guanidines. An intra/intermolecular
alkene diamination would result in the convergent formation of one new nitrogen
heterocycle along with the installation of a differently functionalized amine substituent. In a
recent report, Michael and co-workers found that the use of a palladium catalyst, in
combination with N-fluorobenzenesulfonimide led to the formation of nitrogen heterocycles
with –CH2N(SO2Ph)2 substitution.[5] Herein we report a new copper(II)-promoted and
catalyzed intra/intermolecular diamination of alkenes that engages a wide range of internal
and external amine sources for the formation of differently functionalized and various
nitrogen heterocycles. Importantly, this communication reports the first intramolecular
diamination protocol where catalyst-based asymmetric induction has been observed (vide
infra). Impressive catalytic enantioselective intermolecular olefin diaminations have been
reported,[2] but no enantioselective intramolecular variant has been reported.[8] Herein is
reported our progress towards this elusive transformation.

The copper(II)-promoted and catalyzed intra/intermolecular alkene diamination protocols
disclosed herein are an advance on earlier studies by our lab which involved the synthesis of
bicyclic sulfamides and ureas via a tethered olefin diamination approach (Scheme 1).[3] We
have recently found that we can expand this process to involve the participation of an
external amine source in the second C-N bond-forming step (Table 1).

Thus, heating 1-allyl-1-benzyl-2-phenyl urea (1a) in the presence of copper(II) 2-
ethylhexanoate, Cu(EH)2 (3 equiv), Cs2CO3 and aniline (1.5 equiv) in PhCF3 for 24 h
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provides imidazolidin-2-one 2a in 92% yield (Table 1, Conditions A). Other copper-
promoted processes such as intramolecular carboamination,[9] aminoacetoxylation[9e] and
hydroamination[9b] can occur with the substrates used in this study (see Supporting
Information), but the intra/intermolecular diamination process appears to be most favorable
when the reaction is run in the presence of an external amine nucleophile.

A number of substituted anilines (substitutents = Cl, CF3, Me, F, OMe, i-Pr, NO2) also
participated as the external amine in this diamination process, providing 2b–2i in good to
excellent yield (Table 1). The amount of substituted aniline had to be increased to 3 equiv
(Conditions B) in order to minimize competititve formation of 2a, a product that can
originate from the creation of PhNH2 from partial decomposition of 1a under the reaction
conditions. In addition, at least 2 equiv of Cu(EH)2 is necessary to minimize formation of a
hydroamination side product (see Supporting Information for optimization tables). Sodium
azide,[10] benzamide and p-toluene sulfonamide were also competent nucleophiles in this
diamination reaction (entries 10–12, Table 1).

The 4,4-disubstituted imidazolidin-2-one 4 was formed efficiently from diamination/
cyclization of the corresponding 1,1-disubstituted alkenyl urea 3 (Scheme 2). Gratifyingly,
chiral imidazolidin-2-ones 6 were formed with high 4,5-trans selectivity from the
corresponding alkenyl urea substrate 5 (Scheme 3). Formation of the trans diastereomer can
be rationalized via cyclic transition state A, where the substituent adopts a pseudo-equatorial
position.

N-aryl-γ-pentenyl amides, and sulfonamides with different γ-alkenyl backbones, were also
good substrates in this intra/intermolecular diamination reaction (Table 2). Both 2,5-cis and
2,5-trans pyrrolidines can be formed with high diastereoselectivity (Table 2, entries 10–12).

In general it appears that electron-deficient anilines are better coupling partners than
electron-rich anilines in this reaction. For example, the electron-deficient p-
trifluoromethylaniline provided the highest yield with 1a, giving 97% of 2f (Table 1, entry
6), while only the product of substrate decomposition, 2a, was observed in the attempted
diamination with p-methoxyaniline with 1a. p-Methoxyaniline was marginally competent in
the diamination reaction with N-tosyl-orthoallylaniline (which cannot undergo the same
decomposition), giving 12d in 42% yield (Table 2, entry 7). Electron-rich amines may bind
too tightly to the copper promoter, thereby inhibiting either or both of the C-N bond forming
steps.

To gain insight into the formation of the second C-N bond, we subjected the trans-
deuterated alkene d-13[9b] to the diamination reaction (Scheme 4). Partial conversion led to
isolation of a 1:1 ratio of diamination diastereomers d-14a (64%) and 25% of d-13,
recovered without alkene isomerization. We interpret this to indicate the irreversible
formation of a transient primary carbon radical (as in Scheme 5), the result of C-Cu(II) bond
homolysis.[3,9b] The radical can then recombine with Cu(II) to generate a C-Cu(III)
intermediate which may then undergo RNH2 and reductive elimination to produce the
observed diamine product (Scheme 5).

We interpret the 2,5-cis-pyrrolidine selectivity shown in products 16 and 18 to be the result
of the first C-N bond formation occurring through either the chair-like or boat-like transition
states in Scheme 5, where the dominant stereochemistry-determining interaction is
avoidance of steric hindrance between the alpha-substituent and the N-substituent.[9] This
diastereoselectivity can be switched to favor the 2,5-trans-pyrrolidine (cf. 20) by connecting
these two substituents directly to one another.[11]
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Our initial attempts to render this diamination reaction catalytic in copper(II) using MnO2 as
stoichiometric oxidant with either N-allyl urea 1a or N-sulfonyl ortho-allylaniline 11a and
aniline or NaN3 as nucleophiles led to no reaction. MnO2 is a competent oxidant in our
previously reported copper-catalyzed carboamination reaction.[9c,e] Sulfamide and urea
substrates such as those shown in Scheme 1 also failed to undergo copper-catalyzed doubly
intramolecular alkene diamination. To our delight, however, when p-TolSO2NH2 was used
as the nucleophile with substrates 1a and 11a, the catalytic intra/intermolecular alkene
diamination reactions occurred efficiently (Table 3). Superior yields (87% vs 72%, entry 1)
were obtained when 2,6-di-tert-butyl-4-methyl pyridine was used as base instead of
Cs2CO3.

We next challenged the reaction in the catalytic enantioselective manifold. When copper(II)
triflate (30 mol%) complexed with (R)-Ph-bis(oxazoline) ligand (37.5 mol%) was used,
diamination adduct 12e was obtained in 51% yield and 71% ee (Scheme 6). The major
enantiomer is tentatively assigned S by analogy.[9c] This is a promising lead for
development of the elusive catalytic enantioselective intramolecular alkene diamination
reaction. Mechanistically, this reaction clearly demonstrates copper is present in the C-N
bond-forming step (as indicated in Schemes 3 and 5). Further optimization of the catalytic
enantioselective process is underway in our labs.

Experimental Section
Typical procedure for the copper 2-ethylhexanoate promoted diamination (conditions B): 1a
(40 mg, 0.15 mmol) was placed in a glass pressure tube equipped with a magnetic stir bar
and was treated with Cs2CO3 (48.8 mg, 0.15 mmol) and Cu(EH)2 (105 mg, 0.30 mmol, 2
equiv). PhCF3 (0.75 mL) and 4-chloroaniline (41 µL, 0.45 mmol) were added via syringe.
The tube was capped and the reaction mixture was placed in a 120 °C oil bath and stirred.
After 24 h, the reaction mixture was cooled to 23 °C, diluted with EtOAc (10 mL) and
placed in a separatory funnel and was washed with sat. aq. EDTANa2 (2×10 mL) and 2M
NaOH (2×10 mL). The aqueous layers were each washed once with EtOAc and the
combined organic layers were dried over Na2SO4, filtered and concentrated in vacuo. The
resulting oil was purified by flash chromatography on SiO2 (0–40% EtOAc/hexanes
gradient) providing 50.3 mg (86%) of 2b (yellow oil).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Previous work: Copper-promoted doubly intramolecular alkene diamination. ND =
neodecanoate.
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Scheme 2.
Diaminations of a 1,1-disubstituted alkenyl urea.
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Scheme 3.
High diastereoselectivity for allylic substituted ureas.
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Scheme 4.
Isotopic labeling experiment.
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Scheme 5.
Origin of 2,5-cis-pyrrolidine diastereoselectivity.
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Scheme 6.
Enantioselective copper(II)-catalyzed intra/intermolecular alkene diamination (%ee
determined by chiral HPLC).
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