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FOREWORD

The use of thermoelectric generators to supply the
electrical power for unmanned space probes has demonstrably
proven to be reliable and will undoubtedly continue to
be the primary source of electrical power for many future
missions. Up to the present time, all of these generators
used either lead-telluride or silicon-germanium for the
thermoelectric material alloy. The intention for most
all of the future generators is, however, the use of the
latest developed material, namely the selenides. This
report is an attempt to summarize thé particular peculiari-
ties of this material as they differ markedly from the
conventional thermoelectric materials and are generic to

the selenide system only.
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THE COPPER-SELENIDE SYSTEM
P-TYPE TPM-217

Unmanned scientific space probes require electrical power to operate the
spacecraft; the power ranges from 200 watts to 1000 watts. For missions which
are directed away from the sun, or in which the flight path intercepts areas
of high nuclear radiation, solar power, i.e., photovoltaics, becomes impractical.
For these kinds of missions, the ideal power source is the Radioisotope Thermo-
electric Generator (RTG). Many missions which are currently under consideration
by NASA fall within this category, and the use of RTGs is inevitable. In the
past, the thermoelectric unicouples which convert the heat generated by the isotope
decay into usable electricity have been of two types: one, the lead-telluride
system which operates at intermediate temperatures ranging from 500°C to 150°C;
and two, the high temperature silicon-germanium systems which operate between
1000°C and 300°C. For all of the upcoming missions, a new type of material is
being considered; the selenide system which operates between 900°C and 150°C.

The major advantage of this new thermoelectric material over its predecessors

is the much higher efficiency with which heat is converted into useful electricity.
This increased conversion efficiency provides about 75% more electrical power

for the same amount of very expensive radioisotope fuel (Pu-238), thus significantly
reducing the cost of the conversion svstem.

One major difference of this new thermoelectric conversion material is that
the 'n' and the 'p' leqg of a unicouple are made of a different allov rather than
being merely positively or negatively doped identical materials as was the case
for the Pb/Te and the Si/Ge systems. The n-element consists of a gadolinium-
selenide (Gd25e3) alloy, while the p-leg is a copner-selenide material (Cu].97
A90.03Se1 + y)’ with variations in the amount of excess Se (Se + y). While each

of the two materials possesses its own different set of characteristics, this
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report is to highlight the peculiarities of the p-type alloy, primarily as it is
the only one of the two materials which has been made available to JPL for evalua-
tion at the present time.

The mechanical, chemical and electrical properties of most material alloys
differ to a greater or lesser extent for different compositions of the same alloy.
In the developing process of a thermoelectric material, an alloy composition is
selected to possess a set of characteristics which will be most advantageous
for efficient power conversion, compatible with long-term operation of high
temperatures. In the case of the copper-selenides, this selection of the desired
composition becomes somewhat more complicated; this material possesses the
peculiarity of having its composition altered, or modified, by the presence of
a current gradient across the material. In addition, the composition will also
slightly depend upon temperature gradients. Because of this, not only do the
thermoelectric performance parameters, such as Seebeck voltage, resistivity and
thermal conductivity, depend on temperature and anAinitial alloy composition,
but they are also subject to large modifications by current gradients and
temperature gradients. This peculiarity of the material poses an additional
complication in evaluating the performance data from a single element to a
full-up generator. Since "standard" property data are not really "standard",
but are subject to gradients, which in turn are dictated by geometry and tempera-
ture nrofiles, the design as well as the performance prediction of an RTG becomes
rather involved.

Theoretically, a large compositional range (in percentages of excess selenium)
of copper-selenide alloys can be synthesized; each with its own set of properties.
In practice, however, the bonding of this alloy to a copper cold shoe fixes the
compostion to a single unique value determined by temperature. In the absence
of either current or temperature gradients, the bonded material (bonded to a

copper reservoir so to speak) will follow a unique composition value as its
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temperature is varied. This composition, expressed in percentage of excess
selenium as a function of material temperature is illustrated in Figure 1. The
data for this figure are based on Reference 1 for the low temperature and
Reference 2 for a point at 500°C and 800°C.

If it were not for the temperature and current gradients which develop
across the thermoelectric leg, the composition of the material would be
uniquely determined by the temeprature of the cold end which is bonded to copper.
As an example, a leg operating at a cold end temperature of 150°C would exhibit
a uniform 0.07% excess selenium material composition. The thermoelectric
properties corresponding to this composition could now simply be determined as
a function of temperature for the remainder of the p-leg. Both the temperature
and the current gradient (and without such gradient, no useful power can be
developed) shift the composition of the material towards a higher content of Se
(to the right-hand side of Figure 1j. The change of composition due to the
temperature gradient only is rather small and is omitted from this analysis. How-
ever, since the composition is very strongly dependent upon the current gradient,
its effect must be included in any data or performance analysis.

The relationship of material composition to the current gradient has been

determined by the 3M Company (Ref. 2) as follows:

An = 0.0095 I (1)
where /\n = the increase in excess selenium in percent
%%—= current gradient, in amp/cm

-y
]

current, amps
1 = length of material or leg

A = cross-sectional area of material or leg

With the aid of Figure 1 and the above expression, the exact composition at
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any point along the leg for a fixed geometry, operating temperature and steady
state current can now graphically be determined. This composition is shown
in Figure 2 for a typical p-leg with the dimensions and operating temperatures
as shown. The p-leg shown in the figure is a singly partitioned leg. The reason
for the partitioning will be discussed later on. Starting with the cold end of
the leg, with a composition of 0.07% excess Se, the composition is shown to
linearly increase in excess selenium. The temperature of the partition was
determined to be 690°C (assuming a simple linear temperature profile across
the leg, an assumption which is reasonable but not strictly correct, since the
thermal conductivity along the p-material changes with temperature). The
material at this temperature (just below the partition) has a composition of
0.136% excess selenium. At the same temperature (assuming a zero temperature
drop across the partition), just above the partition the material returns to
the much lower value of excess selenium as it is in equilibrium with the copper
again at this point. The partition which is a tungsten foil is coated with copper
on the side facing the hot side. An increase of selenium again occurs between the
partition temperature and the hot side temperature (800°C), however this excess
selenium is now referenced to the lTower value corresponding to the partition
(0.035%). The actual composition at the hot side of the leg therefore becomes
considerably less selenium-rich due to the partitionina than a nonpartitioned
leg would be. The composition of such a leg (nonpartitioned) is also shown for
the same geometry and operating characteristics (indicated by the triangular
symbol).

The reasons for partitioning the p-leg and thus changing the composition
of the leg are twofold: 1) the mechanical properties, namely the creep strength
of the material, degrade with increased selenjum content; 2) the weight loss rate
due to sublimation increases with an increase of excess selenium. Both of these

mechanisms are highly undesirable, particularly for high temperature applications.

-5-
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In addition to the mechanical and thermophysical property changes, the basic
thermoelectric properties, i.e., Seebeck.voltage, resistivity and to a minor
extent the thermal conductivity, also change as the selenium composition is
varied.

The effect which the current gradient has on the weight loss rate of this
material has been documented in Reference 3 and will be discussed further in
a later section of this report. The changes in thermoelectric properties which
are due to material composition are graphically illustrated in Figure 3 which plots
the resistivity of p-type material versus operating temperature for three
different material compositions. The data for the two lower curves (for an
excess selenium content of 0.1% and 0.18%) are given directly in Reference 4,
while the third curve is based on average performance data (in-gradient data)
from the same reference. Figure 4 shows the same basic data plotted as a
function of selenium composition for'different temperatures. With the aid of
Figure 2 and Figure 4, the resistivity along the length of the element (which is
synonymous with the temperature gradient along the leg) can be plotted. Using
Figure 2, the composition of the element is a function of temperature, thus the
axial position is determined. Figure 4 shows the resistivity of the element
as a function of temperature and composition. The resistivity at any point
of the leg as determined from the two plots is shown in Figure 5 for a typical
p-leg. The leg operates at 800°C at hot side and 150°C on the cold side and a
uniform temperature profile is assumed between the hot and the cold side. The
very dramatic increase of resistivity which occurs as a result of the segmenting
is obvious. The resistivity which would result in a nonsegmented leg is also
shown (at the 800°C point) by a dotted extention and the triangular symbol.

The resistivity of the same segmented leg but without current gradient
is also shown in the figures. The current gradient is shown to "improve" the

resistivity parameter as the integrated leg resistance would be lower without

-7-
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this gradient.

Similar data and curves have been developed for the Seebeck voltage.
Although this parameter is less sensitive to compositional changes, its exact
behavior as the selenium content is varied is not as clear as one would desire.
Figure 6 shows the Seebeck voltage versus temperature, again for the same three
different material compositions. The same reference {Ref. 4) is the source for
this data. The area of primary concern as to the accuracy of the data is near
the temperature extremes for the lowest composition (top curve); this area is
shown dashed. Figure 7 cross plots this same data to visualize the Seebeck
voltage parameter sensitivity with compositional changes. The same technique
which was described above is again applied to obtain the localized Seebeck
voltage in a p-leg operating between 800°C and 150°C. This is shown in Figure
8. The segmenting of the p-leg has a much lesser effect on the Seebeck voltage
parameter than it had on the resistivity shown earlier. The current gradient
effect is also shown in the figure, and as it tends to reduce the Seebeck
voltage, it may be termed a "deteriorating" effect as opposed to the previously
shown "improvement" of the resistivity.

The universal parameter indicative of the real performance of any thermo-
electric material is the fiqgure of merit (z) which is the ratio of the square
of the Seebeck voltage and the product of resistivity and thermal conductivity.
The point values of all of these parameters are tabularized as a function of
temperature in Table 1. Two different thermal conductivity values and therefore
z values are shown in the table. The column headed "3M Data" is based on data
obtained from Reference 4, while the JPL values are based on measurements made
at JPL as part of the selenide technology program (Ref, 3). Both sets of thermal
conductivity values are assumed to be independent of the material composition
change caused by the current gradient. This assumption was made due to a lack

of data on this dependence, which is however felt to be of a secondary effect

-1-
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Table 1. Thermoelectric Properties of p-type Selenide at 4.8 Amps

Temp. Seebeck | Resistivity | Thermal Cond. Thermal Cond. Figure of Merit | Figure of Merit
°% v/°C mohm-cm mw32;°c mw%m% gg %3
200 178 4.4 8.2 7.5 0.88 0.96
300 200 5 7 6.8 1.14 1.17
400 220 5.8 6.8 6.5 1.23 1.28
500 240 6.4 7.3 6.5 1.23 1.38
600 255 7 9 6.8 1.03 1.37
690 266 7.4 10.7 7.5 0.89 1.23
690 296 22.2 10.7 7.5 0.37 0.53
800 296 19.8 13.5 8.8 0.33 0.5
800" | 280 8 13.5 8.8 0.73 1.

*Leg geometry: diameter = 0.76 cm, top segment = 0.13 cm, bottom segment = 0.63 cm.

+Assuming same leg geometry but no partition (4.8 Amps).

G6.-006
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(Ref. 2). The two sets of values given at 690°C pertain to the material
immediately below and above the partition (it should be remembered that the
partition causes a step change in the material properties). The graph of the
z values is shown in Figure 9 as a function of temperature.

The data which are based on the 3M thermal conductivity values are shown
dashed,and reflect the lower values of this parameter and result in the larger
z value. The triangular end points (at 800°C) again indicate the characteristic
of a nonsegmented leg. The very substantial decrease in the z values resulting
from the partition is apparent, and results regardless of which thermal con-
ductance value is used.

The less than optimum performance which results from partitioning the p-leg
raises the question as to its advisability. The penalty incurred in the electrical
performance is however more than compensated for by the advantages which are
gained in the thermophysical properties such as a decrease in material weight
loss. As an example, the weight loss rate of a p-leg (i.e., the loss rate of
the material adjacent to the hot junction) operating at 800°C is reduced by a
factor of approximately 25 by the single partition (see Ref. 3). Another way
of comparing the advantages is to realize that partitioning will allow either
1) a 25 times longer lifetime at identical temperatures or 2) for identical
lifetimes, an increase of almost 200°C in the operating temperature. Either
of these two factors will more than compensate for the decreased performance
which is caused by the segmenting process.

However, there is an inherent degradation mechanism related to the material
composition change caused by the current gradient. The typical RTG power condi-
tioning system is designed to operate the RTG at a constant output voltage.

As the available output power from the RTG decreases due to isotope decay (and
possibly other mechanisms), at this constant voltage a lower output current will

result. This in turn will decrease the current gradient across the p-leg, con-

-16-
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sequently changing the material composition. This change in composition will
increase the Seebeck voltage but also increase the resistivity. Depending

of course on the relative changes of these two parameters, the resultant z

value will either increase or decrease. To gain a measure of the direction
which the z value will take, an extreme case (i.e., zero current gradient)

was evaluated. For example, at a temperature of 600°C, the Seebeck voltage

will increase by 9% while the resistivity at the same temperature will increase
by 46%. The result will be a net decrease of the z value of approximately 20%.
In a real RTG, the change would be much smaller of course, but it would definitely
be a decrease, and therefore it must be considered a degradation mechanism. The
problem could possibly be circumvented by a redesign of the Power Conditioning
System which could be changed to a constant current type if the degradation
rates involved were to warrant a change in concept.

From the information which has been presented in this report, it can readily
be realized that the successful application of the selenide thermoelectric
materials will to a large extent hinge on a thorough understanding of the exact.
behavior of this system. Since all of the parameters arelsensitive to current
gradients and to a lesser extent also to the thermal gradients, a meaningful
generator performance prediction will most certainly require the application of
a computer code. The development of such a code has already been initiated.
Basically, it will follow and track all of the synergistic changes which occur
during normal generator operation. As this code develops, applicable input
data will continuously be incorporated and updated as such data become available
from experiments which are conducted at JPL as well as other government agencies

and corporate laboratories.

-18-
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