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Abstract

Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical
energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production
of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static
and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized
by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional,
copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms.
A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may
reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated
with aberrant copper metabolism.
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Background

Copper is a generally utilized heavy metal [1] with a

toxic limit beyond 10 μM [2, 3]. At low concentra-

tions, copper ion is an essential micronutrient that

plays a variety of functions in biological systems. Cop-

per containing enzymes and transcription factors are

essential for cellular integrity, energy production, sig-

nalling, proliferation, oxidation and radiation defence.

Research concerning acute or chronic toxicity of cop-

per due to its deficiency or excess is growing rapidly

and interest in the subject is pervasive [4–12]. Never-

theless, the pertinent redox status-dependent chela-

tion [13–19] and regulatory mechanisms [20–32] are

still being elucidated.

Recently, copper-related mechanisms have been sug-

gested as therapeutic targets for important indications

such as cancer [33], microbial defence [34–37], chronic

lung inflammation [38], influenza A [39], neurodegen-

erative diseases including Alzheimer’s disease (AD),

Parkinson’s disease (PD) and prion disease along with

disorders linked to copper homeostasis such as Menkes

disease (MD) or Wilson’s disease (WD) [40–43]. Ele-

vated copper levels in the serum and tissue of cancer

patients also suggest the involvement of copper in

tumour growth [44, 45].

Our review will focus on biologically-relevant and emer-

ging features of copper-dependent processes such as

redox disproportionation, the properties of the chemical

species generated (acid-base character, ligands, geometry

etc. [46, 47]), the interaction between copper and sulfur

redoxomes, the underlying redox signalling, along with

the “dark side” where copper metabolism has been linked

to compromised or fatal conditions [48–50].

The redox capability of copper

Evidence for the incorporation of oxygen atoms from

dioxygen (O2) into oxidation products of cuproenzyme-

catalyzed reactions in nature was first published in 1955

[51]. Since the pioneering work of Osamu Hayaishi, and

independently Howard S. Mason a consensus has been

achieved as to the involvement of Cu(I) disproportion-

ation (redox) equilibria 2Cu(I)(aq) Cu(0)(s) + Cu(II)(aq)

(Eq. 1.) in the aqueous reduction of O2 to water (see
[52–54] and citations included). The value of + 0.37 V
relating K=Cu(II)]/[Cu(I)]2 = 106 M− 1 indicates that aer-

obic organisms can effectively utilize O2 when excess
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Cu(I) is sufficient [46]. This condition can be achieved

within a copper concentration range of 10− 7 M to 10−

6 M (Fig. 1.) Within the 10− 4-10− 3 M range, however,

the reduced Cu(I) form is minimally present, which

would impair oxidative energy-transfer. The pertinent

copper-containing enzymes such as cytochrome c oxi-

dase (COX) [55] or copper, zinc superoxide dismutase

(Cu, Zn-SOD1) [56–58] are involved in the mitochon-

drial electron transport chain [59] or in the dismutation

of superoxide radical anion (O2
• -) to hydrogen peroxide

(H2O2), respectively. It is worth noting that the higher

oxidation state of copper, Cu(III) may also shape the redox

activation of the cytosolic copper pool and contributes to

hydroxylation of phenolate substrates [60–62].

Cuprous Cu(I) ion possesses both electron “donor”

and “acceptor” attributes, and redox capability via the

one-electron transfer charge-disproportionation be-

tween the “donor” and “acceptor” Cu(I) yielding Cu(II)

and Cu(0). This ability of Cu(I) to disproportionate is

fundamental, not only to vital functions related to O2

transport, regulation of respiration, neuronal differen-

tiation and signal transmission [63, 64], but also to the

instability of the copper ionome [26]. We know that

uncontrolled redox reactions of copper that can be

deleterious to life [12, 65–75], however, here we focus

on and re-consider the controlled, redox capability-

related signalling of copper that may be important for

neurobiology.

Copper homeostasis

An evaluation of the effects of copper under normal

and pathological conditions depends on an accurate

knowledge of copper concentrations present in vivo.

In spite of this, a bewildering feature of efforts to

examine the role of copper in biological processes is

the limited data available on the relative distribution

of copper between organs, tissues, cell types and

sub-cellular compartments in mammals [2, 44, 76–83].

From a practical viewpoint, the lack of the information

makes it unrealistic to determine the recommended

concentration of copper in drinking water. In addition

to its biological variance, the significant differences in

copper levels that exist in habitats and diets may also

explain difficulties in determining the impact of cop-

per on biological systems [2]. Moreover, multiple com-

parisons of existing data are compromised by the use

of varying techniques, characteristically atomic ab-

sorption spectroscopy (AAS), flameless atomic absorp-

tion spectroscopic technique (FAAS), inductively

coupled plasma-atomic emission spectrometry (ICP-

AES) (Tables 1 and 2) and radiotracer detection or di-

verse sample preparing protocols. Data obtained by

FAAS on brain tissue samples taken from 38 brain re-

gions of 7 males within 2–4 h after death showing no

macroscopic signs of disease [77, 78] disclosed signifi-

cant copper concentration differences between brain

areas, grey versus white matter cells, and between in-

dividuals. Brain copper concentrations were inversely

correlated with age. It is worth noting that measure-

ments of total copper levels may not necessarily reflect

the biologically active metal pools [84].

Transition metals in biological tissues have been evalu-

ated by atom absorption spectroscopy or radiotracer de-

tection techniques, and more recently by the laser

ablation inductively-coupled plasma mass spectrometry

(LA-ICP-MS), secondary ion mass spectrometry, X-ray

fluorescence microscopy (XFM), X-ray absorbance spec-

troscopy (XAS), micro particle-induced X-ray emission,

and electron microscopy. Innovative imaging technologies

of transitional metals were reviewed recently [85–90]. The

recent development of recognition-based copper sensors

and reaction-based copper indicators has allowed fluores-

cence imaging of labile copper pools [91–95]. Recent ad-

vances in non-destructive analytical methods will likely

enable the assessment of copper dynamics over short,

medium or long time scales that are relevant to signalling,

metabolism and nutrition or aging.

These technologies have made possible a deeper un-

derstanding of copper dynamics and distribution. Signifi-

cant relationships regarding the levels of Ctr1, Atox1,

ATP7A/ATP7B and copper concentrations in the human

brain have been identified by the combined application

of ICP-MS spectrometry, Western blot and immunohis-

tochemistry. Copper and ATP7A levels in the substantia
nigra and in the cerebellum, respectively, have been

found to be significantly greater compared to other brain

regions [96]. New insights into the relative distribution

of copper among elements including P, S, Cl, K, Ca, Fe,

Zn within the choroid plexus (CP), ventricle system, and

surrounding brain tissue have been provided by XFI

techniques. In agreement with the known abundance of

Fig. 1 Disproportionation equilibria predicts Cu(I) in excess in the
submicromolar to low micromolar range of ambient copper
concentration. Due to the narrow non-toxic window for copper
concentration, even small conditional changes may turn control into
deregulation of copper signaling
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specific metal transporters, the elemental maps indicate

that Zn, Fe and Cu are present within the CP, where the

blood-cerebrospinal fluid barrier is primarily located

[96–99]. Investigating the relationships between age,

copper levels, and regulatory genes in the neurogenesis

active sub-ventricular zone (SVZ) and CP has revealed i)

age-related increases in Cu levels in both areas; ii) an

age-related increase in MTs in SVZ, and iii) an

age-related decrease and increase in Ctr1 in SVZ and

CP, respectively [98]. These and past [100] findings sug-

gest a specific role for copper in the development of

brain tissue. The development of new imaging methods

should provide a basis for further examination of the

genuine labile copper pools, and related redox signalling

within the brain.

From atomic structure to Speciations shaping dynamic

copper Pool and Signalling

Among transition metal elements in brain, copper ranks

third only to iron and zinc in pervasiveness. Yet, its dis-

proportionation chemistry is unique due to its electronic

structure (3s23p63d104s1) characterized by small energy

differences between 3d and 4 s orbitals that allows for

strong hybridization effects and electron tunneling [101,

102]. The easily convertible redox states Cu(I) and

Cu(II) generate distinguishable bioligand variations (spe-

ciation). Indeed, axial symmetry distortion of Cu(II)

aquo-complexes leads to extremely fast exchange of

water (near to 1010s− 1) [103, 104]. This copper electron

transfer-coupled structural alteration of coordination at

copper sites in proteins [105, 106] can be envisaged as a

molecular machine [107–109] switched on and driven

by the redox disproportionation of copper. These mo-

lecular motions permit straight energy transfer from O2

to intrinsic cellular processes, potentially supporting fast

neuronal signalling and remodelling of neuro-glia coup-

ling [110] within the brain.

The extremely diverse copper speciation may be rep-

resented by a collection of copper bioligands including

small ions and molecules such as sulfide ion, amino

acids like His, Cys, Met, Asp, Tyr, Thr, Gly; neuro-

transmitters such as ATP, norepinephrine [111]; γ-

aminobutyric acid (GABA) [112], and constituents of

dense core vesicle cargo neurotrophins ([113] and ref-

erences cited) inositol phosphates (IPs) [114], low-

density lipoproteins (LDL) [115]. Redox propensity of

chelates between copper and pertinent peptides (tri-

peptide glutathione (γ-L-glutamyl-L-cysteinylglycine:

GSH) [116, 117]; peptide fragments of matricellular

calcium-binding glycoprotein (secreted protein, acidic

and rich in cysteine: SPARC) Gly-His-Lys (GHK) (for

a recent review see [118] and proteins (metallothio-

nein, ceruloplasmin, albumin, macroglobulin, transcu-

prein [3, 19, 119–122]), prion protein PrPC [65],

amylin [123]) may present specific feature of transport

and storage of copper. Likewise, many cuproproteins

with redox, or redox-with-transport functions (mono-,

di-, tetranuclear cupredoxins nitrite reductase, laccase,

Cu, Zn-SOD1, amine oxidase CuAO, galactose oxi-

dase, hemocyanin, tyrosinase, catechol oxidase, COX,

N2O reductase, menaquinol NO reductase et cetera)

[47], copper-transporting ATPases (Cu-ATPases,

ATP7A and ATP7B) [124–126], divalent metal trans-

porter DMT1 [127], copper transporters and chap-

erons Ctr1, Ctr2, Atox1 and CCS [128, 129], diverse

group of bacterial periplasmic copper binding proteins

(CopC) [130] are known. It is to note, that major mo-

lecular players of growth or metabolism DNA [131] or

biogenic polyamines (pAs) [132] also bind copper. It is

to note, that the four metal binding sites of albumin

are partially selective, transporting not only Cu(II) but

Table 1 Average concentration of copper in human organs

Sumino et al. [82] Margalioth et al. [44] Hamilton et al. [364] Yoo et al. [83] Lech & Sadlik [365] Haswell [79] Bárány et al. [76]

FAAS AAS AAS ICP-AES FAAS AAS ICP-MS

μg/g wet tissue

brain 5.1 3.10 3.32

liver 9.9 7.8 5.60 3.47

kidney 2.6 1.80 2.1 1.80 2.15

stomach 1.44 1.10

intestines 2.1 1.54

lung 1.3 0.97 1.91

spleen 1.2 0.88 1.23

heart 3.3 2.40 3.26

bile 3.60

blooda 1.2 0.97 0.85 0.99 0.95
a
μg/ml fluid
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Table 2 Average concentration of copper in different brain areas

Bonilla 1984
[77]

Harrison et al.
[78]

Ramos et al., [81] Pal et al. [80]

FAAS AAS ICP-MS AAS

μg/g dry tissue μg/g dry tissue μg/g dry tissue μg/g wet tissue

Frontal pole 18.95

Precentral gyrus 8.68

Occipital pole 21.61

Calcarine cortex 23.07

Postcentral gyrus 18.83

Supramarginal gyrus 16.45

Uncus 16.30

Cingulate gyrus 15.14 57

Mammilay bodies 19.65

Superior colliculus 15.38

Inferior colliculus 17.92

Olfactory tract 17.66

Olfactory bulb 27.92

Optic nerve 17.79

Optic chiasm 7.06

Caudate nucleus (head) 13.49 42 61

Caudate nucleus (body) 18.46

Caudate nucleus (tail) 23.12

Putamen 14.62 44 62

Globus pallidus 12.47 35 45

Thalamus 8.75 21

Frontal lobe, white matter 5.43 22 36

Frontal lobe, gray matter 38

Occipital lobe, white matter 8.88 55

Parietal lobe, white matter 7.27 60

Temporal lobe, white matter 11.12

Red nucleus 10.41

Substantia nigra 17.42

Inferior olivary nucleus 12.00

Superior olivary nucleus 17.46

Pineal gland 17.81

Cerebellum (vermal cortex, superior half) 10.92

Cerebellum (vermal cortex, inferior half) 15.52

Hippocampus 29 70

Corpus callosum 14

Cerebellum, gray matter 47 36 2.69

Cerebellum, white matter 22

Frontal cortex 62

Superior temporal gyrus 61

Middle temporal gyrus 68

Midbrain 38

Pons 33
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also Zn(II), Ni(II), Cd(II), Pt(II), V(IV)O and Au(I)

[133]. Besides, the rather unique redox stability of

Cu(II) bound to the the N-terminal albumin sequence

could also be explained by the presence of the axially

coordinated water [133], presenting less-distorted pyr-

amidal symmetry [103].

Through the application of multiple complementary

approaches, two subsets of total copper can be distin-

guished: the static, tightly bound and the dynamic, rela-

tively weakly bound (labile or exchangeable) pools [134].

Most of the copper uptake in cells takes place through

the Ctr1, whereas ATP7A and ATP7B prevent excess

copper accumulation within cells [125, 126]. The mem-

brane protein Ctr1 is considered as the major entry

pathway for copper into eukaryotic cells. Although it is

currently the sole identified transporter for copper up-

take, the existence of Ctr1-independent copper entry by

as yet unknown transporters has been suggested [135,

136]. Copper entrance requires its prior reduction by

cell surface metalloreductases, as Ctr1 mediates trans-

port of Cu(I) only, whereas ceruloplasmin, which carries

half of the copper in blood plasma, delivers it as Cu(II)

to the cell membrane [137]. Copper uptake is regulated

mainly by Ctr1 translocation between the membrane

surface and intracellular vesicles on demand, however,

the Ctr1 protein has been shown to be degraded more

rapidly under conditions of high copper excess [136].

Binding events in the His- and Met-rich extracellular

amino terminal domain of vertebrate Ctr1 may support

both reduction and transfer of copper from the carriers

to the transporter [138]. Questions arise how Ctr1-

bound copper moves outside-in down the peptide chain

and dissociates? The human transporter is a symmetric

Ctr1 trimer shaping a cone-like pore, which becomes

wider in the outside-in direction from approximately

8 Å to 22 Å [129]. Cu(I) may traverse from the extracel-

lular binding site through the cone to the HisCysHis

motif near the intracellular carboxyl terminus of the

protein by exchanging neighbouring Met of the con-

served Met-XXX-Met Cu-binding motifs positioned

along the pore interface. Higher stability of Cu(I)-Cys

versus Cu(I)-Met could be the driving force for Cu(I)

passage [136]. As far as the intracellular Cu(I) discharge

pathways are concerned, Cys containing small peptides,

such as GSH, or the “antioxidant peptide” Atox1 may

contribute to Cu(I) release from the carrier. The typic-

ally high intracellular concentration of GSH (cca.
10 mM [139]) may produce shifting of the binding equi-

librium towards GSH bound Cu(I) suggesting that GSH

can efficiently collect copper [140, 141] bound to the

intracellular HisCysHis binding crevice of Ctr1. Alterna-

tively, Atox1 can also pick up HisCysHis bound Cu(I)

and shuttles it to cytoplasmic metal-binding domains in

ATP7A and ATP7B (also called MD and WD proteins,

respectively) [16, 63, 142–144]. As suggested previously,

the fast exchange of amino acid residues surrounding

Cu(I) can readily explain entropy-compensation phe-

nomena in course of dynamic interconversion of Cu-Cys

coordinations during chaperon-target hopping [144].

The astonishing fact that free copper is undetectable

within cells is due to the existence of copper chaper-

ones, such as CCS which binds and transfers copper

directly to its final target Cu, Zn-SOD1 [145, 146].

One can assume a novel type of protein-protein inter-

action delivering copper to its protein target destina-

tions intracellularly [147]. It has been suggested that

the exchange of copper between a variety of target-

specific cytosolic chaperones and their targets in dis-

tinct compartments is driven by an increase in the

copper binding affinity [148]. The speciation of copper

sites in the CCS chaperone for target Cu, Zn-SOD1

and in the HAH1 chaperone for the soluble cytosolic

domains (Menkes protein, MNK1) of the target

ATP7A (Fig. 2.) [148–151] indicates, that the first do-

main of CCS, the sixth domain of the MNK1 and the

HAH1 binds Cu(I) through two cysteines in a

Cys-XX-Cys motif. The Cu, Zn-SOD1 protein binds

copper via four His residues. Reportedly, the values of

the apparent dissociation constants of Cu(I) towards

chaperones and their intracellular targets may vary

mostly in the range of 0.01pM to 0.1fM [148]. These

estimates, however, turned to be erroneous as demon-

strated by Shoshan and co-workers [152]. By taking

into consideration oligomeric species of Cu(I)-dithio-

threitol, the modified calculations conclude affinity

values several orders of magnitude higher, an observa-

tion that deserves further comments. The affinities of

copper sensors and indicators associated with novel

Table 2 Average concentration of copper in different brain areas (Continued)

Bonilla 1984
[77]

Harrison et al.
[78]

Ramos et al., [81] Pal et al. [80]

FAAS AAS ICP-MS AAS

μg/g dry tissue μg/g dry tissue μg/g dry tissue μg/g wet tissue

Medulla 35

Cortex 2.20

Striatum 2.18
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imaging technologies may not allow fluorescence imaging

of strongly bound copper in chaperones or targets, but

possibly will permit detection of chaperone-Cu(I)-target

complex formation (Fig. 2. lower panel), as characterized

by several orders of magnitude lower affinity for the com-

plex formation equilibria MNK1 +HAH1MNK1-Cu(I)--

HAH1 (Eq. 2.) [151]. In this case, variations of AAS (total

pool) and fluorescence imaging (labile pool) data could

give rise to proper assess of the strongly bound copper

pool.

Intracellular cu(I), GSH and the concept of coupled

“Redoxomes”

As outlined above, intracellular copper exists in an im-

mense variety of static forms that involve a multiple

oxidation states with favoured ligand speciations (see
below) or mixed-valent copper complexes. However, it

also can change by reacting with “self” (see Eq. 1.)

within sub-nanometer distances of multiple copper

sites of vital peptides, proteins and enzymes [101, 102,

105, 106, 153–156]. A somewhat similar distinction can

be made for a sulfur “redoxome”, a redox reaction-

coupled proteomic network comprising numerous sul-

fur oxidation states and species and reactions with

sulfur-containing peptides, proteins and enzymes, as

well as the reaction of GSH with “self” yielding glutathi-

one disulfide (GSSG) (2GSH→GSSG) [157–159]. Im-

portantly, these “self”-reacting copper and sulfur

“redoxomes” also interact with each other through the

prominent chelation of Cu(I) by thiols of either the

antioxidant copper chaperone protein Atox1 or GSH

[63, 142, 160–162]. Supporting this concept, the GSH/

GSSG ratio was found to be the most sensitive indica-

tor of copper intoxication (and subsequent oxidative

stress) [11]. Moreover, sulfur-doped copper clusters are

relatively stable and abundant [163]. In the Cu-S-Cu

unit found within active sites of copper-sulfur proteins

like COX, the S− bridging a Cu2
+ component displays a

short Cu-Cu distance and a small Cu-S-Cu bond angle,

which are essential for the electron transport performed

by COX [163–165]. With this in mind, toxicity of cop-

per excess in mammalian cells is explained by obstruct-

ing the control of the “interactome” of copper-sulfur

containing “redoxomes” [166–169].

Because of its charge density and polarizability, the oxi-

dized cupric Cu(II) ion would tend to be found in com-

plex with “hard” bases such as H2O, OH−, RNH2 etc. (N-

or O-ligands), while the “soft” acid Cu(I) does favour “soft”

bases such as RS− and CN− ligands [46]. These trends in

the stability of coordination complexes [170, 171] predict

that the reduced cuprous Cu(I) ion would prefer the for-

mation of complexes with “S-ligands” such as GSH [172].

Importantly, GSH can also represent “N- or O-ligands”

for Cu(II), assisting disproportionation and O2
• − dismut-

ase activity of Cu(I). Indeed, the complex equilibrium sys-

tem GSH-Cu(I) can switch to the oxidized GSSG-Cu(II)

one [173]. Taken together, these observations have been

used to classify the speciation of Cu(I) with GSH as a key

feature accompanying redox homeostasis [11].

Although the dissociation constant for the GSH-

Cu(I) equilibrium has been predicted to be about 9pM
[148] (GSH-Cu(I)), this value has been called into

question [174, 175]. Specifically, in an experimental

model of GSH-Cu(I), the formation of the tetranuclear

[Cu4(GS)6] cluster was observed as the major species

within the range of pH from 5.5 to 7.5 [175]. The clus-

ter formation equilibrium predicts that [Cu4(GS)6]

limits free Cu(I)(aq) to the sub-femtomolar concentra-

tion range in eukaryotes. These findings suggest that

the affinity of GSH towards Cu(I) may be orders of

magnitude higher than previously thought [148]. If

Fig. 2 Diverse speciation of copper in chaperons and targets. Upper
row left: The two Cys residues Cys22 and Cys25 of the first domain of
CCS chaperone (PDB code: 2rsq) [149] bind copper (yellow) with an
average distance of 2.2 Å. Upper panel right: Copper (yellow) delivered
to the target enzyme Cu, Zn-SOD1 (PDB code: 2C9V) [150] is bound
by four His residues His46, His48, His63 and His120, and
characterized by a range of Cu-His distances from 2.1 Å to 2.5 Å.
Lower panel: The position of copper in the chaperon-Cu-target
complex between chaperon HAH1 (magenta) and the first domain of
the target ATP7A (Menkes protein, MNK1) (green) (PDB code: 2k1r)
[152]). Three Cys residues fitting in both HAH1 (Cys12, Cys15) and
MNK1 (Cys15, Cys18) CXXC motifs participate in the transition of
copper from HAH1 to MNK1 [152]. Specifically, Cys12 of HAH1 and
Cys15 of MNK1 are required for the formation of the HAH1-Cu-MNK1
complex, while the third Cys may be either of the Cys15 of HAH1 or
the Cys18 of MNK1. Three coordinating Cys side chains are shown
around the copper ion, all with a distance of 2.1 Å, the fourth Cys,
which does not bind the metal thus far, is shown in green
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valid in vivo, not only the high intracellular GSH con-

centration but the high-affinity formation of the

[Cu4(GS)6] cluster would also force the membrane-

cytosol transfer of Cu(I) from Ctr1 to GSH. It is note-

worthy, that bacteria capture copper surplus through

the cytosolic protein Csp3s, which forms tetranuclear

Cu(I) thiolate clusters [176] [Cu4(S-Cys)5]
−, [Cu4(S-

Cys)6]
2−, and [Cu4(S-Cys)5(O-Asn)]−. In order to avoid

toxicity of cytosolic copper overload, eukaryotes gain

control over excess by MTs [177], including the

brain-specific MT3 (growth inhibitory factor) binding.

In fact, using XRF microscopy with sub-micron reso-

lution, Sullivan et al. [178, 180] demonstrated the

presence of Cu-rich aggregates in astrocytes of the

dentate gyrus and rostral migratory stream in the rat

brain. These aggregates contain CuxSy clusters with a

sulfur/Cu(I) ratio consistent with that of the Cu-MT

complex. Apparently, both age-dependent [98] and

overload-evoked changes [177–180] can be related to

the copper-binding capacity of MTs.

Direct and indirect effects leading to sudden and

catastrophic hemolytic anemia due to the direct toxic

effects of copper on red blood cells has been described

in the past [181–190]. Nevertheless, the observation

that during chronic copper poisoning in sheep there is

decreased antioxidant capacity directly correlating with

the level of serum copper [191] putting GSH at the

centre of anti-ROS protection [192]. Underscoring the

importance of this role, the level of GSH in erythro-

cytes is an inheritable trait [193]. Unfortunately, it is

hard to obtain valid GSH and GSH/GSSG data from

biological samples [194].

Central regulation and storage of copper: Copper

deficiency and toxicity disorders

ATP7A and ATP7B are highly abundant in the liver, yet

disruptions in their transport functions affect the central

nervous system (CNS). This is reflected in the sex-linked

recessive CNS disorder observed in males with symptoms

of copper deficiency (MD) arising from a mutant ATP7A

pump. In contrast, a mutant ATP7B pump leads to copper

toxicity in the autosomal recessive WD. These “brain” dis-

eases suggest that the homeostasis of copper in the liver is

essential for normal brain function [195–197]. It has been

known for a long time, that WD is characterized by the

accumulation of copper in tissues, particularly in the liver

and brain ([198–201] and references cited). The biosyn-

thesis, folding, localization, turnover and protein inter-

action network, of the most frequent copper transporter

ATP7B mutant causing toxic accumulation of copper in

WD has recently been described [202]. By targeting this

network with specific siRNAs, correction of the

localization of ATP7B-mutant restored copper levels to an

acceptable range. Decreased stability associated with

increased structural dynamics has been ascribed to

disease-causing point-mutations in the metal-binding do-

mains of WD protein [203]. Another fatal liver injury, the

Indian childhood cirrhosis (ICC), was also found to be as-

sociated with heavy deposits of copper, though in all other

respects it was different from WD [204].

Besides their significance in the overall copper efflux

and balance, ATP7A and ATP7B play a critical role in

copper transport between intracellular compartments.

In hepatocytes, ATP7A and ATP7B are located mainly

in the trans-Golgi network and supply copper for in-

corporation into copper-dependent enzymes such as

tyrosinase, peptidylglycine amidating monooxygenase,

dopamine monooxygenase, lysyl oxidase, and cerulo-

plasmin [205]. At high intracellular copper concentra-

tion, the carriers are translocated reversibly to the

plasma membrane (ATP7A typically to the basolateral,

ATP7B to the apical surface) where they efflux excess

copper from the cell [206].

In food and water, the average daily intake of copper

in the US is about 1 mg [207], which is relatively low.

Most humans and animals are able to control excess

amounts of copper by either decreased absorption or in-

creased excretion. Ingestion of toxic amount of copper

(> 10 mg/day) or acute or chronic environmental expos-

ure, such as occupational hazard, accidents, release from

copper pipes, initially affects the liver, the first organ of

copper deposit. Many factors that alter copper metabol-

ism influence the progress of chronic copper poisoning.

The toxicity remains subclinical until the copper that is

stored in the liver is released in massive amounts. The

lethal dose of copper is about 10-20 g [207]. Initial

symptoms of acute overdoses may be metallic taste,

gastrointestinal distress that can progress to cardiovas-

cular collapse, coma and death within hours. Hepatic

symptoms arise after 24 h to 72 h of exposure, and are

characterized by marked elevations in serum amino-

transferase levels, hepatic failure, elevation in pro-

thrombin time and jaundice. Erosion of epithelial lining

of the gastrointestinal tract, acute tubular necrosis in

the kidney was also reported. Blood copper concentra-

tions can increase suddenly, causing lipid peroxidation

and intravascular hemolysis [207, 208].

The liver takes up dietary copper from the portal

blood, synthesizes cuproproteins in hepatocytes, and se-

cretes excess copper into the bile. Overall balance of

copper in the body is achieved by regulation of the rate

of uptake in the small intestine and of biliary excretion.

The key regulators of these processes are the ATP7A

and ATP7B pumps. However, many other components

of the machinery for copper homeostasis have been de-

scribed including ceruloplasmin, small carriers, chaper-

ones, MTs [24, 197, 205, 209, 210]. Precise regulation of

intracellular copper homeostasis is essential, which is

Kardos et al. Cell Communication and Signaling           (2018) 16:71 Page 7 of 22



supported by the large number of clinical syndromes

linked to either copper excess or shortage [197, 210,

211]. Several reviews have summarized results of genetic,

biochemical and structural approaches concerning cellu-

lar copper homeostasis and related disorders [116, 212,

213], yet the entire network of events that regulate cop-

per transport and intracellular disposition has not been

fully explored.

As Ctr1 cannot transport bivalent copper, some

ingested Cu(II) avoids the liver and passes rapidly into

the systemic circulation where can target albumin

[135]. Following entry into hepatocytes, Cu(I) binds the

initial acceptor GSH, which delivers it to the different

copper chaperones, such as Atox1, CCS and COX17

that partition copper into distinct intracellular com-

partments [116]. Nevertheless, the landscape of Cu(I)

trafficking to chaperons via GSH may change. Recent

data on femtomolar [175] versus picomolar [148] affin-

ities of GSH towards Cu(I) raise the role for [Cu4(GS)6]

preserving Cu(I). In fact, the Cu(I) availability is highly

associated with GSH level of the cell. Ogra et al. [214]

observed that depletion of GSH led to decreased copper

in the bile and blood but increased copper in the liver.

The decreased GSH level resulted in an oxidative envir-

onment in the liver that made Cu(I) less bioavailable. In

addition, the redox state of the cells influences the ac-

tivity of copper pumps. GSH deficiency inhibits ATP7A

and ATP7B resulting in the intracellular accumulation

of copper [136].

Synaptic release of copper

The concentration of copper in the cerebrospinal fluid

(~ 70-80 μM) is rather high in comparison to serum

(12-24 μM) [215, 216], raising the possibility of specific

copper signalling in the brain. As outlined in previous

sections, most cellular copper is strongly bound to pro-

teins, yet the disposition of loosely bound copper can be

detected by novel imaging technologies. This labile cop-

per pool is believed to be associated with redox signal-

ling. Labile copper has been found in the soma of

cerebellar granule and cortical pyramidal neurons, in

addition to the neuropil in the cerebellar and cerebral

cortices, hippocampus and spinal cord [217].

The observation on the release of zinc from brain tis-

sue during activity published in Nature in 1984 [218]

provided initial evidence that transition metals could be

directly involved in signalling [112, 134, 219–229]. Initial

evidence suggested the potential of copper to modulate

brain activity by affecting central inhibition. These in-

clude findings such as the pro-convulsant effects of a

hitherto unidentified endogenous substance containing

copper [112, 230], or depolarization-induced co-release

of endogenous copper with the major inhibitory neuro-

transmitter γ-aminobutyric acid (GABA) in different

experimental models of nerve terminals in vitro (synap-

tosomal fraction) and ex vivo (median eminence) [225].
Conclusions from 67Cu uptake and release measure-

ments performed in hypothalamic slices by the presence

of action potential blocker tetrodotoxin [231, 232] or de-

termination of depolarization-induced copper release

from nerve endings by AAS [225] raised the concept of

copper signalling in the brain. Findings, such as the

N-methyl-D-aspartate (NMDA) receptor activation-

induced ATP7A trafficking to the plasmamembrane in

the hippocampus [233, 234] have have provided new

support for a role for copper efflux in mechanisms of

excitotoxicity.

During the past 30 years, there has been a renaissance

of interest and an expanded view of the contributions of

copper to brain function and pathophysiology, as

reflected in follow-up statistics, and throughout the lit-

erature [18, 42, 63, 69, 235–248] (Fig. 3.). One may

speculate about copper speciation and/or mechanisms of

copper uptake and release. Apart from trafficking in

complex with various neurotransmitters, carrier peptides

and proteins, or as part of the protein cargo of extracel-

lular vesicles [39] there is also the potential for copper

uptake as a result of autophagy [29, 249].

Zinc released from brain tissue during activity has

been shown to reach concentrations in the hundred mi-

cromolar range, e.g. 300 μM [218]. In contrast, the con-

centration of copper in the synaptic cleft has been

claimed to range from 1 to 10 μM, as determined by

using the fluorescent indicator tetrakis-(4-sulfophenyl)--

porphine (TSPP) in bovine chromaffin cells [250]. Not-

withstanding the importance of imaging heavy metals

in vivo (see also section 2.1. “Imaging technologies”), the
quantitative relevance of fluorescent indicators strongly

depends on the affinity standards applied (see for ex-

ample [148]). Furthermore, TSPP has several drawbacks

that can limit the validity of data obtained: i) the

sub-micromolar Kd value of the TSPP-copper complex

may not provide accurate data at the point of/or above

saturation; ii) TSPP-copper binding is influenced by dis-

sociation of copper from protein binding sites which

necessary to validate the data an approach that is inde-

pendent of protein binding, as in the case of ICP-MS

technique; and finally, iii) the weak fluorescence intensi-

tiy of the TSPP ligand itself. Conversely, based on atomic

absorption spectroscopy data on depolarization-induced

release of copper from nerve endings, one can estimate

an activity-dependent enhancement of copper in the

synaptic cleft, in the range of 100-250 μM [225], de-

pending on the cleft size and volume taken. Further-

more, based on the Kd (100 μM) and saturating GABA

concentration (1 mM) for GABAa receptor binding and

desensitization [251–254] and assuming a stoichiometry

of 2 for GABA co-released with copper [112] one could
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also conlude that a copper concentration of 100 μM can

exist transiently within the synaptic cleft.

Copper can diffuse out of the synapse driven by the

lower extrasynaptic concentration (1 μM) [216]. More-

over, the extrasynaptic copper concentration has been

estimated to be in the nanomolar range based on the

cellular and network excitability produced by bath-

applied copper in the CA1 area of the rat hippocampal

slice [244]. (This effect was primarily explained by the

ability of copper to interfere with Hodgkin–Huxley con-

ductances rather than the synaptic effects of copper

[255].) Using a second-generation fluorescent copper

sensor in combination with XFM, Dodani et al. [256]

have observed that neural activity triggers copper traf-

ficking from the cell body toward dendrites and revealed

that these copper fluxes are calcium-dependent. This

work provided direct imaging evidence that

complemented prior studies on bulk copper release

[225, 232]. Applying fluorescent copper indicators with

improved hydrophilicity Dodani et al. [256] identified la-

bile copper sources in the developing retina, and dem-

onstrated that they modulate spontaneous activity of

neural circuits via the copper transporter Ctr1, referred

to as a ‘copper ion channel’ (see also section “The
source-target-physiology scheme for therapeutic
intervention”).

Copper Dyshomeostasis and brain disorders

Chronic copper intoxication causes region-specific cop-

per accumulation in the CNS of male Wistar rats, fol-

lowing intra-peritoneal injections of copper lactate

(0.15 mg Cu/100 g body weight) daily for 90 days. In

these animals, copper content, but not that of zinc or

iron was found to be significantly elevated in the cortex,

Fig. 3 Emerging themes of copper signalling and functions. Number (Left) and percentage (Right) of papers citing the first description of
depolarization-induced synaptic copper release [225] in each subject category by 5-year intervals. From the time, copper signalling in brain have
considerably been developed, including inhibitory and excitatory signalling, neuromodulation, neurotoxicity, Alzheimer’s and other brain disorders
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cerebellum and striatum as determined by atomic ab-

sorption spectrophotometry [257]. Remarkably, metal

dis-homeostasis has been widely accepted as a hallmark

of several neurodegenerative diseases, such as prion, AD,

PD, amyotrophic lateral sclerosis (ALS), Huntington’s

chorea (HC) ([257, 258] and references cited). The anti-

oxidant responses to copper overloads (0–30 mg/kg) in
rat brains showed markedly decreased brain GSH and

GSH/GSSG ratio after chronic copper exposure. Copper

overloads are characterized by a t1/2 of 9-10 h for the de-

crease in GSH and of 4 h for decreases in the GSH/

GSSG ratio, the latter being the most sensitive indicator

of copper excess [11].

Prion diseases

The mainly α-helical folded prion protein PrPC is

expressed in the enteric nervous system, e.g. in enteric

nerve fibers/terminals and glia within the myenteric sub-

mucosal plexuses (inguinea pigs, mice), suggesting a role

in the regulation of ileal contractility [259]. Additional

beneficial roles for PrPC may arise from the discovery, that

prion is an agonist at the G-protein coupled Adgrg6 re-

ceptor, known to regulate demyelinization-linked neur-

opathy [260, 261]. Copper has long been associated with

the formation of protease-resistant, β-sheet enriched

“scrapie” conformation of prion protein PrPSc, which has

been considered the critical step in the neurodegenerative

prion diseases known as transmissible spongiform en-

cephalopathies [43, 262]. Recently, Giachin et al. [263]

proposed that there is a non-octarepeat copper binding

region [264] of PrPC which switch to the infectious PrPSc

under acidic conditions. The only known prion disease

observed in wildlife is the chronic wasting disease (CWD).

Dietary magnesium and copper have been linked to in-

flammatory events in CWD pathogenesis [265]. Import-

antly, geographical regions where CWD is absent have

significantly higher concentration of magnesium, and re-

gion where CDW is endemic show a higher magnesium/

copper ratio in the water. Prion diseases share characteris-

tics of “prion-like” neurodegenerative diseases in terms of

the involvement of proteins (α-synuclein, amyloid β, and

tau) forming amyloid deposits [266].

Alzheimer’s disease

The metal theory of AD [43, 267–273] (but see the ad-

vice of Schrag et al. [274]) predicts that the disregulation

of copper/zinc levels by proteins known to be involved

in AD-related neurodegeneration may lead to the accu-

mulation of amyloid fibers and oxidative stress. Indeed,

by using XFM high areal concentration of copper has

been detected in amyloid beta (Aβ) plaques of the hippo-

campal gyrus dentatus sub-region in a mouse model of

AD [275]. These data corroborate previous findings on

the high-affinity interaction between Cu(II) and the

histidine binding motif of Aβ [276], along with the role

for Aβ as a synaptic Cu(II) scavenger [277]. In addition,

the experimental ‘halo’ effect in copper maps may indi-

cate co-localization of copper with a ‘ring’ rich in lipids,

observed around the Aβ plaque in AD models [278] and

human AD sections [279]. This suggests a potential as-

sociation between Cu-catalyzed oxidative stress and

plaque formation [280]. However, the question remains

as to whether changes in metal distribution are the cause

or the consequence of the plaque formation and pro-

gression of AD [275] or other progressive neurodegener-

ative diseases. For example, the neuropathology seen in

AD may also characterize individuals with Down syn-

drome [281, 282], ALS or HC. By supporting a common

pathway for familial and sporadic ALS, the pathological

inclusions containing SOD1 fibrils may hold

amyloid-like properties [283]. Abnormal copper accu-

mulation in the striatum of HC patients has been linked

to the copper binding facilitated formation of amyloid-

copper transporter Ctr1, rlike bodies of the huntingtin

(Htt) protein [284, 285]. Differential effects of ATP7A

and ATP7B regulating copper metabolism MURR1 do-

main protein 1 (COMMD1) on the formation of mutant

Cu, Zn-SOD1 fibrils (increase) or parkin inclusions (de-

crease) as well as the Htt aggregates (unaltered), how-

ever, suggest mechanistic diversity [286].

Parkinson’s disease

There is evidence that alterations in copper homeostasis

play a role in PD with excess copper leading to neuronal

cell death and α-synuclein aggregation [121, 287]. It is

noteworthy in this context, that the depletion of GSH [70]

is a very early symptom in the course of PD [288]. Amyl-

oid fibre formation in type-2 diabetes [289] may also facili-

tate PD, due to the acceleration of α-synuclein amyloid

formation by islet amyloid polypeptide amylin [290]. Dis-

ruption of retromer, a conserved heterotrimeric protein

complex consisting of VPS35, VPS29 and VPS26, has been

observed in a number of diseases including PD [291],

resulting in disregulation of the retrieval and recycling of

vital proteins [292]. Furthermore, the mutation of VPS35

increases copper toxicity in yeast, a likely outcome of the

copper transporter miss-trafficking [293]. In fact, the

endosomal retrieval and recycling of the copper trans-

porter ATP7A is retromer-dependent in human cells

[294]. Protecting the cargo of regulatory membrane pro-

teins such as copper transporters and pumps via the retro-

mer shipment may be critical in age-related health. It will

be important to consider further the link between retro-

mer complexes and copper homeostasis.

Multiple sclerosis

Disease-specific autoantibodies against inwardly recti-

fying K+ ion channel 4.1 (Kir4.1) [295], have been
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identified in the sera of patients suffering from the

chronic inflammatory CNS disorder multiple sclerosis

(MS). Feeding the copper chelator bis-cyclohexanone-

oxalyldihydrazone (cuprizone, CTZ) reduces the mye-

lin sheath and activates microglial and astroglial cells

in the CNS, providing a reproducible and reversible

model of pathologic processes underlying white and

gray matter demyelination [296–301]. Expression of

Kir4.1 autoantigen has been studied in the brain of

CTZ-fed mice and revealed the induction of Kir4.1

protein in microvessels of the cerebral cortex [302].

The antioxidant functions of MTs [303] may have a

role in MS, as suggested by the elevated level of MTs

induced by CTZ in astroglia, while the oligodendroglia

express low levels of MTs, which may contribute to

their oxidative stress vulnerability [304, 305]. Apart

from MS modelling, several lines of evidence suggest

that CTZ intoxication is an excellent paradigm to

study pathology and/or therapy of epilepsy or schizo-

phrenia as well. However, mechanistic clues claiming

either copper deficiency or copper build-up (associ-

ated with hydrazide formation-dependent enzyme in-

hibition) remain contradictory [306].

Chelate therapy

The restoration of copper homeostasis is mostly relevant

to WD [119, 307], although neurodegenerative ([308–

312], but see [313] versus [314]) or inflammatory [38,

208] diseases can also be related. Before the disease pro-

gresses to liver and brain (WD) or lung (inflammation),

the excess copper can be limited by Cu(II) reduction,

Zn(II) addition and administration of Cu(II) chelating li-

gands such as tetrathiomolybdate (TM), triethylene tet-

ramine (Trientine, TETA, Trien) or D-penicillamine

(D-pen) [119, 207] for limiting excess copper.

Due to its high level in proliferating tissues, copper

can also promote angiogenesis and cancer development

[315]. Hence, the Cu(II) lowering therapy has also po-

tential in treating cancer (breast, colorectal, leukemia,

lung, prostate) by copper chelating compounds (Table 3).

A range of targets and/or mechanisms of action have

been suggested for the antiproliferative activity of the

Cu(II) chelate forming compounds. These include prote-

asome inhibitors and apoptosis inducers [316], DNA and

protein interactions [317, 318], ROS generation [319],

oxidative stress [320], integrin β4 up-regulation [321],

Schiff base copper complex formation [318, 322]. (For a

comprehensive knowledge of copper ion complexes as

anticancer agents we refer to reviews [323, 324]).

Considering the redox activity of potential anticancer

Cu(II) chelates (Table 3 and references cited) [323–327]

one possible consequence is that the high level of copper

in proliferating tissue could also reduce oxidative redox

potential which may in turn increase cancer cell

proliferation [45, 50, 328, 329]. The redox imbalance

could be targeted by chelate formation coupled Cu(II)

reduction in the proliferating tissue. Indeed, the revers-

ible one-electron reduction of Cu(II) does occur, as ex-

emplified by the thiosemicarbazone complex of Cu(II) in

the elesclomol [330, 331] (Table 3).

It is interesting to note the effect of metformin [50,

332–334], which is a first line diabetes II drug and has

been shown to increase healthy life span irrespective of

its anti-diabetes effect. Its copper chelating ability [335]

may suggest an anti-aging role for copper.

The source-target-physiology scheme for therapeutic

intervention

The advent of imaging techniques that gained insight

into the dynamics of labile copper pool made it possible

to look beyond the molecular-level interactions in cop-

per homeostasis and examine network-level dynamic in-

terplays shaping copper signalling. The source-target-n

physiology (STP) scheme suggested by Chang [336]

includes labile, neuronal copper pools in the Golgi com-

partment as a source, signal propagation via postsynaptic

membrane receptor/ion channel target (the Cu(I) trans-

porter Ctr1), and copper-dependent spontaneous activity

of the neural network (physiology). Vesicular storage of

canonical neurotransmitters with copper suggesting

their co-release has also been described. Furthering the

interactions between compartments within neurons, we

conceive that cellular-level copper signalling between

neurons and astrocytes, an emerging cell type of the

brain, also exists and may play a fundamental part in

the brain’s information processing.

Several lines of evidence demonstrate memory defi-

cits concurrent with copper deposition in the choroid

plexus, astrocyte swelling (Alzheimer type II cells),

astrogliosis and neuronal degeneration in the cerebral

cortex, and augmented levels of copper and zinc in the

hippocampus of chronically copper-intoxicated rats

[337]. Furthermore, these and the other findings con-

cerning the role for astrocytes in brain activity,

dis-homeostasis and asscociated diseases [110, 338–

341] and brain copper and pA homeostasis in particu-

lar [179, 180, 342, 343] may provide support for new

astrocyte-centric directions for therapeutic interven-

tion. It can also be depicted by the “gliocentric” alter-

native of the “neurocentric” STP workflow suggested

by Chang [336] possibly associated with major astro-

glial processes and players of Glu and ammonia

homeostasis underlying excitation-inhibition balance

in brain [110]. Prevalent traumatic and ischaemic

brain injuries are explored to validate the potential of

the “gliocentric” concept of early therapeutic interven-

tion. Now, we may add copper-dependent astroglial

pA production to the list (Fig. 4.) [6, 22, 80, 179, 180,
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Table 3 Copper chelating compounds with anticancer activities

Compound type (name) Structure Chemical name Ligand type Application

TM Ammonium tetra-thiomolybdate
Bis-Choline tetrathio molybdate

Bi-dentate Breast, prostate, kidney cancer
cells [208]

Trientine (TETA, Trien) N,N′-Bis(2-aminoethyl) ethane-1,2-
diamine

Tetra-dentate Colorectal cancer cells [366]

Hydroxyquinoline (Clioquinol) 5-Chloro-7-iodo-8-hydroxy quinoline Bi-dentate AD and human breast cancer
cells [309, 316]

D-pen 3-Mercapto-D-valine Bi-dentate Human leukemia and breast
cancer cells [319]

Captopril D-3-Mercapto-2-methyl-propionyl-L-
proline

– Mammary ductal carcinoma cell
line [367, 368]

Dithiocarbamates

Disulfiram (DSF, Antabuse) 1-(Diethylthio-carbamoyl-disulfanyl)-N,N-
diethyl-methane-thioamide

– Human breast, lung cancer cells
[315, 369]

Pyrrrolidine dithiocarbamate
(PDTC)

Pyrrolidine-1-carbodithioic acid Bi-dentate Human breast cancer cells [344]

Thiosemicarbazone

Hydroxyquinoline-
carboxaldehyde–Thiosemi-
carbazone

8-Hydroxy-quinoline-2-carbox-aldehyde–
thio-semicarbazone

R = H tetra-
dentate

Prostate cancer cells [370]

Retinal thiosemicarbazone 9-cis-Retinal thiosemi-carbazone Bi-dentate Human leukemic cell U937
[317]

1,2-Bis(thiosemi-carbazones) H2gts: glyoxal-bis(thiosemi-carbazone)
atsm: diacetyl-bis(4-methylthio-semi-
carbazone)
ptsm: pyruvaldehyde-bis(4-methylthio-
semicarbazone)

Tetra-dentate atsm: human colon cancer
tumor cells
ptsm: Ehrlich ascites and EMT6
tumour cells [371]

Elesclomol N’1,N’3-Dimethyl-N’1,N’3-bis(phenyl-
carbonothioyl)propanedihydrazide

Tetra-dentate Metastatic melanoma cells
[320, 331]

Schiff-bases

Salicylaldehyde-
benzoylhydrazone (SBH)

N′-[(2-Hydroxyphenyl) methylidene]
benzohydrazide

Bi-dentate
[372]

Human adeno-carcinoma cell
line [373]

Salicylaldehyde-pyrazole-
hydrazone (SPH)

(E)- N′-(2-Hydroxy-benzylidene)-1-benzyl-
3-phenyl-1H-pyrazole-5-carbohydrazide

– Lung carcinoma cells [321]
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233, 234, 236–243, 245, 254, 255, 336, 339, 340, 342–

362]. GABA can be synthesized from the pA putres-

cine by copper-containing CuAO in astrocytes.

CuAOs perform the oxidation of primary amines such

as spermine, spermidine and putrescine to aldehydes

and ammonia, producing H2O2 as a by-product.

Putrescine-derived GABA is released by the inside-out

(reverse) action of glial GABA transporter subtypes.

The increased GABA release and the generated tonic

inhibition thereby modulate the power of gamma

range oscillation in the CA1 region in vivo. The con-

centration of cytosolic and extracellular putrescine has

been determined to be 22 nmol/g and 12 nmol/g, re-
spectively [339]. In contrast, copper may decrease

tonic inhibition via acting on delta subunit-containing

extrasynaptic GABAA receptors [235, 237, 246], thus

adding a new layer to disinhibitory mechanisms in

copper-rich brain areas.

Conclusions

Despite multifaceted roles for copper observed in vari-

ous brain diseases and tumours, the copper signalling

theme is still in its initial stages. However, our increas-

ing understanding of dynamic copper pools supports

the idea of neuronal activity-dependent Cu(I) trans-

mission affecting astroglia network signaling and

astroglia-neuron metabolic cooperation. Rather than

simply reflecting copper excess, copper-rich aggre-

gates - likely in astrocytes and not in neurons - are a

sign of a disturbed network. Brain diseases linked to

Fig. 4 Copper signaling via neuro-glia coupling. Astroglia, a previously neglected cell type of the brain [340], operate a variety of copper-
dependent metabolic functions [6, 80, 240, 341, 342]. For this reason, in addition to synaptic and extrasynaptic copper signalling by way of excitatory/
inhibitory receptors and ionic channels [22, 234, 235, 237–244, 246, 255, 336, 345–355], we place copper-dependent production of pAs in astrocytes
[338] and correlated gap-junction modulation in the centre of this option. The proposed scheme conjectures activity-dependent changes of copper
pools [179, 180] and polyamines (pAs), produced by CuAOs in astrocytes. First, an enhanced gap junction communication can be achieved by pAs
[356–358], possibly promoting activity-dependent synchronization [339, 359]. Second, major inhibitory neurotransmitter gamma-aminobutyric acid
(GABA) formed from pAs is released by astrocyte-specific GABA transporter [360]. Acting on its extrasynaptic receptor, GABA elevates tonic inhibition
and enhances the fast (gamma band) neural oscillations [360]. These ways, the steady-state pA level in astrocytes determined by copper-dependent
forming and consuming can be associated with neural circuit activity [244, 255, 362]

Table 3 Copper chelating compounds with anticancer activities (Continued)

Pyridine-carboxaldehyde-
phenylpyrimidyl-hydrazone
(Pyimpy)

1-Phenyl-1-(pyridin-2-yl)-2-(pyridin-2-
ylmethylene)hydrazine

Tri-dentate Rat breast tumor cells [322]

Hydroxy naphthaldehyde
imine (HL)

1-(((2-((2-Hydroxy-propyl)amino)
ethyl)imino) methyl) naphthalene-2-ol)

Tri-dentate Human cervical and liver
hepatocellular carcinoma cells
[318]
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oxidative stress [363] change the GSH/GSSG ratio and

thereby automatically affect the copper homeostasis, as

GSH is the immediate partner, along with various chaper-

ones, that takes Cu(I) from the transporter. Therefore,

Cu(I) distribution is disturbed and might in turn enhance

oxidative stress at copper-containing deposits or limit Cu,

Zn-SOD1 activity in regions with decreased copper level.

Closer understanding of copper signalling and its vulner-

ability opens up new perspectives improving chelate ther-

apy approaches against brain diseases and tumour.
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spectrometry; LDL: Low-density lipoproteins; MD: Menkes disease;
MNK1: Menkes protein (soluble cytosolic ATP7A domain); MT: Metallothionein; μ-
PIXE: Micro - particle induced X ray emission; MS: Multiple sclerosis;
COMMD1: MURR1 domain protein 1; NMDA: N-methyl-D-aspartate;
PD: Parkinson’s disease; pAs: Polyamines; PrPC: Prion protein, α helical
(Adgrg6 receptor agonist); PrPSc: Prion protein, β sheet enriched (“scrapie”);
SPARC: Secreted protein, acidic and rich in cysteine; STP: Source-target-
physiology; SVZ: Sub-ventricular zone; TSPP: Tetrakis-(4-sulfophenyl)-
porphine; TM: Tetrathiomolybdate; Trientine: TETA, Trien (Triethylene
tetramine); WD: Wilson’s disease; XFM: X-ray fluorescence microscopy
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