
COPRA – A Communication Processing
Architecture for Wireless Sensor Networks

Reinhardt Karnapke and Joerg Nolte

BTU Cottbus
{karnapke, jon}@informatik.tu-cottbus.de

Abstract. Typical sensor nodes are composed of cheap hardware be-
cause they have to be affordable in great numbers. This means that
memory and communication bandwidth are small, CPUs are slow and
energy is limited. It also means that all unnecessary software components
must be omitted. Thus it is necessary to use application specific commu-
nication protocols. As it is cumbersome to write these from scratch every
time a configurable framework is needed. Copra provides such an archi-
tectural framework that allows the construction of application specific
communication protocol stacks from prefabricated components.

1 Introduction

Sensor networks are collections of small sensor nodes with wireless neighbour-
hood broadcast facilities. Since sensor networks shall be deployed in large scales
(possibly thousands of nodes [1,2]), the overall cost dictates the use of cheap
but simple radio transceivers for communication. The latter lack most of the
common capabilities of WLAN or bluetooth networks. Even typical tasks like
medium access control or the addressing of individual nodes in the direct radio
neighbourhood are entirely left to software layers [3]. To make things worse the
scarce CPU/memory resources of the sensor nodes do not allow to waste much
space and processing power to process complex communication protocols [4].
Thus the designer of the communication software is stuck between a hard place
and a rock: the simplicity of the radio requires much more work to be done by
the CPU while the processing resources that are needed for this job are scarce.
Consequently, communication protocols must be designed as close as possible to
their intended use and the processing of the protocol stack must be dedicated
to a specific user profile. However, designing application specific protocol stacks
from scratch is always cumbersome and error prone.

This paper introduces Copra
1, an architectural framework for the construc-

tion of application specific communication protocols in wireless networks. In
Copra often recurring protocol processing tasks are encapsulated in reusable
components (so-called Protocol Processing Stages, PPSs) that can be composed
to application specific protocol processing engines (PPEs). Thus application spe-
cific protocols do not need to be designed from scratch but can be composed from
prefabricated elements.
1

Copra is part of the Cocos Project which is supported by the German Research
Foundation (DFG) in the SPP 1140.

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 951–960, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

952 R. Karnapke and J. Nolte

The following sections are structured as follows: section two looks into Co-

pra’s structure, section three shows implementation details and section four
briefly outlines other attempts in this area. We finish with a look at current
status and future work in section five and the conclusion in section six.

2 The Copra Framework

Copra is a library of protocol processing stages (PPSs) and a few already defined
protocol processing engines (PPEs). A PPS is a special task in communication
such as medium access, a PPE is a concatenated set of PPSs. By concatenating
only the needed PPSs into a special PPE a lot of memory is saved. Each PPE
can again be a part of a larger PPE. In figures one to three you will see examples
of PPEs. The PPE seen on Figure 1 includes transceiving, medium access con-
trol and error checking, which normally is done by hardware. In case of sensor
networks this part must also be managed by Copra because the cheap radios
do not supply such functionality. The example on Figure 2 uses the broadcast
PPE from Figure 1 as basis and adds address management. Note that the type
of address is entirely configurable. It can be a number or a geographic location or
even some property on the node, e.g. the value of the last temperature sampling.
The third example on Figure 3 adds multi hop functionality to the PPE.

MAC
stage

access control

stage
TX

stage
RX

transceiving

TX

error checking

RX

broadcast PPE

stage

error
detection

encoding
stage

Fig. 1. A single hop broadcast PPE

In the following sections we take a closer look at the two important parts of
PPS and PPE.

2.1 A Protocol Processing Stage (PPS)

Most of Copra’s PPSs have a predecessor and a successor, with the exception
of the end pieces of a PPE which have only one of them. PPSs normally con-
sist of two parts which represent the direction the data flows: From the upper
layers to the lower ones which is the transmitting (Tx) path and the opposing,

COPRA – A Communication Processing Architecture 953

RX

TX labeling
stage

filter
stage

addressing unit

broadcast PPE
single hop

unicast PPE

Fig. 2. A single hop unicast PPE

stage

RX

TX
labeling

routing unit

demulti−
plexer

routing PPE

unicast PPE

Fig. 3. A routing PPE

receiving (Rx) path. To take this into account we provide the classes RxStage
and TxStage from which a PPS has to be derived. An example for an end piece
is the radio which does not have a successor because it transmits the data via
hardware drivers. The data is represented as the data structure stack with the
well known methods a stack supplies, the type of the stack is configurable as
template parameter.

2.2 The Protocol Processing Engine (PPE)

A protocol processing engine consists of a number of PPSs or other PPEs which
are linked together. These links represent the transmitting and receiving chains
which were already mentioned. Note that the layout is freely configurable. The
end pieces of a PPE connect to the application on one side and the hardware
drivers on the other. The Radio stage does not have a successor in the TxChain
but uses the interfaces provided by the hardware drivers to transmit the data
packets to another node. On the other node the Radio stage is the beginning of

954 R. Karnapke and J. Nolte

Fig. 4. A complex PPE which is used in our project

the RxChain and fills a stack with the data it receives from the hardware. The
radio then forwards the stack along the RxChain.

Figure 4 shows the largest PPE we have constructed yet. You might notice
that the lower half of the picture which contains physical (radio), mac, error
correction (crc) and compression follows the scheme mentioned before, where
only rxForward and txForward are used. The upper half splits with the general
concept as cross-layer issues arise. The Retransmission stage for example shares
a data structure with the Transport stage. This is necessary because they use
the same sequence numbers. The cross-layer issue between the Retransmission
stage and the Routing stage arises from the fact, that retransmissions may fail
repeatedly. Then, the Routing stage is informed that it has to find new routes.
Because of all these issues we tend to see the upper half of the picture as a single
entity.

3 Applying the Copra Framework

When we want to use Copra we configure it for a specific application. Lets
assume that for this application we need to create a new PPE as none of the
existing PPEs fits. Lets also assume that there is one particular PPS we need
that does not exist either. For this reason we will now take a look at how a PPS
is build.

COPRA – A Communication Processing Architecture 955

3.1 Implementing a PPS

As example for a PPS the FilterStage is discussed here. Its job is only to
forward incoming data packets on the RxChain if they are addressed to this node
(including broadcast). Note that we are using reference counting to determine
if the memory can be reused so we only decrement the reference count if the
stack is unwanted. Please note also that the address is configurable as template
parameter. This way it is up to the user to decide whether to use numbers,
geographical identities ore even sensor values for addressing. As the FilterStage
is a member of the RxChain it has to be derived from RxStage. In the accept()
method the address of the destination is taken from the stack and compared to
this node’s id and the broadcast address. Only if one of these matches the stack
is forwarded along the RxChain.

template <typename Address >
class FilterStage : public RxStage <Stack > {
...
// called by previous stage in the RxChain
virtual void accept(Stack* stack)
{
Address id;
// get destination address
stack ->pop(id);

// test if the packet is addressed to this node or the
broadcast address

if((id == myID) || (id == broadcastID))
rxForward (stack); // send stack to the next stage

else
stack ->downRef (); // free memory

}
}

In this example it is easy to see what a user has to do to construct a PPS.
To build a member of the Rx-/TxChain the PPS has to be derived from Rx-
/TxStage. The method in which all the work is done is called accept() in the
RxChain and deliver() in the TxChain. This is the only method the designer
of the PPS has to fill. When all work is done the method rx-/txForward()
has to be called, which delivers the stack to the next stage by calling accept()
(deliver()) on it. The forwarding methods are inherited so there is no need
for the designer to touch these. They hide the identity of the succeeding stage.

Now that we have build the PPS lets take a look at how a PPE is constructed.

3.2 Composing a PPE

To build a PPE we need to have PPSs. As we have already build these we now
have to connect them in the desired order. The following example is a datagram
network (DtgNet). In this example you will notice that there are not a RxRadio
and a TxRadio but only one Radio that works as both. The rxMac is omitted,

956 R. Karnapke and J. Nolte

because all a receiving MAC-layer would do is removing the MAC Header and
we do not use any. This is because the data sampled by sensor nodes is normally
small and we do not want to waste bandwidth and energy on unnecessary over-
head. This PPE enables the application to use the standard way of sending by
simply giving an address, a pointer and a length to the PPE’s send() method.
It also provides the method receive(), which allows the application to receive
messages in the standard form. To receive a message the application supplies a
buffer which should be filled with the message. After this is done, the number of
received bytes is returned.

The connecting of the PPSs is done in the constructor of the PPE. First
the receiving chain is built, then the corresponding transmitting chain follows.
The methods receive() and send() are called by the application and offer the
services mentioned above. They take care of memory management by selecting
stacks from a pool and returning them once they are not needed anymore.

For simplicity reasons we omitted a few details, e.g. the check whether the
buffer is big enough.

class DtgNet {

// the elements of the PPE
Pool pool; RcxRadio radio;
TxMac txMac; RxCRC rxCRC; TxCRC txCRC;
LabelingStage <Address > labeling;
FilterStage <Address > filtering ;
MessageQueue msgQueue;

// Constructor .
// Here all parts of the PPE are assembled .
DtgNet()
{

// build receiving chain
radio.rxConnect (&rxCRC);
rxCRC.rxConnect (&filtering);
filtering .rxConnect (this);

// build sending chain
labeling.txConnect (&txCRC);
txCRC.txConnect (&txMac);
txMac.txConnect (&radio);

}

int receive(char* buf , int size)
{
Stack* stack = msgQueue .get()
if(! stack) // no message in the queue
return 0;

int used = stack ->used (); // determine needed memory
memcpy(buf , stack ->tos(), used); // copy message

COPRA – A Communication Processing Architecture 957

stack ->downRef (); // free memory
return used; // return size of message

}

void send(char* msg , unsigned size , Address address)
{
// try to get a new stack from pool
Stack* stack = new (pool) Stack();
if (stack) {
void* buf = stack ->alloc(size); // allocate memory
memcpy(buf , msg , size); // copy message
labeling.deliver(stack , address); // forward stack

}
}

As you see it is very easy to construct a PPE. By calling rx-/txConnect on a
PPS we connect it with its successor on the receiving (transmitting) chain. These
methods are inherited from Rx-/TxStage so again there is no need to care for
them. Also, in this example the great benefit of Copra’s modularity can be seen.
Lets assume that the MAC Layer used above uses TDMA. Now we may need a
different MAC for a different environment but all the rest should stay the same.
We then replace the txMac with txCSMAMac. Now all we have to do is connect
this stage instead of the original one and we are done. Another possibility to
change this PPE would be to remove one unit, e.g. the addressing unit as seen
in figure 2. All this is up to the user to configure. By supplying a variety of
stages for all Layers we give the users an easy way to configure individual PPEs
according to their needs.

3.3 Writing an Application

Now that we have PPSs and a PPE lets take a final look at the application. What
the application does is of course up to the user but the easiest way to use a PPE
will be discussed here. There are in fact two ways for an application to use a
PPE. One possible way is for the application to be the end piece of the receiving
chain or the beginning of the transmitting chain. This way the application needs
to inherit from RxStage or TxStage or both. This may seem a little drawback
but it enables the application to use txForward() and work with the accept()
method. It also has another advantage which will be seen when the second way
is discussed. The second way is for the application to use a PPE with a special
end piece, which allows the usage of standard communication interfaces. This
end piece would offer a send() method which gets a pointer to the message and
its size. In this method it would allocate a stack, copy the data and forward
the stack. The advantage of this method is clear. The application does not need
to worry about stacks, it does not even need to know it is using a PPE. The
disadvantage lies in the end piece of the PPE. It has to copy the message to a
stack which takes time. It also costs additional memory on the sensor nodes. An
application would use the PPE seen above like this:

958 R. Karnapke and J. Nolte

DtgNet net(myID);
Message msg;
...
// sending
net.send (4711, &msg , sizeof(msg));
...
// receiving
int size = net.receive (&msg , sizeof(msg));
...

Please note again that while in this example the address is a number it is
entirely up to the user what type of address is being used.

Now that we have seen how the Copra framework can be used, lets take a
look at the cost of using it.

3.4 Code Size

As mentioned above sensor nodes are limited in memory and have slow CPUs.
In this section we take a closer look at the size of our framework. There are
two figures which go into the code size. First, the size of the code which is
independent of Copra as it would exist even if the framework was not used.
Second, the overhead of using the framework. This overhead can be determined
as follows:

Each stage has a pointer to its successor, the connecting method and the
forwarding one. Also a vtable is needed for the inherited functions and the calls
to the connecting methods must be made. Finally the call to the constructor of
the PPE in which the connections are made needs to be considered.

Two things are included for every PPS, the pointer to the next stage and the
vtable. The size of these depends upon the CPU in use. In our experiments we
use Lego RCX robots [5] which include a Renesas H8/300 processor. This is a 16
Bit processor with a clock frequency of 16 MHz. On a 16 Bit processor the size
of a pointer is two bytes which means that the overhead for one PPS includes
2 bytes for the pointer to the next stage, 2 bytes for the pointer to the vtable
and 6 bytes for the vtable itself. Altogether this means an overhead of 10 bytes
per PPS.

There are also the inlined connecting and forwarding methods and the con-
structor of the PPE. As these exist only once for the framework they are not
taken into account here.

The next figure shows code sizes of two selected PPEs. The sizes were mea-
sured on the RCX robots we used for our experiments. As these sizes are depen-
dent on the CPU in use they may vary on different systems.

PPE buffer pool radio mac crc addressing size (bytes)
broadcast x x x x 3400
unicast x x x x x 3848

COPRA – A Communication Processing Architecture 959

4 Related Work

In sensor networks the communication cost is reduced by replacing part of the
communication with local computation. While this is a great improvement in
battery lifetime it also means that the communication must be done in an appli-
cation specific way. The authors of [6] call for a family of protocols for general
purpose sensor nets. With Copra such a family exists, as the framework rep-
resents a lot of different communication protocol stacks that can be configured
according to the applications needs.

Copra is partly inspired by CORBA and .NET. The channel sink chains in
.NET are configurable, meaning that the user can insert whatever sink he needs.
These chains are reflected in Copra’s Rx-/TxChains. An important difference is
however, that Copra’s chains starts where .NETs sinks end. The lowest of .NETs
sinks is the TransportSink, whereas Copra is a communication framework.
The portable interceptors in CORBA were also an inspiration, as it is possible
to insert additional interceptors into a chain. This is reflected in Copra’s PPSs
which are connected in a PPE. While CORBA has a predefined order, the PPSs
in Copra can be inserted anywhere in a PPE.

In [7,8] the lack of an overall sensor network architecture is remarked. The
authors describe the need for a sensor network protocol which should be located
lower than the IP-Layer in the internet. While this so called SP should provide
a set of functionalitys it should still stay configurable and be open to cross-layer
issues. Copra offers the configurability and openness required.

5 Current Status and Future Work

At the moment we have 14 different PPSs and 8 PPEs. While this number
may not seem very large, it is not necessary for it to become much larger. We
are experimenting with some of our PPSs and PPEs on modified RCX robots.
These Robots have been additionally equipped with an easy radio ER400TRS
radio module which we use instead of the included infrared module (IR). To
enable this, a serial port has been inserted which allows us to connect either the
IR or the radio module. The IR is still needed to boot the RCX robots but once
they are booted we switch to the radios. Copra is independent of the operation
system used, but we decided to use our self developed miniature OS Reflex[9]
as basis. Reflex supports pre-emptive scheduling and provides hardware drivers
which we use in some of or PPSs.

In the near future we will need to implement a few more different PPSs for each
layer. Once we have these there could be more PPEs and application examples.
But it is not our focus to find new applications for sensor networks, only to
offer an easier way to build them. Also it is not our goal to build lots of PPEs.
That is not necessary as the users will build their own ones. Right now we are
using the RCXs only but we are going to equip these with ScatterWeb[10] sensor
nodes. This is necessary because the RCXs have only three input channels and
the additional serial port, which are connected to touch sensors and the radio.

960 R. Karnapke and J. Nolte

When we connect the ScatterWeb sensor nodes with the serial port we will be
able to use their radio and have their additional sensors.

6 Conclusion

Copra is an easy to use framework which allows a user to plug and run com-
munication protocols for sensor nodes without having to rewrite the application
each time a different hardware is used or the environment is different. Developers
can now focus their attention entirely on the application. Copra performs well
in our experimentation environment and we are positive that it will work equally
well in the next experiments using the ScatterWeb sensor nodes.

References

1. Chatzigiannakis, I., Nikoletseas, S., Spirakis, P.G.: Efficient and robust protocols
for local detection and propagation in smart dust networks. Mob. Netw. Appl.
10(1-2) (2005) 133–149

2. Chatzigiannakis, I., Nikoletseas, S., Spirakis, P.: Smart dust protocols for local
detection and propagation. In: POMC ’02: Proceedings of the second ACM inter-
national workshop on Principles of mobile computing, New York, NY, USA, ACM
Press (2002) 9–16

3. Kahn, J.M., Katz, R.H., Pister, K.S.J.: Next century challenges: mobile networking
for s̈mart dusẗ. In: MobiCom ’99: Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking, New York, NY,
USA, ACM Press (1999) 271–278

4. Sohrabi, K., Ailawadhi, V., Gao, J., Pottie, G.: Protocols for Self Organization
of a Wireless Sensor Network. IEEE Personal Communication Magazine 7 (2000)
16–27

5. Patterson-McNeill, H., Binkerd, C.L.: Resources for using lego mindstorms. In: Pro-
ceedings of the seventh annual consortium for computing in small colleges central
plains conference on The journal of computing in small colleges, , USA, Consortium
for Computing Sciences in Colleges (2001) 48–55

6. Heidemann, J., Silva, F., Estrin, D.: Matching data dissemination algorithms to
application requirements. In: SenSys ’03: Proceedings of the 1st international con-
ference on Embedded networked sensor systems, New York, NY, USA, ACM Press
(2003) 218–229

7. Culler, D., Dutta, P., Ee, C.T., Fonseca, R., Hui, J., Levis, P., Polastre, J., Shenker,
S., Stoica, I., Tolle, G., Zhao, J.: (Towards a sensor network architecture: Lowering
the waistline)

8. Polastre, J., Hui, J., Levis, P., Zhao, J., Culler, D., Shenker, S., Stoica, I.: A
unifying link abstraction for wireless sensor networks. In: SenSys ’05: Proceedings
of the 3rd international conference on Embedded networked sensor systems, New
York, NY, USA, ACM Press (2005) 76–89

9. Walther, K., Hemmerling, R., Nolte, J.: Generic trigger variables and event flow
wrappers in reflex. In: ECOOP - Workshop on Programming Languages and Op-
erating Systems. (2004)

10. Schiller, J., Liers, A., Ritter, H., Winter, R., Voigt, T.: Scatterweb - low power
sensor nodes and energy aware routing. In: Proceedings of the 38th Hawaii Inter-
national Conference on System Sciences. (2005)

	Introduction
	The Copra Framework
	A Protocol Processing Stage (PPS)
	The Protocol Processing Engine (PPE)

	Applying the Copra Framework
	Implementing a PPS
	Composing a PPE
	Writing an Application
	Code Size

	Related Work
	Current Status and Future Work
	Conclusion

