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SUMMARY

In this paper, we consider the problem of generalizing elements of linear coprime factorization theory
to a nonlinear context. The idea is to work with a suitably wide class of nonlinear systems to cover many
practical situations, yet not cope with so broad a class as to disallow useful generalizations to the linear
results. In particular, we work with nonlinear systems characterized in terms of (possibly time-varying)
state-dependent matrices A (x), B(x), C(x), D(x) and an initial state Xo. (This class clearly does contain

the class of finite-dimensional linear (time-varying) systems.) We achieve first right coprime factorization
for idealized situations. To achieve stable left factorization we specialize to the case where the matrices

are output-dependent. Alternatively, we work with systems, perhaps augmented by a direct feedthrough
term, where the input is reconstructible from the output. For nonlinear feedback control systems, with
plant and controller having stable left factorization, then under appropriate regularity-conditions earlier
results have allowed the generation of the class of stabilizing controllers for a system in terms of an
arbitrary stable system (parameter). Plant uncertainties, including unknown initial conditions are
modelled by means of a Yula– Kucera-type parametrization approach developed for nonlinear systems.
Certain robust stabilization results are also shown, and simulations demonstrate the regulation of
nonlinear plants using the techniques developed. All the results are presented in such a way that

specialization for the case of linear systems is immediate.

~E! WORM Nonlinear systems Coprime factorization

1. INTRODUCTION

Coprime factorization results for linear systems have proved powerful tools for characterizing

the class of all stabilizing controllers for linear systems. Such characterizations have led to

robust stabilization results and has set the stage for (robust) optimal controller design for

linear systems. ‘‘2 The challenge is to develop coprime factorization tools to cope with

nonlinear systems.

The class of all stabilizing controllers for linear, continuous-time, time-invariant systems

have been characterized in terms of polynomial matrix function descriptions and for discrete

time using stable transfer function matrix fraction descriptions.4 State-space form matrix

fraction (transfer function) descriptions were first developed in, 5 so opening the way for
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conditions, we achieve matrix fraction descriptions in terms of an arbitrary stable system

(parameter). Then certain robust stabilization results from Reference 9 are shown to be

applicable to this case. All the results are presented in such a way that specialization for the

case of linear systems is immediate. We generalize certain key linear results pertaining to

cascading and inverting linear plants to this class and then use these results to create sets of

right coprime and stable left factorization for this subclass which are pertinent in idealized

nominal plant, stabilizing controller arrangements. For some of this work we need certain

augmentation techniques. When used in conjunction with existing nonlinear theory, the

resulting factorization allow us to generate the class of all stabilizing (augmented) controllers

for a given (augmented) nonlinear plant. Of course, it is trivial to dualize to the class of all

(augmented) plants stabilized by a given (augmented) controller. We relate these back to our

original unaugmented plant/controller systems, and explore some bounds of possible nonlinear

stabilization/ factorization theories of this type.

Section 2 generalizes the linear cascade and inverse operations, and also introduces right

coprime factorization for systems (2). It also sets up a general theorem proof methodology

used in the rest of the paper. Section 3 specializes to the case where the state-dependence is

reconstructible from the output of the plant alone, giving right coprime and stable left

factorization as well as certain Bezout identities, at least for idealized nominal

plant/controller arrangements. Section 4 includes the augmentation method to obtain further

results for the stable left factorization, and justifies this approach by proving that stability

results for the augmented plant carry over to certain arrangements including the nominal plant.

Then results from Reference 9 and a companion paper Reference 14 are reviewed, and coupled

with these factorization lead to the controller class KQ which stabilizes a given nominal plant.

Also, stabilization results are quoted for an Yula–Kucera type parametrization of nonlinear

plants, and this is used to extend the theory to the case of unequal initial conditions between

the plant and controller. Section 5 presents simulation studies for the control of certain

nonlinear plants. Conclusions are drawn in Section 6.

2. NONLINEAR FACTORIZATION

Nonlinear system class

The nominal plants, and controllers and derivative systems studied in this

a class of nonlinear systems (operators)

paper, belong to

G(y, X()) :
i= A(-f)x+B(~)u, x(o)= X() .

[

/t(-f) I II(-f)

1
(7)

y = C(y)x+ D(-y)u C(-f) I D(y) l’(o)= .x,,

where, either ~ = constant, y = t, y = x(t), or indeed y = (x(t), t), although a number of our

results exclude this latter time-varying case. Variations such as y = u([) or y(f), or more

generally T = (u(t), x(t)), or indeed causally filtered x(t) or strictly causally filtered y(t),

denoted x.(t), y,,(t) can be handled in our technical approach, although for simplicity of

presentation we work primarily with the cases y = x([) and y = x~(t). The partitioned matrix

notation with an initial state subscript is a mild generalization of the common notation for the

~ = constant case. The following assumption is crucial to certain results to follow:

Assumption.’ The matrices A (y), l?(~), etc. are assumed to exist,

and are bounded, for all finite -y, and are such that x(.), y(. ) (8)

of (7) exist for all x(0), t >0, and are unique.
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working with time varying stable linear operators instead of transfer

6 and its references.

For nonlinear systems, a number of generalizations are available,

Reference 7. See also References 8 to 10.

functions, see Reference

building on the work of

The less restrictive the assumptions on the nonlinearities, the less closely one can echo the

linear results. Thus, at the this stage there is incentive to work with restricted classes of

nonlinear systems which commonly arise in practise, and yet allow a factorization theory to

develop which goes some of the way to match in elegance and power the well-established linear

results.

It is desirable that nonlinear factorization and stabilization results are developed which

transparently specialize to the familiar results associated with state-space descriptions for a

linear system G as follows. Let us denote such linear systems

G:
.i=Ax+Bu

[+1

AB

Y= CX+DU : C D
(1)

where x(f) is the state vector, u(t) the input vector, and y([) the output vector. A useful class

of such nonlinear generalizations are denoted

G(xo) :
i = A (x)x+ B(x)u

y = C(x)x + D(x)u ‘ [*]X,O)
(2)

initialized by x(0) = xo.

Such systems can arise, for example, from linearization of more genera} nonlinear systems

i= f(x, u); y=lz(x, u) (3)

in the vicinity of a known trajectory x*. Thus with 8X = x – x*

Neglecting higher-order terms, and settin

(2) with state 6x,

~x+g ~u +

au ~ ““’
(4)

~

~x+/l *U+

au ~ ““
(5)

~

x=6X + x*, gives a nonlinear system of the form

A (6X)=17
ax ~“+t,’

etc.

Work has been done to generate coprime factorization of a class of systems which includes

(2), the class

i= f(x) + G(x)u (6)

The existence of coprime right factorization for systems in (6) is shown in Reference 12 for

the case when the smooth feedback stabilization problem is solvable for the system, and its

follows that feedback Iinearizable systems amidst such factorization. Under the assumptions

of stabilizability and detectability, Reference 11 gives right coprime factorization, and under

the assumption of existence of controller and observer forms, Reference 13 gives both right

and left coprime factorization.

In the paper, working with nonlinear systems of the form of (2) under appropriate regularity
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derived from the cascade form (10) as,

[

A(XR)– B(XR)D-l(XR)C(XR) O B(XR)D-l(XR)

GO? = ‘B(x)D-l(xR)C(xR) A(x) B(X)D’l(XR) 1 (14)

–D(X)D-l(XR)C(XR )
XR(o)=.ro

c(x) D(X)D-l(XR) ~(o)=,,

Let us denote theinput to the system asu, theoutputasy, and also define the output from

f?(xO)aSYR. hfOW, from(ll)YR=~-l(x~)[~ ‘C(xR)xR], then from (14),

i= A(x)x+B(x)yR, x~

XR=A(XR)XR +B(XR)YR, xo (15)

Y= D(XR)D-l(XR)[U –C(XR)XR] +C(x)x

Thus in (15), xandxRobey thesame differential equation. Nowunder the solution uniqueness

assumption (8) on the class of systems (2) of this section, and with X(0) =XR(O), then

x(t) = xR(f) for all t >0, and consequently, A (xR) = A (x), etc. From (15) we then have

Y = ~, giving G(xo)R(xo) = 1 as required.

Another proof of this latter result is instructive. From (14) consider a co-ordinate basis

change from the state [xA x’] ‘ to state [xA (x’ – xA)] ‘, achieved by elementary row and

column operators on the partitioned matrix (column two is added to column one, then the first

row is subtracted from the second).

[

A (x) – B(X)D- l(X)C(X) o B(X)D- ‘(x)

GO= o A (X) o
1

= Z (16)

o c(x) I
XR(o)= x“
[x(o) XR(0)]= o

The second equality follows from deletion of the unobservable mode xR and the uncontrollable

mode with zero initial condition [xR(f) – x(t)] .

To demonstrate the left inverse case, first note from application of (10)

l?(xR(0))G(xo)

[

A (X) o B(x)

1=B(XR)D-’ (xR)C(X) A (XR) – B(XR)D- l(XR)C(XR) B(xR )D - 1(XR )D(x) ,(0). ,0

D-l(XR)C(X) –D-l(XR)C(XR) D-l(XR)D(X) XR(o)= 1-,,

Also, defining yR = C(x)x + D(x)u, gives

x = [A (X) – B(x)D - 1(x) C(X)] X + [B(x) D- 1(X)] yR, xo

,iR = [A(xR) – B(XR)D-’ (XR)C(XR)IXR + [B(XR)D-l(XR)IYR, xo (17)

y = D-l(XR)[C(X)X– C(XR)XR] + D-’(XR)D(X)

Thus xR (t) and x(t) obey the same differential equation and so by the uniqueness assumption

(8), when XR(0) = x(0), then xR(t) = x(t) and y = u for t 20. Note also

ZAG) = 2%i?m$H,,)_xRo)(1,)

❑
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u = 11,
System P, “ = ‘2* b System P2

Y2=Y
—

Zl(o) X2(O)

Figure 1, Cascade of system Pz and system P,

There exists a complete factorization stability theory for the cases ~ = constant and -y= t

leading to a description of the class of all stabilizing controllers for the plant. Here we show

that the nonlinear (time-varying) case when -y= x(t), so that C(Y, XO) is G of (2), likewise,

yields a ‘partial’ theory along similar lines. We proceed by first considering in turn, the cascade

of nonlinear systems as in (2) and the inverse, for the case when D-’ (x) exists.

Cascade, First consider the cascade of systems PI, Pz as in Figure 1 where each is of the

form of (2). The state equations of the cascade PzP1 with input u = u, and output y = YZ and

state x’ = [x{ xi] are

.iI = A](XI )X1 +Bi(Xl)Ulj xl (o)
i2 = A2(X2)X2 + B2(X2),VI ,X2 (o)

(9)
242= yl = Cl(xl)xl +Dl(xl)ul

Y2 = C2(X2)X2 + D2(x2).Y1

That is, in the partitioned matrix operator notation of (2), the following cascade relations is

established

p2pt=[Aq~2(x2) ] [Adxl),B,(x,) ]
C2(X2) D2(X2) l’,(o) c1 (xl) I Dl(xl) 1,(0)

[

A,(x, ) o Bl(xl)
—— B2(x2)CI (X1) A2(x2) B2(X2)DI (xl)

1D2(X2)CI(XI) C2(X2) D2(X2)DI (XI) :$1

(lo)

Inverse. Let us consider the following system R (xo) defined in terms of the system matrices

(2) where D-’ (x) exists for all x.

R(xo) =
[

A(x~) – B(XR)D-’(XR)C(XR) I B(XR)D-*(XR)

1 (11)
–D-l(XR)C(XR) D-l(xR) XR(o)= 10

Lemma 1

Consider the system G(xo) of (2), where D-1 (x) exists for all x and the associated system

R(xo) of (1 1). Then for the cascade G(xo)R(xo) and RAG,

xR(t) = x(t) for all t > () (12)

where xR denotes the state of the system R (xo) in each of the cascades. Moreover R(xo) is

the inverse operator G- l(xo) satisfying G-l (xo)G(xo) = G(xo)G - 1(xo) = 1, that is

R(xo) = G-*(xo) (13)

Proof. In the right inverse case, the state equations of the cascaded system G (XO) R (XO) are
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familiar linear system results, let us restrict attention to the time-invariant (nonlinear) system

case and assume the following

Assumption: The state estimate feedback gain ~(~), is constructed such that

$“= [A(:) + B(i)~($)] t, t(o)= to (20)

is exponentially stable for arbitrary initial conditions LO.

Of course, it is necessary that the pair [A (.), B(.)] be appropriately controllable. Also, it

should be noted that in the time-invariant case exponential stability is equivalent to bounded-

input, bounded-output (BIBO) stability. Under Assumption (20), it is clear that the feedback

pair (G(xo) lx,=~,, K(,i?o)] has certain exponential stability properties by virtue of the

following lemma.

Lemma 2

Referring to (2), (19), consider the plant G(xo) lx,= ~0 with states x(f), and a feedback

controller K(i!o) with states f(t)as in Figure 2(b). Then

x(t) = i?(l) for all t >0 (21)

Moreover, the states x(t),of both plant and controller satisfy

x = [A (X) + B(x) F(x)] X, x@) = XO (22)

which is exponentially stable under (20).

Proof. Defining u* = – Hex – H(,i?)D(x)F(i)~, the relevant equations can be

organized as

x = [A(x) + H(i)c(x)] x + B(x)u + u* + H(i)D(x)F(i)i, x(o) = Xo

i = [A(f) + H(,f)c(i)]i?+B(.i)u+ u*+ H(i)D(i)F’(i)i, i(o) = X()
(23)

Apply Assumption (8), then (21) holds as required. Also, given that x(l) = i(t),and since

u = F(f),i then (23) becomes equivalent to (22). ❑

Remark. The equations for 6X= x – f appear instructive only in special cases, such as the

linear case, when tii = (A + HC)6X. Yet it is the stability of the 6X equations, fed from the

x state equation, along with the stability of (22), that determines the internal stability of

the feedback system [G(xo), K(,fo)], when ,fO # Xo.

Right coprime factorization

Lemma 3

Consider the nominal plant/controller arrangement of Figure 2(b) with the definitions (2),

(19), and stability Assumption (20). Define also the system with state ~(t)

rA(xI) + B(XI)F(Xd

[ 1
fw(xl (0)) U(X2(0)) =

N(X1 (0)) V(X2(o)) –
o

F(XI )

o
A(x2) + B(x2)F(x2)

F(x2 )

L c(X,)+ ~(x,F(x,) c(x2)+ D(x2)F(x2)

B(xI ) o
0 –H(x2)

I o

D(xl) I
1

Xl(o)
X2(O)

(24)
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Remarks

(1)

(2)

The results of this lemma are critically dependent on the initial condition constraints

x~(0) = x(O). It does not appear straightforward to give robustness conditions which

would also achieve the limit limt+~ [x~ (I) – x(t)] = O for unequal initial conditions, as

in the well-understood linear system case when G(x), R(xR) are both linear and

asymptotically stable. Our approach will be to deal with initial condition mismatching

along with unmodelled dynamics and external inputs/disturbances in subsequent

sections.

In manipulations it is important to notice that for cascading P, and (P2 + Pq ) then

PI (P2 + P3 ) # PI P2 + PI P3, in general, whereas of course for matrix multiplication

A(x) [B(x) + c(x)] = A(X)B(X) + A (X)c(x).

Nominal plant and stabilizing controller for plants G(XO )

Let us consider first a familiar state estimate feedback controller arrangement K(.fo) as, see

also Figure 2(a),

K(io) =
[

A (i)+ B(i)F(i) + H(i) [c(i) + D(i) F(i)] I – H(i)

F(i) o 1 (19)
i(o) =i“

where F’(,-?)is the nonlinear state feedback gain, and – H(i) is the nonlinear output injection

in the estimator.

Of course, in the linear case, when ,4 (.), B(.), F(.) etc. are. not state-dependent, then K(io)

stabilizes G(fo) for arbitrary ,fO,X. when .$= (A + l?~)~ and { = (A + 17C)f are asymptotically

stable. Moreover, the effects of initial conditions i. # X. decay exponentially. Stabilizing F, H

are readily found given the conditions [A, B] completely controllable and [.4, Cl completely

observable.

In the nonlinear case studied here, let us first consider the nominal plant/controller pair

{G (x. ) 1.,,, t,,, K(.io)). Also, in order to proceed with a theory that transparently specializes to

...................................................................... .
G(x)

I

................................................... .......... .........

l."".-....".."".""""""."'--".""""."".".-."..."...~iij

-
z(o) =

I
H31-h-@--++J
l–EEzi ‘-

...................................................................... :

z(o) = rll

9
G(z) y

Z(O = 20

Ii(i)

(a) Usual state estimate fecdlmck arrangement. (b) Nominal plant G(.cO) with controller 1{(2,)

Figure 2. Equivalent loop~ for the pair {G(f), K(f)]
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cannot, in general, be factored as

[

ti(xu(o)) O(X. (o))

N(xn (o)) fi(xm (o))1
where

G = ~- ‘ (X,. (0))fi(x. (0)), K = ti- ‘ (x,(0) )ti(x,, (t))) (31)

as in the linear case since superposition does not hold for nonlinear systems. To see the

difficulties, note that, omitting the initial conditions, then for all UI, U2

[-: ‘w: wl=[

P(A4U, + UU2) – U(fvu, + J“Z’42) 24,

1[ 1–N(A4Z41 + LA&) + Jl(fvul + P’Z42) 242

[

(JZVI-UN)U, +( VU- W)U2 * VM– ON=fi rZ.r-Ov=o

# (mjv – h’f)U, + (ft@’– fi@42 1[ 1~N–~A4=O; fiV-~U=I

Consequently, since MN= I@4, ~U = ~V by assumption, then both PM – ON= I and

fiV – ~U = I cannot be simultaneously satisfied in general.

To demonstrate why we cannot achieve the left factorization (31) for our class of

systems, in general, consider the cascade K = ~-1 ~, omitting the initial conditions.

Now, in general, the state space matrices of ~ are a function of the input to ~. When

this input can not be recovered (without differentiation) from the output of ~, the

generic case, then in the cascade ~-* ~, the state-space matrices of ~-1 do not have

access to this input, and thus cannot, in general, equal those of the state space

formulation of ~. Consequently, there is not the possibility of the state space matrices

of P-’ tracking those of ~. This situation is avoided in the next sections by guaranteeing

via restrictions and or augmentations that the information needed to reconstruct the

state-dependence is always available to both members of a cascade.

Robustness properties

Thus far, the work in this section has dealt with the special case of equal initial conditions

in the nominal plant and controller and no external disturbances. Such disturbances are dealt

with in a later section by introducing certain differential boundedness constraints. Let us now

recall a lemma from Reference 14 which we specialize and mildly extend to the class of systems

(2), obeying assumptions (8), (20).

Theorem 114

Consider a well-posed and stable system (G(xo), K(xo)], where G(xo), K(xo) fall within the

class (2), and the functions obey assumptions (8), (20). Then

[

A4(XIJ)

1

– U(xo) -’

– N(xo) V(xij)
exists and is internally stable (32)

Consider also an arbitrary map, S(XO, ,fo) within the class of systems (2). Then S(XO, ,fo) within

the class of systems (2). Then S(XO, ,fo) has a right factorization

5(X(), i(j) = ~G(xo, io)~G(xo, io)- ‘ (33)
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The stable right factorization of the nominal plant G (x. ) and controller K(io

G(xo) = ~(XO)fk-l(XO), K(icl) = u(io)v-l (io)

Moreover, internal stability of (G(xo), K(,fo)) is equivalent to the BIBO stab

are given from

(25)

lity condition,

[

I

1

–K(,fo) -’
BIBO stable =

[

A4(xo)

1

– U(io) -1
BIBO stable (26)

–G(x(j) I – fv(xo) V(fo )

[

h4(xlJ)

1

–U(io) ‘1

– N(XO)
BIBO stable = the factorization in (25) are right coprime (27)

V(io )

Notation and dejnitions. The definition (24) should be interpreted as

A4(xo) =
[

A (x)+ B(x)zqx) IB(X)

1 [

A(f) + B(i)Fi) I –H(f)

F(x) I
and U(fO) =

1
etc.

x(o)‘ F(f) o i(o)’

coprime factorization of G iff for allGiven M, N, a right G = NM-1, then M, N is a right

unbounded inputs u, Mu or Nu is unbounded. (In the linear case this is the standard definition

that N, M have no common zero in the right half plane). The pair (G, K) here denotes the

feedback system consisting of plant G and controller K as shown in Figure 2(b). Interns/

stability of a feedback pair is defined as being BIBO stability for all possible additional inputs

to the loop with outputs being the outputs of the systems in the feedback loop.

Proof. Defining x~ and x as the states of M and G respectively, then cascade G(xo) with

M(xo),

[

zt(x~) + B(x~)F(xAz) O B(x~)

G(xo)M(xo) = B(X) F(XM) A (X) B(x)

1
(28)

D(X) F(XM)
.V,,(o)= t’,)

c(x) D(x) 1(0)

From (28), and defining the output of the block A4 driven by u as y~ = u + F(x.w)x~, then

iM = A (X~)X~ + B(x,w)Y~; XM(0) = xl)
(29)

i = A (x)x+ B(x)yM; x(o) = X()

Now from (29) and under the uniqueness Assumption (8), we have x~(t) = x(t), t >0, so that

r A(x)+ B(X)F(X) o I B(x) 1

G(xo)M(xo) =

1

0 A(x) + B(x)F(x) o

1

= N(xo) (30)

C(x) + D(x)F(x) c(x) D(x) ;$I- x(O)=O

where the last equation follows from a co-ordinate basis change, and removal of

uncontrollable and unobservable modes. Then right multiplication by ~-1 (xo) gives

G(xo) = N(xo)M- 1(xo) as required. Likewise the dual case for the controller factorization is

established, and stability is given by the assumption (20). The coprimeness and stability

conditions are Theorem 2.1 and Lemma 2.2 of Reference 14.

Remarks

(1) The second inverse in (26) can be written down from (24) via Lemma (l), but appears

instructive only in special cases, such as the linear case when its stability is guaranteed

by a H selection such that ~ = (A + 17C)f is asymptotically stable. However, this inverse
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The equation (40) can be inverted by Lemma 1, since the ‘D’ function is the identity, which

is trivially invertible.

From Figure 3 we have

yl = M(xo)-’ (u(xo)s(xo,. fo).yl + Ul)

el = (fV(xO)– V(xO)S(xO,.iO))yI

Then since it has been established that J4(xo) – U(XO)S(XO, io)

reformulated in the form

.Y1= (M(xo) – u(xo)s(xo, fo))-lul

Then combining (43) with (42) gives (36) as required.

Corollary 1

With the conditions of Theorem 1 holding then

(41)

(42)

is invertible, (41) can be

(43)

❑

S(XO,.20) BIBO stable Q N,s(xo,.20), A4s(x0,10) coprime

Proof. We can express A?s(xO, ,fO), MS(XO, ,fo) in the form

[s(x:~o)l=[-:(%? ‘%11-’[-::1::2)!
(45)

(=)

The stability property (32), and the above equation (45) give N,s(xo, ,fo), A4s(x0, ,fo) BIBO

stable. From above, and pre-multiplying by [1 O] we have the Bezout

[
1= [1 o] ‘(xo)–N(xo) ‘%;l-’[%ll

(46)

The stability property (32) also guarantees stability of the matrix

[1 o]
[

M(xo)

1

– 17(xo) -’

– N(xo) V(X(J)

and consequently we have A4s(x0, ,i?o), N,s(xo, ,to) coprime by Lemma 2.1 of Reference 14.

(=)
If N.s (xO, .&), A4S(X0, .20) are coprime then they are stable, and (45) gives S(XO, .h) BIBO

stable. n

Remarks

(1)

(2)

We have reached a major objective of this section, namely to achieve a right

factorization for the feedback pair {Gs(,fo), K(xo)} in terms of a factorization of the

pairs [G(xo), K(XO)). An interesting special case is when G.s(~o) = G(-fo). This case

represents a nominal plant, but with initial conditions not necessarily equal to those of

the controller.

It is not possible to generate a complete robustness theory based only on the material

in this section. To facilitate the robustness theory, in the following sections we restrict

the class of plant and controller or work with augmentation forms, then achieve

stabilization results for these situations. For the case of augmentations, results are

generated which relate back to the standard plants and controllers.
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where the inverse is guaranteed to exist, and

R:n::;l=[s(x:ioJ’M’x”’-u’xo’s(xoio)’-l
(34)

~(xO)DG(xO,iO) – ~(XO)~G(~O,iO) = ] (35)

Further there exists a plant G,s(io) as depicted in Figure 3 such that

G,s(io) = ~(X, )~G(XO, iO) – ~(,Y, )~G(.X(), i,)
(36)

= N.s(xo, io)M$(xo,io)-’
where

N,s(x,,.i?,) = A’(x, ) – J“’(x,)s(x,,.f,); M.$(x,, i,) = A4(x, ) – CJ(x, ),s(x,, i,) (37)

Also, given an arbitrary plant G,s(.io) in the class (2), then it can be parametrized in terms of

S(.) given by (33) where

~t:ii]=[-fl:n;‘%/]-’[-d~o)l
(38)

Gs(_io) has a right factorization (36), and again (33), (34), (35) hold.

Proof. Most of the proof follows as in Reference 14. It remains only to observe that with

the definitions of the theorem holding, then the factor (A4(xo) – C/(xo)S(xO, io))- 1 will exist

for any S(xo, fo), and to show that Figure 3 represents G.s(xo).

From the definitions in (24) and denoting by * functions not relevant to the argument,

[+1

**

A4(x, )= * ~ ;
[11

U(x, )= :I; ;
[+1

S(x,,.i,) = * *
**

Then by (10) we have

[+1
U(i,)s(x,,. i,) = : ;

thus we can express

[+1

*
A4(xo) – U(xo)s(xo,. io) = : ~

----{ G@o) +—

——
U, Cl

“me’

(39)

(40)

I I I

Figure 3. The system G.>(XO)
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(a) {G,, r;,) (b) Gy = NvAfy-’
.............................. ....................
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11
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..................................................
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Figure4. The feedback systems [GY, ~,], {GY,K~}

M“ J&l

1

I -

d-w-t-
I El’+
I I 1 I

Figure5, (a) The Bezout ~~A4-UYN,=~ (b) G,=fi,;’fi

byr. A-i;
r # I I

.
Y

*

.Y,IG 7?+
—

Ny

N

G ....!/”!

‘-’WI

Figure6. (a) The Bezout fi~V,~-fi,U,*=I;(b) K,*= U,*V,*-’
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3. SYSTEMS WITH OUTPUT-DEPENDENT NONLINEARITIES

In the previous section, the systems considered had state-dependent nonlinearities. Of course,

a mild generalization would have permitted filtered state-dependent nonlinearities. Here we

specialize to output dependent nonlinearities to achieve a more complete factorization theory,

including stable left factorization, and Bezout identities. To avoid any algebraic loop that

might arise in an implementation of y = C(y)x + D(y)u, and to widen the class of systems,

we introduce a strictly causal filter on y giving y~, so that y = C(yw)x + D(y. )u. We

foreshadow that to achieve our objectives of stable left factorization, not only do we need the

restrictions introduced so far on initial conditions and output nonlinearities, but also we need

to work with plant/controller nominal models that only make sense in a feedback arrangement.

We proceed by considering the plant/controller arrangement as depicted in Figure 4(a).

More precisely, let us define a plant as follows.

i= A(y.)x+ B(yw)u; x(o) = X(l

G., (X()) :
i. = A .x. + By; Xw(0)

Y = C(Y). )X+ D(y.,)u

y. = C,vxw

Here yw is the output of a filter W driven by y where

w‘ [*]X((,) (48)

Of course, any member of (47) with states [x’ x~] ‘ is a specialization of the more general

class of nonlinear systems (7).

Note also that when the inverse of the nonlinear system exists, as when D-1 (x) exists, then

W can be taken to have the state tracking properties of this inverse (requiring generalization

of AW to Aw (yw) and BW to Bw(yW)). Now setting Cw = I makes yw equivalent to the state of

the inverse system which is x itself.

The feedback controller KY: u ~ y is likewise more precisely defined as

[

,4(y,) + B(y.)F(y~) + H(Yw)[C(Y,,) + D(Y~)F(Y.)]

1

– H(yM) “(”)
Ky(xo) :

F(y.) o
(49)

f(o) =.f(,

We claim below right factorization of GY,KY, as depicted in Figures 4(b), 5 and 6 where

the operator notation can be interpreted in state-space terms in the following example for NY.

[

/t(y,,) + B(YW)F-(YW) o B(y. )

NY :

1
Bw(yw)[C(yw) + DO] AW(YW) B~(Y~)D(Yw) ,,(0)= ,,,

c(Y. ) + D(Y. )F(Y. ) o D(yw) .Y,,(o)

y~ = causal filtered version of C,,(y~)X~ (50)

Likewise, the definitions allow state-space definitions for other operators V),, Uy, MJ etc.

depicted in Figures 4, 5 and 6 can be formulated, and the left fractional descriptions for

?Z;, Lly, & ~Y, tiy can be generated from the linear versions as in Reference 6 ‘ith ‘he

appropriate state dependence added as in Figures 4, 5 and 6.

Note that the pair (Gy, KY] here denotes the feedback system consisting of plant G., and

controller KY as shown in Figure 4(a).
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directly establish coprimeness of the factorization GY= ~; l~Y, but this does not give

rise to a Bezout identity, in general. Also in the linear case, the BIBO stability of

factories is guaranteed with f = (A + BF’)j_ asymptotically stable.

(2) To ensure BIBO stability of the factors in the nonlinear case, it makes sense to examine

the following assumption:

Assumption: The state estimate feedback gain F(Y~), and state output

injection H(yW) are constructed such that

{ = [~(Yw) +~(-hv)~(.h)l’t> t(o)
.(-= [~(-hv) + ~(h)c(h)l !77 r(o)

are exponentially stable for arbitrary initial conditions .$(0), ~(0),

for any admissible trajectory yW. (55)

We don’t claim here that such an assumption can be satisfied, except possibly for a

limited set of trajectories y~, or even that a complete theory can be based on this

assumption.

(3) Factors such as ~~ are introduced in the lemma since it is not possible, in general, to

find a ~Ysuch that KY = ~j 1~Y and also ~YM~ – ~YNy= 1, at least With the factors being

obvious generalizations “of the linear ones where the matrices A (.), B(.), etc. are all

functions of the one variable, viz. y~.

(4) A further limitation of the nonlinear theory is evident from Figure 7, as now explained.

Let us express K = ~,i 1~Y as in Figure 7(b), where .Y and Y are filters generating the

variables xi for i = 112, 3J 4 which feed into the relevant state space matrices A (.), B(.),

etc. In order for Vi 1UY of Figure 7(b) to generalize the linear results using the

methodology of this paper, we require X3= X4. But, from Figure 7(b),

Similarly, for the Bezout ~xMY – ~YNY = 1 to hold as required in Figure 7(a), using our

methodology we require xl = x2. But from Figure 7(a)

XMY=YNY +X= YG *(X1=X4) (57)

Combining (56) and (57) we have

{X,=X2) and {x3=x4] = X=XKG (58)

Figure 7. (a) The Bezout ~,M, – ~vN, = 1; (b) The system V.i ‘U} = ~
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and since in a well-posed system KG # Z, then in the nonlinear case where X # O we

cannot achieve simultaneously, ~xMY – UYNY = I, ~~ 1~y = K for any ~, Y # O, at

least in our ‘linear’ approach. Dual arguments can be constructed to justify the need for

working with other starred versions K* = U! V~- 1, etc.

(5) It is possibly to apply a version of Theorem 3 to cope with unequal initial conditions.

4. AUGMENTED SYSTEMS FACTORIZATIONS

As shown in the previous section, it appears difficult to construct left factorization associated

with the nominal plant/controller pair {G(io ), K(io )] without certain modifications and

restrictions. In order to proceed in this section, we propose an alternative ‘trick’ of first

obtaining factorization and stability results for an augmented feedback pair ( %(fo ), ,X(io )],

and thereby achieve stability results of a related pair {G(xo),.~(iO)) trivially different from the

original feedback pair (G (x. ), K(fo)]. Thus in the first instance, consider the feedback pair

{G(xo), K(XO ) of Figure 2, re-organized as the pair (G(xo),t~(fo)). Where

G(XO)=[*]X(0)=.J

[

A(xg) + B(xg)F(xg)+ H(xg)(c(xg) + D(xg)fqxg)) o

?i(io) = BE’ A (X~)

F(x~) o

(59)

The situation is depicted in shorthand notation in Figure 8(a). Clearly, without external inputs

and with xo = fo, then the pair (G(.fo),,~(io)] behaves as (G(.$?o),K(.i?o)] in terms of states and

system inputs and outputs. Consider now the further re-organization of ~G (x. ), ,~(,fo)] as an

(a)

ul
G(xo)

Z(io)
:----------------------------,

1,1K
;~9

I

............................. :

(b)
g(x,)........ ...............

11,

. . . .. .. . . .. .. .. . .. . . .. .

‘1+-iJ
......................

Figure 8. (a), (b) The systems [G(xO), .~(xo)l ancf (‘.~(~o),.X(-%)}of (59)
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augmented pair [%(xo),,ti(xo)], depicted in Figure 8(b) where

$9(XO)=
[1

G(xo) .

I’

[

A (Xg)+ B(xg)F(xg) + H(xg)(c(xg) + DO) o - H(xg) o

X(.’io) = o A(x~) o II(XJ

F(x~) o 0 10 [i%fol

(60)

Again, in the absence of external inputs the states of the pair [G(xo), t~(io)] are identical

to those of ( %(xo), ,~(,fo)]. In order to proceed, we recall a stability of definition.

Definition. The system [G(xo), K(.fo)] is said to be .s1, cz bounded-input stable, iff for all

inputs UI, uz such that \ UI I < cl, I uz I <0 the outputs Yl, YZ and el, ez are bounded.

Lemma 6

With $q(xo), ,%(io),,~(fo) defined in (59), (60), and given positive constants c1, CZ,es then

( $9(xo),.X(,fO)] is et,
[1

C2 —
+ {G(xo),X(iO)] is min(ct, c3), cz (61)

bounded-input stable ‘3 bounded-input stable

Proof. From Figure 8 it is immediate that the feedback loop of [G(xo),.~(io)) of Figure

8(a) is simply a specialization of the feedback loop {%(xo), ,x(,?o)) shown in Figure 8(b) taking

U3= – UI. Now define t~in as min(cl, es), then we have that [ !g(xo), tX(fO)) is

bounded-input stable. Thus it is stable for any input signals

[1
&b

&a,
– &a

where .s, < ~~in; & < CZ. The system %(xo), J’f(.fo) with input

is trivially equivalent to the system G(xo),.~(io) with input cl, fb,thus the stability property

carries over to this case giving (61).

Remark. This lemma tells us that developing a factorization and robust stability theory

associated with {!g(xo), .x(fo)] will give corresponding stability properties for (G(xo), t~(io)]

which in turn can be considered as an idealized nominal version of the pair (G(xo), lC(-f20)].

Any differences between the nominal and actual controller can be taken into account in the

same way as differences between the nominal plant and actual plant.

We propose factorization as follows

!~(xo) =?d’-’(xo)<i(xo) = A’(xo).t{”’(x o); x(x(l) = i-’(xo)’z(xo) (62)
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M(zo)
,.-----...--..-.--.-:

U w’

k
N(zo).....................
N(zo) :Y?

A’f(zo) : ‘3
.....................

[1
//(x, )

Figure 9. The block ‘
,Ji(xo)

where

This situation is depicted in the sub-blocks .l(xo), ..~{(xo) of Figure 9 where iV(xO), A4(xo) are

defined in (24). Likewise, we propose

r A(x) o I B(x) 1

[q

o A(x) + H(x)c(x) I B(x)+ H(X)D(X)
ti(xo) =

,/i( x, )

IFix)] [:$1=%1

and

o – F(x)

[

o c(x)

o 0 1

A (X) o

0 A(x) + H(X)C(X)

o F(x)

[

o – c(x)

o 0 1

(64)

The feedback system {!g(xo), ,X( Xo)), with the above left factorization is shown in Figure

10. To ensure (BIBO) stability of these left factorization, we impose (20) and its ‘dual’, viz.

Assumption:

Remark: Note

all functions of x which is the state of the nominal plant G(xo) driven by the inputs to ,4; 7-

etc., respectively. In the systems J?, ~~ the matrices are functions of the state of a nominal

plant G(xo) driven by the ‘augmented’ input to ~, ~, respectively. This can be seen from

Figure 10.

The state output injection If(t), is constructed such that the system

~= A(~)i; :(0)= to

i= [xl(t)+ H(t)c(t)l r; r(o)= (0
(66)

has an exponentially decaying partial state {

that in the systems ti~, %-,J~, +!!, M, <A; the matrices A (.), B(.), . . . are
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g(q) = M-’(zo)l(ro)
.............................................................

............................................................:

~“””’”””iqxj-”.”.”-””””””-”””-.””ii&-;j-””---j

p-l(+)

i A
:Z :Z

+G(.0) [ G(z, ) +

.............................................................:
K(m) = V-’(xo)u(ro)

(a)

G(ZQ)

EL
G(zo)

;Z

G(zo)

J

I I

(1))

279

Figure 10. Equivalent loops for the feedback system, ( ‘.$(XII), YI’(xo)\

Lemma 7

Consider the system %(xo), .X(XO) as deftned in (60). Then, (62) holds with the definitions

(63)–(65). Moreover, under the assumptions (8), (20), (66), the factors are BIBO stable and

,,t/, ,/i’ are right coprime satisfying the Bezout identity

i(xo), @Y(xo) –’4J(XO).A’(XO) = 1 (67)

Proof

,g(xo)4{(xo)=[* ][x(o)_J(,[A(x) +::;F(xl)lB(:l) lx(() )=.(o)1

= d’(xo) (68)

The equalities follow since by the uniqueness Assumption (8), with initial conditions

XI(O) = XO, then xl(t) = x(t)vt >0. The second equality is simply the removal of an

unobservable mode. Since J“1 (xo) exists via Lemma (1), then !9(xo) = .4’(xo).J- 1(xo) as in

(62). The proofs of the remaining factorization of (62) are similar.



280 J. B. MOORE AND L. IRLICHT

To prove the coprimeness of ll(xo ), A’(xo ) we first verify (67). Now

7-(XO),X%(XO) – ‘V2(X0)?A(XO)

[

.4(x2) + B(X2)F(X2) o 0 B(x2)

B(x) F(x2) A (X) o B(x)——
B(x) F(x2) + H(x) D(x) F’(x2) O ,4 (x) + H(x)c(x) B(x) + ~(X)D(X)

1 [1

X2(O)= .Y”
x(o) = .xO

F(x) o – F(x) I .Y,(o)= .Y,,2

r A(X3) + B(X3)F(X3) o 0 I B(x3) 1

1
B(X4)F(X4) A(x4) o B(x4)—

- (H(x4)C(X3)+ H(x,)D(x,)F(x,)) O A(x4)+ H(x4)C(X4) –H(X4)D(X4)

1[ 1
X3(O)= x(,

o 0 F(x2 ) o
X4(O)= .r”
x. (0)= .x” 2

where x, xl are the states of %: X2 of ,.M, X3 of t~ and X4, X5 of ?~. Now, both systems

operators on the r.h. s. of the above equation will have the same inputs. Thus applying the

uniqueness Assumption (8) (as in Lemma 2 proof) we have that the partial states satisfy

and thus A (X2) = A (X3), etc. Moreover, by applying the uniqueness Assumption (8) to the

state equations for X2 and x, then it is clear that X2(t) = x(t)vt >0, so that

x(f)= X2= x3(t)= x4(t). So denoting A = A(x) = . . . . then after a co-ordinate basis change

and deletion of unobservable and uncontrollable modes, we have

Z-(XO)W(xo ) – ‘/;(xo ) , /t’(xc!) = [~][,[,,,2,21

Then a co-ordinate basis change

[WA

and the resulting subtractions gives the required result (67).

In fact, a study of Figure 11 and knowledge of linear system results allows a shortcut to the

proofs. The key is to realize first that the sub-blocks lV(xO), M(xo), G(xo) with their inputs

depicted in the figure all have the same state x(l) by virtue of Assumption (8) and

manipulations such as in the proof of Lemma 2, and consequently that the coefficients A (.),

etc. in N, &f, U, V are all functions of the same state x. The initial state requirements on the

various sub-blocks are identical to those for linear systems to avoid any transients in achieving

y=u.

From (68), (69), Assumption (66) and Lemma (4), we have that ..tl(xo), ,4’(xo) are coprime

giving the coprime factorization of %(xo) = ,4’(xo),.ti- 1(xo) of (62).

For the left factorization case, the proof of is similar to that of the right case. G
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Figure 11, The Bezout 7_(xo). //(x,,) – ?;(xo), I (m) = 1

.Lemma 8

Given the BIBO stable systems ,X’(xo), -Y(x.) as defined in Figure (13), and, (7(xo),, ~(xo)

as defined in (64), (65), then

[1

I
c ;[(XI))?A’(XO) – ?[(XO)Y’(XO) = ~ (70)

Proof The proof follows from the definitions of the factors in Figure (13), and the

uniqueness and stability assumptions (8), (20), (66), and the fact that in the linear case

,Gv– m= I. ❑

Remark. In the linear case left coprimeness of fi, ~ follows from the Bezout RR – ~S = 1,

since fi, fi, R, S are BIBO stable. In the augmented nonlinear case, . [i’ = [1 O], ~?, and

,~ = [1 0].1’satisfy, (j’(.Xo),JR(xO) – ,l”’(XO).Y’(XO) = 1 from (70) which could be taken as an

analogue of left coprimeness for. (i’, ./fi. Actually, in the remainder of this paper, we restrict

to stability theory of Reference 9 which does not require left coprimeness of factors t.t~, t l-(or

even. i~’ , ,~’ ), at least in the proof of the results.

Construction of the class of all stabilizing controllers for a nominal plant

Lemma 7 shows that the factorization (63)–(65) have the properties:

G(xO) = .I’(XO), [/-1 (xo) =, I’i- l(x{)), ~(xo) with the factorization stable (71)

,4, t /[ are right coprime, and t~,ti obey (70) (72)

~(xo), +;(xa) are defined such that a Bezout identity (51) holds. (73)

In order to establish that the system ( !g(xo), ,X’(Xo)) is robust to small signal injections

around the loop we utilize a differential boundedness condition from Reference 7 and exploit

results in Reference 9.

Definition. A mapping F is said to be dijfererrtially bounded by 19~-,e~ if for all signals al, a2

iflal–al l<c/thenl Fal –Fa21<O~.

Assumptions (8), (66) give (BIBO) stability to the left factors of !q(xo), tfi(xo), and we make
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further restrictions on the matrices A (.), B(.), . . . . H(.), F’(.) such that the following property

holds:

,,{~, ./~ y: ?; are differentially bounded by d~, CU;d~,CV;llu,cu respectively (74)

Also, we define Q to be a (BIBO) stable mapping constrained such that

Q,/~is differentially bounded by 19~~,cv, and Q.t~ is differentially bounded by @Q&f,f’u (75)

Remark. It is beyond the scope of this paper to give explicit conditions on the matrices

/l(.), B(.),. . . so that conditions (74), (75) hold. In the linear case they

assumptions (8), (20), (66).

Then following Reference 8 let us parametrize

.%Q(xO) = ~T(jl (xo)’’t~Q(x0); ~j(xo) = ~7(XO)+ Q(XO)C4:(XO);“tjQ(xo) “l;(xo

will hold due to

+ Q(xo)/?(xo)

(76)

and using these parametrizations, we apply a crucial lemma for the stability of the system:

Lemma 99

Consider the augmented plant %(xo) and augmented controller .%/(xo) as defined in (60),

with right coprime and stable left factorization of !9(xO), and a stable left factorization of

.7f(xo) as in (62), and with the properties (7 1)–(75) and the Bezout (67) holding. Then

1.

2.

3.

The system [G(xo), ,~Q(xI))], with ,~{Q(xo) defined in (76), and illustrated in Figure 12,

will be cv, .sU bounded-input stable.

For every BIBO stable Q(xo) obeying (75), there exists a stable Q,(xo) given by

Q,(xo) = (i(XO)<fiQ(XO) - +!!(XO))(/@xO) - /i(XO). ~Q(XO))- ‘ (77)

such that the controllers of Figure 12 are equivalent.

The system ( !g(xo), ,%O,(XO)] with %o,(xo) constructed as in Figure 12 is CL,,Cu bounded

input stable iff Q,(xO)-is (OM+ ON) b~unded-input stable.

The main results are now summarized as a theorem

r ,

------+ K,(q)) ~------e2

U2 ~; ’(ro) lio(ro) e2

U2 Ii(ro) e?

[Q~ \$Y/ ‘o)

Jv(ro) .Ci(r”)

11?+
‘Q,(XO) “ e2

11 e2

Figure 12. The classes .X(Q, it’s,
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$i’(~o) JV(ZI))

I I I I

Figure 13. The Bezout . ;R – ,4;Y’= [1 O]

Theorem 2

Consider an augmented plant belonging to the nonlinear class (2), and obeying assumptions

(6), (20), (66). Then left and right factorization exist as in (62)–(65). Given the differential

boundedness properties (74), (75), then the class of all stabilizing controllers for that plant can

be constructed as in Figure 12.

Stabilization of plants with unknown initial conditions

An important questions remains of stabilization results for plant/controller pairs with non-

identical initial conditions, viewed here as working with a non-nominal plantlcontroller pair.

In this section we extend the theory to this case. To this end, we first recall the plant %s(xO)

as shown in Figure 14. Our aim is to use the S parametrization to characterize the class of

plants 19(xo) in feedback pairs {!~(xo), ,Z(iO)], over all initial conditions, XO,f., not

necessarily such that X. = ,i?Oas in earlier results. Here we will assume realistically that io, the

controller state is known and that X. is unknown. Thus we think of our nominal

plantlcontroller pair as {%(io), ,fi(.fo)) and seek results for the pair f !9(xo), ,Y@o)) with X.

possibly different from ,fo. Thus, consider the following theorem, part of which is a

specialization of Theorem 3.1 of Reference 14.

--+ g.,(q) l—[,

S(T ,ro)

e] Ii’(io) 11,

Figure 14. The class !9,(xo)
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Theorem 3

Consider %(io) defined in (59) ‘?~(io), ,~(,fo),J?(i?o) from (64), (65). Then the system

[

i(i(l )

1

– 42(io )

– ,dv(,b ) J@o )

is invertible for all initial conditions ,fo, as is (ZTQ?O)– ?;(,fo) !gs(xo)) for all initial conditions

XO,,fo, for any dynamical system %s(xO) satisfying the assumption (6) and of compatible

dimension. Also %S(xo ) has a right factorization

%5(XO) = A.i(xo,io) .xs(xo,io)- ‘ (78)

(79)

Define S(XO, ..fo) as

S(xo, ,fO) =..i(.io ) ./}s(Xo, -iO) – . .@o ) .$~.s(-fo! Xo ) (80)

Then the systems %s(xo) can be organized as depicted in Figure 14. Also, its factors .Yl,s(xo, .io)

and AS(XO, ,fo) are given in terms of S(XO, ~o) as

[’%:%l=[-:g) ‘%J-*[.(X:.O)l
(81)

Moreover, the factors ,MY(xo, _io), .4~(x0, fo) and Y@o),’?;(io) obey a Bezout identity

ides, fo) – ‘i(io) ?fi(xo,io) = I (82)

The factors Ms(xo, fo), N.$(xo, ~o) are coprime if they are BIBO stable. Furthermore, given

BIBO stability of

[

Y@l )

1

– Vl(fo) -1

– .A@ ) ti(io )

then

di%(xo,iO), tfis(xo, io) are BIBO stable iff S(XO,.fO) is BIBO stable. (83)

Proof, The systems ~(io) – %(.fo) % (XO) and

[

‘J(io ) – ~i(io )

– ?/l@o ) ,ti(io )1

are invertible by similar arguments to that used to prove the invertibility of the system

A4(xo) – U(xO)S(xO,.fO) in Theorem 1.

Observe from Figure 14 that

u =df21(io)[S(xo,.to) [fi(,fO)e – %Y(-fo)u]+ ,I(xo)e] = %5(x0)e

which yields

S(xo, io) = [<x(io) $%(XO) – ~(fo)l [ ~(-fo) – +i(~o) %(xo)l - ‘ (84)

or equivalently (80), as claimed.

For each S(XO, -fo) there exists a unique pair t4(x0, io),,4s(x0, ~o), and consequently a

unique %s(xo). Thus setting S(XO, -i?o)to obey (84) makes the system in Figure 14 equivalent

to WS(xo).
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To show (82), observe that

Z-(io)tut%(xo,i o)-’’li(fo)<ds(x ofo)=)= @o)((i(io)-” i(io)%(xo))-l

– 4Ji(io) %(xo)(z(io) – “/?(fo) %S(xo))- ‘

=1

Also

?//s(xo, io)!/tis(xo, io)-’ = %(xo)(z(.fo) —?;(%:

= $%(XO)

giving (79). Verification of (81) follows from,

%(xo, io))- 1(i(io) – ‘Ji(fo) !~s(xo))

[

F(i(l)

-2(31[fXff:.2;l=[ -

7;(AJ),MS(XO)– ‘/;(fo).fii(xo)

– d’(io) !/t’t(io)r Ji(xo) – d@o)d%s(xo) ]=[dfo)l

Given unimodularityof

[

Z(,fo ) – +@20 )

– ,4’(X(J) ti(.fo )1

then by (81) stability of S(xO, fO) is equivalent to stability of ,x%(xo,.fo),,4’( xo, io).

Coprimeness follows from the stability assumption, and the Bezout (82) via Lemma 2.1 of

Reference 9. ❑

Remarks

(1) Theorem 3 applies for any plant %s(xo) within the class of interest, and in particular

applies to %S(XO)= %(xo). A key objective of this paper is thereby reached, namely to

achieve coprime factorization of {‘8(xo), t%f(,fo)] with iO # XO. Thus, we set

%s(xo) = (4(xo), and use the S(. ) operator to parametrize over the set of nominal plants

%(.) with varying initial conditions. A dual of Theorem 3, holds for any controller ,Z(.fO)

with initial conditions ,fo differing from that of a nominal plant !9(xo). Thus a

.tiQ(xo, ,io) = ,%(fo) can be formulated in a dual fashion such that the operator Q(xo, -fo)

characterizes the effect of initial conditions of the controller different to those of the

nominal plant.

(2) Corresponding ‘left’ factorization results are elusive and indeed may not exist to the

generality achieved for right factorization.

(3) This theorem also applies to the factorization of Section 3.

We next make use of these parametrizations of the set of pairs {!g(xo), .Z(io)] with different

initial conditions by recalling a theorem from Reference 9.

Theorem 4

Consider the system [ ~S(Xo), fiQ~(fo)) of Figure 15(a), where. fl;(io),~(.fo), ‘l~(.i?o),~(~o) as

defined in (65, 64), are stable factorization of %(.fo) and t%(,fo). Consider also that

[

.@o )

1

– ,j’(fo) - I

– ?i(io ) z@j )

is BIBO stable, and the differential boundedness conditions (74) hold. Then the system is

c,,, C. is bounded-input stable iff the system (S(XO, io), Q,(xo, i?o)], of Figure 15(b), is

(6u + 19v),(OM+ ON) bounded-input stable.



286 J. B. MOORE
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(b)

Figure 15. (a), (b) The systems [ ‘L,(xo), .XQ,(l~~)I and [S(iO, XO), Q, (.fo)l

Remark. This theorem is a powerful robustness theorem, which can be used, for example,

in multi-loop controller design strategies as in the linear case 1s and in adaptive control. G

5. SIMULATION RESULTS

To illustrate nonlinear plant/controller robustness properties developed in this paper, we

present two sets of simulation studies, each consisting of a nonlinear controller designed for

a nonlinear nominal plant, and then the pair placed in a feedback loop with stochastic

disturbances added. In the first instance, the simulations consist of an augmented

controller/plant loop, as in Figure 10(b), with stochastic disturbances added to each of the

inputs. The second series of simulations includes a Q parametrized controller in feedback with

an unaugmented plant as per Figure 8(a). The idea is to illustrate the tracking, and regulation

properties of the controller in the presence of disturbances.

The coefficient functions of the state-space formulation of the four scalar-variable, first-

order plants simulated are given in (85) to (88).

Plant 1:
[I]xo

Plant 2:
[

0“2+0”1 sin(x) \ 0“21cos(x)\+2

10 l–xe-l~
1 .X,,

Plant 3:
[

l.l+xe-”ll –min(l xl, 11/x\ )– 005

10+ sin(5x) I I sine(x) I -3 1 l’,)

(85)

(86)

(87)

[[

– 1 + sine(x), x # O

[

2, integer part of x is even

Plant 4: 3, X=o – 2, integer part of x is odd

1
(88)

10+ sin(5x) I sine(x) I -3 x,,

The shapes of the functions A (.), B(.), C(.), D(.) are depicted in Figure 16, where the scalar

functions are plotted over the normal operating range of the plant/controller pair.

In each case, specification of the controller requires the definition of the matrix functions

F(.), H(.). The choice must give the required differential boundedness conditions in order to
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5

0

.5

A(x)
1

#4

I

.......

,.. . ~~~~~“’’”””““””’”,,, .,...- #3
. . . . . . . . . .----

------------------

#2 #1

-1 -0.5 0 0.5 1

x

12,
c(x)

1

11 --- .--.
‘.\,#3,#4 ‘.

#l ,#2 ‘“ “,
10 “.,, ,!’”

‘.,,’‘.. ‘.
9 - .. -., ‘..

8 -

7-
-1 -0.5 0 0.5 1

x

5, B(x)
I

----- ..:;. - ..... .... ... . . . ...

0-
#4 j

.--------# 3------: ----------------

-5
-1 -0.5 0 0.5 1

x

5
D(x)

I

J-=---4
I

#3,#4
---------- ------------ -------------

J

.,_____—l
-1 -0.5 0 0.5 1

x

Figure 16. The matrix blocks A–D for plants 1–4

guarantee stability of the loop. Here, the differential boundedness is calculated in an L2 sense,

and generally in this case a sufficient condition for differential boundedness is that for two

systems with identical input, and unequal but sufficiently close initial states, that the states

converge. This condition is facilitated, at least in the zero input case, by any ,4 (.) function of

the system which guarantees exponential convergence of the state to zero.

In each case, F(x) and H(x) are chosen for all x such that

F(x) = –A (x)/B(x) – o.5/B(x) (89)

H(x) = –A (x)/c(x)–o“5/c(x) (90)

This sets both A(x) + B(x) F’(x) and A(x) + iY(x)C(x) to a constant of –0. 5 for all x. Thus,

as can be seen from (64), (65), the A(. ) functions of the systems +;, ~~d~(~ are all equal to

– 0”5, which guarantees exponential convergence for the zero input case.

The controllers in three of these simulations are able to regulate the states of the plants close

to the zero point. There is a trade-off, however, since the B(.) and C(.) functions of the factors

?~, l; 4~t~ include F’(. ) and H(.), and in high-input conditions, small l?(.) and C(. ) functions

will, in general, help to achieve differential boundedness, possibly allowing a more variable ‘A’

function. Further discussion of the properties of nonlinear differential equations which lead

to differential boundedness is beyond the scope of this paper.

The simulations are run with a nominal stochastic disturbance uniformly distributed between

[ -0.3,00 3] applied to each input. The systems ‘?7,t/~P~ are differentially bounded in the

region of interest, of I x I < 5, for plants 1, 2, and 3. Plant 4 is not differentially bounded in

this region. The simulations extend in the case of plants 1, 2, and 3 for 300 iterations. The

simulation results of Plant 4 are shown only for six iterations, since the state continues to
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Figure 17. The controller and augmented plant states at each time instant
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Figure 18. The Q-parameterized controller and nominal plant states at each time instant
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diverge for all further iterations. The results of the state of the controller plotted against the

state of the plant for each time iterations are shown in Figure 17.

Further simulations are carried out which include the Qparametrized controller K~r(,fO) as

in Figure 12, in a feedback loop with the unaugmented nominal plant G(xo), as in Figure 12(a).

The plants in this case are strictly proper versions of Plants 1, 2, 3, and 4 in (85)–(88), i.e.

identical but with the functions D(.) set to O. The disturbances are uniformly distributed

between O and O. 1. Also, the initial conditions on the plant and controller are not equal, the

difference uniformly distributed between O and 0.1. The Q function used in these simulations

is Q,(x) = sin(x). The results are shown in Figure 18.

As can be seen from the Figures 17 and 18, in the three cases where the differential

boundedness conditions are satisfied, the controller successfully regulates the state of the plant

in the presence of stochastic disturbances, and in the case where the differential boundedness

conditions are not met, the system diverges.

6. CONCLUSION

In this paper we have extended part of the linear factorization theory to a class of nonlinear

systems. For these pseudo-linear systems with state-dependent matrices A (.), l?(.), C(.), D(.),

cascade and inversion formulas have been introduced which trivially collapse to the well-

known linear results when ,4 (.), B(.), etc. are not state-dependent. Also the approach is such

that the nonlinear system factorization are set up so as to make the corresponding matrices

A (.), B(.), etc. identical in all the subsystems in an idealized nominal plant/controller

arrangement. In this case results follow directly from the linear time-varying case. This

approach excludes corresponding left factorization in general.

Studies are made of a specialization to the case where the state-dependence is rather an

output-dependence, and to a more general case where the factors are augmented. In these

cases, stable left factorization, as well as certain Bezout identities are also generated. These

left factorization are used to generate the class of all stabilizing controllers for a given

nominal plant based on earlier theory. 9 Also, an S parametrization is recalled, and then used

to parametrize the set of all plants G with different initial conditions, leading to stabilization

results for these plants. Simulation results verify the stabilization properties of the nonlinear

controllers proposed in this paper. Thus, for the state-dependent class of nonlinear systems,

the theory goes quite a way in extending known linear results.
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