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Abstract. We study the basic notions related to the stabilization of an infinite-dimensional well-
posed liner system in the sense of Salamon and Weiss. We first introduce an appropriate stabilizability
and detectability notion and show that if a system is jointly stabilizable and detectable then its
transfer function has a doubly coprime factorization in H∞. The converse is also true: every function
with a doubly coprime factorization in H∞ is the transfer function of a jointly stabilizable and
detectable well-posed linear system. We show further that a stabilizable and detectable system is
stable if and only if its input/output map is stable. Finally, we construct a dynamic, possibly non-
well-posed, stabilizing compensator. The notion of stability that we use is the natural one for the
quadratic cost minimization problem, and it does not imply exponential stability.
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1. Introduction. Although the theory of well-posed linear systems in the sense
of Salamon and Weiss has been around for some time, applications of this theory
to “real” control problems are scarce. This is in sharp contrast to the widespread
use of the theory of Pritchard–Salamon systems; see, e.g., [2], [12], [15], [16], and
[26] for discussions of different aspects of this theory. A fair number of recent pure
frequency domain results for H∞ transfer functions do exist (some of these are listed
in the References), but they have not been connected to the theory of well-posed linear
systems. The few connections known to us in the spring of 1995 when the first version
of this paper was written were the discussion of the Lyapunov equation in [10], the
discussion on feedback and estimation of well-posed systems in [13], the discussion
of balanced realizations in [14], the discussion of the connection between internal
and external stability in [17], and the discussions of the quadratic cost minimization
problem in [19] and [24] (not to mention the basic papers [20], [30], and [31] and
the nice review [1]); the list above is certainly not complete. In particular, at that
time we were not able to find any reasonably complete results on the stabilizability
and detectability of general well-posed linear systems, and the connection of these
notions to the notion of a (doubly) coprime factorization of the transfer function of
the system.1 We needed these results in order to solve the quadratic cost minimization
problem for unstable systems, and we were forced to develop the needed stabilization
theory ourselves.2

Subsequently the situation changed significantly with the appearance of the pre-
prints [4], [5], [6], [11], [32], and [33]. Out of these [4], [5], and [6] are fairly closely
related to our work. Several of the results that we prove here are also found in [5], in
a slightly less general setting. The results given in [4] and [6] overlap those that we
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present in section 5.3 These preprints have also had a certain influence on a revision
carried out in late 1996: we were able to use the ideas presented in [5] to simplify
our original proofs of Theorems 4.4 and 5.3, and Remark 5.5 was inspired by [5] and
[6]. In addition we added Lemma 3.17 and Corollary 3.18 as an answer to a question
asked by George Weiss in the summer of 1996, and we redrew all the diagrams.

The notion of stability that we use was forced upon us by our solution to the
quadratic cost minimization problem for stable well posed linear systems. In par-
ticular, it does not imply exponential stability. The most important notion is what
we call “joint stabilizability and detectability.” The word “joint” refers to the fact
that in our setting the notions of stabilizability and detectability are not decoupled
from each other as they are in the Pritchard–Salamon theory; roughly speaking, the
“feedback operator and the output injection operator must be compatible.” This is
a problem that is not present in a Pritchard–Salamon system, due to the fact that
for such systems the admissibility of a particular control operator together with the
admissibility of a particular observation operator implies the well posedness of the
corresponding input/output map, something that is not true for general well posed
linear systems. Maybe the main individual result of this paper is the statement that if
a system is jointly stabilizable and detectable, then its transfer function has a doubly
coprime factorization in H∞.4 The converse is also true: every function that has
a doubly coprime factorization in H∞ is the transfer function of a jointly strongly
stabilizable and detectable well-posed linear system.

Having explained the relation between joint stabilizability and detectability on
one hand and doubly coprime factorizations on the other hand, we continue with a
short discussion of how to use an observer as a stabilizing dynamic compensator. This
theory parallels the classical theory, apart from the fact that the well posedness of
the observer is not automatically guaranteed.

For the convenience of the reader, we start with a short presentation of well-posed
linear systems.

We use the following notation.

L(U ;Y ), L(U): The set of bounded linear operators from U into Y or from U into
itself, respectively.

I: The identity operator.

A∗: The (Hilbert space) adjoint of the operator A.

R, R+, R−: R = (−∞,∞), R+ = [0,∞), and R− = (−∞, 0].

L2(J ;U): The set of U -valued L2-functions on the interval J .

L2
ω(J ;U): L2

ω(J ;U) =
{
u ∈ L2

loc(J ;U)
∣∣ (t 7→ e−ωtu(t)) ∈ L2(J ;U)

}
.

H∞
ω (U ;Y ): The set of bounded analytic L(U ;Y )-valued functions over the half-plane

ℜz > ω, with the sup-norm.

TIω(U ;Y ), T Iω(U): The set of bounded linear time-invariant operators from
L2
ω(R;U) into L2

ω(R;Y ) or from L2
ω(R;U) into itself.

TICω(U ;Y ), T ICω(U): The set of causal operators in TIω(U ;Y ) or TIω(U).

〈·, ·〉H : The inner product in the Hilbert space H.

3Curtain, Weiss, and Weiss call the compensator in Theorem 5.3 a “controller with internal loop.”
4As we mentioned above, the main purpose of this paper is not to prove any particular result

but to develop a general theory that can be used in the study of the quadratic cost minimization
problem, to which we return in [25].
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τ(t): The time shift group τ(t)u(s) = u(t + s) (this is a left shift when t > 0
and a right shift when t < 0).

πJ : (πJu)(s) = u(s) if s ∈ J and (πJu)(s) = 0 if s /∈ J . Here J is a subset
of R.

π+, π−: π+ = πR+ and π− = πR− .
We extend an L2

ω-function u defined on a subinterval J of R to the whole real
line by requiring u to be zero outside of J , and we denote the extended function by
πJu. Thus we use the same symbol πJ both for the embedding operator L2

ω(J) →
L2
ω(R) and for the corresponding projection operator L2

ω(R) → L2
ω(J). With this

interpretation, πJL
2
ω(R;U) = L2

ω(J ;U) ⊂ L2
ω(R;U) for each interval J ⊂ R.

2. A review of well-posed linear systems and time-invariant operators.

In order to fix the notation and describe the basic setting we first give a brief pre-
sentation of the theory of the Salamon–Weiss class of well-posed linear systems. This
theory has been developed in [18], [19], [20], [3], [7], and [27], [28], [30], [31] (and many
other papers), and we refer the reader to these sources for additional reading.5 A re-
cent contribution is found in [24], and the setting that we use here is a slight extension
of the one in [24]. The difference is that the discussion in [24] is restricted to the case
of (externally) stable systems; here we also need to consider unstable systems. The
major parts of this setting are found in [20], too.

In order to formulate the axioms satisfied by a well-posed linear system we intro-
duce exponentially weighted L2-spaces. For each Hilbert space U and each ω ∈ R we
let L2

ω(R;U) be the weighted L2-space

L2
ω(R;U) =

{
u ∈ L2

loc(R;U)
∣∣ (t 7→ e−ωtu(t)

)
∈ L2(R;U)

}
.

This is a Hilbert space with the natural norm ‖e−ω·u(·)‖L2(R;U). We also need the
“past time” projection π−, the “future time” projection π+, and the “time shift”
group τ(t) that operate on functions u ∈ L2

ω(R;U) in the following way:

(π−u)(s) =

{
u(s), s ∈ R−,

0, s ∈ R+,

(π+u)(s) =

{
u(s), s ∈ R+,

0, s ∈ R−,

(τ(t)u)(s) = u(t + s), t, s ∈ R.

Definition 2.1. Let U , H, and Y be Hilbert spaces, and let ω ∈ R. A (causal)
ω-stable well-posed linear system on (U,H, Y ) is a quadruple Ψ = [A B

C D ], where A, B,
C, and D are bounded linear operators of the following type:

(i) A(t) : H → H is a strongly continuous semigroup of bounded linear operators
on H satisfying supt∈R+ ‖e−ωtA(t)‖ < ∞;

(ii) B : L2
ω(R;U) → H satisfies A(t)Bu = Bτ(t)π−u for all u ∈ L2

ω(R;U) and
t ∈ R+;

(iii) C : H → L2
ω(R;Y ) satisfies CA(t)x = π+τ(t)Cx for all x ∈ H and t ∈ R+;

(iv) D : L2
ω(R;U) → L2

ω(R;Y ) satisfies τ(t)Du = Dτ(t)u, π−Dπ+u = 0, and
π+Dπ−u = CBu for all u ∈ L2

ω(R;U) and t ∈ R.

5In the early literature these systems were called “well-posed semigroup control systems” by
Salamon and “abstract linear systems” by Weiss.
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If, in addition, e−ωtA(t)x → 0 as t → ∞ for all x ∈ H, then Ψ is strongly ω-stable.
The system Ψ is [strongly] 6 stable iff it is [strongly] ω-stable with ω = 0, and it is
exponentially stable iff it is ω-stable for some ω < 0.

The different components of Ψ are named as follows: U is the input space, H
is the state space, Y is the output space, A is the semigroup, B is the controllability
map, C is the observability map, and D is the input/output map of Ψ.

This is the same definition as [24, Definition 2.1], except that throughout we took
ω = 0 and did not put any restrictions on the growth rate of the semigroup A.

The axioms listed above describe standard properties of the corresponding maps
induced by systems with bounded control and observation operators. Whenever
when we refer to an ω-stable “classical” system, we mean a system of the follow-
ing type: we let A be the generator of a semigroup A on a Hilbert space H satisfying
supt∈R+ ‖eǫte−ωtA(t)‖ < ∞ for some ǫ > 0, let U and Y be Hilbert spaces, let
B ∈ L(U ;H), C ∈ L(H;Y ), and D ∈ L(U ;Y ), and consider the system

x′(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), t ≥ T,

x(T ) = xT ,

(2.1)

where T is a given initial time and xT is a given initial value. We call u the control,
x the state, y the output (or observation), A the generator, B the control operator,
C the observation operator, and D the feed-through operator of this classical system.
The state x is required to be a strong solution of (2.1); i.e., the state x and output y
are given by

x(t) = A(t)xT +

∫ t

T

A(t− s)Bu(s) ds, t ≥ T,(2.2)

y(t) = CA(t)xT +

∫ t

T

CA(t− s)Bu(s) ds + Du(t), t ≥ T.(2.3)

In this case we define B, C, and D by

Bu =

∫ 0

−∞

A(−s)Bu(s) ds,(2.4)

Cx =
(
t 7→ CA(t)x, t ∈ R+

)
,(2.5)

Du =

(
t 7→

∫ t

−∞

CA(t− s)Bu(s) ds + Du(t), t ∈ R

)
.(2.6)

Thus B is the mapping from the control u ∈ L2
ω(R−;U) to the final state x(0) ∈ H

(take T = −∞, xT = 0, and t = 0), C is the mapping from the initial state x0 ∈ H
to the output y ∈ L2

ω(R+;Y ) (take T = 0 and u = 0), and D is the mapping from
the control u ∈ L2

ω(R;U) to the output y ∈ L2
ω(R;Y ) (take T = −∞ and xT = 0).

We leave the easy proof of the fact that these operators indeed are bounded linear
operators between the given spaces to the reader.

Each well-posed linear system Ψ has a controlled state and an output. Depending
on whether the initial time is finite or infinite these are defined in two slightly different
ways as follows.

6Square brackets represent optional parts of a sentence. Statements in square brackets are sup-
posed to be true (a) if you omit all square brackets (single or double), (b) if you keep the single
brackets, (c) if you keep the double brackets.
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Definition 2.2. Let Ψ = [A B
C D ] be an ω-stable well-posed linear system on

(U,H, Y ), and let u ∈ L2
ω(R;U). In the time-invariant setting (corresponding to the

initial time −∞) the controlled state x(t) at time t ∈ R and the output y of Ψ with
control u are given by

[
x(t)
y

]
=

[
Bτ(t)u
Du

]
,

and in the initial value setting with initial time s, initial value x(s), and control u,
the controlled state x(t) at time t ≥ s and the output y of Ψ are given by

[
x(t)
y

]
=

[
A(t− s) Bτ(t)
τ(−s)C D

] [
x(s)

π[s,∞)u

]
=

[
A(t− s)x(s) + Bτ(t)π[s,∞)u

τ(−s)Cx(s) + Dπ[s,∞)u

]
,

where π[s,∞) = τ(−s)π+τ(s) is given by

(π[s,∞)u)(t) =

{
u(t), t ≥ s,

0, t < s.

In particular, in the initial value setting with initial time zero, initial value x0, and
control u, the controlled state x(t) at time t ∈ R+ and the output y of Ψ are given by

[
x(t)
y

]
=

[
A(t) Bτ(t)
C D

] [
x0

π+u

]
=

[
A(t)x0 + Bτ(t)π+u

Cx0 + Dπ+u

]
.

Let us remark that the most commonly studied problem is the initial value prob-
lem with initial time zero, and in most papers this is the only one that is treated.

Remark 2.3. Because of Definition 2.2, we shall frequently use the alternative
notation [A Bτ

C D ] for the well-posed linear system [A B
C D ].

In the case of the classical ω-stable system (2.1) with bounded control operator
B, bounded observation operator C, and control u ∈ L2

ω(R;U), in the time-invariant
setting the state x and output y of Ψ are given by

x(t) =

∫ t

−∞

A(t− s)Bu(s) ds, t ∈ R,(2.7)

y(t) =

∫ t

−∞

CA(t− s)Bu(s) ds + Du(t), t ∈ R,(2.8)

and in the initial value setting with initial time T , initial value xT , and control u, the
state and output are given by (2.2) and (2.3).

An important fact is that the number ω in Definition 2.1 is not uniquely deter-
mined as described in Lemma 2.4.

Lemma 2.4. Let Ψ = [A B
C D ] be an ω-stable well-posed linear system on (U,H, Y ).

Then Ψ is also an α-stable well-posed linear system on (U,H, Y ) for every α > ω.
If instead α < ω, then Ψ has a unique extension to an α-stable well-posed linear
system on (U,H, Y ) iff supt∈R+ ‖e−αtA(t)‖ < ∞ and the operators B, C, and D
can be extended to bounded linear operators in L(L2

α(R;U);H), L(H;L2
α(R;Y )), and

L(L2
α(R;U);L2

α(R;Y )), respectively.
Proof. The first claim follows from Lemma 2.9 below and the fact that if α > ω,

then L2
α(R−;U) ⊂ L2

ω(R−;U) and L2
ω(R+;Y ) ⊂ L2

α(R+;Y ). To prove the second
claim it suffices to observe that L2

ω ∩ L2
α is dense in L2

α.
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Definition 2.5. We call Ψ a well-posed linear system on (U,H, Y ) iff it is an
ω-stable well-posed linear system on (U,H, Y ) for some ω ∈ R. The infimum of all
the numbers ω for which Ψ is ω-stable is the exponential growth rate of Ψ. Thus, Ψ
is exponentially stable iff its exponential growth rate is negative.

As Salamon [20] and Weiss [27], [28], [30] have shown, the growth rate of a system
Ψ is equal to the growth rate of its semigroup as explained in Lemma 2.6.

Lemma 2.6. The exponential growth rate of a well-posed linear system Ψ is
equal to the exponential growth rate ω = limt→∞ t−1 log(‖A(t)‖) of its semigroup. In
particular, Ψ is exponentially stable iff its semigroup is exponentially stable.

See [20, Lemma 2.1] or [27, Proposition 2.5], [28, Proposition 2.3], and [30, Propo-
sition 4.1] for proofs.

One of the required properties of the input/output operator D of Ψ is that it is
time invariant.

Definition 2.7. Let U and Y be two Hilbert spaces. A bounded linear operator
D : L2

ω(R;U) → L2
ω(R;Y ) is time invariant iff it commutes with time shifts; i.e.,

τ(t)Du = Dτ(t)u for all u ∈ L2
ω(R;U) and all t ∈ R. We denote this class of

operators by TIω(U ;Y ). The Hankel operator induced by D is the operator π+Dπ−,
and the anti-Hankel operator induced by D is the operator π−Dπ+. The Toeplitz
operator induced by D is the operator π+Dπ+, and the anti-Toeplitz operator induced
by D is the operator π−Dπ−.

The word “causal” that we have included in the definition of a well-posed linear
system relates to the fact that all the components of Ψ in Definition 2.1 are causal as
follows.

Definition 2.8. An operator B : L2
ω(R;U) → H is causal [anticausal] if Bπ+ = 0

[Bπ− = 0]. An operator C : H → L2
ω(R;Y ) is causal [anticausal] if π−C = 0 [π+C =

0]. A time-invariant operator D : L2
ω(R;U) → L2

ω(R;Y ) is causal [anticausal] if
π−Dπ+ = 0 [π+Dπ− = 0], and it is static if it is both causal and anticausal. We
denote the class of bounded linear time invariant causal operators by TICω(U ;Y ).

Thus, the condition imposed on D in Definition 2.1 requires that D ∈ TICω(U ;Y )
(i.e., D is time invariant and causal) and that the Hankel operator induced by D is
equal to CB. Intuitively, a causal controllability map B maps past inputs into the
present state, a causal observability map C maps the present state into future outputs,
and the past output of a causal input/output map D does not depend on future inputs.

As is well known, there is a one-to-one correspondence between TICω(U ;Y ) and
the set of L(U ;Y )-valued H∞-functions over the half-plane ℜz > ω. We denote this
set of functions by H∞

ω (U ;Y ). The norm in this space is the usual H∞-norm.
Lemma 2.9. The two spaces TICω(U ;Y ) and H∞

ω (U ;Y ) are isometrically iso-
morphic. More precisely, to each operator D ∈ TICω(U ;Y ) there corresponds a unique

function D̂ ∈ H∞
ω (U ;Y ) such that for each u ∈ L2

ω(R+;U), the Laplace transform

of Du is given by D̂(z)û(z), ℜz > ω, where û is the Laplace transform of u. The

function D̂ is called the transfer function (or symbol) of D.

Thus, intuitively, D̂ is the Laplace transform of D. This result is classic; see, for
example, [8] or [29].

By a result due to Salamon [20, Section 4], a time-invariant operator D can be
interpreted as the input/output operator of a well-posed linear system Ψ iff it belongs
to TICω(U ;Y ) for some ω ∈ R. Such a system is called a realization of D. Two
particular realizations are described below.

Definition 2.10. Let ω ∈ R and D ∈ TICω(U ;Y ), and let τ be the left-shift
group. Then the ω-stable well-posed linear system
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[
τπ− π−

π+Dπ− D

]

on (U,L2
ω(R−;U), Y ) is called the exactly controllable realization of D, and the strongly

ω-stable well-posed linear system
[
π+τπ+ π+Dπ−

I D

]

on (U,L2
ω(R+;Y ), Y ) is called the continuously observable realization of D.

Indeed, it is obvious that the two systems defined above satisfy the requirements of
Definition 2.1. See [20, section 4] for an explanation of the names of these realizations.

Occasionally we shall need to discuss the stability of the different parts of Ψ sep-
arately, and for this purpose we further introduce the following natural terminology.

Definition 2.11. Let Ψ = [A B
C D ] be a well-posed linear system on (U,H, Y ).

Then
(i) A is ω-stable iff supt∈R+ ‖e−ωtA(t)‖ < ∞ and strongly ω-stable iff e−ωtA(t)x →

0 as t → ∞ for all x ∈ H,
(ii) B is ω-stable iff B ∈ L(L2

ω(R;U);H),
(iii) C is ω-stable iff C ∈ L(H;L2

ω(R;Y ),
(iv) D is ω-stable iff D ∈ TICω(U ;Y ).

As before, stability of a component of Ψ means ω-stability with ω = 0, and exponential
stability means ω-stability for some ω < 0.

Remark 2.12. Almost all results presented below remain valid if we throughout
drop the assumption that A is ω-stable in condition (i) of Definition 2.1. Thus for
our purposes it suffices if the system is input ω-stable (condition (ii)), output ω-stable
(condition (iii)), and input/output ω-stable (condition (iv) of Definition 2.11). In [24]
this situation was referred to as external ω-stability.

One gets the adjoint of a system Ψ by replacing each operator by its adjoint
and exchanging the controllability and observability maps with each other. In the
computation of the adjoints of B, C, and D we use the ordinary (unweighted) L2-
inner product. This means that the resulting operators are bounded linear operators
on L2

−ω instead of bounded linear operators on L2
ω. Moreover, causality is replaced

by anticausality. The resulting system is an (−ω)-stable anticausal system of the
following type.

Definition 2.13. Let Y , H, and U be Hilbert spaces. An anticausal ω-stable
well-posed linear L2-system on (Y,H,U) is a quadruple Ψ∗ =

[
A∗ C∗

B∗ D∗

]
, where A∗, C∗,

B∗, and D∗ are bounded linear operators of the following type:
(i) A∗(t) : H → H is a strongly continuous semigroup of bounded linear operators

on H satisfying supt∈R+ ‖eωtA∗(t)‖ < ∞;
(ii) C∗ : L2

ω(R;Y ) → H satisfies A∗(−s)C∗y∗ = C∗τ(s)π+y
∗ for all y∗ ∈ L2

ω(R;Y )
and s ∈ R−;

(iii) B∗ : H → L2
ω(R;U) satisfies B∗A∗(−s)x∗ = π−τ(s)B∗x∗ for all x∗ ∈ H and

s ∈ R−;
(iv) D∗ : L2(R;Y ) → L2

ω(R;U) satisfies τ(s)D∗y∗ = D∗τ(s)y∗, π+D
∗π−y

∗ = 0,
and π−D

∗π+y
∗ = B∗C∗y∗ for all y∗ ∈ L2

ω(R;Y ) and s ∈ R.
If, in addition, eωtA∗(t)x∗ → 0 as t → ∞ for all x∗ ∈ H, then Ψ∗ is strongly ω-stable.
The system Ψ∗ is [strongly] stable iff it is [strongly] ω-stable with ω = 0, and it is
exponentially stable iff it is ω-stable for some ω > 0.

The different components of Ψ∗ are named as follows: Y is the input space, H is
the state space, U is the output space, A∗ is the semigroup, C∗ is the controllability
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map, B∗ is the observability map, and D∗ is the input/output map of Ψ∗.
The controlled state and output of Ψ∗ are defined as follows.
Definition 2.14. Let Ψ∗ =

[
A∗ C∗

B∗ D∗

]
be an ω-stable anticausal well-posed linear

system on (Y,H,U) and let y∗ ∈ L2
ω(R;Y ). In the time-invariant setting the con-

trolled state x∗(s) at time s ∈ R and the output u∗ of Ψ∗ with control y∗ are given
by

[
x∗(s)
u∗

]
=

[
C∗τ(s)y∗

D∗y∗

]
,

and in the initial value setting with initial time t, initial value x∗(t), and control y∗,
the controlled state x∗(s) at time s ≤ t and the output u∗ of Ψ∗ are given by

[
x∗(s)
u∗

]
=

[
A∗(t− s) C∗τ(s)
τ(−t)B∗ D∗

] [
x∗(t)

π(−∞,t]y
∗

]
=

[
A∗(t− s)x∗(t) + C∗τ(s)π(−∞,t]y

∗

τ(−t)B∗x∗(t) + D∗π(−∞,t]y
∗

]
,

where π(−∞,t] = τ(−t)π−τ(t) is given by

(π(−∞,t]y
∗)(s) =

{
y∗(s), s ≤ t,

0, s > t.

In particular, in the initial value setting with initial time zero, initial value x∗
0, and

control y∗, the controlled state x∗(s) at time s ∈ R− and the output u∗ of Ψ∗ are
given by

[
x∗(s)
u∗

]
=

[
A∗(−s) C∗τ(s)

B∗ D∗

] [
x∗

0

π−y
∗

]
=

[
A∗(−s)x∗

0 + C∗τ(s)π−y
∗

B∗x∗
0 + D∗π−y

∗

]
.

The formulas in Definitions 2.2 and 2.14 are chosen in such a way that Ψ and Ψ∗

interact in the following way.
Lemma 2.15. Let Ψ be a well-posed linear system on (U,H, Y ) and Ψ∗ its adjoint

(with respect to the ordinary unweighted inner product in L2). Let −∞ < s < t < ∞,
let x and y be the state and output of Ψ with initial time s and control u, and let x∗

and u∗ be the state and output of Ψ∗ with initial time t and control y∗. Then

〈x∗(t), x(t)〉H +

∫ t

s

〈y∗(v), y(v)〉Y dv = 〈x∗(s), x(s)〉H +

∫ t

s

〈u∗(v), u(v)〉U dv.

We leave the easy proof of this lemma to the reader.
We use diagrams of the type drawn in Figure 2.1 to represent the relation between

the state x, the output y, the initial value x0, and the control u of Ψ in the initial
value setting with initial time zero. In our diagrams we use the following conventions.

(i) Initial states and controls enter at the top or bottom, and they are acted on
by all the operators located in the column to which they are attached. In
particular, note that x0 is attached to the first column and u to the second.

(ii) Final states and outputs leave to the left or right, and they are the sums of
all the elements in the row to which they are attached. In particular, note
that x is attached to the top row and y to the bottom row.

A similar diagram is used to describe the adjoint system Ψ∗.
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A Bτ
C D

❄
x0

✛ x

✛ y

✻ π+u

Fig. 2.1. Input/state/output diagram of Ψ.

A Bτ
C D

L

❄
x0

✛ x

✛ y

✛ π+v

r

✲ ✲z
❝

+ +

✻u

Fig. 3.1. Static output feedback.

3. Feedback, stabilizability, and detectability. The notions of stabilizabil-
ity and detectability deal with the possibility of stabilizing a well-posed linear system
by the use of either a state feedback or an output injection. Therefore, before we can
study these notions, we must first look at different kinds of feedback connections.

We start with the most basic feedback connection, namely, the notion of a (static)
output feedback, drawn in Figure 3.1. Here L is a bounded linear operator from the
output space into the input space. Thus if we consider this feedback configuration in
the initial value setting with initial time zero, initial value x0, and control v, we find
that the effective input u, the state x(t) at time t ≥ 0, the output y, and the feedback
signal z satisfy the equations

u = z + π+v,

x(t) = A(t)x0 + Bτ(t)u,(3.1)

y = Cx0 + Du,

z = Ly,

which formally can be solved as

u = (I − LD)
−1

(LCx0 + π+v) ,

x(t) =
(
A(t) + Bτ(t)L (I −DL)

−1 C
)
x0 + B (I − LD)

−1
τ(t)π+v,(3.2)

y = (I −DL)
−1

(Cx0 + Dπ+v) ,

z = (I − LD)
−1

L (Cx0 + Dπ+v) .

We say that the feedback operator L is admissible whenever these equations are valid.
Definition 3.1. Let Ψ = [A B

C D ] be a well-posed linear system on (U,H, Y ). Then
L ∈ L(Y ;U) is called an admissible output feedback operator for Ψ iff the operator
I − LD has an inverse in TICα(U) for some α ∈ R or, equivalently, iff the operator
I −DL has an inverse in TICα(Y ) for some α ∈ R.

As Weiss [31, section 6] proved, x and y in (3.2) can be interpreted as the state
and output of another well-posed linear system as follows.
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Proposition 3.2. Let Ψ = [A B
C D ] be a well-posed linear system on (U,H, Y ), and

let L ∈ L(Y ;U) be an admissible output feedback operator for Ψ. Then the system

ΨL =

[
AL BLτ
CL DL

]
=

[
A + BτL (I −DL)

−1 C B (I − LD)
−1

τ

(I −DL)
−1 C D (I − LD)

−1

]

=

[
A Bτ
C D

]
+

[
Bτ
D

]
L (I −DL)

−1 [C D
]

=

[
A Bτ
C D

]
+

[
Bτ
D

]
L
[
CL DL

]

=

[
A Bτ
C D

]
+

[
BLτ
DL

]
L
[
C D

]

is another well-posed linear system on (U,H, Y ). We call this system the closed loop
system with feedback operator L. In the initial value setting with initial time zero,
initial value x0, and control v, the controlled state x(t) at time t and the output y of
ΨL are given by (3.2).

See [31, section 6] for a proof. (The major part of this proposition is also contained
in [19, Theorem 4.2].)

We remark that if in the classical system (2.1) we replace u by u = Ly+v, then we
get a new well defined system of the same type iff I−DL is invertible or, equivalently,
iff I −LD is invertible. In the new system the operators [ A B

C D ] have been replaced by

[
AL BL

CL DL

]
=

[
A + BL (I −DL)

−1
C B (I − LD)

−1

(I −DL)
−1

C D (I − LD)
−1

]

=

[
A B
C D

]
+

[
B
D

]
L (I −DL)

−1 [C D
]

=

[
A B
C D

]
+

[
B
D

]
L
[
CL DL

]

=

[
A B
C D

]
+

[
BL

DL

]
L
[
C D

]
.

(3.3)

Observe the striking similarity between this formula and the one given in Proposition
3.2.7

Repeated feedback behaves in the expected way.
Proposition 3.3. Let L ∈ L(U ;Y ) be an admissible output feedback operator for

Ψ. Then K ∈ L(U ;Y ) is an admissible output feedback operator for the closed loop
system ΨL iff L + K is an admissible output feedback operator for Ψ, and ΨL+K =
(ΨL)K . In particular, −L is always an admissible feedback operator for ΨL, and
(ΨL)−L = Ψ.

See [31, Remark 6.4] for the straightforward proof.
Definition 3.4. The operator L ∈ L(Y ;U) is a (strongly) ω-stabilizing [stabi-

lizing] [[exponentially stabilizing]] output feedback operator for the well-posed linear
system Ψ on (U,H, Y ) iff L is an admissible output feedback operator for Ψ and the
resulting closed loop system ΨL is (strongly) ω-stable [stable] [[exponentially stable]].

We observe the following basic facts.
Lemma 3.5. Let Ψ = [A B

C D ] be ω-stable, and let L ∈ L(Y ;U).

7Usually the feed-through operator D is taken to be zero, in which case this formula simplifies
significantly and the invertibility condition on I −DL drops out.
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(i) L is an admissible output feedback operator for Ψ iff there is some α ≥ ω for
which the diagram in Figure 3.1 (i.e., the set of equations (3.1)) with x0 = 0
defines a continuous linear mapping from the external input v ∈ L2

α(R+;U)
to the internal input u ∈ L2

α(R+;U) or, equivalently, iff the operator I −LD
has an inverse in TICα(U) or, equivalently, iff the operator I − DL has an
inverse in TICα(Y ). The resulting closed loop ΨL system is α-stable.

(ii) L is ω-stabilizing iff any one of the three equivalent conditions in part (i)
is true with ω = α (hence all of them are true with ω = α). In this case
the closed loop system ΨL is strongly ω-stable iff the open loop system Ψ is
strongly ω-stable.

Remark 3.6. Thus if a system is ω-stable but not strongly so, then it is impossible
to make it strongly ω-stable by using our notion of admissible output feedback.

Proof of Lemma 3.5. (i) Most of this follows immediately from Definition 3.1. To
see that the resulting system is α-stable we observe that if I − LD has an inverse in
TICα(U) (or, equivalently, the operator I − DL has an inverse in TICα(Y )), then
the formulas for ΨL given in Proposition 3.2 imply that ΨL is α-stable. (Here we use
the fact that ω-stability implies α-stability for every α ≥ ω; see Lemma 2.4.)

(ii) Clearly, if the conditions in part (i) are true with α = ω, then L is ω-stabilizing.
Conversely, if L is ω-stabilizing, then DL = D(I − LD)−1 ∈ TICω(U ;Y ), and this
implies that (I − LD)−1 = I + LD(I − LD)−1 = I + LDL ∈ TICω(U).

To prove the second claim in part (ii) it suffices to show that

e−ωtBτ(t)L(I −DL)−1Cx → 0 as t → ∞

for every x ∈ H, since AL − A = BτL (I −DL)
−1 C. Fix x ∈ H and split the

expression above into

e−ωtBτ(t)L(I −DL)−1Cx = e−ωtBτ(t− T )(π+ + π−)τ(T )L(I −DL)−1Cx

= Be−ωtτ(t)π[T,∞)L(I −DL)−1Cx

+ e−ωtA(t− T )Bτ(T )L(I −DL)−1Cx.

Here the first term tends to zero as T → ∞, uniformly in t ≥ T , and the second term
tends to zero as t → ∞ and T is fixed.

Remark 3.7. The same proof shows that (with the same terminology as in Re-
mark 2.12) if Ψ is input ω-stable and output ω-stable and L ∈ L(Y ;U) is an admissible
output feedback operator, then L is input ω-stabilizing, output ω-stabilizing, and in-
put/output ω-stabilizing iff D(I − LD)−1 ∈ TICω(U). Moreover, in this case L is
[strongly] ω-stabilizing iff the semigroup of Ψ is [strongly] ω-stable.

The notion of a state feedback can be reduced formally to the notion of an output
feedback. Intuitively, a state feedback means that an additional output is created, and
this output is then fed back into the input, as shown in Figure 3.2. In this figure the
original system is represented by [A B

C D ]. We find two additional components, namely,
a new observability map K (from the initial state to the new output) and a new
input/output map F (from the original input to the new output). The pair

[
K F

]

is admissible if the resulting system is well posed, i.e., if
[
0 I

]
is an admissible output

feedback operator for the extended system defined in Definition 3.8.
Definition 3.8. Let Ψ = [A B

C D ] be a well-posed linear system on (U,H, Y ). The
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A Bτ[
C
K

] [
D
F

]
❄
x0

✛x

✛y

✛z r

❄❝
+

+✲π+u♭ ✲ur

✻

Fig. 3.2. State feedback connection.

A
[
Hτ Bτ

]

C
[
G D

]

✻x0

✛x

✛y

✛w
r

❄

y

✻
❝

+
+

✛ π+w
♯

✻
π+u

Fig. 3.3. Output injection connection.

pair
[
K F

]
is an admissible state feedback pair for Ψ iff the extended system

ΨSF =




A B[
C
K

] [
D
F

]



is a well-posed linear system on (U,H, Y × U) and
[
0 I

]
is an admissible output

feedback operator for ΨSF; i.e., I − F has an inverse in TICω(U) for some ω ∈ R.8

It is (strongly) ω-stabilizing [stabilizing] [[exponentially stabilizing]] if the resulting
closed loop system is (strongly) ω-stable [stable] [[exponentially stable]].

Remark 3.9. We shall frequently regard the signal u in Figure 3.2 (i.e., the input
to the open loop system) as an additional output of the closed loop system (although
it is not part of the official definition). This output has the same observability map
(I −F)−1K as the output z.9 Its input/output map, given by (I −F)−1, differs from
the input/output map from u♭ to z by an identity operator (see Lemma 3.13). Similar
remarks apply to the signals w in Figure 3.3, u♭ and w♯ in Figure 3.4, u and w♯ in
Figure 3.5, u♭ and w in Figure 3.6, etc.

The notion of an output injection is analogous. In this case a new input is created
into which we feed the original output y plus a new perturbation w♯, as shown in
Figure 3.3. The original system is still represented by [A B

C D ]. In this figure we find a
new controllability map H (from the new input to the state) and a new input/output
map G (from the new input to the original output). The pair

[
H
G

]
is admissible if the

resulting system is well posed.
Definition 3.10. Let Ψ = [A B

C D ] be a well-posed linear system on (U,H, Y ).

8The input of this system is the signal u♭ in Figure 3.2, and its outputs are y and z. See also
Remark 3.9.

9See Lemma 3.13.
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A
[
Hτ Bτ

]
[
C
K

] [
G D
E F

]

✻x0

✲x

✲y

✲zr

❄❝+
−

✲π+u ✲u♭r

✻

y

✻
❝

+
−

✛w♯
✛ π+wr

❄

Fig. 3.4. The extended system.

The pair
[
H
G

]
is an admissible output injection pair for Ψ iff the extended system

ΨOI =

[
A

[
H B

]

C
[
G D

]
]

is a well-posed linear system on (Y ×U,H, Y ) and [ I0 ] is an admissible output feedback
operator for ΨOI; i.e., I − G has an inverse in TICω(Y ) for some ω ∈ R.10 It is
(strongly) ω-stabilizing [stabilizing] [[exponentially stabilizing]] if the resulting closed
loop system is (strongly) ω-stable [stable] [[exponentially stable]].

In the sequel we shall need to study a case where at the same time we want to
add both a state feedback pair

[
K F

]
and an output injection pair

[
H
G

]
to a given

system [A B
C D ]. If we try to write a figure similar to Figures 3.2 and 3.3, we immediately

observe that we need one more input/output map E (from the output injection input
to the state feedback output); see Figure 3.4. This operator need not always exist,11

and this forces us to introduce still another definition.
Definition 3.11. Let Ψ = [A B

C D ] be a well-posed linear system on (U,H, Y ).
The pairs

[
K F

]
and

[
H
G

]
are called jointly admissible state feedback and output

injection pairs for Ψ iff
[
K F

]
is an admissible state feedback pair for Ψ,

[
H
G

]
is

an admissible output injection pair for Ψ, and in addition, there exists a operator E,
called the interaction operator, such that and the combined extended system

Ψext =




A
[
H B

]
[
C
K

] [
G D
E F

]



is a well-posed linear system on (Y × U,H, Y × U).
Lemma 3.12. Let Ψ = [A B

C D ] be a well-posed linear system on (U,H, Y ). Then
the following conditions are equivalent:

(i) the pairs
[
K F

]
and

[
H
G

]
are jointly admissible state feedback and output

injection pairs with interaction operator E;
(ii) the system Ψext in Definition 3.11 is a well-posed linear system on (Y ×

U,H, Y ×U), and both [ 0 0
0 I ] and [ I 0

0 0 ] are admissible output feedback operators
for Ψext.

10The inputs of this system are the signals u and w♯ in Figure 3.3, and its output is y. See also
Remark 3.9.

11More precisely, it need not be a bounded operator. The operator E, if it exists, is determined
uniquely modulo a static operator; this follows from [24, Corollary 7].
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A
[
Hτ Bτ

]
[
C
K

] [
G D
E F

]

✻x0

✲x

✲y

✲zr

❄❝ +
+

✛u ✛ π+u♭r

✻

y

✻
❝

+
−

✛w♯
✛ π+wr

❄

Fig. 3.5. Right coprime factor.

A
[
Hτ Bτ

]
[
C
K

] [
G D
E F

]

✻x0

✲x

✲y

✲zr

❄❝+
−

✲π+u ✲u♭r

✻

y

✻
❝

+
+

✲π+w
♯

✲wr

❄

Fig. 3.6. Left coprime factor.

(iii) the system Ψext in Definition 3.11 is a well-posed linear system on (Y ×
U,H, Y × U), and I − F and I − G have inverses in TICω(U), respectively,
TICω(Y ) for some ω ∈ R.

To prove this lemma it suffices to make a straightforward calculation based on
Proposition 3.2. As a part of this calculation we get the following expressions for the
two closed loop systems in part (ii), drawn in Figures 3.5 and 3.6, respectively.12

Lemma 3.13. Let Ψ = [A B
C D ] be a well-posed linear system on (U,H, Y ), and let[

K F
]

and
[
H
G

]
be jointly admissible state feedback and output injection pairs for Ψ

with interaction operator E. Then the closed loop system Ψ♭ that we get by using [ 0 0
0 I ]

as a output feedback operator for Ψext (see Figure 3.5) is given by13

Ψ♭ =




A♭

[
H♭τ B♭τ

]
[
C♭
K♭

] [
G♭ D♭

E♭ F♭

]



=



A + Bτ (I −F)

−1 K
[
Hτ + B (I −F)

−1 Eτ B (I −F)
−1

τ
]

[
C + D (I −F)

−1 K

(I −F)
−1 K

] [
G + D (I −F)

−1 E D (I −F)
−1

(I −F)
−1 E (I −F)

−1 − I

]



=




A
[
Hτ Bτ

]
[
C
K

] [
G D
E F

]

 +



Bτ
D
F


 (I −F)

−1 [K E F
]
,

12See section 4 for an explanation of the captions of these figures.
13The inputs of this system are the signals u♭ and w in Figure 3.5, and its outputs are y and z.

See also Remark 3.9.
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A♭

[
H♭τ B♭τ

]
[
C♭
K♭

] [
G♭ D♭

E♭ F♭

]

✻x0

✲x

✲y

✲zz

❄❝
−

+
✲π+u ✲u♭r

✻

r

❄

y

✻
❝

+
−

✛w♯
✛ π+w

Fig. 3.7. Cancelation of state feedback.

and the closed loop system Ψ♯ that we get by using [ I 0
0 0 ] as a output feedback operator

for Ψext (see Figure 3.6) is given by14

Ψ♯ =




A♯
[
H♯τ B♯τ

]
[
C♯

K♯

] [
G♯ D♯

E♯ F ♯

]



=



A + Hτ (I − G)

−1 C
[
H (I − G)

−1
τ Bτ + H (I − G)

−1 Dτ
]

[
(I − G)

−1 C

K + E (I − G)
−1 C

] [
(I − G)

−1 − I (I − G)
−1 D

E (I − G)
−1 F + E (I − G)

−1 D

]



=




A
[
Hτ Bτ

]
[
C
K

] [
G D
E F

]

 +



Hτ
G
E


 (I − G)

−1 [C G D
]
.

Remark 3.14. According to Proposition 3.3, it is possible to recover the extended
system Ψext from either of the systems Ψ♭ or Ψ♯ by using negative feedback. For
example, the feedback connection drawn in Figure 3.7 is equivalent to Ψext.

So far we have only looked at the joint admissibility of state feedback and output
injection pairs. If the resulting closed loop systems drawn in Figures 3.5 and 3.6 are
ω-stable, then we call these pairs jointly ω-stabilizing as follows.

Definition 3.15. The pairs
[
K F

]
and

[
H
G

]
are called jointly (strongly) ω-

stabilizing [stabilizing] [[exponentially stabilizing]] state feedback and output injection
pairs for Ψ if they are jointly admissible state feedback and output injection pairs
with some interaction operator E, and both the closed loop systems Ψ♭ and Ψ♯ in
Lemma 3.13 are (strongly) ω-stable [stable] [[exponentially stable]].

Observe that if the two pairs in Definition 3.15 are ω-stabilizing (but not “jointly”
ω-stabilizing), then we know that the operators in the left and right columns of Ψ♭

and in the top and middle rows of Ψ♯ are ω-stable (see the formulas in Lemma 3.13),
but we do not know anything about the operators in the middle column of Ψ♭ and in
the bottom row of Ψ♯.

Definition 3.16. Let Ψ be a well-posed linear system.
(i) Ψ is (strongly) ω-stabilizable [stabilizable] [[exponentially stabilizable]] iff there

exists a (strongly) ω-stabilizing [stabilizing] [[exponentially stabilizing]] state
feedback pair for Ψ.

14The inputs of this system are the signals u and w♯ in Figure 3.6, and its outputs are y and z.
See also Remark 3.9.



COPRIME FACTORIZATIONS AND WELL-POSED LINEAR SYSTEMS 1283

(ii) Ψ is (strongly) ω-detectable [detectable] [[exponentially detectable]] iff there
exists a (strongly) ω-stabilizing [stabilizing] [[exponentially stabilizing]] output
injection pair for Ψ.

(iii) Ψ is jointly (strongly) ω-stabilizable [stabilizable] [[exponentially stabilizable]]
and detectable iff there exist some jointly (strongly) ω-stabilizing [stabilizing]
[[exponentially stabilizing]] state feedback and output injection pairs for Ψ.

We do not know if it is possible for a system to be both stabilizable and detectable
without being jointly stabilizable and detectable.

There is a simple connection between ω-stability, ω-detectability, and input/output
ω-stability as shown in Lemma 3.17.

Lemma 3.17. Let Ψ = [A B
C D ] be input/output ω-stable [exponentially stable] (i.e.,

let D be ω-stable [exponentially stable]).
(i) If Ψ is ω-stabilizable [exponentially stabilizable], then the observability map C

is ω-stable [exponentially stable].
(ii) If Ψ is ω-detectable [exponentially detectable], then the controllability map B

is ω-stable [exponentially stable].
(iii) If Ψ is both (strongly) ω-stabilizable [exponentially stabilizable] and ω-detect-

able [exponentially detectable] (not necessarily jointly), then Ψ is (strongly)
ω-stable [exponentially stable].

Proof. Introduce the same notation as in Lemma 3.13.
(i) By Lemma 3.13, the observability map C is given by C = C♭ −DK♭. Thus C is

ω-stable [exponentially stable] whenever C♭, D, and K♭ are so.
(ii) By the same lemma, the controllability map B is given by B = B♯ − H♯D.

Thus B is ω-stable [exponentially stable] whenever B♯, H♯, and D are so.
(iii) Again, by Lemma 3.13, A = A♭ − BτK♭. Thus A is (strongly) ω-stable

[exponentially stable] whenever A♭, B, and K♭ are so.15

By adding the trivial converse to part (iii) of Lemma 3.17 we get the following
corollary.

Corollary 3.18. A (strongly) ω-stabilizable and ω-detectable [exponentially sta-
bilizable and detectable] well-posed linear system is (strongly) ω-stable [exponentially
stable] iff it is input/output ω-stable [exponentially stable].

This result generalizes most other results in this direction such as [17, Corollary
1.8].

Finally, let us present two lemmas concerning exponential stability. Both of these
follow directly from Lemma 2.6.

Lemma 3.19. Let Ψ be a well-posed linear system.
(i) The state feedback pair

[
K F

]
is exponentially stabilizing iff it is admissible

and the closed loop semigroup A♭ in Lemma 3.13 is exponentially stable.
(ii) The output injection pair

[
H
G

]
is exponentially stabilizing iff it is admissible

and the closed loop semigroup A♯ in Lemma 3.13 is exponentially stable.
(iii) The state feedback pair

[
K F

]
and the output injection pair

[
H
G

]
are jointly

exponentially stabilizing iff they are jointly admissible and both the closed loop
semigroups A♭ and A♯ in Lemma 3.13 are exponentially stable.

Lemma 3.20. If
[
K F

]
is an exponentially stabilizing state feedback pairs for

the system Ψ = [A B
C D ], then the same feedback pair is exponentially stabilizing for

every well-posed extension of Ψ of the type



A B[
C
C1

] [
D
D1

]

 .

15See also Remark 3.6.
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4. Coprime factorizations. As is well known, classical (lumped) transfer func-
tions always have doubly coprime factorizations, and these factorizations can be com-
puted by a state space method through the use of a stabilizable and detectable real-
ization. Arbitrary H∞ transfer functions do not always have coprime factorizations
even in the single-input single-output case [12, p. 108], but transfer functions that can
be stabilized by a dynamic output feedback do, at least in the case where the input
and output spaces are finite dimensional [9, 21]. Below we extend these results and
show that the transfer function of every jointly stabilizable and detectable well-posed
linear system has a doubly coprime factorization that can be computed by the stan-
dard state space method. Conversely, every transfer function with a doubly coprime
factorization has a strongly stabilizable and detectable realization.

According to Lemma 2.9, there is a one-to-one correspondence between the set
of transfer functions in H∞

ω (U ;Y ) and the set of causal time-invariant operators in
TICω(U ;Y ). Rather than switching over to the frequency domain we continue to
work in the time domain and leave the transformation of our results to the frequency
domain to the reader.

Definition 4.1. Let U , Y , and Z be Hilbert spaces, and let ω ∈ R.
(i) The operators N ∈ TICω(U ;Y ) and M ∈ TICω(U ;Z) are right ω-coprime

iff there exist operators Ỹ ∈ TICω(Y ;U) and X̃ ∈ TICω(Z;U) that together
with N and M satisfy the Bezout identity

ỸN + X̃M = I

in TICω(U). In the case where ω = 0 we call N and M right coprime, and
in the case where ω < 0 we call N and M exponentially right coprime.

(ii) The operators Ñ ∈ TICω(U ;Y ) and M̃ ∈ TICω(Z;Y ) are left ω-coprime
iff there exist operators Y ∈ TICω(Y ;U) and X ∈ TICω(Y ;Z) that together
with Ñ and M̃ satisfy the Bezout identity

ÑY + M̃X = I

in TICω(Y ). In the case where ω = 0 we call Ñ and M̃ left coprime, and in
the case where ω < 0 we call Ñ and M̃ exponentially left coprime.

Thus N and M are right ω-coprime iff [ N
M ] has a left inverse in TICω(Y ×Z;U).

Ñ and M̃ are left ω-coprime iff
[
Ñ M̃

]
has a right inverse in TICω(Y ;U × Z).

Definition 4.2. Let U and Y be Hilbert spaces, let ω, α ∈ R with ω ≤ α, and
let D ∈ TICα(U ;Y ).

(i) The pair (N ,M) is a right ω-coprime factorization of D if N ∈ TICω(U ;Y )
and M ∈ TICω(U) are right ω-coprime, M has an inverse in TICα(U), and
D = NM−1.

(ii) The pair (M̃, Ñ ) is a left ω-coprime [coprime] [[exponentially coprime]] fac-
torization of D if M̃ ∈ TICω(Y ) and Ñ ∈ TICω(U ;Y ) are left ω-coprime
[coprime] [[exponentially coprime]], M̃ has an inverse in TICα(Y ), and D =
M̃−1Ñ .

(iii) A doubly ω-coprime factorization of D consists of eight operators in TICω

(of the appropriate dimensions) satisfying
[
M̃ Ñ
−Ỹ X̃

] [
X −N
Y M

]
=

[
X −N
Y M

] [
M̃ Ñ
−Ỹ X̃

]
= I(4.1)

in TICω(U × Y ;U × Y ), and, in addition, we require that (N ,M) is a right
ω-coprime and (M̃, Ñ ) a left ω-coprime factorization of D. In the case where
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ω = 0 we call this a doubly coprime factorization, and in case where ω < 0
we call it a doubly exponentially coprime factorization.

Our definition of coprimeness is slightly nonstandard. It is possible to study co-
prime factorizations in the quotient field of TICω without our additional assumption
that D belongs to TICα(U ;Y ) and that M and M̃ are invertible in TICα(U), re-
spectively, TICα(Y ) for some α > ω; see, e.g., [9], [12], or [21]. Usually, one only
assumes the transfer functions of M and M̃ to be invertible in at least one point in
the half-plane ℜz > ω. Observe that if M is invertible in any reasonable sense, then
D ∈ TICα(U ;Y ) iff M−1 ∈ TICα(U) because D = NM−1 and M−1 = X̃ + ỸD.
Likewise, if M̃ is invertible in any reasonable sense, then D ∈ TICα(U ;Y ) iff M̃−1 ∈
TICα(Y ) because D = M̃−1N and M̃−1 = X + DY. According to [20] or [31], if
D does not belong to TICα(U ;Y ) for any α > ω, then D cannot be realized as the
input/output map of a well-posed linear system on a triple of Hilbert spaces.

A coprime factorization is unique, modulo a unit as shown in Lemma 4.3.
Lemma 4.3. Let U and Y be Hilbert spaces, let ω, α ∈ R with ω ≤ α, and let

D ∈ TICα(U ;Y ).
(i) Let (N ,M) be a right ω-coprime factorization of D. Then the set of all

possible right ω-coprime factorizations of D can be parameterized in the form
(NU ,MU), where U is an invertible operator in TICω(U).

(ii) Let (M̃, Ñ ) be a left ω-coprime factorization of D. Then the set of all pos-
sible left ω-coprime factorizations of D can be parameterized in the form
(ŨM̃, ŨÑ ), where Ũ is an invertible operator in TICω(Y ).

(iii) If D has both a right ω-coprime factorization (N ,M) and a left ω-coprime fac-
torization (M̃, Ñ ), then these two factorizations can be extended to a doubly
ω-coprime factorization (i.e., a factorization that contains the given operators
N , M, M̃, and Ñ ).

Proof. (i) If (N ,M) is a right ω-coprime factorization of D and U ∈ TICω(U) is
invertible in TICω(U), then it is obvious that (NU ,MU) is another right ω-coprime
factorization. Conversely, suppose that we have two right ω-coprime factorizations
(N ,M) and (N1,M1) satisfying the Bezout identities

ỸN + X̃M = Ỹ1N1 + X̃ 1M1 = I.

Then M−1 = X̃ + ỸD and M−1
1 = X̃ 1 + Ỹ1D in TICα(U), so

M−1M1 = X̃M1 + ỸN1, M−1
1 M = X̃ 1M + Ỹ1N

in TICα(U). Define U = M−1M1. We know that U is invertible in TICα(U).
However, since L2

ω(R;U) ∩ L2
α(R;U) is dense in L2

α(R;U), the two equations above
imply that U can be extended to an invertible operator in TICω(U). Moreover,
M1 = MU and N1 = DM1 = DMU = NU . Thus (N1,M1) = (NU ,MU), as
claimed.

(ii) The proof of (ii) is completely analogous to the proof of (i).
(iii) Choose some operators Ỹ, X̃ , X , and Y in TICω that together with the given

operators satisfy the Bezout identities ỸN + X̃M = I and ÑY + M̃X = I. Then a
direct computation shows that

[
M̃ Ñ
−Ỹ X̃

] [
X −N

(
ỸX − X̃Y

)
−N

Y + M
(
ỸX − X̃Y

)
M

]
= I.
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By using the invertibility of M and M̃ in TICα, we get

XM̃ + DYM̃ = I, XÑ + DYÑ = D,

MX̃ + MỸD = I, NX̃ + NỸD = D,

and by using these identities we find that
[
X −N

(
ỸX − X̃Y

)
−N

Y + M
(
ỸX − X̃Y

)
M

] [
M̃ Ñ
−Ỹ X̃

]
= I

in TICα (as opposed to TICω). However, since all the operators above belong to
TICω, and since L2

α ∩L2
ω is dense in L2

ω, we find that the same identity must be true
in TICω, too. Thus, we have a doubly ω-coprime factorization.

As the following theorem shows, if a well-posed linear system is jointly stabilizable
and detectable, then its input/output map has a doubly coprime factorization. A
converse to this statement is true as well.

Theorem 4.4.

(i) Let Ψ = [A B
C D ] be a jointly ω-stabilizable [stabilizable] [[exponentially stabi-

lizable]] and detectable well-posed linear system (in the sense of Definition
3.16). Then, with the notations of Lemma 3.13 and Definition 4.2,

[
M̃ Ñ
−Ỹ X̃

] [
X −N
Y M

]
=

[
I + G♯ D♯

−E♯ I −F ♯

] [
I − G♭ −D♭

E♭ I + F♭

]

is a doubly ω-coprime [coprime] [[exponentially coprime]] factorization of D.
(ii) Conversely, every D that belongs to TICα(U ;Y ) for some α ∈ R and has

a doubly ω-coprime [coprime] [[exponentially coprime]] factorization can be
realized as the input/output map of a jointly strongly ω-stabilizable [stabi-
lizable] [[exponentially stabilizable]] and detectable well-posed linear system
Ψ = [A B

C D ].
Proof. Ψ = [A B

C D ] be jointly ω-stabilizable and detectable. Then both the systems
drawn in Figures 3.5 and 3.6 are ω-stable. In particular, both the input/output map
from [ w

u♭
] to

[
w♯

u

]
in Figure 3.5, and the input/output map from

[
w♯

u

]
to [ w

u♭
] in

Figure 3.6 are ω-stable. The former one is given by
[
I−G♭ −D♭
E♭ I+F♭

]
(cf. Remark 3.9),

and the latter one is given by
[

I+G♯ D♯

−E♯ I−F♯

]
. Moreover, by comparing the two figures

with each other we immediately realize that they are equivalent in the sense that the
relationships between the different signals with the same names are identical in the
two diagrams. This means that the input/output map given above are inverses of
each other; i.e.,

[
I − G♭ −D♭

E♭ I + F♭

]
=

[
I + G♯ D♯

−E♯ I −F ♯

]−1

.

Moreover, as is easily seen, (D♭, (I + F♭)) is a right ω-coprime factorization of D,
and ((I + G♯),D♯) is a left ω-coprime factorization of D. This proves part (i) of the
theorem.

Conversely, suppose that there exists a doubly coprime factorization of D. Our
construction below starts with a realization of the closed loop system Ψ♭; another
equally good choice would be to start with a realization of Ψ♯. Motivated by the
formula that we found above, we pick the input/output map of Ψ♭ to be given by

[
G♭ D♭

E♭ F♭

]
=

[
I −X N
Y M− I

]
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and choose an arbitrary strongly ω-stable realization of this input/output map, for
example, the continuously observable realization presented in Definition 2.10. Since
M is supposed to have an inverse in TICα for some α > ω, the operator

[
0 0
0 −I

]

is an admissible feedback operator for Ψ♭. Denote the resulting α-stable closed loop
system by Ψext and the system that we get by dropping the state feedback row and the
output injection column from Ψext by Ψ. As a straightforward computation shows,
the input/output map of Ψext is

[
G D
E F

]
=

[
I −X −NM−1Y NM−1

M−1Y I −M−1

]
(4.2)

=

[
I − M̃−1 M̃−1Ñ
ỸM̃−1 I − X̃ − ỸM̃−1Ñ

]
.

Observe, in particular, that the input/output map of Ψ is the desired D = NM−1 =
M̃−1Ñ . It follows from Proposition 3.3 that the system Ψ that we get in this way is
strongly ω-stabilizable (and that the closed loop state feedback system is Ψ♭). More-
over, by Proposition 3.3 and Lemma 3.5, Ψ is strongly ω-detectable if the operator[
I 0
0 −I

]
is an ω-stabilizing output feedback operator for Ψ♭ or, equivalently, if

[
I 0
0 I

]
−

[
I 0
0 −I

] [
I −X N
Y M− I

]
=

[
X −N
Y M

]

has an inverse in TICω(U×Y,U×Y ). But this is true because of the doubly coprime-
ness assumption. Thus Ψ is jointly strongly ω-stabilizable and detectable.

The notion of a coprime factorization makes it possible to refine Lemma 3.20 as
follows.

Lemma 4.5. Assume that both
[
K1 F1

]
and

[
K2 F2

]
are ω-stabilizing state

feedback pairs for the system Ψ = [A B
C D ]. Then the following conditions are equivalent:

(i)
[
K2 F2

]
is an ω-stabilizing state feedback pair for the extended system




A B[
C
K1

] [
D
F1

]

 ;

(ii) the pair

[
(K2 − (I −F2)(I −F1)−1K1) (I − (I −F2)(I −F1)−1)

]

is an ω-stabilizing state feedback pair for the closed loop system

Ψ♭ =




A♭ B♭[
C♭
K1

♭

] [
D♭

F1
♭

]



=



A + Bτ

(
I −F1

)−1
K1 B

(
I −F1

)−1

[
C + D

(
I −F1

)−1
K1

(
I −F1

)−1
K1

] [
D
(
I −F1

)−1

(
I −F1

)−1
− I

]



that one gets from Ψ by using the state feedback pair
[
K1 F1

]
;

(iii) F1(I −F2)−1 and K1 + F1(I −F2)−1K2 are ω-stable.
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A sufficient condition for (i)–(iii) to hold is that D(I−F1)−1 and (I−F1)−1 are right
ω-coprime. This condition is necessary for (i)–(iii) to hold whenever D(I−F2)−1 and
(I −F2)−1 are right ω-coprime.

Proof. Let us study the further extended system




A B


C
K1

K2

K2 −K1







D
F1

F2

F2 −F1






,

where the last line is the difference between the two previous lines. If we use here
the output feedback operator

[
0 I 0 0

]
, then we get an extended version of the

closed loop system Ψ♭ in the statement of the lemma (that we still denote by Ψ♭),
namely,

Ψ♭ =




A♭ B♭


C♭
K1

♭

K2
♭

K2
♭ −K1

♭







D♭

F1
♭

F2
♭

F2
♭ −F1

♭







=




A + Bτ
(
I −F1

)−1
K1 B

(
I −F1

)−1




C + D
(
I −F1

)−1
K1

(
I −F1

)−1
K1

K2 + F2
(
I −F1

)−1
K1

K2 −
(
I −F2

) (
I −F1

)−1
K1







D
(
I −F1

)−1

(
I −F1

)−1
− I

F2
(
I −F1

)−1

(
I −F2

) (
I −F1

)−1
− I






.

If we instead use the output feedback operator
[
0 0 I 0

]
, then we get the system

Ψ♮ =




A♮ B♮


C♮
K1

♮

K2
♮

K2
♮ −K1

♮







D♮

F1
♮

F2
♮

F2
♮ −F1

♮







=




A + Bτ
(
I −F2

)−1
K2 B

(
I −F2

)−1




C + D
(
I −F2

)−1
K2

K1 + F1
(
I −F2

)−1
K2

(
I −F2

)−1
K2

−K1 +
(
I −F1

) (
I −F2

)−1
K2







D
(
I −F2

)−1

F1
(
I −F2

)−1

(
I −F2

)−1
− I(

I −F1
) (

I −F2
)−1

− I






.

By Proposition 3.3, we get the same system by using
[
0 −I I 0

]
as a feedback

operator for Ψ♭ or, equivalently, by using the feedback operator
[
0 0 0 I

]
. This

proves the equivalence of (i) and (ii). We know that the operators on the first, second,
and fourth row of Ψ♮ are stable (since

[
K2 F2

]
is stabilizing for Ψ), so the full system

Ψ♮ is stable iff the two conditions listed in (iii) hold (recall that the last line is the
difference between the two previous lines).

Suppose that D(I − F1)−1 and (I − F1)−1 are right coprime. We claim that
(i)–(iii) then hold. To prove this we choose operators Ỹ and X̃ in TIC that together



COPRIME FACTORIZATIONS AND WELL-POSED LINEAR SYSTEMS 1289

with D♭ and I + F1
♭ satisfy the Bezout identity

ỸD♭ + X̃
(
I + F1

♭

)
= ỸD

(
I −F1

)−1
+ X̃

(
I −F1

)−1
= I.

Then

ỸD♮ + X̃
(
I + F2

♮

)
= ỸD

(
I −F2

)−1
+ X̃

(
I −F2

)−1

= (ỸD + X̃ )
(
I −F2

)−1

=
(
I −F1

) (
I −F2

)−1
,

and this shows that
(
I −F1

) (
I −F2

)−1
is stable; hence, F1

(
I −F2

)−1
is stable. A

similar computation

Ỹ (C♮ − C♭) + X̃
(
K2

♮ −K2
♭

)
= (ỸD + X̃ )

((
I −F2

)−1
K2 −

(
I −F1

)−1
K1

)

= −K1 +
(
I −F1

) (
I −F2

)−1
K2

shows that −K1 +
(
I −F1

) (
I −F2

)−1
K2 is stable; hence, K1 + F1

(
I −F2

)−1
K2

is stable.
Finally, let us assume that (iii) holds, and that D(I −F2)−1 and (I −F2)−1 are

right coprime. By interchanging the two feedback pairs with each other and using the
statement that we have just proved, we find that (I − F2)(I − F1)−1 is invertible in
TIC(U). This, combined with the coprimeness of D(I − F2)−1 and (I − F2)−1 and
Lemma 4.3, implies that D(I −F1)−1 and (I −F1)−1 must be right coprime.

5. Dynamic stabilization. As is well known, if the input/output map D has a
right ω-coprime factorization (N ,M), and if Ỹ and X̃ together with N and M satisfy
the Bezout identity

ỸN + X̃M = I,

then Q = X̃−1Ỹ is an ω-stabilizing compensator for D, provided it is possible to make
sense out of X̃−1. A similar statement is true in the case where D has a left ω-coprime
factorization. If D has a doubly ω-coprime factorization, then, with the notations of
Definition 4.2, the stabilizing compensator Q is given by Q = X̃−1Ỹ = YX−1, still
provided X̃−1 and X−1 make sense. If X̃ and X do not have inverses in TICα for
any α > 0, then Q does not belong to TICα(Y ;U) for any α > 0, and Q cannot
be realized as the input/output map of a well-posed linear system (see the discussion
following Definition 4.2). Thus it is natural to impose this extra condition on a doubly
coprime factorization as follows.

Definition 5.1. Let α > ω, and let D ∈ TICα(U ;Y ) and Q ∈ TICα(Y ;U). A
joint doubly ω-coprime factorization of D and Q consists of eight operators in TICω

(with the appropriate dimensions) satisfying (4.1), and, in addition, we require that
(N ,M) is a right and (M̃, Ñ ) is a left ω-coprime factorization of D, and that (Y,X )
is a right and (X̃ , Ỹ) is a left ω-coprime factorization of Q. (In particular, all the
denominators M, M̃, X , and X̃ are invertible in TICα.)

Lemma 5.2. Let Ψ = [A B
C D ] be a jointly ω-stabilizable and detectable well-posed

linear system, and let Ψext, Ψ♭, and Ψ♯ denote the systems in Definition 3.11 and
Lemma 3.13. Then the following conditions are equivalent:

(i) the operator [ I 0
0 I ] is an admissible output feedback operator for Ψext;
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✛w̃

r

✻

r

❄

ỹ
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Fig. 5.1. Dynamic stabilization.

(ii) I − G♭ has an inverse in TICα(Y ) for some α ≥ ω;
(iii) I −F ♯ has an inverse in TICα(U) for some α ≥ ω.

In these cases the system Ψ♯
♭

drawn in the left half of Figure 5.1 with inputs w̃♯ and
ũ♭ and outputs ỹ, z̃, w̃, and ũ (i.e., the system that we get by using [ I 0

0 I ] as an output
feedback operator for Ψext) is a well-posed linear system, and the coprime factorization
presented in Theorem 4.4 is a joint doubly ω-coprime factorization of D and Q, where
Q = E♭(I − G♭)

−1 = (I −F ♯)−1E♯.
This follows from Proposition 3.3.
In the situation described above the input/output map of the closed loop system

Ψ♯
♭

is equal to the stabilizing compensator Q, and we can use the observer connection
drawn in Figure 5.1 to stabilize the system as shown in Theorem 5.3.

Theorem 5.3. Let Ψ = [A B
C D ] be a jointly ω-stabilizable and detectable well-

posed linear system, and let Ψext denote the system in Definition 3.11. Then the
connection drawn in Figure 5.1 defines an ω-stable well-posed linear system. Moreover,
the input/output maps for the two additional outputs w̃ and u♭ are given by

[
w̃
u♭

]
=

[
π+w
π+ũ♭

]
+

[
−I − G♯ −D♯

−E♯ I −F ♯

] [
π+ŵ
π+û

]
.

Proof. By Remark 3.14, we can regard Ψext as a state feedback perturbed version
of the closed loop system Ψ♭; see Figure 3.7. By substituting this system for Ψext in
Figure 5.1 we get the equivalent Figure 5.2, which can be interpreted as a feedback
connection for an ω-stable system consisting of two copies of Ψ♭. By part (i) of Lemma
3.5, it suffices to show that the two internal inputs u♭ and w̃ depend continuously in
L2
ω on the four inputs. By using the equations describing the summation junctions in

Figure 5.2 we can eliminate the variables u, ũ, w♯, and w̃♯ to get
[
I − G♭ −D♭

E♭ I + F♭

] [
π+w − w̃
u♭ − π+ũ♭

]
=

[
π+ŵ
π+û

]
.

By Theorem 4.4, the operator on the left-hand side has an inverse in TICω. Inverting
this operator we get the formula given in Theorem 5.3.

Remark 5.4. Observe that Theorem 5.3 is true even if the equivalent conditions
listed in Lemma 5.2 are false. However, if this is the case, then although the system
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Fig. 5.2. Alternative version of compensator connection.

in Figure 5.1 is an ω-stable well-posed linear system, the compensator (the left half of
Figures 5.1 and 5.2) is not well-posed by itself, and the well posedness is lost if the
feedback loop from the compensator to the original system is opened.

Remark 5.5. By using Theorem 5.3 one can easily develop a Youla parame-
terization of the set of all stabilizing compensators for Ψext. The key observation is
that the input/output map from

[ π+w
π+ũ♭

]
to

[
w̃
u♭

]
is the identity map. To get the Youla

parameterization we simply connect the Youla parameter Q from w̃ to ũ♭ in the equiv-
alent Figures 5.1 and 5.2. This does not affect the stability of the system since w̃ does
not depend on ũ♭. The resulting input/output map from w to u♭ will be equal to Q.
The proofs of these claims are essentially the same as the ones given in [6].

Remark 5.6. All the main results of this paper remain valid if throughout we
replace the algebra of time-invariant bounded linear operators from L2(R;U) into
L2(R;Y ) by various subalgebras, for example the algebra of convolution operators
induced by measures with finite total variation. This is the algebra around which [22]
and [23] were built.
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