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Abstract

Estimating the spectrogram of non-stationary signal relates to many important applications in radar signal processing.

In recent years, coprime sampling and array attract attention for their potential of sparse sensing with derivative to

estimate autocorrelation coefficients with all lags, which could in turn calculate the power spectrum density. But this

theoretical merit is based on the premise that the input signals are wide-sense stationary. In this article, we discuss

how to implement coprime sampling for non-stationary signal, especially how to attain the benefits of coprime

sampling meanwhile limiting the disadvantages due to lack of observations for estimations. Furthermore, we

investigate the usage of coprime sampling for calculating ambiguity function of matched filter in radar system. We

also examine the effect of it and conclude several useful guidelines of choosing configuration to conduct the sparse

sensing while retain the detection quality.
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Introduction
Both of the designs of radar system and sensor network

could be attribute to obtaining sufficient samples to gener-

ate the correlation function so that a good ambiguity scale

or spectrum estimation could be obtained [1]. The design

of radar system needs to take advantage of the ambigu-

ity function (AF) between received signal and transmit-

ted signal to determine the resolution of the radar, side

lobe behavior, and ambiguities in both time and Doppler

domains. AF is calculated via the convolution of transmit-

ted signal with received signal, which contains the copy of

transmitted signal, noise, and Doppler shift caused by the

movement of the target. Furthermore, considering cost of

deployment in broad range, many applications of sensor

network require to distribute the sensor elements sparsely.

The power spectral density (PSD) acquired by these sen-

sors could describe the power incidents for the given

direction and area, and PSD is the Fourier transform of

autocorrelation function of received signal or correlation

function among the signal received in different sensors

in the array. Hence, both scenarios could benefit from

sparse sensing a rapidly changing signal sequence with
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optimal performance in terms of retaining the resolution

or detecting ability compared with dense sampling.

The degree of freedom (DoF) of sampling defined the

minimum number of sample points, which could spec-

ify certain properties of the sequence as a whole [2].

Before the research of coprime samplers, the available

sensors were considered as a signal array and increas-

ing DoF could be achieved by performing an augmenta-

tion algorithm on the covariances obtained via minimum

redundancy arrays (MRA) [3], which consisted uniformly

linear arrays with maximum possible aperture. Bedrosian

[4] extended the linear array to non-uniformly distribu-

tion such that their pairwise differences could generate

full coverage for certain span, the article also enumerated

the array size M from 3 to 11 to achieve full coverage

as much as M(M − 1)/2. The algorithm proposed in [5]

could find near-optimal integer sensor locations that max-

imized the number of distinct nonnegative integers, but

it also restated the fact that location of elements in an

MRA could only be approximated rather than specified

in closed form. Besides, there were other ways to gener-

ate extra freedoms, including higher order statistics based

methods, Khatri-Rao product based methods, and nested

array [6]. Besides, the article [7] developed the applica-

tion of nested array beyond focusing on the DoF, finding

nested array could improve the spectrum efficiency.
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Coprime sampling first had been used for identifying

sinusoids in noise [8] along with other methods pro-

posed for synthetic aperture radar locating and imaging

of moving targets [9]. Further research explored the prop-

erties and applications of coprime sampling and array in

both time and frequency domains. The article [10] used

coprime samplers to increase the dimensions of DFT filter

banks after sensor arrays as well as to estimate the power

spectrum density of received signal. In the article [11],

themultidimensional coprime sensing extended the previ-

ous implementations to acquire densely sampled domain.

The article [12] proposed spatial smoothing algorithm

together with coprime sampling to estimate frequencies

of sinusoids buried in noise and directions-of-arrival of

impinging signals on a sensor array.

Note that the article presenting coprime sampling [10]

strictly confines discussion within the underlying assump-

tion of wide-sense stationary signal so that the expectation

of autocorrelation could approach the real value via multi-

times averaging. This increased delay is used to compen-

sate the variation introduced by sub-Nyquist sampling.

On the other hand, however, in the real-world application,

just as the description in the first paragraph, the working

scenarios of many applications involves non-stationary

signal. The sampled points could not simply ascribe

to independent and identical distribution either. Con-

sequently, the autocorrelation coefficients might change

dramatically during a short period. In this article, we deal

with this inconsistency and discuss the coprime sampling

for non-stationary signal to obtain its second order statis-

tic properties. In general, the classic point of view for

processing non-stationary signal regards it as piece-wise

stationary signal, but as these two theories combining

together there are many research problems such as sta-

bility of estimation, coverage of second order derivatives,

and so on. In the following content, we will discuss these

problems and our tentative solutions in detail.

The rest of this article is organized as follows, we first

quickly revisit the basic concepts and properties about

coprime sampling in Section Theory and properties for

coprime sampling. In Section STFT for coprime sampling

non-stationary signal, we propose and simulate the algo-

rithm of two-steps coprime sampling especially used for

the non-stationary signal. In Section Implementation in

radar signal processing, we extend the implementation

scenario to radar signal processing and discuss several

critical trade-offs in designing the radar signal process-

ing system with coprime sampling. Finally, we conclude

the research discussion in Section Conclusions and future

research.

Theory and properties for coprime sampling
The algorithm of coprime sampling was introduced in

[10]. The input signal is S(T). Original sample rate is Ts,

and the down sampling rate for two sample streams are

M and N whose greatest common divisor is one. Then,

except the beginning point, the two generated sample

streams do not have any overlap in origin signal sequence.

x1[ n1] = S(MTs)

x2[ n2] = S(NTs)
(1)

Definition 1. The difference co-array xk[ n1, n2] is gen-

erated by two sample sequences x1[ n1] and x2[ n2] coprime

sampled from input signal. Its index k satisfies

k = Nn1 − Mn2

− n1 ∈

[

0,

⌊

L

M

⌋]

, n2 ∈

[

0,

⌊

L

N

⌋]

(2)

The markers ⌊Z⌋ stand for the largest integer less than cer-

tain values Z, and L stands for the total length of the signal

segment. The coprimality of M and N can be used to show

that the range of distinct value in xk[ n1, n2] is the product

of the coprime factors [10]. That is

−MN + 1 ≤ Nn1 − Mn2 ≤ MN − 1 (3)

First of all, the physical meaning of this difference co-

array is that via this difference co-array between the two

coprime sampled steams the correlation of the original

sequence could be calculated at all lags. Note that it does

not confine the rate of down sampling, which might result

the sample rate way below the Nyquist-sampling restric-

tion. That is, the sampling might be arbitrarily sparse. On

the other hand, however, there are two major drawbacks

relevant with large values of coprime pairs: the latency in

the time domain and the resolution range in the frequency

domain. We will discuss them in detail in the following

Section.

Besides, the minor differences in value ranges of

coprime sampled signal streams generate different cover-

age of difference co-array and result in different coverage

of autocorrelation coefficients.

Property 1. With n1 and n2 restricted to the range 0 ≤

n1 ≤ N − 1 and 0 ≤ n2 ≤ M − 1, index of the resulting

difference co-array k = Mn1 − Nn2 will have MN distinct

values in the range−(M−1)N ≤ k ≤ (N−1)M,which also

indicates that there are absent values in the given range

of k.

Property 2. If the ranges of n1 and n2 are 0 ≤ n1 ≤ N−1

and−M+1 ≤ n2 ≤ M−1, the resulting index of difference

co-array will achieve full coverage for 0 ≤ k ≤ MN − 1.

The detailed demonstration of two properties above

could be found in [10]. Furthermore, in this article, we
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implement coprime sampling beyond the limit ofMN −1,

which leads to the following property.

Property 3. Given sample points in the range (−L, L),

the largest coprime pair that it could have is M and N sub-

ject to MN < L, such that n1 and n2 restricted to the range

0 ≤ n1 ≤ ⌊L/M⌋ and −⌊L/N⌋ ≤ n2 ≤ ⌊L/N⌋, the result-

ing index of difference co-array k = Mn1−Nn2 will achieve

full coverage in the range 0 ≤ k ≤ L − 1.

Proof. Following from the Euclid’s Theorem [13], we

could conclude that with any integer k in the range [ 0, L−

1], there are always integers n1’ and n2’ such that k =

Mn1
′ − Nn2

′.

Adding lMN to both terms in the right hand side of the

formula with proper selection of variable l, we could let

n1 = n1
′ + lN such that n1 ∈[ 0, ⌊L/M⌋]. Then we have

k = M(n1
′ + lN) − N(n2

′ + lM) (4)

N(n2
′ + lM) = M(n1

′ + lN) − K (5)

Since we have already known that k ∈[ 0, L−1] andMn1 ∈

[ 0, L], the range of N(n2
′ + lM) should be [−L, L]. Let

n2 = n2
′ + lM, we could have n2 ∈[−⌊L/N⌋⌊L/n⌋] which

concludes the proof.

Moreover, in the range −MN + 1 ≤ k ≤ 0, there are

still absent values. But based on the symmetry property of

autocorrelation, these results could be used for averaging

the expectation of the symmetric positive counterpart.

STFT for coprime sampling non-stationary signal
Short time Fourier transformwith coprime sampling

The presumption to generate autocorrelation from the

coprime sampled sequence based on the previous chap-

ter is that the second-order expectations of the sequence

remain unchanged over time, which is essentially the

wide-sense stationary (WSS) signal. In the application of

radar signal processing, however, this criteria cannot hold

anymore. In this Section, we will discuss how to com-

bine coprime sampling with short time Fourier transform

(STFT-CS) to process non-stationary signal, and demon-

strate this algorithm is useful to preserve both the orig-

inal quality of the signal and at the same time dramatic

decrease the sample rate.

The choice of short time Fourier transform (STFT)

is because this method is widely used in analyzing the

time-frequency properties of non-stationary signals. In

an STFT, the signal is segmented by a window func-

tion and performed Fourier transform within the window.

The width of the window is a trade-off between temporal

resolution and frequency resolution–better time resolu-

tion is achieved by narrow window while wider window

could achieve better frequency resolution. In addition, in

the scenario of coprime sampling, based on the Prop-

erty 3, the window size also dictates the upper bound of

the values of coprime pairs. Consequently, it determines

the trade-off between stability of the estimation and the

computational complexity of STFT-CS.

First of all, there is one definition to simplify the descrip-

tion of algorithm. Because the number of available auto-

correlation estimation is changing along with the choice

of coprime pairs, we define the procedure of finding the

average as a single operator.

Definition 2. E(Rxy(k)) stands for mathematical expec-

tation of autocorrelation R(k) for a given k using all

available estimations. The value of k is determined by two

independent index variables of the input sequence x and y.

The algorithm involves several important independent

variables listed in Table 1.

Based on STFT, within every slicing window we con-

sider the sequence

x[ n]=

{

s[ n] 0 ≤ n ≤ L − 1,

0 otherwise,
(6)

The estimate of autocorrelation is

ϕ̂xx[m]= E(cxx[m] ), (7)

where cxx[−m]= cxx[m],

cxx[m]=

⎧

⎨

⎩

L−|m|−1
∑

n=0

x[ n] x[ n + |m|] m ≤ L − 1,

0 otherwise,

(8)

The implementation of this estimate could be imple-

mented via using fast N-point DFT algorithm three times.

X[ k]=

N−1
∑

n=0

x[ n] e−j(2π/N)kn (9)

|X[ k] |2 = X[ k]X∗[ k] (10)

cxx[m]=
1

N

N−1
∑

k=0

|X[ k] |2ej(2π/N)km (11)

Table 1 Variables used in STFT-CS

Operators Description

M and N the coprime pair used in STFT-CS

L window size for slicing signal, in which the signal
could be consider as aperiodic and stationary

P the window size of STFT

wc[ n] the window function used in STFT

Q the processed length of autocorrelation for each
slicing window
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Finally, we could calculate the PSD of input signal via

estimate of autocorrelation ϕ̂xx[m].

s[m]=

⎧

⎨

⎩

ϕ̂xx[m]wc[m] 0 ≤ m ≤ Q − 1

0 Q ≤ m ≤ P − Q

ϕ̂xx[P − m]wc[P − m] 1 ≤ P − m ≤ Q − 1

(12)

The resulted PSD for given sliced signal is

S[ k]=

Q−1
∑

m=0

s[m] e−j(2π/Q)km (13)

Along with the moving of slicing window, we can

acquire the spectrogram of input signal via STFT-CS.

We implement the algorithm with linear frequency

modulation (LFM) to test it validity. The sample rate of

the signal is 8000Hz, sweeping frequency from 0Hz to

4000Hz in ten seconds, which can be observed from the

top row of Figure 1. The configurations of important vari-

ables corresponding to the Table 1 include: the length of

slicing window is 256 sample points (sp), the length of

STFT is 512 sp, the processed length of autocorrelation

is 255 sp, the window function is Hamming window with

window size equal to the size of Fourier transform.

As shown in the Figure 1, the first row is the standard

algorithm to calculate STFT generating spectrogram,

and the other rows are using the algorithm STFT-

CS mentioned above. We can see that both standard

STFT and STFT-CS could accurately trace the change of

frequency.

Besides, based on the comparison of the lower three

sub-figures in Figure 1 using SFTF-CS, we can see that as

the increase of coprime pairs, there are more and more

traces of aliasing frequency appearing in the spectro-

gram. This is because as the algorithm select less sample

points to estimate the autocorrelation, there will be more

variation.

On one hand, the decreasing of sample points is desir-

able for signal processing. For example, the fourth row in

the Figure 1 only utilize about 17 percent of the sample

points to achieve the same instantaneous PSD estimation

with minor quality degeneration. On the other hand, how-

ever, the variation become more obvious if we continue

increasing the values of coprime pair. This is the motiva-

tion for us to develop the 2-step STFT-CS presented in the

following section.

Figure 1 Comparison of different coprime pairs. The vertical axes of all the four rows in this figure are frequency in Hz, and all horizontal axes

indicate time in second. The comparison among these rows show the validity of the algorithm STFT-CS and its properties.
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2-steps STFT coprime sampling

As the spectrogram described above, large values of

coprime pair could generate lots of noise. An intuitive

method to identify fundamental frequency buried under

noise is to calculate its autocorrelation. Then, it becomes

an interesting procedure of iterative autocorrelation, that

is, estimating the autocorrelation via using convolution

three times.

In time domain, we calculate the autocorrelation func-

tion based on (7)

ϕ̂′
xx[m] = ϕ̂1xx[m] ∗ϕ̂∗

2xx[m]

=

L−|m|−1
∑

n=0

ϕ̂1xx[ n] ϕ̂
∗
2xx[ n + |m|] (14)

where the ϕ1xx[m] and ϕ2xx[m] are two autocorrelation

estimations which could be either same or different values

of coprime pairs. The counterpart in frequency domain is

straightforward. It is the product of PSD generated by two

coprime pairs.

S′[ k]= DFT(ϕ̂1xx[m] ∗ϕ̂∗
2xx[m] ) = S1[ k] S2[ k] (15)

In Figure 2, we show the result of 2-steps STFT-CS

together comparing with three results of 1-step STFT-CS

with different configurations. The first row lists STFT-CS

without coprime sampling as benchmark. The second and

third rows are consistent with what we found in the pre-

vious section. When the coprime pair increases to 17 and

19, we can hardly distinguish the real trace of spectrogram

from the noise aliasing. The fourth row is the result of 2-

steps STFT-CS using M1 = 17, N1 = 19, and M2 = 11,

N2 = 13. The resulting sequence has roughly the same

degree of down-sampling rate (about 27 percent of the

original sample points) as the experiment in second row.

But we can observe that via the 2-step autocorrelation the

false positive PSD estimates are obviously decreased.

Variation analysis for estimating autocorrelation

In the article [10], the coprime sampling is the method

dealing with the sub-Nyquist sampling frequency. Though

it does provide promising potential of dramatically

decreasing the sampling rate via coprime pair, the estima-

tion is inherently suffering the problem of taking much

longer latency. While in the non-stationary scenario, this

situation would raise the major problem generating pro-

nounced estimation variation for the reason that only a

small piece of samples could be considered as station-

ary and processed once with autocorrelation estimation

Figure 2 Comparison of STFT-CS and 2-step STFT-CS. This figure has the same units in both axes as Figure 1. It indicates the validity and

superiority of 2-step STFT-CS comparing with STFT-CS with the same rate of down sampling.
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in STFT-CS. There is not enough latency permitted for

averaging.

In other words, the statistical stability is sacrificed nega-

tively proportional to the degree of coprime sampling. As

the choice of coprime pair increases, the density of dif-

ferential array generated would decrease correspondingly,

though the coprime sampling might still calculate the full

coverage of all lag by satisfying the Property 4. Then the

correlation estimates at that lag could be deteriorated

offsetting from the real values.

The article [14] examined the error of estimating auto-

correlation and the article [15] linked the variation with

sampling rate and refined it in the form of mean-square

error. Besides, this article also advocated that for short

data records, whose sample points were less than 50 or

the product of bandwidth and sampling period is less than

25, the preferred sampling rate was the twice of Nyquist

rate. Otherwise, there would be obvious increases in the

variance of the estimation.

Comparing this claim with the scenario of experiments

in this article, the sampling periods would fall into the cat-

egory of short-data records while the sampling rate should

be regarded as sub-Nyquist rate which is much lower than

the desired rate in this criteria. Hence, the estimation will

definitely suffer from significant variance.

The method of statistical differential could be used for

estimating the covariances of autocorrelation coefficients

[16]. For convenience of analysis, we could treat the LFM

as piecewise stationary signal and define it as

x[ n]=

L
∑

s=0

hsεn−s, (16)

where the series
∑∞

n=0 hn are absolutely convergent, and

εn is a WSS process with zero means and variance δ2,

that is

E(εn) = 0, E(ε2n) = δ2 (17)

E(εnεm) = 0 for m 	= n (18)

Then, the real value of autocorrelation is

Rk = cov(xn, xn + k) = δ2
L

∑

s=0

hshs+k (19)

and the estimation of autocorrelation is

R̂k,L = E(xn1Mxn2N ) (20)

standing for averaging all of the available values of

xn1Mxn2N to calculate the autocorrelation k within the

range L.

Assume ht = 0, we could calculate the covariance based

on (16)

cov(xnxm+k , xpxq+k)

= κ4

+∞
∑

r=−∞

hn−rhm+k−rhp−rhq+k−r

+ Rn−pRm − q + Rn−q−kRm−p+k , (21)

where κ4 = E(ε4) − 3δ4.

Therefore, we could have [17]

lim
L→∞

L cov(R̂k,L; R̂l,L)

=
κ4

δ4
RkRl +

+∞
∑

q=−∞

(RqRq+k−l + Rq+kRq−l)

= vkl (22)

and the particular case is the variance of autocorrelation

lim
L→∞

L var(R̂k,L)

=
κ4

δ4
R2
k +

+∞
∑

q=−∞

(R2
q + Rq+kRq−k) = vkk (23)

Another estimator for the autocorrelation is

Ck.L =
1

L − k

L−k
∑

l=1

xtxt+k (24)

which confines estimate only based on the available

sample points.

Similarly to (22), (23), we have

lim
L→∞

L cov(Ck,L;Cl,L) = vkl (25)

lim
L→∞

L var(Ck,L) = vkk (26)

Compared with (22), we could have

var(Ck,L − R̂k,L) = O

(

1

L2

)

(27)

Based on (23), (26) with Schwarz Inequality, we could

have two measures for the variation of autocorrelation

estimation with the length of available sample points.

cov(Ck,L;Cl,L) − cov(R̂k,L; R̂l,L) = O

(

1

L3/2

)

(28)

E(R̂k,L − Rk) = O

(
√

vkk

L

)

(29)

From (28), (29) we can see why the estimate variation is

increase as the decrease of sample points. This is an inher-

ent problem confining the choices of coprime pairs in

processing non-stationary signal using coprime sampling.
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Implementation in radar signal processing
The working principle of matched filter in radar signal

processing is to output the cross-correlation of target-

plus-noise signal and transmitted signal [18]. So, it is

possible to implement the matched filter as a correlation

process. When the signal-to-noise (SNR) ratio is large,

the output of the matched filter can usually be approxi-

mated be the autocorrelation function of the transmitted

signal. Hence, we could use much less sampling points

via coprime sampling to estimation the output of matched

filter.

In this section, we still consider the typical LFM wave-

form, which is consistent with the previous section

and also used as a basic waveform in radar transmis-

sion because it could independently control pulse energy

through its duration and range resolution through its

bandwidth [19]. Thus, if the transmitted signal could be

processed to have long duration and narrowly concen-

trated autocorrelation, both good range resolution and

good energy can be obtained simultaneously.

Considering a modified waveform x′(t) by modulating

x(t) with a LFM complex chirp and compute its complex

ambiguity function

x′(t) = x(t)ejπβt2/τ (30)

The instantaneous frequency of this waveform is the

derivative of the phase function

Fi(t) =
1

2π

dθ(t)

dt
=

β

τ
t (31)

in which the βτ is called time-bandwidth product of the

LFM pulse. The time-delay measurement error is pro-

portional to τ and the frequency measurement error is

proportional to 1/τ .

In many radar application, the moving target generate

Doppler shift in its echo signal, which makes the out-

put of the matched filter should be considered as the

cross correlation between the Doppler-shifted received

signal and the transmitted signal. In this case, we use

ambiguity function (AF) to generate the behavior of a

waveform paired with its matched filter. Based on the

analysis of AF, we could easily examining resolution, side

lobe behavior, and ambiguities in both time and Doppler

domains.
Assume the Doppler frequency is FD, then the input

waveform with a Doppler-shifted response is x(t)ej2πFDt .
Also assume that the filter is designed to peak at TM = 0,
which means that the time axis at the filter output is rel-
ative to the expected peak output time for the range of a
target. Assuming M and N are the coprime pair and Ts is

the sampling rate. Then the AF could be defined as

Â′(k, FD) =

∫ ∞

−∞

x′(MTs)x
′∗(NTs)e

j2πMTsFDds

=

∫ ∞

−∞

x(MTs)x
∗(NTs)e

jπβ(M2−N2)T2
s /τ+j2πMTsFDds

= e−jπβk2/τ

∫ ∞

−∞

x(MTs)x
∗(NTs)e

j2π(FD+βk/τ)MTsds

= e−jπβk2/τ Â(k, FD +
β

τ
k) (32)

where k is the difference between two sample points, and

Â(k, FD) is the original complex ambiguity function for the

simple pulse signal

Â(k, FD) =
ej2πFDk/2

τ j2πFD

(

ej2πFD
τ−k
2 − e−j2πFD

τ−k
2

)

(33)

And its amplitude is

A(k, FD) =
∣

∣

∣
Â(k, FD)

∣

∣

∣
=

∣

∣

∣

∣

sin [πFD(τ − |k|)]

τπFD

∣

∣

∣

∣

(34)

Then we can have the amplitude for the AF of the LFM

waveform

A′(k, FD) = |Â′(k, FD)|

=

∣

∣

∣

∣

sin [π(FD + βk/τ)(τ − |k|)]

τπ(FD + βk/τ)

∣

∣

∣

∣

(35)

The zero-Doppler cut of the LFM ambiguity function,

which is just the matched filter output when there is no

Doppler mismatch, is

A′(k, 0) =

∣

∣

∣

∣

sin [πβk(1 − |k|/τ)]

πβk

∣

∣

∣

∣

− τ ≤ k ≤ τ (36)

and the zero-delay response is

A′(0, FD) =

∣

∣

∣

∣

sin(πFDτ)

πFDτ

∣

∣

∣

∣

(37)

In the experiment, we use coprime sampling on both

transmitted signal in matched filter and received signal.

Because the length of the chirp is predefined and need to

fully analyze, based on Property 2, we could only have the

difference co-array of index with missing values. But since

the missing values will be more often for the autocorre-

lation with larger values, and we have already assumed

TM = 0 making the AF located relative to the time axis,

there is not obvious effect of the missing values for the

image generated by coprime sampled AF. The following

simulation also confirms this claim.

From Figure 3, we can see that when we use small values

of coprime pair in the upper right plotting, the result-

ing AF has inconspicuous degradation comparing with the

upper left one, which is derived directly from formula.

But as the values of coprime pair increase, there will be

duplicated aliasing parts getting closer to the correct esti-

mation. When we choose M = 9 and N = 7, the aliasing
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Figure 3 Comparison of different choices of coprime sampling for AF. The vertical axes of all the four rows in this figure are Doppler frequency

in Hz, and all horizontal axes indicate time delay in second. The comparison among these rows show the validity of using coprime sampling with AF

and its properties.

parts could still be easily eliminated, but when the pair

becomesM = 10 andN = 11, or even bigger, the resulting

AF is unable to use because all of the estimations overlap

with each other.

Then, based on Figures 4 and 5, we can observe dif-

ferent effects of the coprime sampling to the estimate of

Doppler shift and time delay. Both of them are gener-

ated simultaneously with Figure 3. In Figure 4, because

the coprime sampling is implemented in the time domain,

the variation becomes more and more obvious as the

increase of coprime factors. We have thoroughly discuss

the reason of this phenomenon in the previous section.

Figure 4 Zero Doppler shift ambiguity function. The vertical axes of all the four rows in this figure are normalized amplitude, and all horizontal

axes indicate delay time in second. The comparison among these rows show the variation becomes more and more obvious as the increase of

coprime factors.
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Figure 5 Zero-delay ambiguity function. The vertical axes of all the four rows in this figure are normalized amplitude, and all horizontal axes

indicate Doppler frequency in Hz. The comparison among these rows show that as the increase of values of coprime pair, the scope of Doppler shift

frequency decreases obviously.

In Figure 5, since we keep the iteration along the Doppler

axis the same, there is no variation existing. As the values

of coprime pair increase, however, the distance between

Doppler shift becomes smaller and smaller. Hence, we can

conclude that as the increase of values of coprime pair, it

will have deleterious effects including amplifying variation

along time axis and decrease the scope of Doppler shift

frequency.

To further quantify the effect of coprime sampling, we

enumerate all coprime combinations under 17. The rea-

son that we choose the threshold as 17 is because if the

values of pair above this threshold severe overlaping of

aliasing parts make the output useless. Besides, as shown

in the following experiments, we find most of the results

could be consistently arranged according to the prod-

ucts of coprime pairs. That is, four out of five important

properties of coprime sampling AF are relevant with the

product of coprime pairs rather than the value of either

factor.

The distance between main lobes in Doppler axis deter-

mines the scope of Doppler frequency. From Figure 6,

we can see that this distance is decreasing monotonically

from out-of-scope to about 33Hz along with the increase

of the product of coprime pair. Considering the width

of main lobe provided in Figure 7, for the case of 33Hz

distance, the second lobes of two AF estimations would

overlap together. Note that for product less than 50, there

will be no duplicated main lobe in the scope. For the

worst case, the largest side lobes of each duplicate have

overlapped together.

The width of the main lobe in Doppler axis determines

the Doppler resolution. In the Figure 7, its range is from

19.8 to 16.2Hz. The width has only three discrete possible

values and does not directly relevant with the product of

coprime pair, though the general trend of width is getting

smaller with larger products. This finding is instructive

to find such coprime pair with narrow main lobe width

Figure 6 Distance between nearest main lobes in Doppler axis.

The vertical axis of this figure is Doppler frequency in Hz, and

horizontal axis indicates the product of coprime pair. It shows that the

distance between main lobes of Doppler estimation is decreasing

monotonically from out-of-scope to about 33 Hz along with the

increasing of the product of coprime pair.
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Figure 7 The width of major main lobe in Doppler axis. The

vertical axis of this figure is Doppler frequency in Hz, and horizontal

axis indicates the product of coprime pair. It shows that the width of

main lobe of Doppler estimation is decreasing discretely along with

the increasing of the product of coprime pair.

but also less variation in time domain and longer distance

among main lobes in Doppler axis.

Despite the largest side lobes in the Doppler axis

become larger along with increasing coprime pairs, as

shown in Figure 8, this is still not the major challenge

comparing with the main lobes approaching to each other

shown in Figure 6. Note that there is one abnormal value

generated by M = 14 and N = 11. But it is more like a

cutting-off main lobe located in the edge of scope rather

than a real side lobe.

Figure 8 Ratio of 2nd side lobes to main lobes in Doppler axis.

The vertical axis of this figure is the proportion of the largest side lobe

to main lobe in Doppler axis, and horizontal axis indicates the product

of coprime pair. It shows that the increase of side lobes is not obvious

in Doppler axis along with the increasing of the product of coprime

pair.

Figure 9 The width of the main lobe in time domain. The vertical

axis of this figure is delay time in second, and horizontal axis indicates

the product of coprime pair. It shows that the width of main lobe of

estimation about delay time does not follow the increasing of the

product of coprime pair.

In Figure 9, the radiated shape shows no obvious rela-

tionship between the trend of main lobe and the choice of

coprime pairs.

Comparing Figure 10 with Figure 8, we can see the

main problem in time domain is caused by the varia-

tion, which in turn make the largest side lobes com-

parable to the main lobe. Note that there is a turning

point in the production of 88 for the ratio changing

from stable around 18 percent to increasing with the

production.

Figure 10 Ratio of 2nd side lobes to main lobes in time domain.

The vertical axis of this figure is the proportion of the largest side lobe

to main lobe in delay time axis, and horizontal axis indicates the

product of coprime pair. It shows that the width of side lobes retain in

certain level and then increase with the increasing of the product of

coprime pair.
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Conclusions and future research
In this article, we develop the algorithm STFT-CS to deal

with non-stationary signal. The decreasing of processed

data is favorable for sparse sampling as well as decreasing

the computation complexity, but the cost is increasing

estimate variation. To alleviate the side-effects, we intro-

duce two-steps STFT-CS. The simulation indicates it is

effective to eliminate aliasing estimations.

Besides, we also implement the coprime sampling with

the matched filter of radar signal processing, and quan-

tify the effect of coprime sampling in such process. Based

on our analysis, one could integrate the coprime sampling

in radar system to detect targets, and choose the suitable

configuration based on specific circumstance and needs.

The future research directions include further optimiz-

ing the algorithm and using it with real-world radar data.

Besides, coprime sampling and coprime sensor array do

have many interesting features which might be useful for

other applications, such as wireless communication or

image/audio signal processing. Moreover, just as using

STFY-CS converting time domain signal to more mean-

ingful PSD representation, coprime sampling could be

regarded as preprocessing for contaminant data to restore

the fundamental information.
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