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COPS: Large-Scale Nonlinearly Constrained Optimization Problems

Alexander S. Bondarenko, David M. Bortz, and Jorge J. Mor�e

Abstract

We have started the development of COPS, a collection of large-scale nonlinearly

Constrained Optimization ProblemS. The primary purpose of this collection is to pro-

vide di�cult test cases for optimization software. Problems in the current version of

the collection come from 
uid dynamics, population dynamics, optimal design, and op-

timal control. For each problem we provide a short description of the problem, notes on

the formulation of the problem, and results of computational experiments with general

optimization solvers. We currently have results for DONLP2, LANCELOT, MINOS,

SNOPT, and LOQO.

1 Introduction

COPS is a collection of large-scale nonlinearly Constrained Optimization ProblemS. We

drew these test problems from a variety of sources, including some of the existing col-

lections, such as the AMPL problems of Vanderbei [?]; the NETLIB collection of AMPL

problems maintained by Gay [8]; the optimal control problems of Betts, Eldersveld, and

Hu�man [4]; and the MINPACK-2 collection [3]. We chose problems that arise in appli-

cations (for example, 
uid dynamics, optimal shape design, population dynamics) or that

have interesting features.

The aim of COPS is to challenge and test nonlinear optimization software. Users should

note that this report describes work in progress. We expect that COPS will evolve and

change as new problems appear and other researchers experiment with this collection. We

welcome comments and suggestions for future directions.

We provide AMPL and C implementations. The problems in COPS are formulated as

general constrained optimization problems de�ned by a merit function f : IRn 7! IR and

nonlinear constraints c : IRn 7! IRm,

min ff(x) : xl � x � xu; cl � c(x) � cug ;

where xl and xu are bounds on the variables, and cl and cu are bounds on the constraints.

The description of the problem as an optimization problem includes notes on the for-

mulation and the structural information in Table 1.1. This information allows users to

determine, in particular, the sparsity of the problem. We also include general comments on

speci�c features and di�culties of the problems.

An important component of this report is the inclusion of computational experiments

with several general solvers (DONLP2, LANCELOT, MINOS, SNOPT, and LOQO), and

comments on their behavior. We are well aware that these results will soon become obsolete

as new versions of these packages become available. However, we feel that these results do

provide a reasonable snapshot of the state of optimization software as of September 1998.

Finally, we provide plots of the solution for each problem. These are important so that

users can verify that they obtained the correct solution. We feel that in many cases a plot

is more useful and interesting than a measure of optimality.
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Table 1.1: Description of test problems

Variables

Constraints

Bounds
Linear equality constraints

Linear inequality constraints

Nonlinear equality constraints

Nonlinear inequality constraints

Nonzeros in r2f(x)

Nonzeros in c0(x)

Section 14 describes our C implementations, including the data structures used for each

problem. Implementations in AMPL and in C, along with sample drivers that use the C

implementation with SNOPT, are available for downloading from our Web site,

http://www.mcs.anl.gov/~more/cops.
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2 Largest Small Polygon (Gay [8])

Find the polygon of maximal area, among polygons with nv sides and diameter d � 1.

Formulation

The merit function is

f(r; �) = �1
2

nv�1X
i=1

ri+1ri sin(�i+1 � �i); rnv = 0; �nv = �;

and the constraints are

r
2
i
+ r

2
j
� 2rirj cos(�i � �j) � 1; 1 � i � nv � 2; i+ 1 � j � nv � 1;

�i � �i+1; 1 � i � nv � 2;

�i 2 [0; �]; ri 2 [0; 1]; 1 � i � nv � 1:

As Graham [9] showed, optimal solution is not usually a regular hexagon. Another in-

teresting feature of this problem is the presence of O(n2
v
) nonlinear nonconvex inequality

constraints and nonlinear nonconvex objective. We also note that as nv ! 1, we expect

the maximal area to converge to the area of a unit-diameter circle, �=4 � 0:7854. This

problem has many local minima. For example, for nv = 4, a square with sides of length

1=
p
2 and an equilateral triangle with another vertex added at distance 1 away from a �xed

vertex are both global solutions with optimal value f = 1
2
. Indeed, the number of local

minima is at least O(nv !). Thus, general solvers are usually expected to �nd only local

solutions. Data for this problem appears in Table 2.1.

Table 2.1: Largest small-polygon problem data

Variables n = 2(nv � 1)

Constraints 1

8
n2 + 1

4
n� 1

Bounds n

Linear equality constraints 0

Linear inequality constraints 1

2
n� 1

Nonlinear equality constraints 0

Nonlinear inequality constraints 1

8
n2 � 1

4
n

Nonzeros in r2f(x) 11

2
n� 8

Nonzeros in c0(x) 1

2
n2 � 2

Performance

We provide results with the AMPL formulation on an SGI Onyx-2 Reality Monster. Results

are summarized in Table 2.2. A polygon with almost equal sides was chosen as the standard

starting guess for this problem. Global solutions for several nv are shown in Figure 2.1.

LANCELOT and SNOPT were successful at �nding solutions for all nv tried. We

also believe that these solutions are global solutions. SNOPT was more e�cient than

LANCELOT. MINOS was able to �nd only local solutions for nv � 15.
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Table 2.2: Performance of AMPL solvers

Solver nv = 6 nv = 10 nv = 20 nv = 50 nv = 100

DONLP2 z z 1.5 s No � No �

f 0.6749797629 0.7491366103 0.7768527183
kc(x)k 1.23396E-06 2.61365E-07 5.8761E-07

iterations 12 24 38

LANCELOT z z 4 s 140 s 2899 s

f 0.6749818114 0.7491373093 0.7768590578 0.7840156583 0.7850313647

kc(x)k 7.3288E-06 3.6446E-06 6.5317E-06 2.1506E-06 3.8119E-06

iterations 16 18 50 116 228

MINOS z z 2 s y 45 s y 600 s y
f 0.6749814429 0.7491373458 0.7687882291 0.734825561 0.7624733425

kc(x)k 6.4E-13 2.1E-13 2.5E-13 8.5E-13 5.2E-11

iterations 30 49 497 1994 6948

SNOPT z z 0.2 s 8 s 861 s

f 0.6749814429 0.7491373458 0.7768587560 0.7840161480 0.7850565708
kc(x)k 2.0E-12 1.8E-11 8.3E-12 1.7E-09 1.4E-09

iterations 23 35 73 269 68152

LOQO z No 53 s y No No

f 0.6749814367 failure 0.7197409256 failure failure

dual f 0.6749814651 0.7197409412
iterations 47 10000 537 10000 10000

y Local solution z Global solution found in less than 0.1 s � Problem is too large

LOQO was not able to solve the problem for most nv � 10 that we tried with default

parameters. However, we found that LOQO's performance improved slightly when setting

the mufactor parameter small enough (� 10�4), which is a scale factor for the barrier

parameter [14, 15].
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Figure 2.1: Unit-diameter polygons of maximal area
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3 Distribution of Electrons on a Sphere (Vanderbei [13])

Given np electrons, �nd the equilibrium state distribution (of minimal Coulomb potential)

of the electrons positioned on a conducting sphere.

Formulation

The merit function is

f(x; y; z) =

np�1X
i=1

npX
j=i+1

�
(xi � xj)

2 + (yi � yj)
2 + (zi � zj)

2
�
�
1
2
;

and the constraints are

x
2
i
+ y

2
i
+ z

2
i
= 1; i = 1; : : : ; np

Data for this problem appears in Table 3.1.

This problem, known as the Thomson problem, involves �nding the lowest energy con�g-

uration of np point charges on a conducting sphere. The problem originated with Thomson's

plum pudding model of the atomic nucleus. The Thomson problem is representative of an

important class of problems in physics and chemistry of determining a structure with re-

spect to atomic positions. This problem has many local minima at which the objective

value is relatively close to the objective value at the global minimum. Also, the number

of local minima grows exponentially [7, 10] with np. Thus, it is computationally di�cult

to determine the global minimum, and the solvers are usually expected to �nd only a local

minimum.

Table 3.1: Electrons on a sphere problem data

Variables n = 3np
Constraints 1

3
n

Bounds 0

Linear equality constraints 0

Linear inequality constraints 0

Nonlinear equality constraints 1

3
n

Nonlinear inequality constraints 0

Nonzeros in r2f(x) n2

Nonzeros in c0(x) n

Performance

We provide results with the AMPL formulation on an SGI Onyx-2 Reality Monster. Results

are summarized in Table 3.2. A quasi-uniform distribution of the point charges on a unit

sphere was chosen as the standard starting guess for this problem.

The results in [10] show that most of the found solutions for np � 110 are not global

(though SNOPT was able to �nd global minimizers for np = 111; 115; 134; 138; 143; 149; 153).

The global solution for np = 153 is shown in Figure 3.1. We note that merit function evalua-

tions are expensive and that the Hessian is dense, which makes this problem computationally
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Table 3.2: Performance of AMPL solvers

Solver np = 50 np = 75 np = 100 np = 150 np = 200

DONLP2 14 s 88 s 497 s 1453 s 4911 s

f 1055.182315 2454.369689 4448.350634 10236.43514 18438.92538
kc(x)k 1.5423E-11 3.1587E-12 3.23075E-14 1.06827E-11 1.3968E-08

iterations 171 314 781 743 1141

LANCELOT 8 s 42 s 52 s 322 s 649 s

f 1055.1823011 2454.369574 4448.350119 10236.26938 18438.99582

kc(x)k 2.5892E-08 3.8406E-05 2.3241E-07 8.1215E-07 1.9401E-06

iterations 56 77 71 152 156

MINOS 20 s No No No No
f 1055.1823147 failure failure failure failure

kc(x)k 1.2E-11

iterations 804

SNOPT 6 s 36 s 60 s 167 s 841 s

f 1055.1823147 2454.369689 4448.350634 10236.25782 18439.32467
kc(x)k 9.0E-12 2.6E-11 1.4E-11 6.7E-11 2.0E-11

iterations 357 748 722 817 1528

LOQO 125 s No No No No

f 1056.604860 failure failure failure failure

dual f 1056.604851
iterations 335 10000 10000 10000 10000

intensive and hard to solve for np � 100. DONLP2, LANCELOT, and SNOPT were able

to �nd a local solution for all values of np tried. MINOS could not solve the problem for

np � 75, exiting with the message Unbounded problem or bad initial guess. LOQO was not

able to �nd any solution for np � 75, exceeding the iteration limit (stagnation or very slow

progress toward a solution in all cases).

Figure 3.1: Optimal distribution of electrons on a conducting sphere, np = 153
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4 Sawpath Tracking (Vanderbei [13])

Given a list of points f(xi; yi)gNi=0 describing the centerline of a wood piece, �nd the poly-

nomial p of degree at most d that minimizes the di�erence between fyig and fp(xi)g when
p satis�es the following constraints:

� the polynomial p must go through the �rst point (x0; y0) of the list;

� the initial slope of the polynomial p must be M ;

� the radius of curvature at every point must not exceed the radius R.

Formulation

The merit function is

f(a) =
NX
i=0

0
@ dX
j=0

ajx
j

i
� yi

1
A
2

;

and the constraints are

dX
j=0

ajx
j

0 = y0

dX
j=1

jajx
j�1
0 = M

0
@R dX

j=2

j(j � 1)ajx
j�2
i

1
A
2

�

0
B@1 +

0
@ dX
j=1

jajx
j�1
i

1
A
2
1
CA
3

; i = 0; 1; : : : ; N

We generalized this problem, as given in Vanderbei [13], from a polynomial of fourth degree

to a polynomial of arbitrary degree d. In this formulation we followed [13] by modifying

the curvature constraint to a constraint on the square of the radius. Data for this problem

appears in Table 4.1.

Table 4.1: Sawpath tracking problem data

Variables n = d+ 1

Constraints N + 3
Bounds 0

Linear equality constraints 2

Linear inequality constraints 0
Nonlinear equality constraints 0

Nonlinear inequality constraints N + 1

Nonzeros in r2f(x) (d+ 1)2

Nonzeros in c0(x) (N + 3)d+ 1

This problem has relatively few variables, but the presence of many nonlinear nonconvex

inequality constraints makes it di�cult to solve. If there are d + 1 distinct data points xi,

then f is strictly convex and coercive. Thus, this problem has a unique solution.
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Performance

We provide results with the AMPL formulation on an SGI Onyx-2 Reality Monster. Results

are summarized in Table 4.2 for the dataset from Vanderbei [13] with N = 195, R = 2500.

Solutions for several values of d are shown in Figure 4.1.

Table 4.2: Performance of AMPL solvers, N = 195

Solver d = 2 d = 3 d = 4 d = 5 d = 6

DONLP2 No No No No No

f 1152.737587 665.5803272 1091.265064 1023.788643 1194.409377

kc(x)k 0.0E+00 1.81832E-06 2.77686E-15 2.13134E-09 0.0E+00

iterations 9 10 6 7 4

LANCELOT No No No No No

f failure failure failure failure failure
kc(x)k

iterations 517 352 58 9 9

MINOS y y 1.4 s No No

f 1152.706916 401.4899556 181.5729928 z z

kc(x)k 0.0E+00 1.6E-15 2.2E-16
iterations 6 18 87

SNOPT No y 11.3 s No No
f failure 401.4899555 181.5729928 z z

kc(x)k 3.0E-14 2.2E-16

iterations 3717 1408 20512

LOQO y y 0.3 s 0.5 s 0.3 s

f 1152.706890 401.4899495 181.5729922 151.2582871 64.72368379

dual f 1152.706916 401.4899547 181.5729929 151.2582882 64.72369331

iterations 31 34 28 32 22

y Solution found in less than 0.1s z Incorrect gradient or Jacobian

A major computational di�culty in this problem is the bad scaling when increasing d.

The original data from Vanderbei [13] has data points xi ranging from 0 to 500, thus creating

fairly bad scaling even for d � 5. DONLP2 stopped prematurely with the message relaxed

KKT conditions satis�ed, or unknown termination reason for all d tried. LANCELOT

iterates seemed to be diverging away from the solution even when the initial point was

near the solution. MINOS and SNOPT gave warnings that the gradient of the objective

and the Jacobian of the constraints were not correct and that the problem was not smooth

(possible e�ects of the bad scaling). Yet, MINOS and SNOPT converged to a solution for

d = 2; 3; 4, using gradients provided by AMPL. LOQO was able to �nd solutions for all d

tried (d = 2; : : : ; 9) in under 1 second. We also noticed that the problem becomes harder

to solve as we increase the minimum radius of curvature R.
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Figure 4.1: Solutions to the Sawpath tracking problem for several d's
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5 Hanging Chain (H. Mittelmann, private communication)

Find the chain (of uniform density) of length L suspended between two points with minimal

potential energy.

Formulation

This problem requires determining a function x(t), the shape of the chain that minimizes

the potential energy Z 1

0
x

p
1 + x02 dt

subject to the constraint on the length of the chain,

Z 1

0

p
1 + x02 dt = L;

and the end conditions x(0) = a and x(1) = b. Discretization of this problem leads to an

optimization problem with merit function

f(x) = h

n+1X
i=1

xi + xi�1

2

s
1 +

�
xi � xi�1

h

�2

and constraint

h

n+1X
i=1

s
1 +

�
xi � xi�1

h

�2
= L;

where h = 1=(n+ 1), x0 = a and xn+1 = b. Data for this problem appears in Table ??.

Table 5.1: Hanging chain problem data

Variables n

Constraints 1

Bounds 0

Linear equality constraints 0
Linear inequality constraints 0

Nonlinear equality constraints 1

Nonlinear inequality constraints 0

Nonzeros in r2f(x) 3n � 2

Nonzeros in c0(x) n

This problem has a nonconvex nonlinear merit function and one nonconvex nonlinear

constraint. The solution to this problem seems to be unique.

Performance

We provide results with the AMPL formulation on an SGI Onyx-2 Reality Monster. Results

are summarized in Table 5.2 with a = 1, b = 3, L = 4. A piecewise linear chain of length L

was chosen as the standard starting guess. The solution for n = 200 is shown in Figure 5.1.
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Table 5.2: Performance of AMPL solvers

Solver n = 50 n = 99 n = 100 n = 200 n = 400

DONLP2 1 s 2 s 2 s 12 s 72 s

f 5.068577962 5.068505564 5.068505062 5.068486411 5.068481694
kc(x)k 2.84217E-14 4.54747E-13 1.13687E-13 0.0E+00 6.82121E-13

iterations 105 182 188 413 830

LANCELOT 8.9 s 33 s 46 s 190 s 1311 s

f 5.068577968 5.068505567 5.068505065 5.068486411 5.068481697

kc(x)k 1.5230E-08 4.9220E-08 5.3919E-08 2.9043E-07 3.6684E-07

iterations 1862 3472 4902 9054 25252

MINOS 0.5 s 2.3 s 2.4 s 11 s 55 s
f 5.068577962 5.068505564 5.068505062 5.068486411 5.068481694

kc(x)k 6.2E-10 9.4E-11 3.0E-11 1.6E-10 3.9E-10

iterations 293 557 572 1077 1948

SNOPT 0.9 s 10 s 77 s 150 s 2175 s

f 5.068577962 5.068505564 5.068505063 5.068486413 5.068481697
kc(x)k 6.3E-10 1.1E-09 1.1E-09 1.9E-09 4.2E-10

iterations 248 702 4205 1949 4667

LOQO No No No No No

f failure failure failure failure failure

kc(x)k
iterations 553 920 1631 595 534

In general, DONLP2 and MINOS computed the solution much faster than LANCELOT

and SNOPT. SNOPT was designed for the problems with few degrees of freedom in the

constraints, and in this problem the degrees of freedom grow linearly with the problem

size n; hence, this behavior of SNOPT is expected. We also noticed that SNOPT solved

problems with n odd much faster than problems with n even. LOQO was unable to solve

this problem even for n � 50. LOQO seems to converge to a solution and then suddenly

diverges to a point far from the solution, declaring the problem infeasible.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Figure 5.1: Hanging chain of length L = 4
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6 Shape Optimization of a Cam (Anitescu and Serban [1])

Maximize the area of the valve opening for one rotation of a cam. The cam must be convex

and the curvature of the cam must not exceed the curvature limit parameter �. The radius

of the cam must be between Rmin and Rmax.

Formulation

We assume that the shape of the cam is circular over an angle of 6
5� of its circumference,

with radius Rmin. The design variables ri, i = 1; : : : ; n , represent the radius of the cam at

equally spaced angles distributed over an angle of 2
5
�. Rv is a design parameter related to

the geometry of the valve.

Anitescu and Serban [1] show that the requirement that the cam be convex is equivalent

to

�ri�1ri � riri+1 + 2ri�1ri+1 cos(��) � 0; i = 0; : : : ; n+ 1;

where r�1 = r0 = Rmin, rn+1 = Rmax, rn+2 = rn, and �� = 2�=5(n+ 1). The curvature

requirement is expressed by

�
ri+1 � ri

��

�2
� �

2
; i = 0; : : : ; n

squaring the actual curvature constraints to make them smooth. The merit function is

f(r) = ��R2
v

nX
i=1

ri;

and the constraints are

�R2
min �Rminr1 + 2Rminr1 cos(��) � 0

�Rminr1 � r1r2 + 2Rminr2 cos(��) � 0

�ri�1ri � riri+1 + 2ri�1ri+1 cos(��) � 0 i = 2; : : : ; n� 1

�rn�1rn � rnRmax+ 2rn�1Rmax cos(��) � 0

�2Rmaxrn + 2r2
n
cos(��) � 0

(r1 �Rmin)
2 � (���)2 � 0

(ri+1 � ri)
2 � (���)2 � 0 i = 1; : : : ; n� 1

(Rmax� rn)
2 � (���)2 � 0

Rmin � ri � Rmax i = 1; : : : ; n:

Data for this problem appears in Table 6.1.

Since the optimal cam shape is symmetric, we consider only half of the design angle.

The problem was originally [1] formulated for the full angle of 4�=5. This is a simple static

model for the optimal shape design of a cam.

We used discretization with uniform angle partitions, which can be made more e�cient

by introducing angle partitions as variables as well. Introducing dynamic components into

the model will complicate the problem and make it a lot harder to solve.
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Table 6.1: Optimal design of a cam problem data

Variables n

Constraints 2n + 3

Bounds n

Linear equality constraints 0

Linear inequality constraints 1

Nonlinear equality constraints 0

Nonlinear inequality constraints 2n + 2

Nonzeros in r2f(x) 0

Nonzeros in c0(x) 5n

Performance

We provide results with the AMPL formulation on an SGI Onyx-2 Reality Monster. Results

are summarized in Table 6.2. Default values for the model constants were used: Rmin = 1:0,

Rmax = 2:0, Rv = 1:0, � = 1:5. We used a standard starting guess of ri = Rmin, i = 1; : : : ; n,

as suggested in [1]. Solutions for n = 200 with several values of � are shown in Figure 6.1.

Table 6.2: Performance of AMPL solvers

Solver n = 10 n = 50 n = 100 n = 200 n = 400

DONLP2 2 s 14 s 438 s No y No y
f -43.8599479 -214.760855 -428.4147433

kc(x)k 1.04878E-08 2.26649E-07 3.70297E-07

iterations 12 156 576

LANCELOT 0.3 s 10 s z z z

f -43.85989689 -215.1835506 -430.1620796 -863.0490577 -1810.253285
kc(x)k 1.4863E-07 8.4264E-06 4.4204E-06 2.3595E-06 4.7278E-06

iterations 66 338 554 820 1121

MINOS 0.1 s No � No � No � No �

f -43.85994780

kc(x)k 4.4E-16 6.6E-01 1.1E-01 7.2E-02 7.9E-03

iterations 43 796 788 1583 1870

SNOPT 0.1 s 0.5 s 1.2 s 6.1 s No
f -43.85994884 -214.758660 -428.420412 -855.700093 -2436.977949

kc(x)k 5.7E-08 1.3E-14 2.4E-05 5.3E-09 1.5E-02

iterations 43 728 1410 3735 12676

LOQO 0.1 s 0.8 s 4.8 s 20 s 84 s

f -43.85994830 -214.7608486 -428.4147089 -855.7000451 -1710.275390

dual f -43.85994844 -214.7608470 -428.4147221 -855.7000511 -1710.275397

iterations 40 168 386 534 704

y Problem is too large z Step is too small � Infeasible problem

LANCELOT computed a shape very close to the optimal shape for n � 100, but stopped

premataurely with the message Step is too small. MINOS was not able to solve this problem

for n � 20, exiting with the message Infeasible problem (or bad starting guess). SNOPT

outperformed the other solvers for smaller n. Surprisingly, SNOPT did not solve the problem

for n = 400 (stopped at an infeasible point with the exit condition The current point cannot

13



be improved). We note that the number of active constraints increased with � increasing

up to a threshold of �1 � 3:0, after which increasing � did not change the optimal solution.

The problem became harder to solve as we decreased � down to a threshold of �0 � 1:25,

after which the problem was declared infeasible by all solvers.
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Figure 6.1: Cam shape with n = 200 and � = 1:25; 1:5; 3:0
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7 Isometrization of �-pinene (MINPACK-2 test problems [3])

Determine the reaction coe�cients in the thermal isometrization of �-pinene. The linear

kinetic model proposed for this problem is

y
0

1 = �(�1 + �2)y1
y
0

2 = �1y1

y
0

3 = �2y1 � (�3 + �4)y3 + �5y5 (7.1)

y
0

4 = �3y3

y
0

5 = �4y3 � �5y5;

where �1; : : : ; �5 are the unknown coe�cients. Initial conditions for (7.1) are known. Vectors

of concentration measurements zj are given for y at eight time points �1; : : : ; �8, where y is

the solution to (7.1). The �-pinene problem is to minimize

8X
j=1

ky(�j ; �)� zjk2; (7.2)

where � is the vector with components �1; : : : ; �5 of unknown reaction coe�cients. This

formulation is based on the work of Box et al.

citeGEPB73.

Formulation

A k-stage collocation method approximates the solution of (7.1) by a vector-valued function

u : [0; tf ] 7! IR5, where each component of u is a polynomial of order k+1 in each subinterval

[ti; ti+1] of a partition

0 = t1 < t2 < � � � < tnh < tnh+1 = tf ;

where tf � �m, and �m is the largest time measuremet. Thus u is de�ned in terms of

5nh(k + 1) parameters. These parameters are determined by requiring that u 2 C[0; tf ]

and that u satisfy (7.1) at a set of k collocation points in each interval [ti; ti+1]. We choose

the collocation points �i as the roots of the kth degree Legendre polynomial to guarantee

superconvergence at the mesh points ti.

Our formulation of the �-pinene problem as an optimization problem follows [12, 3]. We

use a uniform partitioning of the interval [0; tf ] and the standard [2, pages 247{249] basis

representation,

us(t) = vis +
kX

j=1

(t� ti)
j

j! hj�1
wijs; t 2 [ti; ti+1];

of the sth component of the piecewise polynomial approximation u. The constraints in the

optimization problem are the 5 initial conditions in (7.1), the continuity conditions, and the

collocation equations. The continuity equations

u(t�
i+1) = u(t+

i+1); 1 � i < nh;

15



are a set of 5(nh�1) linear equations. The collocation equations are a set of 5knk nonlinear

equations obtained by requiring that u satisfy (7.1) at the collocation points �ij = ti + h�j

for i = 1; : : : ; nh and j = 1; : : : ; k. Data for this problem appears in Table 7.1.

Table 7.1: Isomerization of �-pinene data

Variables n = 25nh + 5
Constraints 25nh
Bounds 5

Linear equality constraints 5nh
Linear inequality constraints 0

Nonlinear equality constraints 20nh
Nonlinear inequality constraints 0

Nonzeros in r2f(x) � 1600

Nonzeros in c0(x) 262nh � 25

This is a typical parameter estimation problem that arises in the modeling of physical

phenomena with a parameter-dependent system of di�erential equations. We note that

nh and k can be speci�ed, while other parameters are dependent on the problem. In our

formulation we use k = 4. Arbitrarily large-dimensional test problems can be generated by

selecting larger values of nh. Note that this problem has only 5 degrees of freedom.

Performance

We provide results with the AMPL formulation on an SGI Onyx-2 Reality Monster. We

used a starting point with zeros for the parameters and a piecewise constant approximation

to (7.1) based on the linear interpolation of the measurement data onto the mesh points ti.

Results are summarized in Table 7.2. The solution for nh = 200 is shown in Figure 7.1.

DONLP2 stopped with the message relaxed KKT conditions satis�ed: singular point

for smaller problems and was able to get a good �t to the data, but stopped short of the

optimal solution. Since the problems were too large for DONLP2 when nh > 28, we did

not include DONLP2 in Table 7.2.

LANCELOT stopped with the message step is too small, very near the solution for all

nh we tried (projected gradient norm was on the order of 10�4 for nh = 100; 150; 200 with

default optimality tolerance of 10�5). Parameters estimated by LANCELOT were fairly

accurate compared with the parameters obtained with SNOPT. MINOS and SNOPT were

able to solve the problem for all nh tried, but SNOPT was more e�cient by about a factor

of 2. LOQO was not able to solve problems with small nh, but the performance improved

for larger nh. LOQO was slower than MINOS and SNOPT. In the iteration log of LOQO

the message dependent rows appeared often near the solution, which might explain the

degraded performance. All solvers were able to estimate reaction parameters with enough

accuracy for practical purposes.

The choice of the �nal time tf had a signi�cant e�ect on the performance of the solvers.

As tf increased, the problem became harder to solve, and performance of all solvers de-

graded. In some cases, LOQO and MINOS were not able to solve the problem at all.
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Table 7.2: Performance of AMPL solvers (tf = 37421)

Solver nh = 20 nh = 50 nh = 100 nh = 150 nh = 200

LANCELOT 182 s y 359 s y 1289 s y 2987 s y 6674 s y

kc(x)k 1.7435E-06 3.7917E-06 7.9404E-06 3.3050E-06 1.8053E-06
f 19.68852651 19.5489803 19.20467754 19.55026906 19.68888546

iterations 140 124 135 183 216

MINOS 13 s 10 s 52 s 134 s 230 s

f 19.87208041 19.87216637 19.87216714 19.87216694 19.87216692

kc(x)k 1.1E-12 5.0E-13 2.6E-10 1.9E-10 8.1E-11

iterations 531 780 1499 2129 2770

SNOPT 1.4 s 6.6 s 30 s 64 s 118 s

f 19.87208041 19.87216637 19.87216700 19.87216697 19.87216696

kc(x)k 9.7E-13 8.4E-13 6.9E-12 1.4E-11 1.4E-11

iterations 524 1301 2571 3897 5202

LOQO No 116 s 2139 s 378 s 2054 s

f failure 19.87216631 19.87216641 19.87216637 19.87216692

dual f 19.87216636 19.87216695 19.87216649 19.87216686

iterations 10000 57 166 42 66

y Step is too small
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Figure 7.1: The �ve components of u(t; �) for the �-pinene problem with the optimal �
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8 Marine Population Dynamics (Rothschild et al. [11])

Given estimates of the abundance of the population of a marine species at each stage (for

example, nauplii, juvenile, adult) as a function of time, determine stage speci�c growth and

mortality rates. The model for the population dynamics of the ns-stage population (for the

short time periods) used in [11] is

y
0

j
= gj�1yj�1 � (mj + gj)yj ; 1 � j � ns; (8.1)

where mi and gi are the unknown mortality and growth rates at stage i with g0 = gns = 0.

This model assumes that the species eventually dies or grows into the next stage, with

the implicit assumption that the species cannot skip a stage. Initial conditions for the

di�erential equations are unknown, since the stage abundance measurements at the initial

time might also be contaminated with experimental error. We minimize the error between

computed and observed data,

nmX
j=1

ky(�j;m; g)� ujk2;

where m and g are, respectively, vectors of mortality and growth rates with components

m1; : : : ; mns
and g1; : : : ; gns�1, and nm is the number of the stage abundance measurements.

Formulation

We use a k-stage collocation method to formulate this problem as an optimization problem.

In this approach the solution to (8.1) is represented by a vector-valued function u : [0; tf ] 7!
IRns , where each component of u is a polynomial of order k+ 1 in each subinterval [ti; ti+1]

of a partition of [0; tf ], where tf � �nm and �nm is the largest time measurement. We use a

uniform partitioning of [0; tf ], and the standard [2, pages 247{249] basis representation,

us(t) = vis +
kX

j=1

(t� ti)
j

j! hj�1
wijs; t 2 [ti; ti+1];

of the sth component of u. The constraints in the optimization problem are the continuity

conditions and the collocation equations. The continuity equations are a set of ns(nh � 1)

linear equations. The collocation equations are a set of k ns nk nonlinear equations obtained

by requiring that u satisfy (8.1) at the collocation points �ij = ti + h�j for i = 1; : : : ; nh
and j = 1; : : : ; k.

The parameters in the optimization problem are the nsnh initial conditions, the ns

mortality rates, the ns�1 growth rates, and the knsnh parameters wijk in the representation

of u. Data for this problem, with k = 4, appears in Table 8.1.

We do not impose any initial conditions on the di�erential equations, since initial mea-

surements are usually contaminated with experimental error. Introducing these extra de-

grees of freedom into the problem formulation should allow solvers to �nd a better �t to the

data. A signi�cant di�erence between this problem and the �-pinene is that the population

dynamics data usually contains large observation errors.
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Table 8.1: Marine population dynamics problem data

Variables n = 5nsnh + 2ns � 1

Constraints 5nsnh � ns

Bounds 2ns � 1
Linear equality constraints ns(nh � 1)

Linear inequality constraints 0

Nonlinear equality constraints 4nsnh
Nonlinear inequality constraints 0

Nonzeros in r2f(x) � (nsnm)
2

Nonzeros in c0(x) 58nsnh � 28nh � 6ns

Performance

We provide results with the AMPL formulation on an SGI Onyx-2 Reality Monster. We

used a simulated dataset with ns = 8 stages. We used a standard initial starting point with

zeros for the parameters and a piecewise constant approximation to the solution of (8.1)

based on the linear interpolation of the measurement data onto the mesh points ti. Results

are summarized in Table 8.2. We used the default options for the solvers, except for setting

iteration and variable limits high enough for the problem size. The solution for ns = 8 is

shown in Figure 8.1.

Table 8.2: Performance of AMPL solvers

Solver nh = 25 nh = 50 nh = 100 nh = 150 nh = 200

LANCELOT y y y y y

f 19746526.87 19746529.70 19746529.24 19746528.57 19746529.52

kc(x)k 2.8021E-06 1.8881E-06 5.4092E-06 8.6955E-06 1.1871E-06

iterations 556 283 276 289 332

MINOS 20 s No z No z No No

f 19746526.83 90765626.58 38788064.26 298683521.2 520276498.4
kc(x)k 8.0E-12 3.7E-11 6.8E-11 1.0E-05 1.0E-01

iterations 1058 1780 2031

SNOPT 14 s 28 s 79 s 209 s 479 s

f 19746526.83 19746529.71 19746529.72 19746529.72 19746529.72
kc(x)k 5.2E-12 4.5E-12 3.4E-12 1.1E-11 1.1E-11

iterations 1652 2672 4795 6915 9507

LOQO No No No No No

f failure failure failure failure failure

dual f
iterations 10000 968 10000 719 758

y Step is too small z Possibly a local minimizer

Since this problem was too large for DONLP2 even with nh = 20, results are not

included for DONLP2. LANCELOT found solutions for all nh. We note that LANCELOT

used about 10 times more memory to solve this problem than did the other solvers. MINOS

solved the problem for nh = 25, but stopped at a suboptimal point for other nh tried. For

nh = 50; 100 MINOS claimed to stop at an optimal point. For nh = 150; 200, MINOS
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stopped with the message the current point cannot be improved at a suboptimal point.

SNOPT successfully found solutions for all nh. LOQO did not solve the problem for any

nh, either running over the iterations limit with no signi�cant progress toward a solution

or stopping with the message primal or dual infeasible. In the iteration log of LOQO the

message dependent rows appeared often near the solution, which might explain the degraded

performance of LOQO.

As in the �-pinene problem, we noticed that performance is slightly sensitive to the

choice of the �nal time tf . Choosing tf very close to the last measurement time �nm made

the problem easiest to solve, but LOQO or MINOS still could not solve the problem.
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Figure 8.1: u with optimal mortality and growth parameters for ns = 8.
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9 Flow in a Channel (MINPACK-2 test problems [3])

Analyze the 
ow of a 
uid during injection into a long vertical channel, assuming that the


ow is modeled by the boundary value problem,

u
0000 = R (u0u00 � uu

000) ; 0 � t � 1;

u(0) = 0; u(1) = 1; u
0(0) = u

0(1) = 0;
(9.1)

where u is the potential function, u0 is the tangential velocity of the 
uid, and R is the

Reynolds number.

Formulation

We use a k-stage collocation method to formulate this problem as an optimization problem

with a constant merit function and equality constraints representing the solution of (9.1).

We approximate the solution of (9.1) by a piecewise polynomial u. We use a uniform

partitioning ftig of [0; 1], and the standard [2, pages 247{249] basis representation,

u(t) =
mX
j=1

(t� ti)
j�1

(j � 1)!
vij +

kX
j=1

(t � ti)
j+m�1

(j +m� 1)! hj�1
wij ; t 2 [ti; ti+1]

for u. Note that u 2 C
m�1[0; 1], where m = 4 is the order of the di�erential equation.

The constraints in the optimization problem are the initial conditions in (9.1), the

continuity conditions and the collocation equations. There are m = 4 initial conditions.

The continuity equations are a set of m(nh� 1) linear equations. The collocation equations

are a set of k nh nonlinear equations obtained by requiring that u satisfy (8.1) at the

collocation points �ij = ti + h�j for i = 1; : : : ; nh and j = 1; : : : ; k. The collocation points

�j are the roots of the kth degree Legendre polynomial.

Table 9.1: Flow in a channel problem data

Variables n = 8nh
Constraints 8nh
Bounds 0

Linear equality constraints 4nh
Linear inequality constraints 0
Nonlinear equality constraints 4nh
Nonlinear inequality constraints 0

Nonzeros in r2f(x) 0
Nonzeros in c0(x) 62nh � 13

The parameters in the optimization problem are the (m+ k)nh parameters vij and wij

in the representation of u. Data for this problem, with k = 4, appears in Table 9.1. This

problem is easy to solve for small Reynolds numbers but becomes increasingly di�cult to

solve as R increases.
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Performance

We provide results with the AMPL formulation on a Sun UltraSPARC2. For R = 10, we

used the solution of the boundary value problem (9.1) for R = 0, as the starting point for

all solvers. For larger values of the Reynolds number we used continuation. Results are

summarized in Tables 9.2 and 9.3. We used the default options for the solvers, except for

setting iteration and variable limits high enough for the problem size. Solutions for several

R with nh = 200 are shown in Figure 9.1.

Table 9.2: Performance of AMPL solvers

nh = 40 nh = 100

Solver R = 10 R = 102 R = 103 R = 104 R = 10 R = 102 R = 103 R = 104

LANCELOT No No No No No No No No

iterations 10000 10000 10000 10000 10000 10000 10000 10000
kc(x)k

MINOS 0.8 s 0.2 s 0.2 s 0.3 s 3.7 s 0.6 s 0.6 s 0.6 s

iterations 178 5 5 6 442 5 5 6

kc(x)k 5.4E-13 4.5E-13 2.9E-11 1.2E-08 2.4E-13 9.1E-13 2.9E-11 1.2E-09

SNOPT 1.7 s 58 s 2.7 s No 8.4 s 42 s No No

iterations 358 1582 457 failure 846 1418 failure failure

kc(x)k 2.7E-09 9.1E-13 2.2E-11 5.3E+05 2.7E-09 1.1E-12 1.9E+04 2.0E+05

LOQO 1.0s No No No 5.4s No No No

iterations 28 10000 10000 10000 32 10000 10000 10000

duality gap 2.0E-08 1.66E-08

Table 9.3: Performance of AMPL solvers

nh = 200 nh = 400
Solver R = 10 R = 102 R = 103 R = 104 R = 10 R = 102 R = 103 R = 104

LANCELOT No No No No No No No No

iterations 10000 10000 10000 10000 10000 10000 10000 10000
kc(x)k

MINOS 14 s 1.2 s 1.2 s 1.4 s 46 s 2.6 s 3.0 s 7.0 s
iterations 884 5 5 6 1560 5 5 109

kc(x)k 1.8E-13 9.1E-13 2.2E-11 4.7E-10 3.8E-07 2.5E-08 2.5E-09 1.1E-08

SNOPT 31 s 67 s No No 115 s No No No

iterations 1675 2226 failure failure 3112 failure failure failure

kc(x)k 2.7E-09 5.0E-07 1.8E+04 2.0E+05 3.8E-07 9.2E+02 9.9E+03 1.0E+05

LOQO 25s No No No 50s No No No

iterations 44 10000 10000 10000 34 10000 10000 10000

duality gap 7.0E-09 2.5E-08

LANCELOT was not able to solve even a simple version of the problem, advancing very

slowly toward the solution (as judged from the value of the merit function) and running over

the iteration limit. MINOS was very successful on this problem, obtaining solutions for all

values of R and nh tried, and outperforming SNOPT by at least a factor of 2 in all cases.

We also note that MINOS was able to �nd a solution from the standard initial point for
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all values of R in the range from 0 to 105. SNOPT solved the problem for R = 10; 102; 103

when nh = 40, but performance degraded with increasing nh; and for nh = 400, SNOPT

could not �nd a solution even for R = 102. LOQO was able to solve the problem for R = 10

for all values of nh tried, but failed to converge for larger values of R in all cases, with dual

objective slowly increasing to a large positive number.

We also used SNOPT with an F77 implementation of this problem. In this set of

experiments we used the solution of (9.1) for R = 0 as the starting point for R = 10; 102

and used the solution of the problem for R = 102 as the starting point for higher Reynolds

numbers. The results are summarized in Table 9.4.

Table 9.4: Performance of SNOPT with F77 code

nh = 50 nh = 100 nh = 200 nh = 400

R = 10 2.6 s 9.6 s 44 s 196 s

R = 102 21 s 35 s 237 s 864 s

R = 103 1311 s Not solved 2077 s 4304 s

R = 104 Not solved 3863 s 16907 s 35927 s

The results in Table 9.4 are not comparable with those in Tables 9.2{9.3 because we

used di�erent starting points, but we noted improved global convergence. The di�erence

in behavior may be partially explained by the fact that we did not separate linear and

nonlinear constraints in the F77 implementation.
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Figure 9.1: Solutions for R = 0; 10; 102; 103; 104 with nh = 200
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10 Non-inertial Robot Arm (Vanderbei [13])

Minimize the time taken for a robot arm to move from one point to another while satisfying

boundary conditions, path constraints, and physical laws.

Formulation

The arm is a rigid bar of length L that protrudes a distance � from the origin to the gripping

end and sticks out a distance L� � in the opposite direction. If the pivot point of the arm

is the origin of a spherical coordinate system, then the problem can be phrased in terms of

�(t) � length of arm from pivot

�(t) � angle in horizontal plane

�(t) � angle in vertical plane

u�(t); u�(t); u�(t) � controls in basis directions

tf � �nal time:

Bounds on the variables are

0 � tf

0 � �(t) � L

�� � �(t) � �

0 � �(t) � �

��u� � u�(t) � �u�
��u� � u�(t) � �u�
��u� � u�(t) � �u�;

(10.1)

where �u�, �u� , and �u� are the most extreme controls allowed. The controls u are applied in

the coordinate directions, and therefore they enter the system as the constraints

L�� = u�; I�
�� = u� ; I�

�� = u�; (10.2)

where I is the moment of inertia, de�ned by

I� =
((L� �)3 + �

3)

3
sin(�)2; I� =

((L� �)3 + �
3)

3
:

The boundary conditions are

�(0) = 4:5; �(tf) = 4:5; �(0) = 0; �(tf ) =
2�

3
; �(0) =

�

4
; �(tf ) =

�

4

_�(0) = _�(0) = _�(0) = _�(tf ) = _�(tf ) = _�(tf) = 0:

This model ignores the fact that the spherical coordinate reference frame is a non-inertial

frame and should have terms for coriolis and centrifugal forces.
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Implementation I

In the �rst implementation, the controls u are eliminated by substitution. Therefore, the

equality constraints in (10.2) become the inequalities

��u� � L�� � �u�
��u� � I�

�� � �u�
��u� � I�

�� � �u�:

Discretization of the problem involved using a uniform time step and introducing new

variables representing the �rst and second derivatives of the state variables. New constraints

were introduced requiring that the new variables satisfy �rst-order di�erence approximations

to the derivatives. The number of grid points at which the state variables are evaluated is

N . The velocities, accelerations, and moments are evaluated at slightly fewer grid points.

The variables in the optimization problem are

�(1 : N); _�(1 : N � 1); ��(1 : N � 2); �(1 : N); _�(1 : N � 1); ��(1 : N � 2);

�(1 : N); _�(1 : N � 1); ��(1 : N � 2); I�(1 : N � 2); I�(1 : N � 2); tf :

In this problem, �u� = �u� = �u� = 1, and L = 5. Problem data appears in Table 10.1.

Table 10.1: Non-inertial robot arm problem data (Implementation I)

Variables 11N � 12

Constraints 10N � 5
Bounds 4N � 2

Linear equality constraints 12

Linear inequality constraints 0

Nonlinear equality constraints 8N � 13

Nonlinear inequality constraints 2N � 4

Nonzeros in r2f(x) 0

Nonzeros in c0(x) 29N � 36

Performance

We provide results with the AMPL formulation on a Sun UltraSPARC2. All of the solvers

were given the same initial values as suggested by Vanderbei [13]. The initial values for

the state variables are straight lines for the �rst half of the interval and parabolas for the

second half. Di�erence approximations were given as guesses for the derivative variables.

The initial values for the moments of inertia were based upon di�erence approximations to

the second derivatives, while the initial value for the �nal time was tf = 1000=N .

Table 10.2 shows the computational results for various values of N . MINOS is unable

to solve this problem for N = 50; 100. However, aside from these two instances, the rest of

the solvers seem to converge to the correct solution for all N .
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Table 10.2: Performance of AMPL solvers (Implementation I)

Solver N = 10 N = 50 N = 100 N = 500

LANCELOT Yes Yes Yes Yes

tf 10.31945331 9.331494417 9.234452773 9.159271883

iters j sec 104 j 3.35 138 j 70.01 173 j 250.62 343 j 276.39

MINOS Yes infeasible Yes Yes

tf 10.3194546 - 9.234453135 9.159271891

iters j sec 450 j 0.98 4848 j 23.37 851 j 12.98 3101 j 313.17

SNOPT Yes Yes Yes Yes

tf 10.3194546 9.331495269 9.234453135 9.159271887

iters j sec 967 j 3.20 4006 j 31.87 7313 j 128.28 46943 j 112.36

LOQO Yes Yes Yes Yes

tf 10.31945462 9.331495269 9.234453135 9.159271891

iters j sec 24 j 0.23 35 j 4.33 58 j 32.55 359 j 775.743

Implementation II

In the second implementation the moments (I�; I�) were eliminated by substitution. Dis-

cretization of the problem involved using a uniform time step for the integration of (10.2)

over N grid points. The variables in the optimization problem are

�(1 : N); _�(1 : N); �(1 : N); _�(1 : N); �(1 : N); _�(1 : N);

u�(1 : N); u�(1 : N); u�(1 : N); tf

In this problem �u� = �u� = �u� = 1 and L = 5. Data for this problem is shown in Table 10.3.

Table 10.3: Non-inertial robot arm problem data (Implementation II)

Variables 9N + 1
Constraints 6(N � 1) + 12

Bounds 7N + 1

Linear equality constraints 12
Linear inequality constraints 0

Nonlinear equality constraints 6(N � 1)

Nonlinear inequality constraints 0
Nonzeros in r2f(x) 0

Nonzeros in c0(x) 36(N � 1) + 12

Performance

We provide results with the AMPL formulation on a Sun UltraSPARC2. In addition, a C

version was also implemented for SNOPT, with the derivatives generated by ADIC, thus

allowing a comparison between the AMPL version and the ADIC augmented C version.

All solvers were given the same initial values. Where possible, straight lines between the

boundary conditions or (in the absence of boundary conditions) zeros were given as initial
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Table 10.4: Performance of AMPL solvers (Implementation II)

Solver N = 10 N = 50 N = 100 N = 500

LANCELOT no feasible solution no feasible solution iteration limit no feasible solution

tf 0 0 0 0

iters j s 3 j 0.08 44 j 15.71 1000 j 139.56 -

MINOS Yes Yes Yes Yes

tf 9.27862977 9.145749287 9.141994656 9.141334372

iters j s 87 j 0.21 390 j 3.48 473 j 11.24 1634 j 305.20

SNOPT Yes Yes infeasible infeasible

tf 9.27862977 9.145749287 - -

iters j s 875 j 2.30 11500 j 64.13 2177 j 10.64 14081 j 315.56

LOQO infeasible iteration limit iteration limit iteration limit

tf - - - -

iters j s 463 j 13.72 1000 j 154.15 1000 j 193.72 -

values. The exceptions are for tf , which was set to 1000, and for �, which was initialized

to a parabola passing through (0; 0), (0:5; 1), (1; 0). If � is not initialized in this manner,

SNOPT considers the problem infeasible.

Table 10.4 shows the computational results for various values of N . We note that

while the alternative implementation is faster, fewer of the solvers converge to the correct

solution. For this implementation, however, solvers that did �nd the correct solution did so

in considerably less time than required with the �rst implementation.

Table 10.5: Performance of SNOPT with C implementation

Solver N = 10 N = 50 N = 100 N = 500

SNOPT infeasible problem Yes Yes Yes

tf - 9.1457563370858 9.1420016949989 9.1409521227122

iters 120 1937 4981 15713

constraint (s) 0.03 0.98 1.99 8.33

objective (s) 0.00 0.07 0.13 0.07

solve (s) 0.05 6.72 21.44 1835.08

Figures 10.1 and 10.2 show the optimal path of the robot arm for N = 100, calculated

using MINOS. Figure 10.3 shows each of the variables individually. Note that the controls

are calculated from the other known variables. The paths reported by the solvers are all

identical (assuming they reported �nding an optimal point); thus only one graph is shown.

Figures generated from the output from the C version are not shown because they are

identical to the alternative AMPL/MINOS version.
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Figure 10.1: Non-inertial robot arm optimal path (side view)
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Figure 10.3: Non-intertial robot arm optimal path (individual variables)
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11 Linear Tangent Steering (Betts, Eldersveld, and Hu�man [4])

Minimize the time taken for a point mass, acted upon by a thrust of constant magnitude,

to satisfy boundary conditions, path constraints, and the di�erential equations governing

motion to pass from one point to another.

Formulation

The behavior of a point mass acted upon by a force of magnitude a can be modeled using

the system of second-order di�erential equations,

�y1 = a cos(u)

�y2 = a sin(u);
(11.1)

where
y1(t) � �rst position coordinate

y2(t) � second position coordinate

u(t) � control angle

tf � �nal time

and a is the constant magnitude of thrust. In this case, a = 100. Bounds on the variables

are

tf � 0; ��
2
� u(t) � �

2
:

The constraints are (11.1). The boundary conditions, as given in [4], are

y1(0) = y2(0) = _y1(0) = _y2(0) = 0; y2(tf ) = 5; _y1(tf ) = 45; _y2(tf ) = 0:

System (11.1) can be expressed as the system of four �rst-order di�erential equations,

_y1 = y3

_y2 = y4

_y3 = a cos(u)

_y4 = a sin(u);

(11.2)

where y3 and y4 are the velocity coordinates of the point mass.

Discretization involved using a uniform time step and the trapezoidal rule for the in-

tegration of the system over N grid points. By treating the �nal time tf as the objective

function to be minimized, and the trapezoidal discretization and bounds on u as constraints,

we can formulate the problem as an optimization problem with variables

y1(1 : N); y2(1 : N); y3(1 : N); y4(1 : N); u(1 : N); tf :

Data for this problem is shown in Table 11.1.
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Table 11.1: Linear tangent steering problem data

Variables 5N + 1

Constraints 4(N � 1) + 7

Bounds N + 1
Linear equality constraints 7

Linear inequality constraints 0

Nonlinear equality constraints 4(N � 1)

Nonlinear inequality constraints 0

Nonzeros in r2f(x) 0

Nonzeros in c0(x) 20(N � 1) + 7

Performance

We provide results with the AMPL formulation on a Sun UltraSPARC2. This problem

has also been coded in C and solved using SNOPT, both with hand-coded gradients and

Jacobians and with ADIC-generated gradients and Jacobians. Plots of the position, velocity,

and control variables are shown in Figure 11.1.

All of the solvers were given the same initial values of straight lines between the boundary

conditions, except for the control u and the �rst position coordinate y1. The starting value

for the control was set to a straight line between �1 and +1, while the �rst position

coordinate was set to a straight line between 0 and +1. The initial value for the �nal time

was tf = 1.

Table 11.2 shows the computational results from AMPL for various values of N . Note

that LOQO and MINOS fail to solve this problem.

Table 11.2: Performance of AMPL solvers

Solver N = 10 N = 50 N = 100 N = 500

LANCELOT Yes Yes Yes Yes

tf 0.5575747859 0.5546725422 0.5545925691 0.5545368572

iters j s 166 j 0.90 268 j 26.17 419 j 180.75 786 j 2100.54

MINOS Yes infeasible Yes infeasible

tf 0.5575751656 - 0.5545958978 -

iters j s 120 j 0.15 1311 j 1.81 923 j 7.99 2933 j 42.08

SNOPT Yes Yes Yes Yes

tf 0.5575751655 0.5546728269 0.5545959338 0.554572935

iters j s 218 j 0.67 414 j 3.99 708 j 20.96 3755 j 980.40

LOQO Yes iteration limit iteration limit -

tf 0.5575751656 0.6471450279 0.5950385081 -

iters j s 337 j 3.88 10000 j 242.39 10000 j 704.53 -

Table 11.3 shows the computational results for the hand-coded and ADIC-augmented

C implementations for various values of N . The ADIC version is considerably slower than

the hand-coded version, with the constraint/Jacobian function being about 27 times slower.

However, in comparison to the AMPL version, the ADIC version is only about 2.75 times

slower for the whole computation.
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Table 11.3: Performance of SNOPT with C implementation

Solver N = 10 N = 50 N = 100 N = 500

SNOPT (hand) Yes Yes Yes Yes

tf 0.5575751655263 0.55467279242138 0.55459588591195 0.55457186867

iters 189 448 847 6157

constraint (s) 0.05 0.15 0.53 2.33

objective (s) 0.01 0.01 0.03 0.13

solve (s) 0.38 2.86 23.53 721.33

SNOPT (ADIC) Yes Yes Yes Yes

tf 0.55757516552631 0.55467279242138 0.55459588591195 0.55457186867323

iter 189 448 847 6157

constraint(s) 1.00 3.51 20.96 237.75

objective (s) 0.01 0.02 0.05 0.14

solve (s) 1.21 7.24 51.10 940.12
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12 Goddard Rocket (Betts, Eldersveld, and Hu�man [4])

Maximize the �nal velocity of a vertically launched rocket, using the thrust as a control

and subject to boundary conditions, path constraints, and physical laws. The rocket is a

single-stage vehicle with a �nite amount of propellant. Solving this problem should describe

an optimal program for the thrust, so as to maximize the �nal velocity.

Formulation

The equations of motion for a point mass acted upon by a thrust force of magnitude T are

_h = v; _v =
T �D(h; v)

m
� g; _m = �T

c
; (12.1)

where
h(t) � altitude

v(t) � vertical velocity

m(t) � rocket mass

T (t) � thrust magnitude

tf � �nal time.

The function D and the various parameters in (12.1) are

D(h; v) = D0v
2

�
e
�

h

hr

�
; D0 = 0:711

TM

c2
;

TM = 2m0g; m0 = 3; g = 32:174; hr = 23800; c
2 = 3:264ghr;

where g is gravity, TM is the maximum thrust possible with the rocket engine, and m0 is

the initial mass of the rocket. The bounds on the state variables are

m(t) � 1; tf � 0; 0 � T (t) � TM :

The constraints are (12.1), and the boundary conditions, as given in [4], are

h(0) = 0; v(0) = 0; m(0) = 3; m(tf ) = 1:

Discretization of the problem involved using a uniform time step and the trapezoidal rule

for the integration of the system over N points. The variables of the optimization problem

are

h(1 : N); v(1 : N); m(1 : N); T (1 : N); tf :

Data for this problem is shown in Table 12.1.

Performance

We provide results with the AMPL formulation on a Sun UltraSPARC2. All solvers were

given the same initial values of straight lines between the boundary conditions for the mass

m. The initial values for the altitude and the velocity were straight lines between 0 and
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Table 12.1: Goddard rocket problem data

Variables 4N + 1

Constraints 3(N � 1) + 4

Bounds 2N + 1
Linear equality constraints 4

Linear inequality constraints 0

Nonlinear equality constraints 3(N � 1)

Nonlinear inequality constraints 0

Nonzeros in r2f(x) 0

Nonzeros in c0(x) 19(N � 1) + 4

1000 and between 0 and 100; respectively. The initial value for the thrust T was a constant

thrust of TM=2.

Table 12.2 shows the computational results for various values of N . We note that

MINOS seems to be the only solver that can solve this problem. Figure 12.1 has plots of

the solutions for altitude, velocity, mass, and thrust versus time, as solved by MINOS at

N = 100.

Table 12.2: Performance of AMPL solvers

Solver N = 10 N = 50 N = 100 N = 500

LANCELOT too many iterations too many iterations too many iterations -

vf 1503.645929 -0.0004547359203 -40.99063733 -

iters j sec 1000 j 11.08 1000 j 26.12 1000 j 320.13 -

MINOS Yes Yes Yes Yes

vf 1062.028455 1060.357748 1060.313388 1009.468519

iters j sec 95 j 0.12 737 j 2.97 2518 j 18.42 2758 j 73.44

SNOPT too many iterations too many iterations too many iterations -

vf 22453.37014 7357.058908 1244.953645 -

iters j sec 9103 j 10.29 136066 j 444.06 166001 j 1263.53 -

LOQO infeasible iteration limit iteration limit -

vf - 609.1607518 -162702.75 -

iters j sec 1036 j 17.15 5000 j 147.5 5000 j 517.52 -

Table 12.3 shows the computational results for SNOPT solving the Goddard problem

for each of the usual N . In this case, comparing the results with the AMPL version is not

useful because the AMPL version uses an older version of SNOPT that was unable to solve

this problem.
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Table 12.3: Performance of SNOPT with C implementation

Solver N = 10 N = 50 N = 100

SNOPT Yes Yes Yes

vf 1033.2418134500 1032.8962915064 1032.9153331908

iters 536 1803 6513

constraint (sec) 2.29 15.56 13.13

objective (sec) 0.04 0.13 0.10

solve (sec) 2.92 18.06 23.51
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13 Hang Glider (Betts, Eldersveld, Hu�man [4])

Maximize the �nal horizontal position of a hang glider while satisfying boundary conditions,

path constraints, and physical laws. This problem describes the optimal control of a hang

glider in the presence of a speci�ed thermal updraft. The objective is to 
y the glider as

far in the horizontal direction as is possible within a �xed amount of time.

Formulation

The planar equations of motion for the hang glider are

�x =
1

m
(�L sin(�)�D cos(�)); �y =

1

m
(L cos(�)�D sin(�)�W ); (13.1)

where W = mg and
x(t) � horizontal position

y(t) � altitude

vx(t) � horizontal velocity

vy(t) � vertical velocity

cL(t) � aerodynamic lift coe�cient.

The functions �, D, and L depend on x, vx = _x, vy = _y, and the control function cL. The

function � is de�ned by

sin(�) =
Vy(x; vy)

vr(x; vx; vy)
; cos(�) =

vx

vr(x; vx; vy)
; vr(x; vx; vy) =

q
v2
x
+ Vy(x; vy)2;

where

Vy(x; vy) = vy � ua(x); ua(x) = uM(1�X(x))e�X(x)
; X(x) = (

x

R
� 2:5)2;

and constants uM = 2:5 and R = 100. The functions D and L are de�ned by

D(x; vx; vy; cL) =
1

2

�
c0 + kc

2
L

�
�Svr(x; vx; vy)

2
; L(x; vx; vy; cL) =

1

2
cL�Svr(x; vx; vy)

2
;

where

c0 = 0:034; k = 0:069662; m = 100; S = 14; � = 1:13; g = 9:80665:

The only bound is on the control function cL,

0 � cL � 1:4:

The constraints are the system of di�erential equations (13.1), and the boundary conditions,

as given in [6], are

x(0) = 0; y(0) = 1000; y(tf ) = 900;

vx(0) = vx(tf ) = 13:227567500; vy(0) = vy(tf ) = �1:2876005200:

35



Implementation of the problem involved using a uniform time step and trapezoidal rule

for the integration of the system over N grid points. In [4], the �nal time is left as a

user-de�ned parameter. In this implementation tf = 100, since this makes a comparison

possible with the results from [6]. An optimization problem is obtained by using the �nal

horizontal position x(tf ) as the merit function to be maximized, and the discretization of

(13.1) as the constraints. This formulation leads to an optimization problem with variables

x(1 : N); y(1 : N); vx(1 : N); vy(1 : N); cL(1 : N):

Data for this problem is shown in Table 13.1.

Table 13.1: Hang glider problem data

Variables 5N

Constraints 4(N � 1) + 7

Bounds N

Linear equality constraints 7

Linear inequality constraints 0
Nonlinear equality constraints 4(N � 1)

Nonlinear inequality constraints 0

Nonzeros in r2f(x) 0
Nonzeros in c0(x) 24(N � 1) + 7

Performance

We provide results with the AMPL formulation on a Sun UltraSPARC2. All solvers were

given the same initial values. For the horizontal position x, the initial value is a straight line

between 0 and 100. For (y; vx; vy), the initial values are straight lines between the boundary

conditions. Lastly, for the control cL a constant initial value of 0:7 was given to the solvers.

Table 13.2: Performance of AMPL solvers

Solver N = 10 N = 50 N = 100 N = 500

LANCELOT Yes Yes too many iterations -

xf 1698.331288 1281.02131 81.86073975 -

iters j sec 117 j 1.61 163 j 29.13 1000 j 596.19 -

MINOS infeasible infeasible unbounded unbounded

xf - - - -

iters j sec 3825 j 3.38 1716 j 3.05 2232 j 18.76 3942 j 117.88

SNOPT Yes Yes Yes Yes

xf 1716.750091 1055.075921 1255.190371 1247.405707

iters j sec 229 j 0.49 1872 j 14.96 3622 j 66.74 26651 j 1901.27

LOQO iteration limit iteration limit iteration limit -

xf 1143.042306 162.5977425 442.7979116 -

iters j sec 10000 j 11.34 10000 j 26.42 10000 j 73.16 -

Table 13.2 presents computational results for various values of N . SNOPT found a

solution that, for the largest N , is identical to the solution described in [6]. LOQO found
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nearly the correct solution for the x and y states, but was wildly o� for the rest of the

variables. MINOS was not able to solve the system for any problem size.

Table 13.3: Performance of SNOPT with C implementation

Solver N = 10 N = 50 N = 100 N = 500

SNOPT Yes Yes Yes Yes

xf 1889.2567964520 1285.5323615 1255.2241243 1247.2051276964

iters 585 1923 4509 43832

constraint (sec) 0.30 0.80 1.69 23.41

objective (sec) 0.01 0.02 0.03 0.42

solve (sec) 0.91 6.89 29.69 2036.29

Table 13.3 shows the computational results generated by the C code, which calls SNOPT

for the various values of N . Note that the C code is faster for N = 10; 50; 100. However,

for N = 500 the AMPL version is faster and takes fewer iterations.

Figure 13.1 shows plots forN = 500 for each of the variables. These graphs are generated

by the AMPL implementation, using SNOPT, but the C version generated identical graphs.
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14 Implementation of COPS in C

We use the formulation of the general constrained optimization problem de�ned by a merit

function f : IRn 7! IR and nonlinear constraints c : IRn 7! IRm:

min ff(x) : xl � x � xu; cl � c(x) � cug :

We specify the problem by the following functions in C:

� int name xb (par type par, var type *xl, var type *xu)

speci�es the bounds xl and xu,

� int name cb (par type par, double *cl, double *cu)

speci�es the bounds cl and cu,

� int name xs (par type par, var type *x)

speci�es the standard starting point,

� int name f (par type par, var type *x, obj type obj)

speci�es the values f(x) and rf(x),

� int name c (par type par, var type *x, con type con)

speci�es the values c(x) and c
0(x).

� int name sp (par type par, int *nnz, int *ipntr, int *indcol)

speci�es the sparsity pattern of the sparse Jacobian c
0(x)

where name is the name of the problem (e.g., polygon, electrns). Here obj type and

con type are objective and constraint types de�ned as follows:

typedef struct {

double *f; /* pointer to the objective value */

double *grad; /* array of the partial derivatives */

} obj_type;

typedef struct {

double *c; /* array of constraints (of length m) */

int *nnz; /* Jacobian - pointer to number of nonzeros */

int *ipntr; /* Jacobian - row "pointers" (array of length m+1) */

int *indcol; /* Jacobian - column indicies (array of length *nnz) */

double *jacrow; /* Jacobian - nonzero entries (array of length *nnz) */

} con_type;

and par type and var type are problem-dependent parameter and variable types, respec-

tively. We use the compressed sparse row storage for the Jacobian, but we provide a

routine row2col that changes from compressed sparse row storage to compressed sparse

column storage, used by some solvers in Fortran 77.

We combined both linear and nonlinear parts of the Jacobian c
0(x) in name c.c. How-

ever, it is still possible to separate them for such solvers as SNOPT if there are a signi�cant

number of linear constraints. In this case the user would have to reorder the constraints in

some cases.
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14.1 Largest Small Polygon

typedef struct {

double r; /* polar radius from a fixed vertex */

double theta; /* polar angle from a fixed vertex */

} var_type;

typedef int par_type; /* number of vertices in a polygon */

14.2 Electrons on a Sphere

typedef struct {

double x; /* x-coordinate of a point charge */

double y; /* y-coordinate of a point charge */

double z; /* z-coordinate of a point charge */

} var_type;

typedef int par_type; /* number of point charges */

14.3 Saw Path Tracking

typedef double var_type; /* polynomial coefficients */

typedef struct{

int d; /* maximum degree of the polynomial */

int N; /* number of data points */

double *x; /* array of x-values of data points */

double *y; /* array of y-values of data points */

double M; /* initial slope of the polynomial */

double R; /* minimum radius of curvature */

} par_type;

14.4 Hanging Chain

typedef double var_type; /* height of the chain from a fixed horizontal */

typedef struct {

int nh; /* number of discretization points */

double L; /* length of the chain */

double a; /* height of the chain on the left side */

double b; /* height of the chain on the right side */

} par_type;
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14.5 Optimal Shape Design of a Cam

typedef double var_type; /* polar radius of the edge points of the cam */

typedef struct{

int n; /* number of points in the discretization */

double R_min; /* minimal allowed radius */

double R_max; /* maximal allowed radius */

double R_v ; /* valve parameter */

double alpha; /* curvature parameter */

double d_theta; /* change in angle = 2*pi/5/(n+1) */

} par_type;

14.6 Isometrization of Alpha-Pinene

typedef struct {

double v; /* parameters determining piecewise polynomial on the */

double w[4]; /* interval to the right of the grid point */

} grid_type;

typedef struct {

double theta[5]; /* reaction coefficients */

grid_type *u[5]; /* pointers to the piecewise polynomial representation */

} var_type; /* of the chemical components quantities components */

typedef struct {

int nh; /* number of grid points in the uniform partitioning */

int nm; /* number of concentration measurements */

double t_f; /* final time: diff equations are solved on [0,t_f] */

double y_0[5]; /* initial conditions for the differential equations */

double *tau; /* array of times of the concentration measurements */

double *z[5]; /* arrays of the concentration measurements of the */

} par_type; /* five chemical components in the reaction */

14.7 Marine Population Dynamics

typedef struct {

double v; /* parameters determining piecewise polynomial on the */

double w[4]; /* interval to the right of the grid point */

} grid_type;

typedef struct {

double m[MAXNS]; /* mortality coefficients for the stage i */

double g[MAXNS-1]; /* growth coefficients from stage i to stage i+1 */

grid_type *u[MAXNS]; /* pointers to the piecewise polynomial representation */

} var_type; /* of the population stage abundances */
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typedef struct {

int nh; /* number of grid points in the uniform partitioning */

int ns; /* number of stages in the population */

int nm; /* number of population stage abundance measurements */

double t_f; /* final time: diff. equations are solved on [0,t_f] */

double *tau; /* array of times of the stage abundance measurements */

double *z[MAXNS]; /* arrays of the stage abundance measurements */

} par_type;

14.8 Flow in a Channel

typedef struct {

double v[4]; /* parameters determining piecewise polynomial on the */

double w[4]; /* interval to the right of the grid point */

} var_type;

typedef struct {

int nh; /* number of grid points in the uniform partitioning */

double R; /* Reinolds number */

double u_0[2]; /* boundary conditions for the differential equation */

double u_1[2]; /* at t=0 and t=1 */

} par_type;

14.9 Non-inertial Robot Arm

typedef struct {

double rho; /* length of arm */

double the; /* theta angle for arm */

double phi; /* phi angle for arm */

double rho_dot; /* rho velocity */

double the_dot; /* theta velocity */

double phi_dot; /* phi velocity */

double u_rho; /* control in rho direction */

double u_the; /* control in theta direction */

double u_phi; /* control in phi direction */

} oth_type;

typedef struct {

oth_type *vars; /* stuct of the variables */

double h; /* time step */

} var_type;
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14.10 Linear Tangent Steering

typedef struct {

double y1; /* first position coordinate */

double y2; /* second position coordinate */

double y3; /* first velocity coordinate */

double y4; /* second velocity coordinate */

double u; /* control coordinate (radians) */

} oth_type;

typedef struct {

oth_type *vars; /* stuct of the variables */

double h; /* time step */

} var_type;

typedef int par_type; /* number of grid points */

14.11 Goddard Rocket

typedef struct {

double h; /* altitude */

double v; /* vertical velocity */

double m; /* mass */

double T; /* Thrust */

} oth_type;

typedef struct {

oth_type *vars; /* stuct of the variables */

double h; /* time step */

} var_type;

typedef int par_type; /* number of grid points */

14.12 Hang Glider

typedef struct {

double x; /* first position coordinate */

double y; /* second position coordinate */

double vx; /* first velocity coordinate */

double vy; /* second velocity coordinate */

double cL; /* control coordinate (radians) */

} oth_type;

typedef struct {

oth_type *vars; /* stuct of the variables */

} var_type;

typedef int par_type; /* number of grid points */
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