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Abstract

Big data applications increasingly involve high-dimensional and sophisticated

dependence structures in complex data. Modelling high-dimensional depen-

dence, that is, the dependence between a set of high-dimensional variables,

is a critical but challenging issue in many applications including social media

analysis and financial markets. A typical example concerns the interplay of

financial variables involved in driving complex market movements. A par-

ticular problem is understanding the dependence between high-dimensional

variables with tail dependence and asymmetric characteristics which appear

widely in financial markets. Typically, existing methods,such as the Bayesian

logic program, relational dependency networks and relational Markov net-

works, build a graph to represent the conditional dependence structure be-

tween random variables. These models aim at high-dimensional domains,

and have the advantage of learning latent relationships from data. However,

they tend to force the local quantitative part of the model to take a simple

form such as the discretized form of the data when multivariate Gaussian

or its mixtures cannot capture the data in the real world. The complex

dependencies between high-dimensional variables are difficult to capture.

In statistics and finance, the copula has been shown to be a powerful tool

for modelling high-dimensional dependencies. The copula splits the multi-

variate marginal distributions from dependence structures, so that the spec-

ification of dependence structures can be investigated independently of the

marginal distributions. It can provide a flexible mechanism for modelling real

world distributions that cannot be handled well by graphical models. Thus,

xvii



ABSTRACT

researchers have tried to combine copula and probability graphical model-

s, such as the tree-structured copula model and copula Bayesian networks.

These copula-based models aim to resolve the limitations of discretizing da-

ta, but they impose assumptions and restrictions on the dependence struc-

ture.These assumptions and restrictions are not appropriate for dependence

modelling among financial variables.

In order to address these research limitations and challenges, this the-

sis proposes the use of the truncated partial correlation-based canonical

vine copula, partial correlation-based regular vine copula and truncated par-

tial correlation-based regular vine copula to model the dependence of high-

dimensional variables. Chapter 3 introduces a new partial correlation-based

canonical vine to identify the asymmetric and non-linear dependence struc-

tures of asset returns without any prior dependence assumptions. To simplify

the model while maintaining its merit, a partial correlation-based truncation

method is proposed to truncate the canonical vine. The truncated partial

correlation-based canonical vine copula is then applied to construct and anal-

yse the dependence structures of European stocks as a case study.

Chapter 4 introduces the truncated partial correlation-based regular vine

copula to explore the relations in multiple variables. Very often, strong re-

strictions are applied on a dependence structure by existing high-dimensional

dependence models. These restrictions disabled the detection of sophisticat-

ed structures such as the upper and lower tail dependence between multiple

variables. A partial correlation-based regular vine copula model may relax

these restrictions. The partial correlation-based regular vine copula model

employs a partial correlation to construct the regular vine structure, which

is algebraically independent. This model is able to capture the asymmetric

characteristics among multiple variables by using a two-parametric copula

with flexible lower and upper tail dependence. The method is tested on

a cross-country stock market data set to analyse the asymmetry and tail

dependence in the dynamic period.

Chapter 5 proposes a novel truncated partial correlation-based regular

xviii



ABSTRACT

vine copula model which can capture more flexible dependence structures

without making pre-assumptions about the data. Specifically, the model

employs a new partial correlation to build the dependence structures via a

bottom-up strategy. It can identify important dependencies and information

among high-dimensional variables, truncating the irrelevant information to

significantly reduce the parameter estimate time. The in-sample and out-of-

sample performance of the model are examined by using the data in currency

markets over a period of 17 years.

Chapter 6 discusses how to resolve the high-dimensional asset allocation

problem through a partial correlation-based canonical vine. Typically, the

mean-variance criteria which is widely used in asset allocation, is actually

not the optimal solution for asset allocation as the joint distribution of asset

returns are distributed in asymmetric ways rather than in the assumed nor-

mal distribution. The partial correlation-based canonical vine can resolve the

issue by producing the asymmetric joint distribution of asset returns in the

utility function. Then, the utility function is then used for determining the

optimal allocation of the assets. The performance of the model is examined

by using data in both European and United State stock markets.

In summary, this thesis proposes three dependence models, including one

canonical vine and two regular vines. The three dependence models, which

do not impose any dependence assumption on the dependence structure,

can be used for modelling different high-dimensional dependencies, such as

asymmetry or tail dependencies. All of these models are examined by the

datasets in the real world, such as stock or currency markets. In addition,

the partial correlation-based canonical vine is used to resolve optimisation

allocation of assets in stock markets. This thesis works to show that there is

great potential in applying copula to model complex dependence, particular

in modelling time-varying parameters, or in developing efficient vine copula

simplification methods.

xix





Chapter 1

Introduction

1.1 Background

Uncertainty, which may come, for example from the lack of knowledge or

noise in data, cannot be ignored. It may be the result of a regulatory re-

quirement to optimise the industrial process. Consequently, various methods

to deal with uncertainty have been developed, including trying to predict the

uncertainty in a system. One important element is to measure and model

uncertainty before predicting it. First of all, to analyse any model, its input

factors have to be identified. The process of input identification is not very

easy since it may require approaching experts in given study areas and us-

ing their previous knowledge to reasonably determine the input parameters.

Once the input parameters have been identified, their probability distribution

can be identified, and uncertainty may be predicted based on distributions.

However, most of the existing theories, tools, systems in statistics, data min-

ing, and machine learning, are based on the assumption of the Independence

and Identical Distribution (IID) of all input factors. The assumption may

work well for those simple problems with weakened and avoidable relations

and heterogeneity. The IID assumption, however, is unreasonable in the

real world. The dependence between input factors may significantly affect

the output of modelling and result in the whole analysis being unrealistic if

1
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this dependence is not considered. Therefore, the dependence modelling of

input factors becomes fundamental to research in many fields.

The example which is used in (Kurowicka & Joe 2011) can explain why

it is very important to model dependence for financial area. Suppose $1000

is invested for five years, and the five-year return is:

r5−year = 1000(1 + r1)(1 + r2)(1 + r3)(1 + r4)(1 + r5)

where r1, r2, r3, r4, r5 are denoted as the interest rate for those five years. The

interest rates are unknown due to the uncertainty. The distribution can be

found by investigating their historical data. For simplicity, it can be assumed

that they are uniformly distributed between 0.05 and 0.15. To find the final

return after five years, it is necessary to build the joint distribution of interest

rates. If it is assumed that interest rates are independent of each other, their

joint distribution is then a product of marginal distribution dependence,

which can be easily calculated. However, if some sort of dependence between

interest rates is recognised, then the joint distribution can be built given

marginal distribution and dependence.

There are various measurements of dependence in the literature, including

Pearson’s product moment correlation, Spearman’s rank correlation, Kendal-

l’s tau, and etc, (Joe 1997, Mari & Kotz 2001). These various measurements

of dependence are not mutually independent. These measurement of de-

pendence are not the best, since they either rely on a normal distribution

assumption or do not have a wide range of dependence in a parametric fam-

ily, or provide both positive or negative dependence. These measurements

cannot handle the task mentioned in the above example.

Copula can be used for the purpose. The theory of copula is the math-

ematical language to describe the dependence modelling of input factors. It

represents a natural tool for modelling dependence with uniform margins

(Joe 1997, Nelsen 1999). These allow for the separate examination of the

dependence structure and marginal distribution. They do not rely on the

normal assumption, and also do not ensure variables are characterised by

2
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Figure 1.1: The scatter plot of various copulas with correlation 0.7

the same parametric family of the univariate distribution. Different bivari-

ate copula have the ability to model various features of a joint distribution.

Figure 1.1 shows the scatter plot for Gaussian (top left), Clayton (top right),

Gumbel (bottom left) and Frank (bottom right) copulas. For the same cor-

relation (0.7), the four copula families show different distributions.

Copula has been found to be most successful in bivariate dependence

modelling, since a large number of bivariate copula families are accumulated

in the literature which can be found in (Joe 1997, Nelsen 1999). These bivari-

ate copulas can be used for a wide range of dependence and tail dependence,
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including positive and negative dependence.

The high dimensional dependence modelling, however, is a fundamental

research problem in the economics domain and it is useful for a wide range

of applications. It is believed that economics is much more complex than

physics. In physics, parameters, and phenomena are independent. Howev-

er, most phenomena are interrelated in economics. To describe economics

phenomena numerically, the dependence has to be taken into account. For

example, there are almost three thousand stock listed on the New York Stock

Exchange. Investors are now exploring an increasing number of asset classes.

A portfolio manager finds it challenging work to select investments. The price

of all of these assets are constantly changing in response to the anticipation

of future performance and news. The movements in price are not indepen-

dent (Engle 2009). If they were independent, then it could be possible to

form a portfolio with negligible volatility, which defied common sense. The

dependence structure is a key characteristic in the portfolio choice problem,

since it is instrumental in determining and measuring risk. Hence, it is very

important to recognise that movements in all asset prices are dependent, and

all elements are interconnected in a general equilibrium system. Modelling

the dependence structures of high dimensional assets is a very difficult task

since the dependence structure exists in hierarchical and horizontal coupling

relations.

Suppose there are {1, 2, ..., n} assets, and then the ith asset price at time

t is Pt,i. The asset return rt,i is calculated as rt,i = log(Pt,i/Pt−1,i). According

to the perspective, a multivariate return matrix can be made as follows:

multivariate return matrix =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

r1,t r2,t · · · rn,t

r1,t−1 r2,t−1 · · · rn,t−1

...
...

. . .
...

r1,t−k r2,t−k · · · rn,t−k

⎞

⎟

⎟

⎟

⎟

⎟

⎠

where k < t. Based on common sense, r1,t is affected by {r1,t−1, ..., r1,t−k}.
In addition, the asset price r1 is also affected by {r2, ..., rn}. The intra-
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dependence is the relationship within one column of the above matrix, while

how the assets interact is embodied among the rows of the multivariate return

matrix, indicated as inter-dependence. The inter-dependence is very easy to

explain, since it is common sense that the asset return is determined by its

historical data. The intra-dependence has been demonstrated by the 2008

global financial crisis. That 2008 financial turmoil was originated from the

subprime mortgage market in the United States (US), and it quickly spread

to every part in the US and global financial system. The bankruptcy of

Lehman Brothers in September, 2008 marked a peak point of the crisis – the

failure of the fourth largest investment company was the largest bankruptcy

in US history. The European financial market was heavily impacted by the

collapse of Lehman Brothers.

It is very a challenging job to model the complex high dimensional de-

pendence structure in financial fields. One reason is that each asset return

has its characteristics, which are called stylised facts. The important stylised

facts are given as follow (Andersen 2009):

(i). Daily returns have little or no exploitable conditional mean predictabil-

ity;

(ii). The variance of daily returns greatly exceeds the mean;

(iii). Daily returns are not normally distributed;

(iv). Even after standardising daily returns by a dynamic variance model,

the standardised daily returns are not normally distributed;

(v). Positive and negative returns of the same magnitude may have different

impacts on the variance;

In addition, there are some characteristics in intra-dependence. The de-

pendence between assets returns is asymmetric. For example, stock returns

will have a stronger correlation in a bear market downturn than in a bull

market. They may decrease together in a bear market, however, they may

not increase together in a bull market.
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In order to model the dependence in the financial area, a high dimension-

al copula may be a good choice. Compared with the successfully bivariate

dependence modelling through copula, however, little research of the high

dimensional dependence modelling can be found in the literature. The most

important reason is that many of these bivariate copulas have no straightfor-

ward multivariate extension, which leads to the number of high dimensional

copulas being fairly limited. Only a limited number of bivariate copulas can

be extended to a multivariate version, including multivariate Gaussian cop-

ula, multivariate t copula and multivariate Archimedean copula. It should

be noted that not all bivariate Archimedean copulas have a corresponding

multivariate version (Nelsen 1999). These existing multivariate copula can

only handle a limited dependence structure. For example, the multivari-

ate Archimedean copula model has the structure with only a narrow range of

negative dependence (McNeil & Nešlehová 2009). The multivariate Gaussian

copula model is not suitable to model the asymmetric characteristics, since

(i) the Gaussian copula does not have lower and upper tail dependence, and

(ii) the Gaussian assumption is not appropriate in the real world (Abdous,

Genest & Rémillard 2005, Fang, Fang & Kotz 2002). The multivariate t cop-

ula model, which is studied by (Demarta & McNeil 2005, Nikoloulopoulos,

Joe & Li 2009), does not have flexible lower and upper tail dependence s-

ince the t copula has the same lower and upper tail dependence. In addition,

another reason is that the high dimensional dependence structure is suscepti-

ble to the curse of dimensionality with limited computational capacity since

the complexity of the dependence structure increases exponentially as the

dimensions grow. For example, for a n-dimensional dependence structure,

the number of estimate parameters is up to n(n− 1).

In summary, the main problems of modelling the high dimensional de-

pendence includes: (1) the dependence structure is asymmetric; (2) each

individual variable has fat tail, and it does not follow normal distribution;

(3) typical model cannot capture both lower and upper tail dependence, and;

(4) the structure is susceptible to the curse of dimensionality.
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1.2 Research Issues

Based on the aforementioned current research limitations, this thesis is of

particular interest in the following research issues:

1.2.1 RI 1: High Dimensional Data

The existing research in terms of copula-based dependence modelling mainly

focuses on bivariate studies. However, the cases in the real world often refer

to high dimensional data, which is much more complicated than bivariate

data. For example, in the portfolio optimisation theory, it is advised that

the investor should buy a large number of assets, in order to minimise the

risk. It is obvious that when the investor only buys stock and currency, there

is a high probability of losing money during an economic recession since

there is a strong correlation between the stock market and foreign exchange

market. If the money is invested in several markets, such as stock, currency,

property, derivatives or gold, the risk of losing money can be greatly reduced.

1.2.2 RI 2: Dependence Structure Assumptions

The existing research in terms of dependence structure generally has some

assumptions, which are made on the domain or prior knowledge. For exam-

ple, the canonical vine autoregressive model assumes that the stock returns

of different markets are independent (The details of the model and its as-

sumption can be found in Chapter 3, Section 3.2). The reason is that the

current research methodologies cannot handle the dependence structure since

it is too complex without any assumption in terms of the high dimensional

dependence structure. From the data-driven perspective, it is not correct to

make assumptions on the dependence structure. Prior knowledge may not

reflect the true distribution of data, and it may result in misunderstanding. If

the assumption of structure is based on incorrect prior knowledge, the depen-

dence structure will not reflect the true distribution of data. Typically, a large

number of models assume the distribution follows the Gaussian distribution.

7



CHAPTER 1. INTRODUCTION

However, it has been demonstrated that these Gaussian assmuption models

are not appropriate in the real world (Abdous et al. 2005, Fang et al. 2002)

since a large number of data do not follow the Gaussian distribution.

1.2.3 RI 3: Dependence Structure Truncation and Op-

timisation

It is very important to truncate, simplify, or optimise the high dimensional

dependence structure. For high dimensional data, the complexity of the

dependence structure increases exponentially as the number of dimensions

grow. For example, the number of nodes in a canonical vine dependence

structure is n(n− 1)/2, where n is the number in terms of the dimension of

data. When these nodes are related to two-parametric bivariate copulas, the

number of estimate parameters is n(n − 1), which may cause a very large

computational burden.

1.2.4 RI 4: High Dimensional Dependence Evaluation

The quantitative research targets dependence modelling and evaluation via

exposing the log-likelihood, statistical significance, mutual information or the

relationships among variables. For the dependence modelling applications,

the focus is not only on the methodologies and techniques targets, but also

on industrial application and evaluation. For a case study in the real world,

it is much more important to implement the industrial evaluation, in order to

ensure the models are being used appropriately in the real world scenarios.

1.3 Research Contributions

To address the above research issues related to high dimensional dependence

modelling, this thesis makes the specific contributions below:

• It proposes the algorithm to construct the canonical vine by using a

8
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partial correlation via a bottom-up strategy, in order to model the

dependence with a flexible dependence assumption (Chapter 3, RI 2);

• It proposes the truncated and simplified algorithms for a partial correlation-

based canonical vine, which can significantly reduce the number of pa-

rameters and estimate time. It ensures the partial correlation-based

canonical vine copula model can be effectively applied in high dimen-

sional financial data(Chapter 3, RI 3) ;

• It proposes the algorithm to construct the regular vine by using partial

correlation via a top-bottom strategy (Chapter 4, RI 2);

• It applies two-parametric bivariate copulas in the partial correlation-

based regular vine, and then analyse the tail dependence trends of

cross-country markets in the dynamic periods (Chapter 4, RI 4);

• It proposes the algorithm to construct the regular vine by using partial

correlation via a bottom-up strategy (Chapter 5, RI 2);

• It proposes the truncated algorithm for a partial correlation-based reg-

ular vine, which can effectively reduce the number of parameters and

decrease the parameter estimate time (Chapter 5, RI 3);

• It applies these models in high-dimensional data in various markets,

such as European stock markets (Chapter 3, RI 1 and RI 4), cross-

country stock markets (Chapter 4, RI 1) and foreign exchange rate

markets (Chapter 5, RI 1).

• It evaluates these models through Value at Risk, which is widely used

in the financial area (Chapter 3, 4 and 5, RI 4);

• It builds the utility function via a partial correlation-based canonical

vine, to address the issue of assets allocation with high dimensional

financial variables in the European and United States stock markets

(Chapter 6, RI 1, 2, 3 and 4).
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In summary, the above work forms a comprehensive solution, which is a

collection of copula-based high dimensional dependence modelling approach-

es to address the major research issues listed in Section 1.2.

1.4 Thesis Structure

The thesis is structured as follows:

Chapter 2 provides the literature review in relation to the definition of

copula and its bivariate families and various copula-based models. The pa-

rameter estimate methods and related inference are reviewed. This is followed

by a review of the graphical theory and the regular vine. The relationship be-

tween the graphical probability model and the regular vine are also reviewed.

In addition, the time series theory, partial correlation and model comparison

tests, which constitute the foundation of this thesis, are reviewed. Finally,

the applications of the copula based-model in the financial area are reviewed.

Chapter 3 presents the partial correlation-based canonical vine copula

model. The truncation and simplification methods of the canonical vine are

proposed in the chapter to greatly reduce the number of parameters and es-

timate time. The model is then applied to construct and analyse dependence

structures of European stocks as case studies. Its performance is evaluated

by measuring a portfolio of Value at Risk, a widely used risk management

measure. In comparison to a very recent canonical vine model (canonical

vine autoregressive), the experimental results demonstrate that the model

has much better quality in terms of the Value at Risk, and it provides in-

sightful knowledge for investors to control and reduce the aggregation risk of

the portfolio.

Chapter 4 presents the partial correlation-based regular vine via the top-

bottom strategy. This model is able to capture the asymmetric characteris-

tics among multiple variables by using two-parametric copula with flexible

lower and upper tail dependence. The method is tested on a cross-country

stock market data set to analyse the asymmetry and tail dependence. The
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high prediction performance is examined by the Value at Risk, which is a

commonly adopted evaluation measure in the financial market.

Chapter 5 proposes a novel truncated partial correlation-based regular

vine copula model which can capture more-flexible dependence structures

without making pre-assumptions about the data. Specifically, the model

employs a partial correlation-based method to build the dependence struc-

tures. It can identify important dependencies and information among high

dimensional variables, truncating the irrelevant information to reduce the

parameter estimation time. The model is then applied to construct the de-

pendence structures of 17 currency markets over 17 years as a case study.

The model’s in-sample performance is evaluated via a standard model se-

lection criteria Vuong test, and the out-of-sample performance is evaluated

by Value at Risk, a widely used industrial benchmark. The extensive ex-

periment results show that the model and its intrinsic design significantly

outperform industry baselines, and provide financially interpretable knowl-

edge and profound insights into the high dimensional dependence structures

of complex financial variables.

Chapter 6 proposes the new utility function, in which the partial correlation-

based canonical vine is used to produce the complex joint distribution of asset

returns. The utility function is used to determine the optimal allocation of

the assets. The importance of using the asymmetries information is assessed

by comparing the performance of a portfolio based on the mean-variance cri-

teria and that of a portfolio based on the truncated partial canonical vine.

The results show that the investors using the forecasts of these asymmetries

can make better portfolio decisions than those who ignore the asymmetries

information.

Chapter 7 concludes the thesis and outlines the scope for future work.

Figure 1.2 shows the research profile of this thesis.
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Figure 1.2: The profile of work in this thesis
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Chapter 2

Literature Review and

Foundation

This chapter reviews the related work of copula, including the definition

of copula, the bivariate copula families, copula-based models, the regular

vine theory, the foundation theory and applications in the financial area.

The definition of copula and its families are introduced in Section 2.1, and

then various copula-based models are reviewed in Section 2.2. Section 2.3

presents the multivariate copula models. The graphical theory and regular

vine models are presented in Section 2.4. Section 2.5, 2.6 and 2.7 introduces

the foundation employed throughout the thesis, including the partial corre-

lation, time series analysis and model comparison tests. Section 2.8 presents

the applications in the financial area. Finally, Section 2.9 summarises this

chapter.

2.1 Copula

As a first introduction to copula, an important result in the literature is

recalled. Let x = (x1, ..., xn) be n-dimensional random variables with join-

t density function f(x1, ..., xn) and cumulative distribution function (cdf)

F (x1, ..., xn). Further, let F1(x1), ..., Fn(xn) be the corresponding (strictly
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increasing, continuous) marginal distributions of x1, ..., xn. A copula, which

is itself a multivariate cdf, is the link that connects the marginal distribution

to a cdf.

Definition 2.1 (Copula) An n-dimensional copula C is a multivariate cu-

mulative distribution function on [0, 1]n,

C : [0, 1]n → [0, 1],

with univariate uniform distributed margins.

According to Sklar’s theorem (Sklar 1959), there exists a unique copula

C so that:

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)) (2.1)

In fact, it assumes continuous marginals F1, ..., Fn, C is unique. This is

because Equation (2.1) can be converted to

C(u1, ..., un) = F (F−1
1 (u1), ..., F

−1
n (un)) (2.2)

where F−1
1 , ..., F−1

n are the inverse distribution functions of the margins. The

above representation of the joint cumulative distribution function (cdf) im-

plies the following representation of the joint probability distribution function

(pdf):

f(x1, ..., xn) = c(F1(x1), ..., Fn(xn)) ·
n
∏

i=1

fi(xi)

where c(x1, ..., xn) =
∂C(x1, ..., xn)

∂x1, ..., ∂xn

(2.3)

where c is the copula density, and (f1(x1), ..., fn(xn) and f are the correspond-

ing marginal distributions of (F1(x1), ..., Fn(xn)) and the joint cumulative

distribution of F respectively. The usefulness of the above representation

is the converse version Sklar’s theorem: given any distribution (F1, ..., Fn)

14
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and any copula C, the function F , which is defined by Equation (2.1), de-

fines a valid joint distribution with marginal distributions. The marginal

distributions and copula function do not need belong to same family of dis-

tribution, which indicates that they can be symmetric or skewed, continuous

or discrete, fat-tailed or thin-tailed. For example, it can combine a Gaussian

distributed variable with an exponentially distribution variable via a Clayton

copula, and obtain a valid joint bivariate distribution. The ability of copula

to combine marginal distributions with a copula function allows research to

focus on the work of modelling the dependence structure, leaving the task of

marginal distributions.

One thing which should be noted is that in Equation (2.3) when al-

l (x1, ..., xn) are all independent random variables, then f is equal to the

product of the marginal densities. In that case, the copula c is equal to unity

across its support.

2.1.1 Elliptical Copulas

Elliptical copulas are copulas generated by elliptical distributions using the

inversion Equation (2.2). The detail can be found in (Owen & Rabinovitch

1983).

Definition 2.2 (Elliptical Distribution) The n-dimensional random vec-

tor x has an elliptical distribution iff the density function f(x) has the rep-

resentation

f(x) = cn|Σ|−
1
2 g((x− µ)′Σ−1(x− µ)) (2.4)

with some constant cn ∈ R, mean vector µ ∈ Rn×n symmetric positive defi-

nite, and some function g is independent of n.

The most famous example of an elliptical distribution is the multivariate

normal distribution with cn = (2π)−n/2 and g(s) = e−
1
2
s ∀s > 0. According
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Equation (2.2), the multivariate Gaussian copula is given as follows:

c(u) = ΦR(Φ
−1(u1), ...,Φ

−1(un)) (2.5)

where Φ and Φ−1 is denoted as the standard normal cdf and the inverse of the

standard normal cdf respectively. ΦR is denoted as the multivariate standard

normal cdf with symmetric positive definite correlation matrix R ∈ [−1, 1]n.

Thus, the density is given by:

c(u) = |R|− 1
2 e

1
2
x′(In−R−1x) (2.6)

where x = (x1, ..., xn)
′ ∈ N with xi = Φ−1(ui), i = 1, ..., n

In addition, another widely used elliptical copula is the multivariate t

copula, which is presented by Demarta and McNeil (2005). It is derived from

the multivariate t distribution with constant cn = (πn)−n/2Γ(ν+n
2
)/Γ(ν

2
)) and

g(s) = (1 + s
ν
)−(ν+n)/2 ∀s > 0. Thus, the multivariate t copula is defined as

follows:

C(u) = tR,ν(t
−1
ν (u1), ..., t

−1
ν (un)) (2.7)

where tR,ν is denoted as the cdf of the multivariate standard t distribution

with correlation matrix R ∈ [−1, 1]n and ν > 0 degree of freedom, and t−1
ν

is the inverse of the cdf tν of the unvariate standard t distribution with ν

degrees of freedom.

2.1.2 Archimedean Copulas

Archimedean copulas have three advantages, which lead to a large number

of references on the copulas. These advantages consist of: (1) the ease with

which they can be constructed; (2) the great variety of families of copulas

which belong to this class; and (3) the many nice properties, such as sym-

metry and associativity, possessed by the members of the class. The detail

refers to Nelsen (1999).
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Theorem 2.1 Let ϕ : [0, 1] → [0,∞] be a continuous strictly decreasing

function such that ϕ(0) = ∞ and ϕ(1) = 0 and let ϕ−1 denote the inverse of

ϕ such that it is completely monotonic. Then

C(u) = ϕ−1(ϕ(u1) + ...+ ϕ(un)) (2.8)

is a copula.

The copula C in Theorem 2.1 is called the n-dimensional Archimedean

copula with generator ϕ. In the bivariate case, the assumption of complete

monotonicity and ϕ(0) = ∞ are not necessary, when the pseudo-inverse ϕ[−1]

of a convex generator ϕ is considered instead of ϕ−1. The pseudo-inverse is

defined by:

ϕ[−1](t) =

{

ϕ−1(t), 0 ≤ t ≤ ϕ(0),

0, ϕ(0) ≤ t ≤ ∞.

Theorem 2.1 provides an easy method to construct multivariate copulas of

arbitrary dimension. However, since most commonly used generators depend

on one or at the most two parameters, there are only one or two parameters to

model the dependency of n random variables, which are the limiting factors of

Archimedean copulas. The limitation results in these Archimedean copulas

are very appealing in the bivariate case.

2.1.3 Bivariate Copula Families

The bivariate copula families are introduced as follow. The detail can be be

found in (Joe 1997, Nelsen 1999).

Gaussian Copula

The Gaussian copula belongs to the elliptical copula family. The bivariate

Gaussian copula with correlation parameter ρ ∈ (−1, 1) is defined as

C(u1, u2) = Φρ(Φ
−1(u1),Φ

−1(u2)), (2.9)
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where Φρ denotes the bivariate standard normal cdf with correlation ρ. The

correspond density is given as follows:

c(u1, u2) =
1

√

1− ρ2
e
−

ρ2(x21+x22)−2ρx1x2
2(1−ρ2) , (2.10)

where x1 = Φ−1(u1) and x2 = Φ−1(u2). The bivariate Gaussian copula

belongs to the class of elliptical copulas. For ρ → 1, the Gaussian copula

exhibits complete positive, and for ρ → −1 complete negative dependence.

t Copula

The t copula belongs to the elliptical copula family The t copula is the two-

parametric copula (Demarta & McNeil 2005).The density of the bivariate t

copula with parameters ρ ∈ (−1, 1) and ν > 0 is given by:

c(u1, u2) =
2

2πdtν(x1)dtν(x1)
√

1− ρ2
(1 +

x2
1 + x2

2 − 2ρx1x2

ν(1− ρ2)
)−

ν+2
2 , (2.11)

where dtν(x1) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πν

(1 +
π2

ν
)−

ν+1
2

is the density of an univariate t distribution with ν degree of freedom with

x1 = t−1
ν (u1) and x2 = t−1

ν (u2), where t−1
ν (·) denotes the inverse distribution

function of an univariate t distribution with ν degrees of freedom. For ρ → 1

the t copula exhibits complete positive and for ρ → 1 complete negative

dependence.

Clayton Copula

The Clayton copula (see (Nelsen 1999)) is an Archimedean copula with gen-

erator ϕ(t) = 1
θ
(tθ − 1) and it is therefore given by:

C(u1, u2) = (u−θ
1 + u−θ

2 − 1)−
1
θ (2.12)

and the density

c(u1, u2) = (1 + θ)(u1u2)
−1−θ(u−θ

1 + u−θ
2 − 1)−

1
θ
−2 (2.13)
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where θ ∈ (−1,∞)\{0}. For θ → 0 , the Clayton copula exhibits indepen-

dence and for θ → ∞ complete positive dependence.

Gumbel Copula

The Gumbel copula (see (Nelsen 1999)) is an Archimedean copula with gen-

erator ϕ(t) = (−log t)θ, which is given by:

C(u1, u2) = e−((−log u1)θ+(−log u2)θ)
1
θ , (2.14)

where θ ≥ 1. The corresponding density is given by:

c(u1, u2) =
C(u1, u2)

u1u2

× (log u1log u2)
θ−1

((−log u1)θ + (−log u2)θ)
2− 1

θ

× [((−log u1)
θ + (−log u2)

θ)
1
θ + θ − 1]

(2.15)

where θ ∈ [1,∞). The Gumbel copula is only applicable to model positive

dependence. For θ = 1, the Gumbel copula exhibits independence and for

θ → ∞ complete positive dependence.

Frank Copula

The Frank copula (see (Nelsen 1999)) is an Archimedean copula with genera-

tor ϕ(t) = −log[ e
−θt−1
e−θ−1

], and the corresponding distribution function is given

by:

C(u1, u2) = −1

θ
log[1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1
], (2.16)

where θ ∈ (−∞,∞)\{0}. The density is given by:

c(u1, u2) = θ(e−θ − 1)
e−θ(u1+u2)

[e−θ − 1 + (e−θu1 − 1)(e−θu2 − 1)]2
(2.17)

For θ → ∞, the Frank copula exhibits complete positive, and for θ → −∞
complete negative dependence.
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Joe Copula

The Joe copula (see (Nelsen 1999)) is another Archimedean copula with

generator ϕ(t) = −log[1− (1− t)θ], and it is therefore given by:

C(u1, u2) = 1− [(1− u1)
θ + (1− u2)

θ − (1− u1)
θ(1− u2)

θ]
1
θ , (2.18)

with θ > 1, and the following density:

c(u1, u2) =[(1− u1)
θ + (1− u2)

θ − (1− u1)
θ(1− u2)

θ]
1
θ
−2(1− u1)

θ−1(1− u2)
θ−1

× [θ − 1 + (1− u1)
θ + (1− u2)

θ − (1− u1)
θ(1− u2)

θ]

(2.19)

For θ → ∞, the Joe copula exhibits negative dependence.

Clayton-Gumbel Copula (BB1)

The Clayton-Gumbel copula is a two-parametric Archimedean copula and

can regarded as a generalisation of the one-parametric Clayton and Gumbel

families, which have been studied by Joe (1997). To avoid confusion, it can

simply be called the BB1 copula. The generator is ϕ(t) = (t−θ − 1)δ, which

yields:

C(u1, u2) = [1 + [(u−θ
1 − 1)δ + (u−θ

2 − 1)δ]
1
δ ]−

1
θ (2.20)

where θ > 0 and δ ≥ 1. The corresponding density is given by:

c(u1, u2) =
{

1 + [(u−θ
1 − 1)δ + (u−θ

2 − 1)δ]
1
δ

}− 1
θ
−2

× [(u−θ
1 − 1)δ + (u−θ

2 − 1)δ]
2
δ
−2

×
{

θδ + 1 + θ(δ − 1)[(u−θ
1 − 1)δ + (u−θ

2 − 1)δ]−
1
δ

}

× (u−θ
1 − 1)δ−1u−θ−1

1 (u−θ
2 − 1)δ−1u−θ−1

2

(2.21)
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The BB1 copula is similar to Clayton and Gumbel copulas, and positive

dependence is onbtained for θ → ∞ and δ → ∞. BB1 is Clayton copula

when δ = 1, and Gumbel copula for θ → 0.

Joe-Clayton Copula (BB7)

Similar to the BB1 copula, the Joe-Clayton copula is a two-parametric gen-

eralisation of the corresponding one-parametric copula families, which have

been studied by Joe (1997) . It can simply be called the BB7 copula. The

generator is defined as ϕ(t) = [1− (1− t)θ]−δ−1, and the copula distribution

function is given by:

C(u1, u2) = 1− [1− [(1− (1− u1)
θ)−δ + (1− (1− u2)

θ)−δ]−
1
δ ]

1
θ (2.22)

for θ ≥ 1 and δ > 0. The corresponding density is

c(u1, u2) =(−1

θ
)(
1

δ
− 1) · h 1

θ
−2du1h · du2h − 1

θ
· h 1

θ
−1du1u2h

where

h =1− ((1− (1− u1)
θ)−δ − (1− (1− u2)

θ)−δ − 1)
1
δ

du1h =− θ((1− (1− u1)
θ)−δ − (1− (1− u2)

−δ − 1)
1
δ
−1

(1− (1− u1)
θ)−δ−1(1− u1)

θ−1

du2h =− θ((1− (1− u1)
θ)−δ − (1− (1− u2)

−δ − 1)
1
δ
−1

(1− (1− u2)
θ)−δ−1(1− u2)

θ−1

du1u2h =
1

δ
(−1

δ
− 1)((1− (1− u1)

θ)−δ−1(1− u1)
θ−1

− (1− (1− u2)
θ)−δ − 1)

1
δ
−2du1S · du2S

du1S =− θδ(1− (1− u1)
θ)−δ−1(1− u1)

θ−1

du2S =− θδ(1− (1− u2)
θ)−δ−1(1− u2)

θ−1

(2.23)

It is similar to Joe and Clayton copulas, the positive dependence is ob-

tained for θ → ∞ and δ → ∞. Furthermore, the BB7 copula is Clayton

copula when θ = 1, and Joe copula for δ → 0.
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2.1.4 The Tail Dependence of Copulas

The tail dependence and measurements are reviewed in this section. It is

very simple and easy to measure the dependence structure via the linear

correlation coefficient when assuming normality. However, if more flexible

models for dependence structure are considered, other dependence measures

and methods may be considered. Joe (1997) and Nelsen (1999) introduced a

large number of dependence measures and methods. including: Spearman’s

rank correlation, Kendall’s tau (detail can be found in Appendix A) and

tail dependence. The empirical analysis are often familiar with the sample

version based on ranked data. For instance, the rank correlation is useful

for providing information on the sign of the dependence between variables.

Suppose X1 and X2 are continuous-valued, and X follows the copula model

suggested by Equation (2.1). Let random vector (U1, U2) := (F1(x1), F2(X2))

with standard uniform marginal distribution. In many cases, high values of

X1 and X2 exhibit different levels, or even directions of dependence that

lower the values of X1 and X2. The phenomenon is called asymmetric de-

pendence. Nelsen (1999) suggested that if X1 and X2 are continuous-valued,

the dependence properties between U1 and U2, where U1 and U2 are the cor-

responding distribution of X1 and X2 respectively. In that case, measures

of asymmetric dependence are often based on the conditional probabilities,

which are given as follows:

λup
1,2(α) =P (U1 > α|U2 > α)

λlow
1,2 (α) =P (U1 < α|U2 < α)

(2.24)

where 0 < α < 1. Then, the limits of Equation (2.24) are called the upper

and lower tail dependencies (Joe 1997), which are given by

λup
1,2(α) = lim

α→1
λup
1,2(α)

λlow
1,2 (α) = lim

α→0
λlow
1,2 (α)

(2.25)

22



CHAPTER 2. LITERATURE REVIEW AND FOUNDATION

Tail dependence, which is a measure of dependence between extreme

events, is a key feature to tell various copula families. The extremal de-

pendence of a multivariate distribution F can be described by the various

tail dependence parameters of its copula C. Generally, for random vector

(U1, ..., Un) := (F1(x1), ..., Fn(Xn)) with standard uniform marginal distribu-

tion, the lower and upper tail dependence are defined as follows:

λL = lim
u→0

Pr{U1 ≤ u, ..., Un ≤ u | Un ≤ u}

= lim
u→0

C(u, ..., u)

u

λU = lim
u→0

Pr{U1 > 1− u, ..., Un > 1− u | Un > 1− u}

= lim
u→0

C(1− u, ..., 1− u)

u

(2.26)

where C is denoted as the survival function of C. If λU exists and λU ∈ (0, 1],

then copula C has upper tail dependence, and no upper tail dependence if

λU = 0. Similarly, If λL exists and λL ∈ (0, 1], then copula C has lower

tail dependence , and no lower tail dependence if λL = 0. In addition, tail

dependence is one of the most important properties that differentiate the

different copula families. For example, the Gumbel copula has only upper

tail dependence coefficient, and the Gaussian copula does not allow for any

tail dependence coefficient.

The lower and upper tail dependencies for the above bivariate copulas is

given in Table 2.1.

2.2 Copula-based Models

This section reviews the copula-based models which are proposed in the

literature. The majority of applications of the copula-based model are in the

financial fields, so this section focuses on such models. A large number of

copula-based models are reviewed firstly, and then the parameter estimate of

copula-based models, inference and the goodness of fitting tests are reviewed.
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Table 2.1: The Tail Dependence of the Bivariate Copula Family

Lower Tail Dependence Upper Tail Dependence

Gaussian - -

t 2tν+1(−
√
ν + 1

√

1−ρ
1+ρ

) 2tν+1(−
√
ν + 1

√

1−ρ
1+ρ

)

Clayton 2−1/θ -

Gumbel - 2−1/θ

Frank - -

Joe - 2− 21/θ

BB1 2−1/(θδ) 2− 21/δ

BB7 2− 21/δ 2− 21/θ

θ and δ are parameters of the corresponding copula family.

2.2.1 Time-varying Copula Models

The motivation, which is to consider the conditional dependence structure

as it varies through time, is that Andersen (2006) provided an abundan-

t amount of evidences that the conditional volatility of the economic time

series changes throughout time. Therefore, before specifying a function for

a time-varying conditional copula model, it is essential to test for the p-

resence of time-varying dependence. A simple test, which is mentioned in

(Patton 2006a), is used for a break in rank correlation at some specified

point in the sample. It is used for examining the exchange currency rate.

This test is very easy to implement, however, it needs a researcher to have a

prior knowledge of when a break in the dependence structure may occur. An-

drews (1993) proposed another test to examine the time-varying dependence

structure. The second test can be used for a break in the rank correlation

coefficient at some unknown date. A variety of statistics test is available for

the test. Engle (1982) proposed a Autoregressive Conditional Heteroscedas-

ticity (ARCH) LM-based test for the time-varying dependence structure

test. The ARCH LM -based test seeks for autocorrelation in a measure of

dependence, which is captured by an autoregressive-type model, rather than
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looking for discrete one-time breaks in the dependence structure in the pre-

vious two tests. Rémillard (2010) used a test for one-time changes in the

copula at some time in the sample period. The break time can be known

or unknown in his framework. The results show that the test statistics are

similar to Kolmogorov-Smirnov statistics, which are compared with the em-

pirical copula, before or after break date. Gaißer, et al. (2010) considered

using a test for a change in the dependence structure by looking for a change

in Hoeffding’s φ2 dependence measure.

Observation Driven Models

The observation driven models, in which the copula functional form is fixed

and its parameters are set to vary over time, are proposed in the literature,

such as Patton (2004, 2006a) Jondeau and Rockinger (2006a), Ausin and

Lopes (2010), Christoffersen, et al. (2012) and Creal, et al. (2013).

Patton (2004) proposed time-varying copula models to capture dynamic

moments (up to the fourth order), and then constructed a time-varying de-

pendence structure that allows for a different dependence structure in various

financial markets. Patton (2006a) strengthened time-varying copula model

via the conditional copula theory. The time-varying copulas and structural

breaks are combined in this model. It allows for analysing the dynamic con-

ditional dependence structure, and using conditional copulas for multivari-

ate density modelling. Jondeau and Rockinger (2006a) proposed a General-

ized Autoregressive Conditional Heteroscedasticity (GARCH)-copula based

methodology to model the dynamic dependence between financial return-

s. It models a time-varying correlation for Gaussian and t copulas in three

different ways, including Dynamic Conditional Correlations (DCC) corre-

lations and regime switching correlations. Since estimating the univariate

distributions at first and then the joining distribution, the parameters in de-

pendence can easily be rendered conditional and time varying. Ausin and

Lopes (2010) developed a Bayesian methodology to make inference and pred-

ication in the GARCH-copula based model. A one-step Bayseian procedure
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is used to ensure that all parameters are estimated simultaneously using the

whole likelihood function. Then, dynamic copulas are modelled to capture

the time evolution of the dependence structure. Christoffersen, et al. (2012)

developed a Dynamic Asymmetric Copula (DAC ) model which allows for

asymmetric and dynamic tail dependence. It is a generalised model based

on the flexible DCC model of Engle (2002) and Tse and Tsui (2002). The

DAC model allows for asymmetric trends in dependence structure and devia-

tion from multivariate normality. It then models the joint distribution using

dynamic copulas to capture the nonlinear dependence in financial markets.

Creal, et al. (2013) proposed a class of observation drive time series models,

which is called Generalized Autoregressive Score. The scaled score of likeli-

hood functions is used for updating parameters over time. The framework

is illustrated by introducing a dynamic copula function for the multivariate

point processes with time-varying parameters.

Stochastic Copula Models

Hafner and Manner (2012) developed dynamic copula models, in which the

copula parameters are driven by an independent stochastic process rather

than by the observation as in the DCC model. This dynamic copula model

consists of the Gaussian copula with stochastic correlation process, thus, it

can be viewed as a generalisation of multivariate stochastic volatility models

which are introduced by Kim et al. (1998). Manner and Segers (2011)

produced significant research regarding the correlation mixtures of elliptical

copulas (e.g. Gaussian and t copulas) in dynamic copula models. They found

that both penultimate and asymptotic tail dependence are much larger than

for ordinary elliptical copulas with the same unconditional correlation.

Regime Switch Copula Models

Another point of interest in relation to time-varying copula models is that

both the degree and the type of dependence varies over time. These models

allow for a number of states, and each is characterised by a different copula
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that may be from the same family but still allow for different parameters.

Rodriguez (2007) presented time-varying copula models, in which the

conditional copula allows the functional form of the copula to change over

time. The dependence structure is modeled by a mixture of copulas with

parameters which vary over time according to a Markov switching model.

Two classes of copulas are studied, one is a finite mixture of Frank, Gumber

and Clayton copulas, which ensures that the asymmetries in tail dependence

are captured, and the other is the bivariate t copula, which exhibits sym-

metric tail dependence. Okimoto (2008), Chollete, etal., (2009) and Garcia

and Tsafack (2011) made similar studies by building a regime switching cop-

ula model and Markov switching model. Markwat, et al. (2009) developed

a framework that allows for both changes in the structure of the degree of

dependence. It models the changes in the degree and structure as switches

between regimes. The regime processes are latent and follow the first-order

Markov chains.

Other Copula Models

Giacomini, et al. (2009) proposed copula models with adaptively estimated

time varying parameters, which are free from the usual normality assump-

tion. When employing a semi-parametric approach, the time-varying copula

parameters are selected locally via an adaptive estimation under the assump-

tion of local homogeneity. The adaptive estimation does not make a structure

break, since it can ensure parameters vary smoothly from one value to an-

other.

Guegan and Zhang (2010) developed the time-varying copula model, in

which copula functions vary over time. Accordly, they compare the para-

metric copula to a nonparametric estimation of copula density by using the

goodness-of-fit test. In such a way, they can measure the variance of the

dependence structure. Then, due to changes in the variance of the depen-

dence structure, the model can determine whether both copula families and

parameters change or whether it is only the parameters that change.
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Dias and Embrechts (2010) presented a time-varying copula model. They

introduced a dynamic specification for the correlation between two variables

which is time-varying and modelled independently from marginal distribution

by using the Fisher transformation.

Harvey (2010) proposed some statistical procedures for tracking copula

probabilities over time and investigated how these procedures changed with

real data. Since the distribution function of copula is not specified, the

parameters are estimated by using filters which are designed for a binary time

series. Busetti and Harvey (2011) did a further study employing the same

method. They developed tests for changes in different part of copulas, as well

as overall tests for changing dependence. These test statistics are constructed

from time series of indicator variables and their asymptotic distribution,

which have power against breaks at unknown points as well as against gradual

changes.

Hafner and Reznikova (2010) presented a semi-parame-tric time-varying

copula model, where the marginal distribution is specified as the paramet-

ric GARCH-type process and the dependence parameters of the copula are

allowed to change through time in a nonparametric way.

2.2.2 Estimate and Inference

In the subsection, the estimate procedures of copula-based models are re-

viewed. It focuses on the continuous random variables. The assumption of

continuity is not always required, however, it simplifies some of the presen-

tation. At first, the Maximum Likelihood Estimator (MLE) is described as

follows:

Let {x1t, x2t, ..., xnt} be the data matrix. According to Equation (2.3),

the expression for the log-likelihood functions is given by:

l(θ) =
T
∑

t=1

logc(F1(x1t), F2(x2t), ..., Fn(xnt)) +
T
∑

t=1

n
∑

j=1

logfj(xjt) (2.27)

where θ is the set of all parameters of both margins and copulas.
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Hence, given a set of marginal probability distribution functions (pdf)

and a copula function, the maximum likelihood estimators are obtained by:

θ̂MLE = argmax
θ∈Θ

l(θ) (2.28)

The maximum likelihood method may be very computationally intensive,

especially in the case of a high dimension, since it is necessary to estimate

jointly the parameters of the margins and the parameters of the dependence

structure represented by the copula function. Equation (2.27) is composed of

two positive terms: one consisting of the copula density and its parameters,

and one involving the margins and all parameters of the copula density.

According to the assumptions of copula models, the estimation procedure

and approach to inference results in parametric, semi-parametric and non-

parametric methods.

Parametric Estimate

Joe and Xu (1996) proposed that these set of parameters can be estimated

in two stages:

As a first stage, they estimate the margins’ parameters θm by performing

the estimation of the univariate marginal distributions:

θ̂m = argmax
θm

T
∑

t=1

n
∑

j=1

logfj(xjt;θ
m) (2.29)

The second stage is to perform the estimate of the copula parameters θc

given θm ;

θ̂c = argmax
θc

T
∑

t=1

log c(F1(x1t), F2(x2t), ..., Fn(xnt);θ
c, θ̂

m
) (2.30)

The two-stage estimation method is called Inference for Margins (IFM),

which is defined as the vector:

θ̂IFM = (θ̂
m
, θ̂

c
)′ (2.31)
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Let l, lmj and lc be denoted as the entire log-likelihood function, the log-

likelihood of the jth margin, and the log-likelihood for the copula function

respectively. Thus, the IFM estimator is the solution of:

(
∂lm1
∂θm1

,
∂lm2
∂θm2

, ...,
∂lmn
∂θmn

,
∂lc

∂θc ) = 0′ (2.32)

while the MLE comes from solving:

(
∂l

∂θm(1)
,

∂l

∂θm(2)
, ...,

∂l

∂θm(n)
,
∂l

∂θc ) = 0′ (2.33)

The two estimators, in general, are not equivalent. Generally, IFM is

known as the Multi-stage Maximum Likelihood. The multi-stage maximum

likelihood is asymptotically less efficient than the one-stage MLE. There is

a trade off between the computability and asymptotic relative efficiency of

estimators. Joe (1997) pointed out that the IFM method is highly efficient

compared to the MLE. Joe (2005) implemented simulation studies, and sug-

gested that the loss is not great in many cases. IFM is much easier for the

total number of parameters exceeds 15, and it is convenient for a compari-

son of the various copula with the same set of univariate margins. Patton

(2006b) also arrived at similar conclusions.

Semi-parametric Estimate

Semi-parametric copula-based models generally employ a non-parametric

model for marginal distribution and a parametric model for copula function.

The univariate marginal distributions are estimated non-parametrically in

the first stage, such as by the empirical density function or their scaled ver-

sions. The estimate of copula parameters is then usually conducted via MLE

in the second stage. The method can be described as follows:

1. Estimate the margins using the empirical distribution ( without assump-

tion on the parametric form for each of them), i.e. ˆFi(xit), i = 1, ..., n;
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2. Estimate the copula parameters via MLE;

θ̂c = argmax
θc

T
∑

t=1

log c(F1(x1t), F2(x2t), ..., Fn(xnt);θ
c) (2.34)

In this case, it is called Canonical Maximum Likelihood (CML) or Pseu-

do Maximum Likelihood (PML) by Genest et al. (1995) and Klaassen, et

al. (1997). Genest et al. (1995) investigated the properties of the semi-

parametric method for estimating the dependence parameters in a family of

multivariate distribution. The result presents that the estimator obtained

by PML, is consistent and asymptotically normal. Shih and Louis (1995)

studied the properties of both parametric and semi-parametric estimation

procedures for bivariate copulas. They concluded that both parametric and

semi-parametric estimators are efficient in terms of independence Further

the parameter estimates in the margins have high efficiency and are robust

in relation to misspecification of the dependence structure.

Compared with the fully parametric estimation procedure, the copula

likelihood function in the semi-parametric method depends on the finite-

dimensional parameters F1, ..., Fn and the marginal distribution parameters.

Thus, the standard maximum likelihood methods cannot be applied in this

case. Chen and Fan (2006a) proposed a method for estimating the asymp-

totic covariance matrix. However, the asymptotic normal distribution can

be obtained under certain condition. The proof is provided by Chan et al.

(2009).

Another result suggested by Chen and Fan (2006b) is that the asymptotic

variance of the MLE of the copula parameters depends on the estimate error

in the empirical distribution function, but not the estimated parameters in

the marginal distribution. It ensures that the model is estimated for con-

ditional means and variance through calculating the standardised residuals

and ignoring the estimate error from the mean and variance models.

The semi-parametric estimate method is only applied for constant condi-

tional copula models. Rémillard (2010) showed that for time-varying condi-

tional copula models, the estimate error from the models for the conditional
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means and variance affects the asymptotic distribution of the estimators of

the copula. In addition, the semi-parametric method is only applied in cases

where the marginal distribution of the standardised residuals are estimat-

ed nonparametrically. For parametric marginal distribution, the estimate

error from models will affect the distribution of the estimator of the copu-

la. Chen (2006) proposed a sieve maximum likelihood estimation procedure

for a broad class of semi-parametric multivariate distribution models. The

methods achieves full efficiency.

Nonparametric Estimate

In the nonparametric case, the majority of the literature assumes that the

conditional distribution is constant and it is estimated via the empirical dis-

tribution function. Genest and Rivest (1993) studied the fully non-parametric

estimation procedure with the IID data for the Archimedean copulas. While

selecting an appropriate Archimedean copula to provide a suitable represen-

tation of the dependence structure between two variables, the key to the

estimation procedure is a one-dimensional empirical distribution function

that can be constructed whether the uniform representation of two variables

is Archimedean or not , and this is independent from their marginal distribu-

tion. Genest (2011) developed a new rank-based estimator for Archimedean

copulas. The estimation procedures are based on a reconstruction of the

radial part of the simplex distribution from the Kendall distribution, which

is obtained through the multivariate probability integral transformation of

data. Genest and Segers (2009) developed a rank-based estimation method

for the extreme-value copula with a Pickands dependence function. Scail-

let and Fermanian (2002) studied the nonparametric estimation method for

time series data. Sancetta and Satchell (2004) introduced a new family of

copula based on Bernstein polynomials. The Bernstein copula can be used

as an appropriate known or unknown copula. For unknown Bernstein cop-

ulas, nonparametric estimation procedures are developed via the empirical

Bernstein copula. Ibragimov (2009) studied the characteristics of the higher-
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order Markov process via the copula based approach. The nonparametric

estimation of the copula function is used for the construction higher-order

Markov process with arbitrary one-dimensional margins, which is in line with

dependence assumption.

Other Estimate Methods

Some estimation methods, other than maximum likelihood estimation, are

used in the literature. Ghoudi and Rémillard (2004) presented a unified

treatment of inference procedures based on pseudo-observations in the mul-

tivariate setting. The parameters of a given copula family are mapped to a

dependence measure. Genest et al. (2011) presented an estimation method

based on the inversion of two multivariate extensions of Kendall’s tau, which

are developed by Kendall and Smith (1940) and Joe (1990) respectively.

Then, the performance of the estimators from the inversion of two version-

s of Kendall’s tau are compared in the context of copula models through

simulations.

Oh and Patton (2013) proposed an estimation of the parameters of a semi-

parametric copula-based model via a simulated method of moments (SMM)

type approach. Both IID and time series data were considered.

Bayesian estimation of copula models are also considered in the litera-

ture. As discussed before, copula-based models usually consider using two-

stage estimation procedure, Inference for Margins (IFM), for the parametric

copula-based model. An alternative to this circumstance is to construct an

inference from the joint posterior evaluated in the Monte Carlo manner, with

a Gibbs style sampling scheme. This is discussed by Pitt et al. (2006), Silva

and Lopes (2008) and Ausin and Lopes (2010).
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2.2.3 Goodness-of-Fit Testing and Model Selection

Goodness-of-Fit Tests

The motivation of Goodness-of-Fit (GoF ) tests are that multivariate models

constructed via a parametric copula are subject to model misspecification.

The GoF tests are then applied to find the evidence that the copula is mis-

specified. For example, the copula function in a model may be different

from the unknown true copula. According to different model assumption-

s, inference for GoF tests are divided into two categories, parametric and

semi-parametric. The case of non-parametric margins combined with a time-

varying conditional copula has not been considered in the literature.

The widely used two GoF tests for copula-based models are Kolmogorov-

Smirnov (KS) and Cramér-von Mises (CvM) (Rémillard 2010). Both of two

tests are based on comparing the fitting copula cumulative distribution func-

tion to the empirical copula. The GoF tests based on an empirical copula

depends on the assumption that the true conditional copula is constant. In

other words, it is inappropriate for the time-varying copula. In addition,

an alternative is considered in the literature, which is based on Rosenblatt’s

transformation, which is discussed by Diebold et al. (1999) and Rémillard

(2010). In the approach, the data is transformed first, and then KS and CvM

are applied to the transformed data. The GoF tests based on Rosenblatt’s

transformation can be used in both constant and time-varying copula-based

models.

For fully parametric copula-based models, GoF tests are straightforward.

Chen (2007) presented a moment-based test for copula, which can detect

copula misspecification in various directions. Chen (2011) studied the GoF

tests for multivariate distributions, with the assumption of moment condi-

tions. Diebold et al. (1999) studied theGoF tests via Rosenblatt’s transform,

which is discussed above.

For semi-parametric copula-based models, Rémillard (2010) used GoF

tests for time series data, and the results show that the asymptotic distribu-
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tion of GoF tests are unaffected by the estimation of marginal distribution

parameters.

Model Selection Tests

Another issue of GoF tests is that of model selection tests. GoF tests seek to

compare the fitted copula model with the unknown true copula. The model

selection tests are employed to identify the best model from a given set of

competing specifications. The model selection tests are undertaken using the

in-sample data, or using the out-of-sample data. The treatment of the two

cases is different, due to the in-sample or out-of-sample data.

For in-sample comparisons, the nested copula models can be accomplished

via a likelihood ratio or a Wald test, in which the null hypothesis is that the

smaller model is correct and the alterative one is that the bigger model is

correct. The in-sample comparison of non-nested, fully parametric copula-

based model can be conducted by using the test of Voung (1989) for IID da-

ta. Rivers and Vuong (2002) generalised the Vuong test in several important

directions. Firstly, they sought to allow for semi-parametric copula-based

models. Secondly, they sought to allows for a variety of estimation methods

and a variety of evaluation metrics. In addition, their results greatly simpli-

fy the test procedure for fully parametric copula-based models. Chen and

Fan (2006a) studied the similar tests for the semi-parametric copula-based

model, which allows for infinite-dimensional nuisance parameters in model

selection. The assumption in tests is that the conditional copula is constant

and the corresponding tests of the time-varying case have not been studied

in the literature.

For the out-of-sample comparison, the motivation is that it is a very

important aspect of the evaluation of economic forecasts, i.e. the predictive

ability plays an important role in the evaluation of econometric models. A

useful way to compare multivariate density forecasts is to compare their

out-of-sample log-likelihood value, which is introduced by Diks (2010). The

difference of the out-of-sample evaluation of predictive models depends not
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only on whether models are parametric or semi-parametric, but also on the

treatment of the parameter estimation error in the forecasts. Giacomini and

White (2006) presented a comparison framework for both nested or non-

nested copula models. It can even compare the same model in different

estimation methods, e.g., one-stage MLE or two-stage IFM. The West (2006)

developed a similar approach for the comparison, but it can only be applied

to fully parametric moles, or non-nested models.

2.3 Multivariate Copula Models

Most of these copula-based models discussed above are limited to the bivari-

ate cases. To build a high-dimensional copula is then a natural next step.

However, it is not an easy task. There are several schemes which seek to

construct a high-dimensional copula in the literature, including the multi-

variate elliptical copula, multivariate Archimedean copula and pair copula

construction. In this section, two high-dimensional construction schemes,

the multivariate elliptical copula and the multivariate Archimedean copula,

are reviewed.

2.3.1 Multivariate Elliptical Copulas

The study of multivariate elliptical multivariate distributions was launched

by Fang et al. (2002). They extended the meta-Gaussian family of distribu-

tions that was proposed by Krzysztofowicz and Kelly (1996) by using a wider

class of continuous distributions with given margins. In place of the normal

distribution, elliptically contoured distributions are considered as the basic

framework and meta-Gaussian distributions are extended to meta-elliptical

distributions.

The t copula, which is studied by Embrechts et al. (1997) and Fang et al.

(2002), represents the dependence structure implicit in a multivariate t dis-

tribution. Breymann et al. (2003) suggested that the empirical fit of t copula

is generally superior to that of the Gaussian copula, which presents the de-
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pendence structure of the multivariate normal distribution. The reason is the

ability of the t copula to better capture the phenomenon of dependent ex-

treme values, which is often observed in financial data. Demarta and McNeil

(2005) studied the t copula through extreme value theory, and then derived

the t-EV copulas. They brought together the t copula, particularly with

regard to its extremal properties, to present some extensions of the t copula

that follow on from the representation of the multivariate t distribution as

a mixture of multivariate normals. Nikoloulopoulos et al.(2009) introduced

the tail dependence and conditional tail dependence functions to derive the

t-EV copulas. This tail dependence functions, are particularly effective for

the tail dependence analysis of multivariate t copulas. Two limiting cases

are studied: one is that the t-EV copulas yield the Hsler-Reiss distribution

as the degree of freedom goes to infinity, and the other is the Marshall-Olkin

distribution as the degree of freedom goes to zero.

Abdous et al. (2005) suggested that there are two serious limitations

to modelling association with multivariate elliptical copulas. First, no value

of r corresponds to independence, unless the copula is actually that of the

normal. Second, except in that special multivariate Gaussian case, it is not

entirely clear under which circumstances elliptically contoured structures of

association meet the concept of positive quadrant dependence. The latter,

however, represents a bare minimum in many applications.

2.3.2 Multivariate Archimedean Copulas

The class of the Archimedean copula is a class that has attracted particular

interest due to the numerous properties which make them simple to analyse.

The most common multivariate extension is the exchangeable multivariate

Archimedean copula (EAC) (Nelsen 1999, Joe 1997). The EAC is extremely

restrictive, allowing the specification of only one distribution parameter, re-

gard less of dimension. The more flexible multivariate Archimedean copula

extensions are then constructed: the fully nested Archimedean construc-

tion (FNAC) and the partially nested Archimedean construction (PNAC)
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Figure 2.1: Fully nested Archimedean construction

are discussed by (Embrechts, Lindskog & McNeil 2003, McNeil 2008), and

the hierarchically nested Archimedean construction (HNAC) is studied by

(McNeil 2008, Savu & Trede 2010).

Exchangeable Archimedean Copulas (EAC)

The typical way to define a multivariate Archimedean copula is EAC, which

is defined as

C(u1, u2, ..., un) = ϕ−1{ϕ(u1) + ...+ ϕ(un)} (2.35)

where the function ϕ is a decreasing function knowns as the generator of the

copula and ϕ−1 denotes its inverse. The detail refers to (Nelsen 1999). The

copula in Equation (2.35) suffers from a very restricted dependence structure,

since all k-dimensional marginal distributions (k < n) are identical. For the

more flexible multivariate Archimedean copula, the following three nested

Archimedean copula are developed.
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Figure 2.2: Partially nested Archimedean construction

Fully Nested Archimedean Construction (FNAC)

The scheme of Fully Nested Archimedean Construction (FNAC) is to add the

dimension step by step. The corresponding expression for the 4-dimensional

case is written as:

C(u1, u2, u3, u4) = C31(u4, C21(u3, C11(u1, u2))) (2.36)

It allows for the free specification of 3 copulas and corresponding distri-

bution parameters. The FNAC is a construction of partial exchangeability

and there are some technical conditions that needs to become satisfied to be

a proper 4-dimensional copula. Figure 2.1 shows the corresponding figure.

The two pairs (u1, u3) and (u2, u3) both have copula C21. The three pairs

(u1, u4), (u2, u3) and (u3, u4) all have copula C31.

Partially Nested Archimedean Construction (PNAC)

An alternative multivariate extension is the Partial Nested Archimedean

Construction (PNAC ), which is originally proposed by (Joe 1997). It is

then discussed by (Whelan 2004, McNeil, Frey & Embrechts 2010). The
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Figure 2.3: Hierarchically nested Archimedean construction

4-dimensional expression is given as follows:

C(u1, u2, u3, u4) = C21(C11(u1, u2), C12(u3, u4)) (2.37)

Figure 2.2 illustrates the structure graphically. Firstly, the two pairs

(u1, u2) and u3, u4 are coupled with copula C11 and C12. These two copulas

are coupled with a third copula C21. The resulting copula is exchangeable

between among u1,u2, u3 and u4. Thus, it combines the EAC and FNAC.

Hierachically Nested Archimedean Construction (HNAC)

The HNAC was originally proposed by (Joe 1997), and then discussed by

(Whelan 2004). Savu and Trede (2006) first developed the idea in full gen-

erality.

The difference between HNAC and PNAC is that a copula at a specific

level in the hierarchical structure, does not have to be the bivariate copula.

Figure 2.3 shows an example of a 12-dimensional case. At the first level,

there are three copulas. The C11 is a 3-dimensional EAC joining the variables

u1,u2 and u3. The copula C12, is a 6-dimensional EAC joining the variables

u4, u5, u6, u7, u8 and u9. The copula C13, is a 3-dimensional EAC joining the

variable u10, u11 and u12. At the second level, the three copulas from the first
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level are joined by C21, which is a 3-dimensional EAC. Thus, the HNAC is a

partially exchangeable copula. The 12-dimensional copula can be expressed

as:

C(u1, u2, ..., u12) = C21(C11(u1, u2, u3), C12(u4, ..., u9), C13(u10, u11, u12))

(2.38)

2.4 Vine Copula Models

This section firstly introduces the pair copula construction, which is to mo-

tivate the regular vine. Then, it presents the essential definitions of graph

theory, which is the foundation of regular vine theory. After that, the defi-

nition of the regular vine is reviewed, and then the regular vine modelling is

discussed, including the dependence structure selection, bivariate copula se-

lection and parameter estimate. At last, the relationship between the regular

vine and the graphical probability model are reviewed.

2.4.1 Pair Copula Construction

To model high-dimensional data which exhibits non Gaussian dependency via

the copula, the general choice is either elliptical copulas, suggested by Frahm

et al. (2003) or Archimedean copulas indicated by Joe (1997). However,

it assumes that there is a similar dependence pattern among all pairs of

variables. A large number of applications, such as Aas et al. (2009) , Fischer

et al. (2009) and Dissmann (2013), showed that the restriction is not satisfied.

Bedford and Cooke (2002) firstly proposed the idea of constructing multi-

variate distributions using only two-dimensional copulas as building blocks.

This was then explicitly discussed by Aas (2009). The corresponding de-

composition of a multivariate copula into a bivariate copulas is called Pair

Copula Construction (PCC ). A 3-dimensional variable example is used to

explain the pair copula construction (PCC ).
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Consider a 3-dimensional random vector X = (X1, X2, X3) with joint

density function f and univariate densities f1, f2, and f3. According to

the definition of conditional densities, the 3-dimensional joint density can be

obtained as follows:

f(x1, x2, x3) = f3(x3)f(x2|x3)f(x1|x2, x3) (2.39)

According to Sklar’s theorem (Sklar 1959) and Equation (2.3):

f(x1, x2, x3) = c123(F1(x1), F2(x2), F3(x3))f1(x1)f2(x2)f3(x3) (2.40)

where c123 is the density of a 3-dimensional copula. In the bivariate case,

this yields

f(x2, x3) = c23(F2(X2), F3(X3))f2(x2)f3(x3) (2.41)

for a bivariate copula density c23. Hence,

f(x2|x3) =
f(x2, x3)

f3(x3)

=c23(F2(x2), F3(x3))f2(x2)

(2.42)

Similarly, for the 3-dimensional case, it can be decomposed

f(x1|x2, x3) =
f(x1, x3|x2)

f(x3|x2)

=c13|2(F (x1|x2), F (x3|x2))f(x1|x2)

(2.43)

where c13|2 is the copula density for f(x1, x3|x2) with margins F1|2 and F3|2.

Then, f(x1|x2) in Equation (2.42) is decomposed by:

f(x1|x2, x3) = c13|2(F (x1|x2), F (x3|x2))c12(F1(x1), F2(x2))f1(x1) (2.44)
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All decompositions are combined, and then put them into Equation (2.39),

which yields:

f(x1, x2, x3) =c12(F1(x1), F2(x2))c23(F2(x2), F3(x3))c13|2(F (x1|x2), F (x3|x2))

× f1(x1)f2(x2)f3(x3)

(2.45)

Then, a trivariate copula density can be constructed using only bivariate

copulas, which is given by:

c123(F1(x1), F2(x2), F3(x3)) =c12(F1(x1), F2(x2))c23(F2(x2), F3(x3))

× c13|2(F (x1|x2), F (x3|x2)))
(2.46)

One thing that needs to be noted is that the decomposition is not unique.

In Equation (2.39), the variables can be permuted in 3! = 6 ways. In addition,

there is very important assumption of PCC. It assumes that that the pair

copula c13|2 in Equation (2.43) is independent of the conditioning variables

X2, i.e.,

c13|2(F (x1|x2), F (x3|x2); x2) = c13|2(F (x1|x2), F (x3|x2)) (2.47)

The assumption is necessary to construct flexible models. The simplify-

ing assumption reduces the specification of a PCC to choose the bivariate

copula families and their parameters. It means that the dependence between

variables and the copula function itself can be neglected. Furthermore, the

parameters estimation and inference can be performed more easily. Hobæk

(2010) showed that it is a good appropriation to the correct decomposition.

Generally, a n-dimensional random vector X = (X1, ..., Xn) with joint

density f can be decomposed into:

f(x) = fn(xn)f(xn−1|xn)f(xn−2|xn−1, xn)...f(x1|x2, ..., xn) (2.48)
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According to arguments in the above 3-dimensional example, each term

in Equation (2.48) can be decomposed into marginal densities and bivariate

copulas by using the general formula

f(x|ν) = cxνj |ν−j
(F (x|ν−j), F (νj|ν−j))f(x|ν−j) (2.49)

where ν denotes the m-dimensional vector, and νj is an arbitrary component

of ν. ν−j denotes the (m− 1)-dimensional vector ν excluding νj.

The pair copula can be applied to transformed variables, which are marginal

conditional distribution of the F (x|ν). According to (Joe 1996), the following
is obtained:

F (x|ν) = ∂Cxνj |ν−j
(F (x|ν−j), F (νj|ν−j)))

∂F (νj|ν−j)
(2.50)

where Cxνj |ν−j
is a bivariate copula distribution function.

There is no unique pair copula construction of n-dimensional random

variables. The number of possible decompositions increases significantly with

increasing dimensions n. Aas et al. (2009) showed that there are more than

240 different constructions for a 5-dimensional density. Thus, it is necessary

to find an appropriate way to describe such models. The regular vine resolves

the issue, which is discussed in the following section.

2.4.2 Graph Theory

As discussed above, it is essential to find a way to classify different pairs of

copula constructions. The most widely researched copulas arising from PCC

are the vine copulas. These vine copulas admit a graphical representation

called a Regular Vine (R vine), which consists of a sequence of trees, and each

edge of which is associated with a certain pair copula in the corresponding

PCC. V ine is used since the induced dependence structure is visualised to

resemble a grape vine. Thus, the graph theory is reviewed before discussing

the regular vine.
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The essential theories regarding model construction are reviewed in this

thesis. Further information refer to Diestel (2000) and Harris et al. (2008).

A graph is a collection of nodes connected by edges, which is defined by:

Definition 2.3 (Graph) Let N be an arbitrary set and E be a two dimen-

sional subset of all possible combinations of N

E ∈ {{n1, n2} | n1, n2 ∈ N} (2.51)

Elements of N are called nodes, elements of E are called edges and the tuple

G = (N,E) is a graph. The numbers of a node υ ∈ N is the degree of υ

denoted by d(υ).

Two nodes are connected if and only if there is an edge linked to both

of the nodes. The graph defined above is usually referred to as undirected,

since the order of nodes correspond to an edge that is arbitrary.

Definition 2.4 (Path, Cycle) A path in a graph G = (N,E) is a sequence

of nodes (n1, n2, ..., nk) ∈ Nk, k ≥ 2 such that from each of its nodes there is

an edge to the next node in the sequence. For example,

{ni, ni−1 ∈ E} (2.52)

for i = 1, ..., k− 1. A path always has a first node, called its start node (n1),

and a last node (nk), called its end node. the other nodes in the path are

internal nodes.

A cycle is a path such that the start node and the end node are the same

n1 = nk.

The choice of the start node in a cycle is arbitrary.

Definition 2.5 (Connected) Let G = (N,E) be a graph, two nodes a, b ∈
N, a 	= b are connected if there is a path from a to b.

A graph is called connected if every node is connected to every other node.
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Figure 2.4: An example graph with 5 nodes and 5 edges

Definition 2.6 (Degree) The degree of a node is the number of its neigh-

bours. Let n ∈ N then deg(n) = #{e ∈ E | n ∈ e}.

Tree is special class of graph, which is defined by:

Definition 2.7 (Tree) A tree is a graph T = (N,E) that is connected and

has no cycles.

Theorem 2.2 Let T = {N,E} be a graph, following characterisations are

equivalent.

(i). T is a tree,

(ii). Any two nodes in T are connected by an unique path,

(iii). T is connected and has #(N − 1) edges.

Example 2.3 Suppose the nodes are 1 to 5, N = {1, 2, 3, 4, 5}, and then the

edges set are E = {{1, 2}, {2, 3}, {3, 4}, {3, 5}, {1, 4}}. Figure 2.4 shows the

graphical representation of N and E. Here the cycles represent the nodes,

and the lines represent different edges. Two nodes are connected by a line if

and only if there is an edge in E with two nodes. Figure 2.4 is a connected

graph, since there is a path from every node to every other node, i.e., there

are no isolated nodes. Figure 2.5 is an example of a cycle. There is a path

from 1 to 1 by 1 → 2 → 3 → 4 → 1. Figure 2.6 is show an example tree,

which satisfies all the requirements in Definition 2.7.
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Figure 2.5: An example graph with a cycle

Figure 2.6: An example tree with 5 nodes and 4 edges

2.4.3 Regular Vine

Regular Vine (R Vine), introduced by (Bedford & Cooke 2002), is a special

case of graphic model V ines. V , T , E andN are denoted as vine, trees, edges,

nodes respectively. A vine is a nested set of connected trees V = T1, ..., Tn−1.

The edges of a tree Tj are the nodes from tree Tj+1, where j = 1, ..., n − 1.

A Regular V ine is a special case of V ine, in which two edges in tree Tj are

joined by an edge in tree Tj+1 only if these edges share a common node. The

formal definition appears below:

Definition 2.8 (Regular Vine) V is a regular vine on n variables if

(i). T1 is a tree with nodes N1 = 1, ..., n and a set of edges denoted by E1;

(ii). For j = 2, ..., n− 1, Tj is a tree with nodes Nj = Ej−1 and edge set Ej;
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(iii). (Proximity condition) For j = 2, ..., n−1 and a, b ∈ Ej, #(a△b) =

2, where △ denotes the symmetric difference operator and # denotes

the cardinality.

R vine on n variables is a nested set of n− 1 trees such that the edges of

tree j become the nodes of tree j + 1. The proximity condition ensures that

if two nodes in Tj have a common node in Tj+1, the two nodes are connected

by one edge in Tj.

Property (iii) in Definition 2.8 expresses the fact that two nodes are

adjacent in tree Tj only if the corresponding edges in tree Tj−1 are adjacent,

i.e., they share a common node. A example of an R Vine is shown in Figure

4.1.

The number of possible regular vines on n variables is still large, since

they produce n!/2
∏n−3

i=1 i! vine dependencies. Hence, two special cases of

regular vine are recently developed, Canonical V ine (C vine) and Drawable

V ine (D vine). The two special cases impose additional restrictions, and

hence limit effectively the number of different models. For n variables, there

are n!/2 different C vines or D vines. C vine and D vine are defined by

Kurowicka and Cooke (2006c), which are given as follow:

Definition 2.9 (Canonical Vine, Drawable Vine) A regular vine is called

a

(i). canonical vine if each Tj, j = 1, ..., n − 1 is start, i.e., if each tree Tj

has a unique node of degree n− j, the root node.

(ii). drawable vine if T1 is a path, i.e., if each node in T1 has a degree of at

most 2.

The first tree T1 of a D vine determines all higher order trees T2, ..., Tn−1

due to the proximity condition. The example of the 7-variable canonical vine

is given in Figure 3.5.

The complete union, constraint, conditioning and conditioned set of an

edge are defined as:
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Definition 2.10 (Complete Union) For any ei ∈ Ei, i ≤ n − 1, k =

2, ..., i, the subset Uei(k) of Ei−k = Ni−k+1 is defined by:

Uei(k) = {e ∈ Ei−k | ∃ ej ∈ Ej, j = 1− (k − 1), ..., i− 1

with e ∈ ei−(k−1) ∈ ei−(k−2) ∈ ... ∈ ei−1 ∈ ei}
(2.53)

Then, the Complete Union of ei ∈ Ei is defined as

Uei = Uei(k) (2.54)

Thus, Uei is a set of all nodes in Ni that are connected by the edges ei. By

definition, Uei(1) = ei.

Definition 2.11 (Conditioning, Conditioned and Constraint Sets) For

e = {a, b} ∈ Ei, a, b ∈ Ei−1, i = 1, ..., n − 1, the conditioning set (De) with

edge e is

De = Ua ∩ Ub, (2.55)

and the Conditioned Set (Ce) with e are

Ce(a) = Ua\De (2.56)

Ce(b) = Ub\De (2.57)

Ce = Ce(a) ∪ Ce(b) = Ua △ Ub (2.58)

The constraint set for V is

CV = {({Ce(a), Ce(b)}, De) | i = 1, ..., n− 1, e ∈ Ei, e = a, b} (2.59)

The edge e can be written as {Ce|De}, where the conditioning set De is

shown to the right of “|”, and the conditioned set Ce to the left. {Ua\De} is

the set which includes all variables in the set Ua, but excludes the variables

in the set De.
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Definition 2.12 (M-Child, M-Descendant) Let the edge f be an ele-

ment of edge k, and f be an m-child of k. If f is reachable from k via

the membership relation: f ∈ f1 ∈ ... ∈ k, f is an m-descendant of k.

In Definition 2.12, the constraint sets for its two m-children can be written

as follows:

CVa = {(Ce(a), De) | i = 1, ..., n− 1, e ∈ Ei, e = a, b}
CVb = {(Ce(b), De) | i = 1, ..., n− 1, e ∈ Ei, e = a, b}

(2.60)

It can be concludes that the constraint sets of two m-children are indexed

by the different elements in the conditioned set Ce of edge k.

Example 2.4 Suppose there is a regular vine on 4 variables. In Tree T1,

N1 = {1, 2, 3, 4}, E1 = {12, 23, 24, 34}. Then, in Tree T2, N2 = E1, and

E2 = {{1, 2}, {2, 3}; {2, 3}, {2, 4}; {2, 4}, {3, 4}} = {13|2, 34|2, 23|4}. For

edge e = 13|2 in the tree T2, the corresponding complete union are Ua = {1, 2}
and Ub = {2, 3}. The conditioning set is De = {1, 2} ∩ {2, 3} = {2}.
The conditioned set is Ce(a) ∪ Ce(b) = {1, 3}, where Ce(a) = {1, 2}\{2} =

{1} and Ce(b) = {2, 3}\{2} = {3}. The corresponding constraint set is

{{Ce(a), Ce(b)}, De} = {({1, 3}, 2)}.

Generally, a regular vine copula model has three components, the vine

tree structure, the copula family for each edge in the tree structure and the

corresponding dependence parameters for each pair copula. In the following

sections, the three components are reviewed respectively.

2.4.4 Vine Tree Structure Selection Strategies

In the literature, two construction strategies have been proposed, including

top down strategies using maximal spanning tree algorithms with various

weights and the sequence Bayesian tree selection.
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Top Down Strategy Using Maximal Spanning Tree Algorithms

Top down strategy indicates that it starts with selection of the first tree and

continues tree by tree until the last tree. A straightforward solution is the

strategy using the maximal spanning tree algorithm, which is proposed by

Dissmann et al. (2013). The method assumes that a higher weight induces a

better fit to the chosen characteristics. Then, the weights can be estimated

sequentially by using a sequential estimation approach. Given weights, the

Algorithm of Prim (2001) can be applied to select the tree structure which

maximises the sum of weights in each tree.

A key step in the solution is to select the weights in the strategy. Possible

choices consist of:

(i). the absolute empirical Kendall’s τ as proposed by Dissmann et al.

(2013) and Czado et al. (2012);

(ii). the AIC of each pair copula as proposed by Almeida and Czado (2012);

(iii). the p-value of a copula goodness-of-fit tests and variants as proposed

by Czado et al. (2012).

For the first weight, the motivation is to capture the strongest pairwise

dependencies in the data. In a regular vine, the task is to select the strongest

pairwise dependencies for the first tree. The most common dependency mea-

sure is Kenall’s τ , which can capture non-linear dependencies and be invariant

under the monotone transformation of the margins. Hence, those variables

that can maximise the sum of absolute value of Kendall’s τ among all pairs,

form a tree. The empirical estimates are used, since the true Kendall’s τ is

unknown.

When it is useful to find a good fitting of the regular vine to the data,

the selection of copula family can be implemented in the way of fitting the

corresponding observations well. Then, the most prominent goodness-of-fit

measure is the Akaike Information Criterion (AIC). However, it does not

allow for assigning statistical significance, i.e., the p-value corresponding to
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a statistical goodness-of-fit tests. The selection of the pair copula from a set

of bivariate copula families is separated in terms of the parameters for each

pair of variables. Then, the corresponding AIC is calculated, and the copula

family with the lowest AIC is selected.

Since the AIC based weights have drawbacks, the third weights can be

used for resolving the issue. The performance of the sequential estimation

procedure depends on the selection of a pair copula term for the correspond-

ing pair of pseudo data values. Hence, a copula goodness-of-fit measure is

considered for the selection. Genest and Rémillard (2008) presented a compu-

tationally expensive parameteric bootstrap procedure for the p-value of GoF

tests. Kojadinovic and Yan (2011) and Kojadinovic et al. (2011) provided a

multiplier approach to obtain approximate p-value much faster.

Sequential Bayesian Tree Selection

A reversible jump Markov Chain Monte Carlo (MCMC) based approach

is proposed by Min and Czado (2010). It is an extension of the ordi-

nary MCMC to sample from discrete-continuous posterior distribution. The

sampling algorithm is a generalisation of the Metropolis-Hastings algorithm

(Green 1995). The approach is to obtain a sequential estimate of the the

posterior distribution of the regular vine tree structure, the copula family

and their corresponding parameters. It extends the pair copula construction

of Aas (2009) by using bivariate t copulas. Modeling the prior density func-

tion which favours sparse models can serve to guard against selecting models

with runaway complexity. On the other hand, the use of non-informative flat

priors allows for tree-by-tree maximum likelihood estimation of the regular

vine tree structure, the copula family and the corresponding parameters.

2.4.5 Parameter Estimate

To estimate the parameters for a given a regular vine tree structure and bi-

variate copula families, the classical method is to use the maximum likelihood

estimation. As discussed in Section 2.2.2, a two-stage estimation method can
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be considered. Firstly, the marginal parameters are either estimated para-

metrically or non-parametrically, and then these parameters are fixed to their

estimated value in the estimation of copula parameters. The first approach is

called Inference for Margins, which is discussed in (Joe & Xu 1996), and the

second one is called Maximum Pseudo Likelihood (MPL) which is presented

by Genest et al. (1995). However, even when the estimate of marginal and

copula parameters is separated, the joint maximum likelihood estimation of

regular vine copula parameters are still very challenging. For example, for

an n dimensional vine, its decomposition consists of n(n − 1)/2 bivariate

copulas with the corresponding parameters. Thus, Aas et al. (2009) devel-

oped a sequential approach. It starts with the copula of the first tree, then

proceeds tree-wise and estimates the parameters of the copulas in a tree by

fixing the parameters of copulas in all previous trees. The sequential estima-

tion provides a much faster approach for estimating copula parameters. The

sequential approach only includes estimation of bivariate copulas, and thus

it is computationally much simpler than the joint maximum likelihood esti-

mation of all parameters at once. Hobæk (2013) investigated the asymptotic

properties of the sequential approach. A comparison study of estimators for

regular vine copulas is taken by Hobæk (2012). In addition, if the joint max-

imum likelihood estimates are desired, the sequential method can be used to

obtain starting values for the numerical optimisation, which is discussed by

Whittaker (2009).

2.4.6 Copula Families Selection

For a given regular vine tree structure, it is necessary to consider how to

select the copula from a set of families. Typical criteria for copula selection

from a given set of families is information criteria, such as AIC, which is dis-

cussed by Manner (2007). For a general regular vine, the selection of a pair

copula depends on the choices for the copulas in a previous tree. Since a joint

selection seems infeasible due to a lager number of combinations, one typi-

cal approach proceeds tree by tree as proposed in the sequential estimation
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method. The copula families are selected at first, and then estimated. Given

the selected and estimated copula of the previous tree, the copula families of

the next tree are selected. The copula selection procedure usually coincides

with most vine tree selection strategies. However, the sequential copula se-

lection strategy accumulates in the selection and thus the final model needs

to be carefully checked and compared to alternative models. The test for the

non-nested model comparison, which is discussed in Section 2.2.3, may be

used.

2.4.7 Vine Optimisation

One important issue for the vine copula is the dimensions curse. The com-

putational effort to estimate all parameters grows exponentially with the

dimensions. If the vine copula model wants to fit these high dimensional

structure (greater than 20 variables), then the vine copula model may need

to be optimised. Brechmann et al. (2012) presented a statistical approach

to either the truncated or simplified vine copula model. For a regular vine

copula, all pair copulas at higher than a certain level, are replaced by the

independence copula or the Gaussian copula. The most appropriate level is

identified by AIC, BIC and the likelihood-ratio based tests.

2.4.8 Probability Graphical Models and Copula

Probability graphical model, which is a marriage between probability and

graph theory, is a general purpose framework aimed at high-dimensional

modelling. These models generally combine a qualitative graph structure

that encodes independencies and local quantitative parameters to represen-

t multivariate densities. The joint density has a decomposable form that

can have the corresponding intuitive graph structure. It allows for efficien-

t methods for model selection (structure learning), marginal and posterior

computation, and estimation. Thus, the probability graphical models dom-

inate the machine learning community, and had a significant impact upon
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many fields, such as machine vision, natural language processing and bioinfor-

matics. For example, concentration inequalities for dependent random vari-

ables (Kontorovich, Ramanan et al. 2008), or via coupling (Chazottes, Collet,

Külske & Redig 2007), Bayesian logic program (De Raedt & Kersting 2008),

Markov logic networks (Richardson & Domingos 2006), relational dependen-

cy networks (Neville & Jensen 2007) first-order probabilistic languages (Milch

& Russell 2007), statistical predicate invention (Kok & Domingos 2007),and

relational Markov networks (Getoor & Taskar 2007). The latent factor mod-

els with dependency structure in the latent space is studied in (He, Qi,

Kavukcuoglu & Park 2012). A set of probabilistic dependencies is learned in

(Gao & Suzuki 2003) to express the relations between the headwords of each

phrase.

However, the probability graphical model has limitations in the context

of real word scenarios. The probability graphical models are conceptually

general, and the considerations in the real world scenarios always force the

local quantitative part of the model to take a simple form. For example,

most graphical models have the Gaussian assumption. When the Gaussian

assumption cannot capture the data well, the majority of models will discrete

data firstly, and then take advantage of the existing methods to resolve it.

Therefore, the probability graphical model is difficult to handle with real

world data, especially in terms of financial variables which have non-Gaussian

distributions and strong asymmetry.

Copula has shown to be a powerful tool for modelling dependencies. Cop-

ula splits the multivariate marginal distributions from dependence struc-

tures, so that the specification of dependence structures can be studied

independently from the marginal distributions. It can provide a flexible

mechanism for modelling real world distributions that cannot be handled

well by graphical models. Thus, some researchers start to combine the

copula and probability graphical models, including tree-structured models

by (Kirshner 2007), nonparametric belief Bayesian networks (Kurowicka &

Cooke 2005, Hanea, Kurowicka, Cooke & Ababei 2010), and copula Bayesian
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networks (Elidan 2010).

The tree-structured model is the first model that combines the proba-

bility graphical framework and copula in the machines learning community.

The model generalises Darsow’s Markovian operator (Darsow, Nguyen, Olsen

et al. 1992), and allows for the construction of high-dimensional copulas via

a composition of ( unconditional ) bivariate copulas. One advantage of the

tree-structured model is that it needs to only estimate the bivariate cases.

It imposes an independence assumption on the tree structure, but it can be

relaxed by allowing for a mixture of all trees construction which is efficient-

ly learned using a compactly represented prior. The Bayesian refinement is

presented by Silva and Gramacy (2009), which allows for 10s of variables.

The nonparametric (distribution free) belief Bayesian networks use the

Bayesian networks structure to encode a decomposition of the joint distribu-

tion, which aim to overcome the limitation of simple vines (i.e. the canonical

vine). In principle, the construction can be used with any copula for which

the specified conditional rank correlation can be realised. However, in prac-

tice, only elliptical copula families can be easily carry out.

Copula Bayesian networks use Bayesian networks to encode independen-

cies that are assumed in the dependence structure. The local conditional

density is parameterised differently via a proper normalisation of a joint lo-

cal copula over a variable and its parents in the graph. Compared with tree-

structured models, copula Bayesian networks reduces to the tree construction

suggested by Kirshner (2007). It is possible to estimate the parameters of

the entire model to ensure the preservation of the univariate marginals when

using only Gaussian copulas. Thus, the models are equivalent to the non-

parametric belief Bayesian networks when using local Gaussian copulas.

Liu et al. (2009) used a nonparanormal method to tackle the problem of

structure learning in the complementing representation of undirected graphs.

This model is specially focused on a Gaussian copula. It provided theoretical

guarantees of consistency when the data was generated from the model, as

well as risk consistency guarantees when the samples arose from different
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distributions.

All of these models aim at handling high-dimensional dependence mod-

elling. Naturally, different models impose different assumptions and restric-

tions. The most significant difference between the probability graphical

framework and the vine copula framework is that the probability graphi-

cal models use conditional independence in the tree structure, rather than

the conditional dependence assumed in the vine copula framework. The

method applies to the previously unstudied regime of nonparametric estima-

tion in high-dimensions when the number of parameters exceeds that of the

samples.

2.5 Model Comparison Test – Vuong Test

In this section, one important test, the Vuong test (Vuong 1989) is reviewed.

This is used for comparing various non-nested vine copula models. The test is

based on the likelihood ratio and the Kullback-Leibner information criterion

(KLIC). The KLIC is a measure for the distance between two statistical

models and is defined by:

KLIC := E0[log h0(Yi|xi)]− E0[log f(Yi|xi, β̂] (2.61)

where h0(·|·) is the unknown true conditional probability function of Yi given

xi. Here E0 is the expected value under the true model and β̂ is the estimator

(vector) for the parameter (vector) β in the model f(Yi|xi, β̂), which has not

to be the true model. The model with the minimum KLIC is the best one.

The goal is to compare two models with the probability function f1(Yi|xi,1, β̂1)

and f2(Yi|xi,2, β̂2). If the model 1 is better than the model 2, it is true that:

E0[log
f1(Yi|xi,1, β̂1)

f2(Yi|xi,2, β̂2)
] > 0 (2.62)

According to the likelihood ratio discussed above, Vuong (1989) developed

the following statistics to compare the two models:
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m :=(m1, ...,mn)
t

where mi :=log
f1(Yi|xi,1, β̂1)

f2(Yi|xi,2, β̂2)

for i = 1, ..., n and the expected value is:

E0[m] = μm
0 = (μm

1 , ..., μ
m
n )

t

The null-hypothesis of the Vuong test is

H0 : μ
m
0 versus H1 : μ ≤ 0

where μm
0 is know. Additionally he defined the test statistics

ν :=

√
n( 1

n

∑n
i=1mi)

√

1
n

∑n
i=1(mi − m̂)2

(2.63)

where m̂ = 1
n

∑n
i=1 mi. It shows that under H0, statistics ν converges in

distribution to a standard normal distribution, i.e.,

ν
D−→ N(0, 1)

The drawback of the Vuong test is that it does not account for the number

of parameters in the models, which may differ between the two models. Thus,

Vuong suggests correcting the log-likelihood ratio with the correction term if

either the Akaike’s information criterion or Schwarz’s Bayesian information

criterion (Vuong 1989) apply,

Akaike’s information criterion : p− q

or

Schwarz’s Bayesian information criterion :
p

2n
log n− q

2n
log n
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where p, q are the number of parameters of model 1 and model 2 respectively.

For example, the log-likelihood ratio with the Schwarz’s Bayesian information

criterion is given by:

log f1(Yi|xi,1, β̂1)− log f2(Yi|xi,2, β̂2)− (
p

2n
log n− q

2n
log n)

The quality of test is measured by the corresponding p-value. Since the

null hypothesis is H0 : μ
m
0 vs. H1 : μ ≤ 0, and the hypothesis are rejected

at the significance level of α% if |ν| ≥ Φ−1(1 − α
2
), i.e., the smallest α for

which the null hypothesis can be rejected is

α = 2Φ(−|ν|)

where Φ is the distribution function of the standard normal distribution.

Therefore, the corresponding p-value of the Vuong test is:

p− value = 2Φ(−|ν|)

2.6 Partial Correlation

In the section, the basic concepts of partial correlation, which are used

throughout the thesis are reviewed. The definition of partial correlation are

reviewed firstly, and then the relationship between partial correlation and

conditional correlation are discussed.

2.6.1 Partial Correlation Definition

The section introduces the partial correlation definition and concepts, which

are very important for building vine copula models in the thesis. Bedford

and Cooke (2002) defined the partial correlation, which is given by:
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Definition 2.13 (Partial Correlation) Let X1, X2, ..., Xn be random vari-

ables. The partial correlation of X1 and X2 given X3, ..., Xn is

ρ12;3,...,n =
ρ12;3,...,n−1 − ρ1n;3,...,n−1 · ρ2n;3,...,n−1
√

1− ρ21n;3,...,n−1 ·
√

1− ρ22n;3,...,n−1

(2.64)

If X1, ..., Xn follow a joint normal distribution with variance covariance

matrix of full rank, the partial correlation corresponds to the conditional

correlation. From the definition, the partial correlation can be computed

from the correlation by iterating Equation (2.64).

Lemma 2.5 if x, y, z ∈ (−1, 1) and

w = z((1− x2)(1− y2))
1
2 + xy (2.65)

then w ∈ (−1, 1).

Lemma 2.5 shows that as long as the partial correlations have been chosen

strictly between −1 and 1, it always give a partial correlation lying between

−1 and 1. The proof of lemma refers to Bedford and Cooke (2002).

2.6.2 Partial Correlation and Conditional Correlation

Suppose the variance-covariance matrix of Y = (Y1, ..., Ym) is positive def-

inite. The partial variance-covariance matrix for X = (X1, X2) is defined

by:

ΣXX ;Y =

[

σ11;Y σ12;Y

σ21;Y σ22;Y

]

It can be calculated as ΣXX ;Y = ΣXX − ΣXYΣ
−1
YYΣYX by partitioning

the variance-covariance matrix of (X,Y) into

V

([

X

Y

])

=

[

ΣXX ΣXY

ΣYX ΣYY

]

where ΣXX is 2× 2, ΣXY is 2×m and ΣYY is m×m.
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The partial correlation is then rewritten by:

ρ12;Y =
σ12;Y√

σ11;Yσ22;Y

The partial variance or covariance given Y can be considered as the vari-

ance or covariance between residuals of projections of X1 and X2 on the

linear space spanned by Y,

σ12;Y = cov(X1 − X̂1(Y), X2 − X̂2(Y))

Thus, X̂(Y) = E(X)+ΣXYΣ
−1
YY(Y−E(Y)) is the projection of X, which

is the conditional expectation of X given Y.

In a similar way, the conditional covariance of X1 and X2 given Y is

defined by:

cov(X1, X2 |Y) = E((X1 − E(Xi |Y))(X2 − E(X2 |Y) |Y))

The conditional covariance matrix is defined by:

ΣXX |Y =

[

σ11 |Y σ12 |Y

σ21 |Y σ22 |Y

]

Hence, the conditional correlation is

ρ12 |Y =
σ12 |Y√

σ11 |Yσ22 |Y

Theorem 2.6 For any vectors X = (X1, X2) and Y = (Y1, ..., Ym), the

following two conditions are equivalent.

(i). E(X |Y = α+BY for a vector α and a matrix B ,

(ii). ΣXX;Y = E(ΣXX |Y) .

The proof of the Theorem 2.6, which can be found in (2004), is omitted

here. Lawrance (1976) shows that the property (i) implies property (ii) for

the case when Y is a scalar variable.
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Corollary 2.7 For any random vectors X = (X1, X2) and Y = (Y1, ..., Ym),

if there exists a vector α and a matrix B, such that

E(X |Y) = α+BY

and ρ12 |Y does not depend on Y, then ρ12;Y = ρ12 |Y.

Proof 2.8 According to Theorem 2.6, if E(X |Y) is a linear function of Y,

then ρ12;Y = E(ρ12 |Y). the assertion of the corollary holds true, since ρ12 |Y

is independent of Y.

The elliptical distribution is a natural generalisation of the multivariate

normal distribution. Corollary 2.7 is true for this distribution.

Example 2.9 (Elliptical Distribution) The elliptical distribution is a fam-

ily of distributions whose characteristic functions are given by:

Ψ(t) = eit
Tμφ(tTΣt)

for some scalar function φ (see example in (Fang, Kotz & Ng 1990) . This

family is denoted by ECn(µ,Σ, φ). According to the corollary indicated by

Cambanis et al. (1981), if (X,Y)
d
= Cn(µ,Σ, φ), then

E(X |Y) = E(X) + ΣXYΣ
−1
YY(Y− E(Y))

and

ΣXX |Y = s(Y)Σ⋆

where s is a function and the matrix Σ⋆ is independent of the value of Y.

The conditional distribution is also elliptical. It shows that Corollary 2.7 is

true for the elliptical distribution and the partial correlation is identical to

the conditional correlation.

In summary, it shows that the partial correlation is equal to the corre-

sponding conditional correlation for elliptical distribution. This conclusion

is very important, since it is the foundation of building models.

62



CHAPTER 2. LITERATURE REVIEW AND FOUNDATION

2.7 Time Series Analysis

As discussed in Section 2.1, the copula has two parts, the copula function and

the marginal distributions. After having concentrated on the copula function,

it turns to the modelling of the margins. The time series are considered

as marginal distributions since the time series are suitable to the financial

applications. The analysis through time series can effectively remove serial

dependence among observations and obtain the IID data, which are used

as the input for copula models. This section provides background on the

time series, and introduces some basic concepts, including stationarity, white

noise and autovariance function. Then, the definition of of ARMA models

are given. After that, the ARCH and GARCH models for the time series

models with the heteroscedastic variance are discussed. The details of the

definitions and models can be found in Brockwell and Davis (2009, 2002).

2.7.1 Basic Definition

The definition of a stochastic process is reviewed at first as it is the basic

component of time series analysis.

Definition 2.14 (Stochastic Processes) A stochastic process is a family

of random variables (Xt)t∈T defined on a probability space (Ω,F ,P). T is the

time domain.

The time series (xt)t∈T is then a realisation of the family of random vari-

ables (Xt)t∈T. The term, time series is used for both the data and the process

of which it is the realisation.

Definition 2.15 (Autocovariance Function) If (Xt)t∈T is a process such

that E[X2
t ] < ∞ for eahc t ∈ T, then the autocovariance function γX(·, ·) of

(Xt) is defined by

γX(r, s) = cov(Xr, Xs) r, s ∈ T (2.66)
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The autocovariance function summarises important information about

the dependency of an infinite collection of random variables. Another concept

is stationarity, which is the foundation of time series analysis.

Definition 2.16 (Stationarity) The time series (Xt)t∈T with index set T =

Z is said to be stationarity if

• E[X2
t ] < ∞ for all t ∈ Z ,

• E[Xt] = m for some m ∈ R, for all t ∈ T ,

• γX(s, t) = γX(s+ h, t+ h) for all s, t ∈ T and all h ∈ Z.

According to the definition, it follows that γX(r, s) = γX(r − s, 0) for all

r, s ∈ Z. Hence, for a stationary process (Xt), it defines

γX(h) = γX(h, 0) = Cov(Xt+h, Xt) for all t, h ∈ Z (2.67)

γX(h) is called the autocovariance function of the stationary stochastic

process (Xt)t∈Z. One of the simplest kinds of time series is when the Xt are

IID with zero mean and variance σ2. The process is called the White Noise

(WN) process, which is defined as follow:

Definition 2.17 (White Noise) Let (Xt)t∈T be a stationary stochastic pro-

cess with E[Zt] = 0 for all t ∈ Z and the autocovariance function

γZ(h) =

{

σ2, for h = 0

0, for h 	= 0
(2.68)

for σ2 > 0. Then (Zt)t∈Z is called white noise with mean 0 and variance σ2,

i.e., (Zt)t∈Z ∼ WN(0, σ2).

Definition 2.18 (Backward Shift Operator) Let (Xt)t∈T be a stochastic

process. Then the backward shift operator B is defined by

BXt = Xt−1 ∀ t ∈ Z (2.69)

The power of B are defined iteratively by BjXt = Xt−j.
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2.7.2 The ARMA Models

The Autoregressive Moving Average (ARMA) models are reviewed as follows:

Definition 2.19 (The ARMA(p,q) Process) Let (Xt)t∈T ∼ WN(0, σ2)

for some σ2 > 0 be a white noise on (Ω,F ,P). Let p, q ∈ N0 and Φ1, ...,Φp,

Θ1, ...,Θq ∈ R. Then any stationary time series (Xt)t∈T on (Ω,F ,P) satis-

fying E[X0] = 0 and

Xt −Φ1Xt−1 − ...−ΦpXt−p = Zt +Θ1Zt−1 + ...+ΘqZt−q fort ∈ Z (2.70)

is called an ARMA(p,q) process w.r.t (Xt)t∈T. A solution to Equation (2.70)

is called causal if Xt = f(Zt, Zt−1, ...) with f an appropriate measurable

function.

(Xt)t∈T is an ARMA(p,q) process with mean μ if (Xt − μ)t∈Z is and

ARMA(p,q) process, μ ∈ R.

Equation (2.70) can be rewritten symbolically in a more compact form

using the backshift operator

Φ(B)Xt = Θ(B)Zt, for all t ∈ R (2.71)

where Φ and Θ are the polynomials

Φ(z) =1− Φ1z − ...− Φqz
p,

Θ(z) =1 + Θ1z + ...+Θqz
q.

(2.72)

The polynomials Φ and Θ will be referred to as the autoregressive and

moving average polynomials. Below is an essential result that proves the

existence of a unique solution to the ARMA equation.

Theorem 2.10 If Φ(z) 	= 0 for all z ∈ C such that |z| = 1, then the ARMA

has the unique stationary solution,

Xt =
∞
∑

j=−∞

ΨjZt − j, forallt ∈ Z, (2.73)
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where the coefficients Ψj are determined by

Φ(z)Θ(z)−1 =
∞
∑

j=−∞

Ψjz
j = Ψ(z), with r−1 < |z| < r (2.74)

for an r > 1.

The proof and further explanation refers to (Brockwell & Davis 2002).

2.7.3 The GARCH Models

The ARMA models are based on the white noise with variance σ2. However,

sometimes especially in finance, it can be observed that time series exhibits

features which are not in line with the behaviour of ARMA processes with

IID noise. These may be non-stationary. They have clusters of high volatil-

ity and clusters of low volatility, the magnitude of the change changes over

time, i.e. the variance is conditional. It is in contrast to the constant vari-

ance of noise in the ARMA process. To model the behaviour, Bollerslev

(1986) introduced the Generalised Autoregressive Conditional Heteroscedas-

ticity (GARCH) model, which is a generalised form of the Autoregressive

Conditional Heteroscedasticity (ARCH) models introduced by Engle (1982).

Definition 2.20 (The GARCH(p,q) Process) The process (εt)t∈Z is called

a GARCH(p,q) process if for every t,

εt = σtZt and σ2
t = ω +

q
∑

i=1

αiε
2
t−i +

p
∑

j=1

βjσ
2
t−j (2.75)

and

• V ar(ε− t|Ft−1) = σ2
t , εt = σtZt and Zt is IID. (strong GARCH)

• V ar(ε− t|Ft−1) = σ2 (semi-strong GARCH), or

• P (ε2t |1, εt−1, εt−2, ..., ε
2
t−1, ε

2
t−2...) = σ2

t (weak GARCH).
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with p ≥ 0, q > 0, ω > 0, αi ≥ 0, i = 1, ..., q, βj ≥ 0, j = 1, ..., p, where Ft is

the information set at time t.

Here, it assumes the strong GARCH assumption is fulfilled. Using the

backward shift operator L, Equation (2.75) can be transformed to

σ2
t = ω + A(L)ε2t + B(L)σ2

t

where A(L) = α1L+ α2L
2 + ...+ αqL

q

B(L) = β1L+ β2L
2 + ...+ βpL

p

(2.76)

Theorem 2.11 The GARCH(p,q) process (2.75) is stationary with E[εt] =

0, V ar(εt) = ω(1−A(1)−B(1))−1 and Cov()εt, εs = 0 for t 	= s, if and only

if A(1) + B(1) < 1.

An equivalent description of the GARCH(p,q) is given by

ε2t = ω +

q
∑

i=1

αiε
2
t−i +

p
∑

j=1

βjσ
2
t−j,

εt = σtZt

(2.77)

where Z(t)t∈Z is and IID sequence with zero mean and unit variance inde-

pendent of εt−k, k ≥ 1 for all t.

2.7.4 The ARMA(1,1)-GARCH(1,1) Model

In the application, two models are combined. The ARMA(1,1)-GARCH(1,1)

is used as an example to explain the ARMA process with GARCH noise.

Xt = μ+ Φ1Xt−1 + εt +Θ1εt−1,

σ2 = ω + α1ε
2
t−1 + β1σ

2
t−1,

εt = σtZt

(2.78)
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where (Zt)t∈Z is the IID sequence with 0 zero and unit variance. Then, the

standardised residuals of the model are given by:

Ẑt =
1

σ̂t

(Xt − μ̂− Φ̂1Xt−1 − Θ̂1σ̂t−1Ẑt−1), (2.79)

where μ̂, Φ̂1, Θ̂1 and σ̂t are the estimates of μ,Φ1,Θ1 and σt respectively.

Generally, the choice of error distribution for (Zt)t∈Z is standard normal

distribution, i.e., Zt ∼ N(0, 1). However, data in financial area often ex-

hibits not only volatility clustering, but also negative skewness and heavy

tails. Thus, the Student-t distribution (Bollerslev 1987), skewed Student-

t distribution (Hansen 1994) or the Normal Inverse Gaussian distribution

(Andersson 2001) are also considered as the error distribution.

2.7.5 The Ljung Box Test

To test the goodness of fit of the estimated ARMA-GARCH models for a

given time series, Ljung and Box (1978) developed a test, which is called the

Ljung Box (LB) test. This test examines the independence of the residuals.

If there is no dependence among these residuals, one can could be regard

them as observations of independent random variables and use them as the

input of the copula function. The test addresses this issue by examining the

hypotheses:

H0 : (Ẑt)t=1,...,n is white noise against H1 : not H0

where Ẑt are the standardised residuals, which is defined in Equation (2.79).

For lags k = 1, ..., n− 1. The test of the statistics of the Ljung Box test

is defined as follows:

r̂k =

∑n
t=k+1 ẐtẐt−k
∑n

t=1 Ẑ
2
t

(2.80)

The procedure is a one-at-a-time test, i.e., the significance level applies to

the autocorrelations considered individually. Ljung and Box (1978) develop
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a test to evaluate the jointly autocorrelation of the first m lags, where 1 ≤
m ≤ n− 1. The corresponding test statistics is given by:

Q̂(r̂) = n(n+ 1)

m
∑

k=1

(n− k)−1r̂2k (2.81)

Under the null hypothesis (2.7.5), Q̂(r̂) asymptotically follows a χ2 distri-

bution with m−p degree of freedom, where p is the number of parameters in

the choose model. For example,the ARMA(1,1)-GARCH(1,1) model with

Student-t error distribution, uses 6 parameters.

2.8 Applications in Financial Market

One of the main fields of application for the copula-based model has been

in the field of financial economics. Since the empirical evidence shows that

dependence between most important assets return is non-normal. For ex-

ample, non-normal dependence suggests it is shown in stock markets where

two asset returns exhibit greater correlation during market downturns than

during market upturns. The evidence of asset returns against normality is

firstly found by Mills (1927). However, a larger number of studies show that

the normal copula is not suitable for recent asset returns. Erb et al. (1994),

Longin and Solnik (2001), Ang and Chen (2002), Ang and Bekaert (2002),

Bae et al. (2003) show evidence that asset returns exhibit non-normal depen-

dence which is not consistent with a normal copula. The evidence has wide-

implications for financial decision-making, in risk management, derivative

contracts and portfolio decisions. Last, the vine copula models are reviewed,

which are generally applied to high-dimensional cases.

2.8.1 Risk Managements

One important application of the copula in economics and finance is risk

management. The main measure of risk management is Value at Risk(VaR),

and other measures to estimate the probability of large losses, which results
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in a demand for flexible models of dependence between sources of risk. Hull

and White (1998) studied the VaR for a collection of non-normal variables.

Cherubini and Luciano (2001) study the VaR of portfolio by using copu-

la methods to perform the pairwise analysis of the dependence structure of

losses of desks. Embrechts et al. (2003) and Embrechts and Höing (2006)

presented similar studies for VaR by investigating various scenarios of de-

pendencies via the copula approach. Rosenberg and Schuermann (2006) pre-

sented a copula approach for joint risk distribution, including market, credit

and optional risk. Mcneil et al. (2010) gave a clear and detailed treatment

of the copula and risk management.

2.8.2 Derivative Contracts

In derivatives markets, non-normal dependence is an important characteristic

for pricing. Any contract with two or more underlying assets has a price that

is affected by both the strength and the shape of the dependence between

assets. Cherubini et al. (2004) provide detailed approaches in derivative

and option pricing via the copula. Rosenberg (2003), Bennett and Kennedy

(2004), Goorbergh et al. (2003) and Salmon and Schleicher (2006) presented

copula approaches for option pricing. Taylor and Wang (2004) and Hurd

et al. (2005) considered the use of observed derivatives prices to find the

implied copula of the underlying assets.

Since the booming market in credit derivatives, such as credit default

swaps and collateralised debt obligations, and the fact that these assets con-

sist of multiple underlying sources of risks leading to a large number of appli-

cations for copula in credit risks. Li (2000) introduced the copula approach

in credit risk application, and then applied copula in finance. Frey et al.

(2001), Schönbucher and Schubert (2001), Giesecke (2004) then considered

copula approaches could be used for default risk.
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2.8.3 Portfolio Decision Problems

Another important issue for dependence between risky assets is the port-

folio decision, which seeks to find portfolio weights that can maximise the

investors’s expected utility. Hence, it requires a predictive multivariate dis-

tribution for assets being considerered. Under the multivariate normality

assumption, the optimal portfolio weights only depend on the first two mo-

ments of the assets, and linear correlation adequately comprises the necessary

dependence information which is required for an optimal portfolio decision.

However, when the joint distribution of assets does not follow normal distri-

bution, and when the utility is not quadratic in wealth, the optimal portfolio

weights will require a specification of the entire conditional distribution of

returns. Patton (2004) used the time-varying copula model for a bivariate eq-

uity portfolio problem. Jondeau and Rockinger (2006b) used the Taylor series

to calculate the expected utility. An obvious advantage of the method is that

it remains operational even if a large number of assets are involved. It can

also be observed that under the moderate non-normality, the mean-variance

criterion provides a good approximation to the expected utility maximisa-

tion. Hong et al. (2007) presented a copula method for the investment

decision consisting of 11 equity portfolios under ’disappointment aversion’

preferences. Sun et al. (2008) proposed a copula ARMA-GARCH model

to predict the co-movements of six German equity market indices at high

frequency. It was found that the copula ARMA-GARCH model is able to

capture multi-dimensional co-movements among the indices. Christoffersen

and Langlois (2011) used the copula-based model for the portfolio decision

including 4 common equity market factors. Garcia and Tsafack (2011) con-

sidered a portfolio decision problem of 4 assets from two countries.

2.8.4 Financial Contagion

Financial contagion is a phenomenon, where the crisis that occurs in one

market can lead to a problem in other markets beyond what would be ex-
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pected on the basis of fundamental linkages between the markets. A classical

example of financial contagion is the 2008 global financial crisis. The main

difficulty in financial contagion is that a baseline level of dependence be-

tween the markets has to be established before it can be asserted that the

dependence increased during a period of crisis. Rodriguez (2007) developed a

Markov switching copula model for the financial contagion problem. Arake-

lian and Dellaportas (2009) considered the financial contagion problem via

the Markov chain Monte Carlo-based copula approach.

2.8.5 Regular Vine Copula Applications

The vine copula model has been successfully applied in higher dimensions.

The vine copula have been extended to the regime switching copulas (2009),

the factor copula model (2013), and the multivariate option pricing (2000).

In addition, discrete data via vine copula has been studied by Panagiotelis

and Czado (2012), and constructing non Gaussian distribution on directed

acyclic graphs via pair copula construction is presented by Bauer (2012).

2.8.6 Other Applications

There are a large number of applications using the copula approach, which

do not fit into any of the above categories. Breymann et al. (2003) and

Dias and Embrechts (2010) presented the copula-based model for finan-

cial assets using intra-daily data which was sampled at different frequency.

Granger et al. (2006) defined a common factor for bivariate time series by

using the copula approach. Hu (2006) used a mixture of copula to separate

the degree of dependence from the shape of dependence. Brendstrup and

Paarsch (2007) studied multi-object auctions via a semi-parametric copula-

based model. Bartram et al. (2007) developed a time-varying copula-based

model for financial market integration between 17 European stock market

indices. Heinen and Rengifo (2007) developed a copula-based model for mul-

tivariate counts which exhibit discreteness, overdispersion and both auto and
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cross-correlation. Bouyé and Salmon (2009) used copula for quantile regres-

sions. Dearden et al. (2008) and Bonhomme and Robin (2009) considered the

dynamics problem in earning data using the copula approach. Lee and Hong

(2009) proposed a copula-based multivariate GARCH model with uncorre-

lated dependent errors. Patton (2009), Dudley and Nimalendran (2011) and

Kang et al. (2010) studied the dependence structure between hedge funds

and other assets via copula. Zimmer (2012) studied the recent US housing

crisis using copula.

2.9 Summary

This chapter introduces the copula and related work. Section 2.1 provides

the definition of copula from a mathematical perspective, and presents var-

ious copula families and their tail dependence. Section 2.2 introduces the

copula-based models and their inference. It presents the measure method of

dependence at first, and introduces a large number of time-varying copula-

based models. Following this, the parameter estimate and inference are p-

resented. The goodness of fitting tests and model selection criteria are also

presented. Section 2.3 presents the multivariate copula models, including

the multivariate Gaussian copula and the multivariate Archimedean copula

models. Section 2.4 introduced the vine copula models. The definition of

vine is firstly presented, and then the regular vine is defined. The three most

important components of the regular vine, which are the vine tree structure,

copula family selection and parameter estimate, are then proposed and lastly

the optimisation of the regular vine is introduced. The relationship between

the regular vine and the graphical probability models are discussed. Section

2.5, 2.6 and 2.7 present the model comparison tests, partial correlation and

time series analysis respectively. Section 2.8 reviews applications in a large

number of financial fields, such as risk management and portfolio decision

problems. According to the above work related to the copula, it can be con-

cluded that the main gap between the existing methodologies and important
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research issues of the copula are: (1) the existing methods are not capable

of dealing with high-dimensional data; (2) these models, such as multivari-

ate Archimedean copulas, have made strong assumptions on the dependence

structure, and; (3) the existing methodologies do not develop the truncation

methods to optimise the structure.
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Chapter 3

Modelling the Complex

Dependence Structures by

Using Truncated Partial

Canonical Vine

3.1 Introduction

Modelling the complex dependence structures of financial variables is a fun-

damental research problem in the financial domain and it is useful for a wide

range of applications including price prediction and risk measurement. Its

extreme importance has been partially demonstrated in the 2007 global fi-

nancial crisis. That particular financial turmoil originated from the subprime

mortgage market in the United States (US), and it quickly spread to every

cell in the US and global financial system. The bankruptcy of the Lehman

Brothers in September, 2008 marked a peak point of the crisis. Indeed, the

failure of the fourth largest investment company was the largest bankrupt-

cy in US history. The European financial market was heavily impacted by

the collapse of the Lehman Brothers as the European financial market was

not isolated. If early precautionary measures had been taken, according to
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fundamental understandings of the global financial dependence, some of the

crisis could have been avoided.

There are various hierarchical and horizontal coupling relations in the

stock markets (Cao, Ou, Yu & Wei 2010). European stocks are used as an

example to explain the concept of dependence between two financial vari-

ables. ˆSTOXX-50E is a composite index of European stocks, composed of

50 European stocks from six countries. Siemens and Allianz are two listed

companies in Germany; France Telecom and Societe Generale GRP are two

listed companies from France. It can be easily understood that the price

index of Siemens is directly dependent on its national index i.e. Germany.

Although sometimes not easily visible, its price index is also dependent on

the composite index ˆSTOXX50E, the national index of France, the price

index of Allianz, that of France Telecom, or that of Societe Generale GRP

(see the dashed lines in Figure 3.1).

Figure 3.1: An example of dependence structure

Thus, the price of an individual stock can be affected not only by the

composite index and its national index, but also by other national indices

and the price of individual stocks from other countries. So, the price index of

two stocks even from different countries should be dependent on each other

as it is assumed to be independent by past models. The concept of this com-

prehensive dependence structure without prior independence assumptions
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can give investors an insightful understanding of the financial market. In

particular, it is useful for portfolio investors to control the aggregation risk

(Alexander 2009) of the portfolio with higher precision. The classical portfo-

lio investment theorem shows that investors will focus more on the portfolio of

the stock return than on single stock returns as they can significantly reduce

the aggregation risk while investing in a portfolio of stocks. It is very impor-

tant for the portfolio investor to identify the dependence structure among

assets returns. If investors can accurately capture and model the depen-

dence structure among these returns, they can have a deeper understanding

of assets returns, and then predict the trends of the assets return more accu-

rately. In addition, the dependence model include much richer information,

which can be used for measuring the risk and accurately implementing risk

management.

To model the price and composite index in stock markets, the price’s log

difference of every two consecutive trading days is usually taken, which are

called returns. Early techniques in modelling the dependence of returns in

stock markets is by the Pearson’s correlation method. It uses the average

deviation from mean, ignoring the small or large returns as well as nega-

tive and positive returns. However, it is unable to explain the asymmetric

correlation of stock markets as shown in (Patton 2004). Another classical

idea in modelling dependence is through the use of the Capital Asset Pricing

Model (CAPM). CAPM belongs to the family of factor models, in which

CAPM is the simplest version with only one factor to control the market.

The normality assumption makes CAPM inappropriate in modelling returns

of stocks, as the returns of stock markets are not normally distributed.

The copula model is a powerful tool in modelling the dependence structure

for the returns of stock markets. This is mostly attributed to the fact that

the copula model can separate the dependence structure from the marginal

distribution. Therefore, the selection of copula functions is not constrained

by the choice of marginal distributions. Another key point about the copula

model is its consideration of both the dependence of the portfolio of stock
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returns as well as correlations of individual stock returns at the same time.

Recently, Heinen and Valdesogo (2009) proposed a new copula model, named

the Canonical Vine Autoregressive (CAVA) model, which introduces three

different levels of variables: market indices, sector indices and individual

stock returns. It integrates these different levels of stock returns as a whole

to conduct dependence analysis. However, one limit of the CAVA model is

that it imposes two independence assumptions on the dependence structure.

With this restriction on dependence structures, it is definitely not a perfect

model to understand the complex relationships of financial variables.

The challenging task to investigate the dependence structure in stock

returns contains three other difficulties. Firstly, it is difficult to build an

appropriate model to describe and capture the dependence. The dependence

structure will be very much complicated if the data dimension is quite large.

If the dependence is constructed by using the canonical vine (which is dis-

cussed in detail in Section 3.2), the number of nodes increases exponentially

as the number of variables grows. It is difficult to construct and optimise

the model when the variables are quite large. Second, financial variables

have their own characteristics, which are called stylised facts. The detail

of all stylised facts can be found in (Andersen 2009). In the section, the

three most important stylised facts are discussed, including volatility clus-

tering, fat tails and asymmetry. Volatility clustering refers to the variance

of returns, namely low values of volatility tend to be followed by low values;

and high values of volatility are followed by high values (Andersen 2009).

The fat tail means that extreme values in stock return occur more frequently

than the implied numbers by normal distribution. Asymmetry means that

positive and negative returns of the same magnitude have different impacts

on the variance. For example, stock returns will have stronger correlation in

bear market downturns than in bull markets (Erb, Harvey & Viskanta 1994).

Third, daily returns are not normally distributed. Even after the daily re-

turns have been standardised by the dependence model, the standardised

residuals are still not normally distributed. Therefore, a new idea in mod-
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elling the dependence structure is needed to consider both the dependence

between stock returns as well as the stylised facts of the financial time series

at the same time.

To fulfill this need, this chapter proposes a new partial correlation-based

canonical vine copula model, called the Partial Canonical Vine(PCV ) Mod-

el. The PCV model can capture various and forms of important hierarchical

and horizontal dependence. In order to address the high-dimensionality issue,

an idea of partial correlation is used to optimise the canonical vine structure.

The canonical vine, when it is constructed and optimised by the partial cor-

relation method, is able to model high-dimensional dependence structures.

It is capable of maintaining the most important dependence, while reducing

the complexity of the dependence structure remarkably, especially for high-

dimensional input. In addition, an ARMA-GARCH model with skewed

Student-t distribution is used for marginal models to capture the stylised

facts in financial variables, such as volatility clustering and fat tail.

The main contribution made by this work is the new partial correlation

method to construct and truncate the canonical vine in the model PCV . It

is practically needed to truncate the partial canonical vine as the number

of parameters in the canonical vine is quite large for high dimensional data.

The truncated canonical vine can greatly reduce the number of parameters

and simplify the canonical vine structure. The truncated partial canonical

vine can capture the most important dependencies of data, without a great

effect on the structure of the partial canonical vine. In addition, compared

with CAV Amodel, the partial correlation based canonical vine model, PCV ,

does not impose any independence assumption on the structure and total-

ly eliminate any prior bias for modelling the dependence structure in stock

returns. PCV model not only summarises the various dependence with a sin-

gle number, but also contains much information which is helpful for a deeper

understanding of dependence structure. For example, the PCV model can

be used to determine the correlation between two stock returns as well as

multivariate stock returns. It can be also used to calculate the conditional
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copula of stock returns, such as the correlation of two stock returns condi-

tioning on the market indices. Further, the rich information in the PCV

model can be utilised to compute risk measures such as Value at Risk.

The rest of this chapter is organised as follows. Section 3.2 provides a

short introduction to the CAV A model. Section 3.3 describes the framework

of the partial canonical vine in detail, including the construction, truncation

and simplification of the canonical vine, and copula family selection. Section

3.4 discusses the selection of marginal distributions. Section 3.5 provides

simulation steps for calculating the portfolio of Value at Risk. Section 3.6

applies the partial canonical vine to capture the dependence of returns in

European stock markets, and evaluates the model by comparing it with the

performance of CAV A. Finally, Section 3.7 summarises this chapter.

3.2 Canonical Vine Autoregressive Model

Recently, Heinen and Valdesogo (2009) proposed a Canonical Vine Autore-

gressive (CAV A) model based on the canonical vine. Suppose that there are

four stock returns (rA1,rA2,rB1 and rB2) from two different sectors (SA and

SB). The return of market is rM , and the returns of sector A and B are rA

and rB respectively. The independence assumptions imposed by the CAV A

model are:

• the returns of stock are only dependent on their own sector returns con-

ditioned on the market, but they are independent of all the other sector

returns. It means that rA1 and rA2 are independent to rB conditioned

on rM , and rB1 and rB2 are independent to rA conditioned on rM . This

leads to crA,rB1|rM (·, ·) = 1, crA,rB2|rM (·, ·) = 1, crB ,rA1|rM (·, ·) = 1, and

crB ,rA2|rM (·, ·) = 1;

• the returns of sector conditioned on market are independent of each

other. It means that rA and rB conditioned on rM are independent.

This leads to crA,rB |rM (·, ·) = 1
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Figure 3.2: CAVA dependence structure

Thus, the following joint density function is obtained by:

f(rM , rA, rB, rA1, rA2, rB1, rB2) =

f(rM) · f(rA) · f(rB) · f(rA1) · f(rA2) · f(rB1) · f(rB2)

c(rM , rA, rB, rA1, rA2, rB1, rB2)

(3.1)

where c(rM , rA, rB, rA1, rA2, rB1, rB2) are the copula function, which can be

decomposed into the following Equation:

c(rM , rA, rB, rA1, rA2, rB1, rB2) =

crM ,rA(F (rM), F (rA)) · crM ,rB(F (rM), F (rB))

crM ,rA1
(F (rM), F (rA1)) · crM ,rA2

(F (rM), F (rA2))

crM ,rB1
(F (rM), F (rB1)) · crM ,rB2

(F (rM), F (rB2))

crA,rA1|rM (F (rA, |rM), F (rA1|rM))

crA,rA2|rM (F (rA, |rM), F (rA2|rM))

crA1,rA2,rB1,rB2|rM ,rA,rB(·, ·)

(3.2)
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The dependence structure modelled by CAV A is described in Figure 3.2,

where a dashed line indicates that the correlation is assumed to be indepen-

dent. It is a biased assumption, not an assumption based on data analysis.

It is implausible.

3.3 Partial Canonical Vine Model

Figure 3.3: PCV model work flow

Figure 3.3 shows the flow chart of the partial canonical vine model. It

consists of two separated parts: the canonical vine and marginal distribu-

tions. For the part of the canonical vine, the first step is to construct the

partial correlation-based canonical vine, and then to truncate and optimise

the canonical vine. For the second part, the ARMA-GARCH model with

the skew Student-t error distribution is used as the marginal distribution.

The parameters of both parts are estimated by maximising the likelihood

estimation. A parameterised partial canonical vine is therefore capable of

measuring the risk or trends of the financial market.
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3.3.1 Canonical Vine

As highlighted in Section 3.1, the partial canonical vine model is centered on

the canonical vine. It is constructed by a large number of conditional pair

copula functions, making it flexible and powerful for modelling the complex

dependence structures of high-dimensional financial variables. Typically, the

canonical vine density is given by:

c(F1(x1), F2(x2), ..., Fn(xn)) =

n−1
∏

j=1

n−j
∏

i=1

cj,j+i|1,...j−1(F (xj|x1, ..., xj−1), F (xj+i|x1, ..., xj−1))
(3.3)

where, c(·, ·) is the pair copula density function. It does not impose any

independence assumption on the partial canonical vine model, which is more

appropriate in modelling the high-dimensional dependence structure of stock

returns. The above example in Section 3.1 is used to describe the main ideas

of the partial canonical vine model.

Suppose that there is one market M with four stocks in two sectors (A

and B). The return of M is denoted by rM , returns of sectors A and B

are denoted by rA and rB respectively. The returns of stocks rA1 and rA2

belong to sector A, and the returns of stocks rB1 and rB2 belong to sector

B. Mapping to the example discussed in Introduction, M (Market) stands

for ˆSTOXX50E (market index), A and B stand for Germany and France

respectively. A1, A2, B1 and B2 stand for Siemens, Allianz, France Telecom

and Societe Generale GRP respectively.

The joint density function of the partial canonical vine is given by:

f(rM , rA, rB, rA1, rA2, rB1, rB2)

=c(rM , rA, rB, rA1, rA2, rB1, rB2) ·
∏

f(·)
(3.4)

where
∏

f(·) = f(rM)·f(rA)·f(rB)·f(rA1)·f(rA2)·f(rB1)·f(rB2) are marginal

distributions, which will be described in Section 3.4. c(rM , rA, rB, rA1, rA2, rB1, rB2)
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Figure 3.4: PCV dependence structure

is the copula function defined by Equation (3.5):

c(rM , rA, rB, rA1, rA2, rB1, rB2) =

crM ,rA(F (rM), F (rA)) · crM ,rB(F (rM), F (rB))

crM ,rA1
(F (rM), F (rA1)) · crM ,rA2

(F (rM), F (rA2))

crM ,rB1
(F (rM), F (rB1)) · crM ,rB2

(F (rM), F (rB2))

crA,rB |rM (F (rA|rM), F (rB|rM))

crA,rA1|rM (F (rA, |rM), F (rA1|rM))

crA,rA2|rM (F (rA, |rM), F (rA2|rM))

crA,rB1|rM (F (rA, |rM), F (rB1|rM))

crA,rB2|rM (F (rA, |rM), F (rB2|rM))

crB ,rA1|rM ,rA(F (rB, |rM , rA), F (rA1|rM , rA))

crB ,rA2|rM ,rA(F (rB, |rM , rA), F (rA2|rM , rA))

crB ,rB1|rM ,rA(F (rB, |rM , rA), F (rB1|rM , rA))

crB ,rB2|rM ,rA(F (rB, |rM , rA), F (rB2|rM , rA))

crA1,rA2,rB1,rB2|rM ,rA,rB(·, ·)

(3.5)
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where crM ,rA stands for the copula between the returns of market and the

returns of sector A, crM ,rA1
is the copula between the return of market and

the return of stock 1 in sector A. crA1,rA2,rB1,rB2|rM ,rA,rB represents a four-

dimensional conditional copula, meaning the dependence of the four stocks

conditioned on the market and the two sectors. The term crA1,rA2,rB1,rB2|rM ,rA,rB

(·, ·) can be decomposed into 6 conditional pair copulas.

This dependence structure is displayed in Figure 3.4, where the term

(M,A) stands for the correlation between the market and sector A measured

by the copula function crM ,rA . The term (A,B|M) means the conditional

correlation between sector A and sector B conditioned on M , measured by

the conditional copula function crA,rB |rM . In the example, the canonical vine

consists of 6 trees and 21 nodes. All trees and nodes (explained in Section

3.2) are shown as Figure 3.5. If the dependence is modelled by CAVA which

imposes two independence assumptions, then the following copula functions

crA,rB |rM (·, ·), crA,rB1|rM (·, ·), crA,rB2|rM (·, ·), crB ,rA1|rM ,rA(·, ·), crB ,rA2|rM ,rA(·, ·),
crB ,rB1|rM ,rA(·, ·) and crB ,rB2|rM ,rA(·, ·) are all ignored in CAV A. However, the

partial canonical vine does not make any independence assumption in the

structure. The conditional independence or dependence between financial

variables are judged by data instead.

Considering the characteristics of the canonical vine dependence struc-

ture, the key step to construct a canonical vine is to determine the root

variables for all trees. The example in Section 3.3.2 is used to explain the

root variable. In Figure 3.5, from the first tree to the sixth tree, the corre-

sponding root variables are M , A, B, A1, A2, B1, B2 respectively. When

the root variable of each tree is identified, the whole canonical vine structure

is then determined. Nodes in a canonical vine are defined as the relations in

this chapter. Each tree has a different number of nodes, and each nodes can

only be allocated to one conditional pair copula. In Figure 3.4, for the first

tree, there are 6 nodes, and each nodes is allocated to one bivariate copula,

including crM ,rA , crM ,rB ,... and crM ,rB2
. For the sixth tree, there is only one

node, which is allocated to one conditional copula crB1,rB2|rM ,rA,rB ,rA1,rA2
. It
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Figure 3.5: The canonical vine dependence structure with 7 variables

is obvious that the number of nodes in a canonical vine will increase ex-

ponentially as the number of variables increases. Since each node has to be

allocated to one conditional copula, the number of parameters will double for

the two-parameter conditional pair copulas. For ease of comprehensibility, it

is essential to simplify and optimise the canonical vine.

In the partial canonical vine model, the principle of construction is to

capture the most important dependence, and then to truncate it to reduce

the complexity of the model without significantly affecting or changing the

original structure. It means that the truncated canonical vine should capture
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the most important dependence, ignoring the weak dependence. Based on

this principle, a partial correlation method is used to constructe the canoni-

cal vine dependence structure. In CAV A, the construction of the canonical

vine is based on the conditional copula. The new method is to build a canon-

ical vine via partial correlation, which is much easier than the conditional

canonical vine for constructing and truncating.

3.3.2 Partial Canonical Vine Specification

Generally, let V C
ρe , T , E, N be denoted as partial correlation based canonical

vine dependence structures, trees, edges and nodes respectively. A canonical

vine Vpc on n variables is a nested set of connected trees V C
ρe = {T1, ..., Tn−1},

where the edges of tree j are the nodes of tree j + 1, j = 1, ..., n − 2. Each

tree Tj and have a unique node with n− j edges. The nodes with n− j edges

in Tj are called the root nodes. It can see that each tree Tj has one root node

that connects to all other nodes.

Definition 3.1 (Partial Canonical Vine Specification) If V C
ρe is a canon-

ical vine on n variables, and e ∈ Ei, then a complete partial correlation spec-

ification is a canonical vine with a partial correlation pe specified for each

edge e. A distribution satisfies the complete partial correlation specification

if , for any edge e = {a, b} in the vine, the partial correlation is equal to ρe,

with the conditioned set Ce and the conditioning set De.

Thus, a Partial Canonical Vine Specification (V C
ρe , B(V C

ρe ), θ(B(V C
ρe )) on

n variables, is a multivariate distribution function:

(i). V C
ρe is a partial correlation based canonical vine structure on n vari-

ables;

(ii). B(V C
ρe ) = {Ce(a),e(b)|De

; e ∈ Ei, i = 1, ..., n− 1} is the set of n(n− 1)/2

bivariate copulas; and

(iii). θ(B(V C
ρe )) = {θe(a),e(b);De

| e ∈ Ei, i = 1, ..., n− 1} is the set of parame-

ters, corresponding to the copula in B(V C
ρe ).
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According to the above definition, the edge e in the partial canonical

vine can be rewritten as Ce : De, or Ce(a), Ce(b), ; De when e = {a, b}, where
Ce and De are the corresponding conditioning and conditioned sets for the

edge e. The full specification of a partial canonical vine copula has three

components: the canonical vine tree structure Vpc, the copula family set

B(V C
ρe ), and the corresponding copula parameters θ(B(V C

ρe )).

As discussed in Section 2.6.2, the partial correlation is equal to the con-

ditional correlation for elliptical family. The following theorem provides the

one-to-one relationship between the partial correlation and joint normal dis-

tribution, which is given by:

Theorem 3.1 Given any complete partial correlation vine specification for

normal random variables X1, ..., Xn, there is a unique joint normal distribu-

tion for X1, ..., Xn satisfy ing all the partial correlation specifications.

The proof can be found in (Bedford & Cooke 2002). Theorem 3.1 provides

the foundation to construct the multivariate joint distribution via partial

correlation. The multivariate joint distribution can be decomposed into many

pair copulas via the canonical vine, thus, it considers using partial correlation

to construct a canonical vine.

3.3.3 Dependence Structure Construction

This section discusses how to build the canonical vine dependence structure

V C
ρe via partial correlation. The reason for using partial correlation is that it

is not easy to obtain the conditional copula with high-dimensional data, but

partial correlations can be easily obtained from the correlation matrix. As

discussed in Section 2.6.2, for the elliptical family, the partial correlation is

equal to conditional correlation. It ensures that the canonical vine dependent

structure can be built via partial correlations. The method to construct a

canonical vine based on partial correlation is described in Algorithm 3.1.

The example in Section 3.3.2 is used to explain how to construct a canon-

ical vine based on the partial correlation. There is one market variable (M),
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Algorithm 3.1 Partial Canonical Vine Construction

Require: pseudo-observations of n variables

1: Calculate all values of partial correlation, and then allocate the smallest

absolute value of partial correlation to the node of last tree.

2: for k = 1, ..., n− 2 do

3: for j = 1, ..., n− 3 do

4: if Tj > Tk then

5: Find appropriate root variables for each tree which can minimise

the function
∑ |ρCe(a),Ce(b) ;De

| .
6: else

7: Find appropriate root variables for each tree which can minimise

the function of
∑

log(1− ρ2Ce(a),Ce(b) ;De
).

8: end if

9: end for

10: end for

11: There will be (n − 2) − 1 canonical vines as k = 1, ..., n − 2. The best

canonical vine is the one that can maximise the function −log(Demt),

where Demt =
∏

e(a),e(b)∈E(Vpc)

(1− ρ2Ce(a),Ce(b) ;De
)

12: return The partial canonical vine dependence structure V C
ρe

two sector variables (A,B), and four stocks (A1,A2,B1,B2), totally 7 vari-

ables. There will be 6 trees and 21 nodes in both the canonical vine structure

based on the partial correlation and conditional copula. Each node can be

allocated to one bivariate copula or one partial correlation. For constructing

the canonical vine based on conditional copula, the partial correlation-based

canonical vine is built at first. The partial correlation can be obtained via the

Equation (2.13). For these 7 variables, there are in total 21 partial correla-

tions, including ρM,A;B,A1,A2,B1,B2,ρM,B;A,A1,A2,B1,B2,...,ρB1,B2;M,A,B,A1,A2. The

smallest absolute value of these partial correlations is allocated to the root

node of the last tree (the sixth tree in Figure 3.5) as the last tree only

has one node. Suppose the selected partial correlation in the last tree is
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ρB1,B2;M,A,B,A1,A2. The variables in the last tree are variables B1 and B2.

The sets c7 = {B1, B2} and d7 = {M,A,B,A1, A2} are called the condi-

tioned set and conditioning set respectively. For the selection of the root

variable of the second to last tree (the fifth tree in Figure 3.5), there are

two nodes which can be allocated as two partial correlations. It has to se-

lect one root variable for the second to last tree (the fifth tree) from d7 and

generate 2 new conditioned sets. If the selected root variable of the second

to last tree is A2, then the two new conditioned sets are c6 = {A2, B1}
and c′6 = {A2, B2}. The corresponding conditioning set for c6 and c′6 is

d6 = {M,A,B,A1}. The partial correlations allocated to the two nodes are

ρA2,B1;M,A,B,A1 and ρA2,B2;M,A,B,A1. If the chosen root variable is A1, the two

new conditioned sets will be c6 = {A1, B1} and c′6 = {A1, B2}. The corre-

sponding conditioning set for c6 and c′6 is d6 = {M,A,B,A2}. The partial

correlation allocated to the two nodes are ρA1,B1;M,A,B,A2 and ρA1,B2;M,A,B,A2.

When the selected root variable of the second to last tree is M , A or B , the

process is similar to A1 and A2.

A method is proposed to identify the appropriate root variable, which is

called the tree broken method. Suppose k is a tree-broken level. For trees

beyond the kth tree (Tj > Tk), the appropriate root variable must min-

imise the value of function
∑ |ρCe(a),Ce(b) ;De

|. For trees within the kth tree

(Tj ≤ Tk), the appropriate root variables must minimise the value of func-

tion
∑

log(1− ρ2Ce(a),Ce(b) ;De
). For example, suppose k is 3 in the example.

For the first, second and third trees, the selected root variables for each tree

must minimise the value of function
∑ |ρCe(a),Ce(b) ;De

|. For the fourth, fifth

and sixth trees, the chosen root variables for each tree must minimise the

value of function
∑

log(1− ρ2Ce(a),Ce(b) ;De
). The parameter k can choose d-

ifferent values, such as k = 1, 2, 3, 4, 5. Therefore, there should totally have

5 canonical vines. The ’best’ canonical vine should maximise the value of

function of −log(Demt), where Demt is the determinant of canonical vine.
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The determinant (Demt) can be calculated by using:

Demt =
∏

e(a),e(b)∈E(Vpc)

(1− ρ2Ce(a),Ce(b) ;De
) (3.6)

3.3.4 Copula Families Selection

Once the canonical vine dependence structure V C
ρe is identified, the next step

is to choose the bivariate copula B(V C
ρe ) for each edge of all of the trees. S-

ince the partial correlation is equal to the conditional correlation for elliptical

family only, the Gaussian or t copulas can be considered. Gaussian is not a

good option, since a large number of evidence shows that the distribution in

financial fields does not obey normal assumption, which is discussed in Chap-

ter 2. In addition, the Gaussian copula does not have tail dependence. Thus,

the t copula, which has symmetric upper and lower tail dependence, is chosen

as the bivariate copula family given the partial canonical vine dependence

structure V C
ρe .

3.3.5 Vine Tree Structure Truncation and Simplifica-

tion

The number of the parameters is very large for higher dimensional data. For

example, if a n-variable canonical vine with bivariate t copula (two parame-

ters) is used as building blocks, the number of parameters of the multivariate

copula functions is n(n− 1). It is important to reduce the parameters of the

multivariate copula function. The idea is that if the edges of those absolute

values are less than the specified significant value ρsign which is between 0 and

1 (i.e., 0 < ρsign < 1), then they are replaced with conditional independence

copulas or bivariate Gaussian copulas. For the conditional independence cop-

ula case, it can be called the Truncated Partial Canonical Vine (TPCV ), and

for the bivariate Gaussian copula case it can be called the Simplified Partial

Canonical Vine (SPCV ).
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Before discussing the truncated partial canonical vine, the conditional

independence copula is first introduced. For a canonical vine with 3 variables,

the general expression is given by:

f(x1, x2, x3) =f(x1) · f(x2) · f(x3)

=c12(F (x1), F (x2))c23(F (x2), F (x3))

=c13|2(F (x1|x2), F (x3|x2))

(3.7)

It assumes that X1 and X3 are independent given X2, then it leads to

c13|2(F (x1|x2), F (x3|x2)) = 1. Thus, Equation (3.7) can be written as fol-

low:

f(x1, x2, x3) = f(x1) · f(x2) · f(x3)c12(F (x1), F (x2))c23(F (x2), F (x3)) (3.8)

Generally, for any vector of variables V and two variables X1 and X2, it

holds that X1 and X2 are conditional independent given V if and only if

Cx1,x2|v(Fx|v(x|v), Fy|v(y|v)) = 1 (3.9)

Thus, according to Equation (3.9), the conditional independence copula

is equal to 1, without any parameters. The conditional independence copula

is used to replace the edges with weak correlation indicated by low absolute

value of partial correlation in the vine. Thus, the number of estimation

parameters can be greatly reduced. Some dependencies in the vine may be

lost, however, they are very weak. Thus, they will not affect the performance

of the partial canonical vine model. The algorithm to truncate the partial

canonical vine is given in Algorithm 3.2.

Another alternative method is that these edges are replaced with bivari-

ate Gaussian copulas. The parameters of bivariate Gaussian copulas can be

quickly estimated due to the Gaussian assumption. The actual dependencies

may not be reflected when using the bivariate Gaussian copulas, since the

Gaussian assumption is not suitable to real world data. However, like the
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Algorithm 3.2 Partial Canonical Vine Truncation

Require: The n-variable partial canonical vine dependence structure V C
ρe

and ρsign

1: Calculate the all partial correlations based on the canonical vine depen-

dence structure V C
ρe ;

2: for k = 1, ..., n− 1 do

3: In tree Tj, find all edges, in which their absolute value of partial cor-

relation are less than ρsign, e.g. ρCe(a),Ce(b);D(e) < ρsign;

4: For edges found in Step 3, replace the corresponding edges with con-

ditional independence copulas;

5: end for

6: return The truncated partial canonical vine dependence structure

Algorithm 3.3 Partial Canonical Vine Simplification

Require: The n-variable partial canonical vine dependence structure V C
ρe

and ρsign

1: Calculate the all partial correlations based on the canonical vine depen-

dence structure V C
ρe ;

2: for k = 1, ..., n− 1 do

3: In tree Tj, find all edges, in which their absolute value of partial cor-

relation are less than ρsign, e.g. ρCe(a),Ce(b);D(e) < ρsign ;

4: For edges found in Step 3, replace the corresponding edges with Gaus-

sian copula;

5: end for

6: return The simplified partial canonical vine dependence structure

conditional independence copula, these replacement edges are weak correla-

tion, and they are not able to affect the performance of the partial canonical

vine. The algorithm to simplify the partial canonical vine is given in Algo-

rithm 3.3.
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3.3.6 Parameter Estimate

Due to the large number of parameters, a two-stage estimation method is

considered to estimate parameters. Firstly, the parameters of the univariate

margin are estimated, then the parameters of the copula function are esti-

mated given fixed parameters of margins. The method, which is discussed

in Section 2.2.2, is called Inference for Margins (IFM). For high-dimensional

data, the IFM is more efficient than the MLE. The loss of efficiency for the

IFM is not great, which is studied by Joe (2005).

Suppose n variable are observed at T time points, then let xi = (xi,1, ..., xi,T,

i = 1, ..., n) is denoted as the ith observation vector in the data set. Here,

it assumes that T observations of each variable are independent over time.

The assumption is not limiting, since the univariate time-series model (i.e.,

ARMA-GARCH model) can be fitted to the margins, and the residual-

s, which are independent over time, are used for analysing the dependence

structure.

Let parameters θc = {θ1,1, ..., θj,i, for i = 1, ..., n, j = 1, ..., n − 1}. The

corresponding bivariate copulas are Cj,j+i|1...j−1(uj, uj+i). Then, let θcj,i be

the set of parameters in the copula density cj,j+i|1...j−1(Fj|1:2...j−1, Fj+i|1:2...j−1).

According to Equation (3.3), the log-likelihood of the canonical vine is given

by:

n−1
∑

j=1

n−j
∑

i=1

T
∑

t=1

log[cj,j+1|1...j−1{Fj|j−1:1...j−2(xj,t|x(j−1)
t ),

Fj+i|j−1:1...j−2(xj+i,t|x(j−1)
t )}]

(3.10)

where x
(j−1)
t = (x1,t, ..., xj−1,t). In general, for each copula in Equation (3.10),

there is at least one parameter to be estimated. The number depends on

which bivariate copula is chosen. In the section, there are two parameters to

be estimated, since the t copula family is chosen.

Aas et al. (2009) proposed an algorithm to evaluate the likelihood for a

canonical vine. The algorithm can be applied to estimate the log-likelihood
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Algorithm 3.4 Parameter Estimate of Partial Canonical Vine

1: Log-likelihood = 0 ;

2: for i = 1, ..., n do

3: υ0,i = υi ( vectorized over t ) ;

4: end for

5: for j = 1, ..., n− 1 ( tree level j ) do

6: for i = 1, ..., n− j do

7: log-likelihood = log-likelihood + Lj,j+i(υj−1,1,υj−1,i+1, θ
c
j,i) ;

8: end for

9: if j == n− 1 then

10: Stop;

11: end if

12: for i = 1, ..., n− j do

13: υj,i = Cj+i|j:1...j−1(υj−1,1; θ
c
j,i) (vectorized over t ) ;

14: end for

15: end for

function of the partial canonical vine.

The Algorithm 3.4 is to evaluate the log-likelihood for the partial canon-

ical vine. The out for-loop corresponds to the outer sum in Equation (3.10),

which corresponds to the tree level of the canonical vine, where υj,i is υ =

F (xi+j,t|x1,t,...,xj,t
). The for-loop consists in turn of two other for-loops. The

first for-loop corresponds to the sum over i in Equation 3.10. For the second

for-loop, the conditional distribution function needed for the next run of the

outer for-loop are computed. In addition, L(x,υ,θc) is the log-likelihood of

the chosen bivariate copula with parameter set θc given the data vector x

and υ, which is given by:

L(x,υ,θc) =
T
∑

t=1

log(c(xt, υt, θ
c)) (3.11)

A good starting values of parameters can maximise the log-likelihood

function. Aas (2009) provides a sequential estimation method, which can be
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used as the starting value of the Algorithm 3.4. The method is described as

follows:

i. Estimate the parameters of the copula in tree 1 from the data;

ii. Compute observations for tree 2 using the copula parameters from tree

1 and the conditional distributions ;

iii. Estimate the parameters of the copula in tree 2 using the observation

from step ii ;

iv. Compute observation for tree 3 using copula parameters at tree 2 and

the conditional distribution;

v. Estimate the parameters of the copula in tree iii using the observations

from step iv ;

vi. Repeat step iii and step iv until all parameters are estimated.

3.4 Marginal Models Specification

Volatility clustering is one of the most important characteristics of stocks

returns, referring as it does to the variance of returns. It says that low

values of volatility tend to be followed by low values, and that high values of

volatility are followed by high values. As ARMA representation of GARCH

models can capture this characteristic of volatility clustering, the ARMA-

GARCH model is chosen as the marginal distribution of the partial canonical

vine to capture the volatility of daily returns.

3.4.1 ARMA-GARCH Model

Typically, let Xt(t = 0, 1, ...,T) be a time series of the prices of a financial

asset, such as the stock market index. The return of a financial asset can be

defined as:

rt = log(Xt/Xt−1) (3.12)
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Then, the ARMA(p, q)−GARCH(1, 1) model is defined as follows:

rt =μ+

p
∑

i=1

Φirt−i +

q
∑

j=1

Θjεt−j + εt

σ2
t =ω + αε2t−1 + βσ2

t−1

εt =σtZt

(3.13)

where ω > 0, α ≥ 0, β ≥ 0, α + β < 1 , rt is the actual financial asset

return and σt is the volatility of return on day t. The constraint α + β < 1

is to maintain the GARCH weak stationary. Zt is the error as discussed

in the following subsections. In general, a GARCH(1,1) model with three

parameters is adequate to fit the financial time series. Hansen and Lunde

(1994) provides evidence that it is difficult to find a volatility model which

outperforms the GARCH (1, 1) model. In this chapter, GARCH (1,1) is

used to interpret how the GARCH models capture volatility clustering. The

GARCH coefficient is to be constant and positive. Given the value of ω, it

is obvious that a small value of σ2
t−1 will result in a small value of σ2

t , and

a large value of σ2
t−1 will result in a large value of σ2

t . Therefore, AR(1)-

GARCH(1,1) is selected for the marginal distributions in a partial canonical

vine. Typically, the AR(1)-GARCH(1,1) is given by:

rt =μ+ Φrt−1 + εt

σ2
t =ω + αε2t−1 + βσ2

t−1

εt =σtZt

(3.14)

3.4.2 Error Distribution

The simplest choice of Zt is the standard normal distribution, such as Zt ∼
N(0, 1). The ARMA-GARCH with normal distribution errors indicates a

symmetric distribution for observations {xt}. However, the distribution of

the financial time series is not normal with negative skewness and excess

kurtosis. It also has been demonstrated that the distribution of financial

time series has fat tails beyond normal distribution (Andersen 2009). Fat
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tail means that extreme values occur more frequently than those produced

by a normal distribution. The ARMA-GARCH with normal error cannot

take account of the asymmetry in the distribution of financial data. There-

fore, the normal distribution should be excluded. It is more appropriate to

use a distribution which has fatter tails than Gaussian distribution. The

most commonly used fat tail distributions for fitting the ARMA-GARCH

model are the skew Student-t distribution. Hansen (1994) proposed the skew

Student-t distribution to fit the financial time series. Its density function is

as follows:

fSkewt(Zt) =
2γ

1 + γ2
[ft(γZt)I(Zt < 0) + ft(

Zt

γ
)I(Z

t
> 0)] (3.15)

where I(·) is the indicator function , γ > 0 and ft(·) is the density of

the Student-t distribution with v degrees of freedom. When γ = 1, the skew

Student-t distribution becomes Student-t distribution. The skew Student-t

distribution is to skew the symmetric Student-t distribution by combining

two differently scaled halves of the symmetric distributions. The advantage

of skew Student-t distribution is that it can fit the fat-tailed data very well

as it has two tails behaving as polynomials. Therefore, the skew Student-t

distribution is selected as the error distribution in the application.

3.5 Portfolio of Value at Risk: A Widely Used

Measure for Risk Management

Value at Risk (VaR) is a widely used risk measurement on a specific port-

folio of stock returns (Alexander 2009). The performance of models can be

evaluated by estimating the Value at Risk. A good model can generate good

estimates of VaR forecasting. The quality of VaR forecasting generated by

different models can be judged by using backtesting methods, including the

unconditional coverage test (Kupiec 1995) and the conditional coverage test

(Christoffersen 1998). These tests are based on likelihood ratios and the null
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hypothesis is that VaR should exhibit a conditional or unconditional cover-

age equal to the normal significance level α (0.05 in general). The details of

these tests can be found in (Guermat & Harris 2002). The portfolio of stock

returns at time t is denoted by:

rt,portfolio =
n

∑

i=1

μirt,i (3.16)

where ri is the return for i = 1, ..., n and μi is the weight.

The process for computing a Value at Risk is as follows:

(i). Fit AR(1)-GARCH(1,1) with skewed Student-t error distribution with

returns by using Equation (3.14)

Then, the standardised residuals is obtained by:

Ẑt,j =
rt,j − μ̂j − Φ̂jrt−1,j

σ̂t,j

(3.17)

(ii). The ex-ante garch variance forecast for j = 1, ..., n can be computed

as follows:

σ̂2
t+1,j = ω̂j + α̂j ε̂

2
t,j + β̂jσ̂

2
t,j (3.18)

(iii). The standardised residuals obtained from AR(1)-GARCH(1,1) are

transformed to approximately uniform data uj = u1,j, ..., ut,j by us-

ing the skewed Student-t cumulative probability function;

(iv). Fit a partial canonical vine structure with approximately uniform data

uj and estimate copula parameters;

(v). Use the fitted regular vine structure with estimated copula parameters

to simulate a sample for each financial return variable, i.e.,vt+1,j ;

(vi). Transfer the sample to standard residuals by using the inverse Student-

t cumulative probability distribution functions with parameters ob-

tained in Step (i), and obtain the simulated standardised residuals,

i.e., Ẑt+1,j ;
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(vii). Calculate the one day forecast return and variance for each financial

variable by using the estimated AR(1)-GARCH(1,1) which is calcu-

lated in Step (i), i.e.,

r̂t+1,j = μj + Φ̂jrt,j + ε̂t+1,j (3.19)

(viii). The portfolio return is calculated by using Equation (3.16). Then,

Steps from (iv) to (vii) are repeated for T times (e.g. T = 10000).

Then, the 99%, 95%, and 90% VaR forecast is determined by taking

the corresponding 1%, 5% and 10% quantiles of the portfolio return

forecast respectively.

The backtestings are used to evaluate the performance of the portfolio of

VaR forecasting by using the partial canonical vine. If the VaR forecasting is

accurate, the VaR forecast should possess two properties. The first property

is that the exceedances have to occur independently. The second property

is that the proportion of exceedances should approximately be equal to the

significance level α. The hit variable of ex-post exceedances is given by:

It =

{

1, if rportfolio,t < V aRt(1− α);

0, otherwise.
(3.20)

where rt,portfolio is the ex-post observed portfolio return at time t. If the

VaR forecast is accurate, It should be equal to the significance level α of

backtesting.

In addition, the quality of VaR forecasting can be judged by backtest-

ing methods. Typically, backtesting methods consist of unconditional, in-

dependent and conditional coverage tests (Guermat & Harris 2002, Kupiec

1995, Christoffersen 1998). LRUC , LRCC and LRIC are denoted as the log-

likelihood ratio of unconditional, conditional and independent coverage. Con-

sider the indicator sequence of violations It, t = 1, ...,T, the LRUC is defined
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by:

LRUC =− 2log

(

L(q; I1, ..., IT)

L(π̂; I1, ..., IT)

)

=− 2log

(

qm(1− q)T−m

π̂m(1− π̂)T−m

)

∼ χ2
1

(3.21)

where m is the number of violations and π̂ = m/T.

Then, LRIC is defined as follow:

LRIC =− 2log

(

L(π̂2; I1, ..., IT)

L(π̂01, π̂11; I1, ..., IT)

)

=− 2log

(

π̂n01+n11
2 (1− π̂2)

n00+n01

π̂n01
01 (1− π̂01)n00π̂n11(1− π̂11)n10

)

∼ χ2
1

(3.22)

where πij = Pr(It = j|Tt−1 = i), nij = Tπ̂ij is the corresponding frequency,

and π̂ = n01 + n11/n00 + n10 + n01 + n11.

The LRCC combines the previous two test, which is defined by:

LRCC = −2log

(

L(q; I1, ..., IT)

L(π̂01, π̂11; I1, ..., IT)

)

∼ χ2
2 (3.23)

3.6 Dependence Analysis on European Stock

Returns

3.6.1 Data and Marginal Model Specification

To evaluate the performance of truncated and non-truncated PCV on real

financial data, the log daily returns of 45 stocks from ˆSTOXX50E, a Europe-

wide composite index, corresponding to the market variable (M) mentioned

in the example 3.3.2 are used in the experiment. The sector variables are

the five national leading stock indices corresponding to the home country

of the chosen stocks such as ˆFCHI, ˆGDAXIP, ˆAEX, FTSEMIB.MI and

ˆIBEX, namely the national indices of France, Germany, Netherland, Spain
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Table 3.1: Indices and Stocks

Indices France Germany Netherlands Spain Italy

ˆSTOXX50E ACA.PA ALV.DE AGN.AS BBVA.MC ENEL.MI

ˆAEX AI.PA BAYN.DE INGA.AS IBE.MC ENI.MI

ˆIBEX ALO.PA DAI.DE PHIA.AS REP.MC G.MI

ˆFTSEMIB.MI BN.PA DB1.DE SAN.MC ISP.MI

ˆGDAXIP BNP.PA DBK.DE TEF.MC TIT.MI

ˆFCHI CA.PA DTE.DE

CS.PA EOAN.DE

DG.PA MUV2.DE

FP.PA RWE.DE

VIV.PA SIE.DE

FTE.PA SAP.DE

GLE.PA

GSZ.PA

MC.PA

OR.PA

SAN.PA

SGO.PA

SU.PA

UL.PA

and Italy. Some of these national leading stock indices are referred to as

the sector variables A and B by the example of Section 3.3.2. There 51

variables involved in the experiment in total. The data was downloaded

from yahoo finance (http://finance.yahoo.com), it spans 970 trading days

from 22/05/2006 to 30/06/2010. The stocks and indices in the experiment

are listed in Table 3.1. The returns of these indices and stocks are calculated

by taking the log difference of the prices on every two consecutive trading

days.

The experiments and obtained descriptive statistics of the data are shown

in Table 3.2. Skewness (Skew) is used to measure of asymmetry of the finan-
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cial time series, and Kurtosis (Kurt) is used to measure the ”peakedness”.

All of the variables have positive skewness, excluding the national indices

ˆAEX and ˆIBEX. All of the variables exhibit an excess kurtosis, indicating

that they do not follow any normal distribution. This would suggest that

different and appropriate models should be selected for their marginal dis-

tributions. As described in the method Section 3.4.1, AR(1) - GARCH(1,1)

is considered as the marginal distribution model to capture the asymmetry.

The Ljung Box (LB) test (McLeod & Li 1983) is then used for examining

the existence of the residual autocorrelation for each time series. It can be

conducted so that the Ljung Box test for each marginal model will ensure

that residuals do not have autocorrelation in all of the return data. The

Ljung Box test results of the composition index ˆSTOXX50E and the five

national leading indices are shown in Table 3.3. The 45 stocks are not listed.

In Table 3.3, p is the correspondingp-value. The results indicate that the six

indices do not have autocorrelation as all of the p-values are bigger than the

significance level 0.05.

Table 3.2: Descriptive Statistics for the Indices

ˆSTOXX50E ˆGDAXIP ˆFCH

Min -0.081 -0.0975 -0.947

Max 0.1211 0.1080 0.1059

Skew 0.1178 0.2168 0.7650

Kurt 9.8754 10.1641 9.5348

ˆAEX ˆIBEX FTSEMIB.MI

Min -0.0959 -0.0959 -0.0860

Max 0.1003 0.1023 0.1088

Skew -0.1723 -0.1330 0.0014

Kurt 10.0045 8.9012 9.1447
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Table 3.3: Results of Ljung Box Test

ˆSTOXX50E ˆGDAXIP ˆFCH

statistics 12.7841 14.6496 11.4877

p-value 0.8865 0.7961 0.9326

ˆAEX ˆIBEX FTSEMIB.MI

statistics 20.2718 19.0624 18.4021

p-value 0.4447 0.5178 0.5609

3.6.2 The Truncation and Simplification Analysis of

Partial Canonical Vine

In this section, the performance of the truncated, simplified partial canon-

ical vine with the non-truncated partial canonical vine are compared and

analysed.

Table 3.5 provide the comparison results among truncated, simplified

and non-truncated partial canonical vines, including the total number of

parameters, estimation time (seconds) 1 and log-likelihood. Gau and Ind

refer to the bivariate Gaussian copula and condition independence copulas

respectively. If ρsign = 0, it means that the model is a non-truncated or

non-simplified model, since no partial correlation is less than or equal to

0. The corresponding figures are shown in Figure 3.6. In Figure 3.6, the

number of parameters of TPCV decrease greatly as the significant values

increase. The parameter number of SPCV decrease at the beginning, and

then is maintained at a certain level after that. The estimation time of both

the TPCV and SPCV models reduces greatly. However, compared with

SPCV , TPCV uses less estimate time. The reason is that the number of

parameters of TPCV is less than the number of parameter of SPCV given

the same significant value ρsign. For the log-likelihood, it shows a very small

1The estimate time (seconds) is calculated via parameters estimation in partial canon-

ical vine, excluding the estimation of parameters in marginal distributions. The computa-

tion is on a Linux cluster computer with 6 Inter Xeon CPU (3.74GHz) and 12G memory.
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gap between the SPCV and the non-truncated one, which indicates that the

log-likelihood of SPCV is very close to the non-truncated partial canonical

vine. The log-likelihood of TPCV decreases smoothly at the beginning, and

then deeply reduces after a certain point. According to the analysis of Figure

3.6, the significant value 0.1 is a good choice for the truncated canonical

vine. The reason is that the log-likelihood is close to the non-truncated one,

but the number of parameters and the estimate time is greatly reduced. In

addition, TPCV with significant value 0.4 is selected as the reference, since

the log-likelihood decreases sharply after the point value 0.4.

Thus, the following models are used in the case study:

• TPCV0.1: Truncated partial canonical vine, built by Algorithm 3.1,

and then truncated by Algorithm 3.2 with truncation value 0.1(i.e.

ρsign = 0.1);

• TPCV0.4; Truncated partial canonical vine, built by Algorithm 3.1,

and then truncated by Algorithm 3.2 with truncation value 0.4(i.e.

ρsign = 0.4);

• PCV : Partial canonical vine, built by Algorithm 3.1, non-truncated

models;

• CAV A: Canonical Vine Autoregressive model, built by (Heinen &

Valdesogo Robles 2009).

To compare the performance among above four models, t copulas are used

for all four model candidatures.

3.6.3 Experiments on Value at Risk

The performance of the model was further evaluated by measuring the Value

at Risk (VaR) forecasting. The backtesting tests discussed in Section 3.5 are

used for validating VaR forecasting generated by different models. A moving

window of 970 observations, corresponding to appropriately 4 years of trading
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Table 3.4: Determinants and Numbers of Pair Copulas

ρsign 0 0.01 0.02 0.03 0.04

−log(Demt) 29.02 29.02 28.97 28.88 28.74

No. nodes 1275 1081 906 755 643

ρsign 0.05 0.06 0.07 0.08 0.09

−log(Demt) 28.52 28.31 28.04 27.81 27.43

No. nodes 534 465 399 358 307

ρsign 0.1 0.15 0.20 0.25 0.30

−log(Demt) 27.10 25.10 23.65 22.59 21.82

No. nodes 271 139 90 69 59

days from 22/05/2006 to 30/6/2010, was used to construct the models. The

test period was from 01/07/2010 to 01/03/2012 with 500 observations of

trading days. The three level of VaR: 90%, 95%, and 99% VaR are calculated.

The process is explained in Section 3.5. The VaR of portfolio returns of 51

variables (45 stocks, 5 leading national indices and 1 composite index) in the

test period was calculated by using the method in Section 3.5. The models

TPCV0.1 and TPCV0.4 are compared with PCV and CAV A.

It is important to examine whether VaR forecastings are consistent with

the subsequently realised return given a significant level. Kupiec (1995) in-

troduced a percentage of failure of unconditional coverage to examine the

quality of VaR. Christoffersen (1998) proposed a more complete test to ex-

amine the conditional coverage and independence of VaR. These tests were

used as backtesting for examining the quality of VaR here. The exceedances

result is presented in Table 3.6, where PoF stands for the percentage of fail-

ure. It can been seen that TPCV0.1 performs very well as the two levels

of PoF are in the level 95% and 90%, lower than α. At the level 99%, the

exceedances slightly increase in comparison to those expected. Compared

with TPCV0.1, the non-truncated partial canonical vine has a similar perfor-

mance. However, the CAV A model does not have a good performance, as

all of the three levels of exceedances are higher than the expected one. The
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performance of TPCV0.4 is worse than CAV A. The corresponding display

of these VaR forecastings is shown in Figure 3.7.

Table 3.7 presents statistics of a conditional coverage test, unconditional

coverage test and an independent coverage test, where LRCC , LRUC , and

LRIC are short for the likelihood ratio of conditional coverage, likelihood

ratio of unconditional coverage and likelihood ratio of independent coverage

respectively. The values in the parentheses are the corresponding p-value

of these tests. The smaller the statistics are, the bigger the corresponding

p-value is, indicating that the VaR forecast is more accurate. If the p-value is

bigger than 0.05, it means that the null hypothesis of backtesting can be ac-

cepted, and the VaR forecasts are accurate and reliable. For TPCV0.1, it can

been seen that the VaR forecasting at all of the three levels are sufficiently

accurate, as the null hypotheses of the conditional, unconditional and inde-

pendent cannot be rejected according to these tests. The non-truncated PCV

has similar performance in backtesting. It is evident that the model based

on the optimal canonical vine performs as good as the non truncated partial

canonical vine, suggesting that these weak correlations can be ignored with-

out affecting or changing the whole dependence structure. It means that the

truncation method for constructing and optimising the canonical vine is ex-

cellent and reliable. On the other hand, the tests on CAV A suggest that VaR

forecasting at all of the three levels is not accurate, since the null hypotheses

of conditional, unconditional and independent at all of the three levels are

rejected. The reason is that CAV A imposes two independence assumptions

to ignore some strong correlations in the canonical vine. TPCV0.4 has similar

performance with CAV A, and the reason is that the number of nodes is too

small to capture the most important dependencies in the canonical vine tree

structure.

Similar analysis for the partial canonical vine under different significance

value (ρsign) is listed in Table 3.4. The results show that for those PCV s

with a ρsign greater than 0.1, their VaR performance is not accepted. For

those PCV models with a ρsign less than 0.1, their performance is as good
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as the non truncated partial canonical vine, however, the number of nodes is

quite large. When the ρsign is equal to 0.1, the nodes are small enough, and

the performance is accepted.

3.7 Summary

This chapter proposes a new partial canonical vine, as truncated based on

partial correlation, to model the complex dependence structures of financial

variables. It is useful for analysing the complicated dependence structure of a

large portfolio of European stocks. Compared with CAVA, the partial canoni-

cal vine shows a much better performance in producing the VaR forecastings

of portfolio returns. The truncated partial canonical vine , which greatly

reduces the number of parameters and the computation burden, shows a

similar performance of VaR forecastings as that of the non-truncated partial

canonical vine model although with a size much smaller.
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Table 3.5: Truncated and Simplified Partial Canonical

Vine Analysis

ρsign No. Parameters Estimation Time Log-likelihood

Gau Ind Gau Ind Gau Ind

0 1753 17736.23 30157.23

0.01 1717 1549 14836.62 13771.91 30077.08 29652.81

0.02 1687 1354 13070.86 11156.90 30010.27 29254.79

0.03 1644 1140 10976.36 8399.20 29903.54 28908.65

0.04 1618 987 9621.40 6533.48 29848.93 28695.89

0.05 1588 865 8308.09 5207.68 29741.34 28489.97

0.06 1560 751 7205.76 4099.29 29680.13 28342.98

0.07 1538 669 7835.68 3462.03 29626.86 28191.73

0.08 1513 579 6882.76 3245.45 29619.52 28090.70

0.09 1494 521 6444.99 2795.42 29568.22 27982.74

0.1 1479 472 5872.44 2294.04 29501.07 27796.20

0.11 1456 410 6224.03 2101.07 29484.17 27658.33

0.12 1443 377 5098.59 1606.01 29400.44 27466.45

0.13 1428 332 4694.03 1308.68 29345.36 27142.47

0.14 1411 293 4155.37 996.27 29280.00 26928.20

0.15 1401 270 4592.50 706.05 29340.87 26825.75

0.16 1391 245 4301.66 585.15 29316.88 26579.64

0.17 1382 226 4115.33 705.85 29293.53 26406.71

0.18 1376 212 4004.73 668.08 29275.89 26258.00

0.19 1369 198 3807.06 565.07 29257.09 26069.38

0.2 1364 184 3673.35 511.02 29244.35 25865.96

0.21 1355 164 3519.16 418.93 29225.49 25575.29

0.22 1352 157 3500.87 283.14 29203.94 25351.59

0.23 1348 148 2846.83 243.77 29179.12 25127.67

Continued on next page
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0.24 1344 139 2306.98 167.37 29159.01 24906.06

0.25 1340 131 3091.25 146.71 29139.76 24626.02

0.26 1337 125 3062.49 135.07 29127.76 24429.67

0.27 1337 125 3057.43 136.40 29127.76 24429.67

0.28 1336 123 3053.04 132.12 29125.36 24347.60

0.29 1335 121 3060.17 128.82 29124.32 24281.09

0.3 1335 121 3050.37 131.44 29124.32 24281.09

0.31 1334 119 3020.40 126.70 29115.19 24239.01

0.32 1334 118 3024.80 124.60 29115.48 24152.56

0.33 1332 114 2812.87 108.90 29105.68 23827.74

0.34 1332 114 2846.86 107.12 29105.68 23827.74

0.35 1331 112 2800.81 124.67 29092.99 23661.18

0.36 1329 108 2744.71 90.70 29079.59 23348.55

0.37 1329 108 2768.22 91.31 29079.59 23348.55

0.38 1329 108 2765.77 92.48 29079.59 23348.55

0.39 1329 108 2784.19 92.11 29079.59 23348.55

0.4 1328 106 2755.80 90.03 29068.01 23172.38

0.41 1324 98 2713.48 82.19 28996.58 22343.52

0.42 1323 96 2730.19 81.72 28977.24 22133.08

0.43 1321 92 2723.99 79.27 28944.16 21702.16

0.44 1316 82 2662.26 67.63 28865.60 20527.42

0.45 1314 78 2676.69 64.49 28831.70 20005.14

0.46 1310 70 2649.22 71.47 28761.86 19015.21

0.47 1310 70 2649.77 71.86 28761.86 19015.21

0.48 1310 70 2619.84 71.40 28761.86 19015.21

0.49 1307 64 2652.34 66.88 28707.18 18118.04

0.5 1307 64 2617.13 65.77 28707.18 18118.04

0.51 1304 58 2571.59 59.58 28644.90 17135.11

0.52 1304 58 2569.45 59.29 28644.90 17135.11

0.53 1302 54 2564.49 56.27 28621.74 16414.99

Continued on next page
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0.54 1302 54 2540.26 54.95 28621.74 16414.99

0.55 1300 50 2558.70 53.08 28587.12 15615.88

0.56 1297 44 2161.31 47.13 28529.89 14383.73

0.57 1293 36 2137.89 39.53 28443.08 12678.80

0.58 1292 34 2149.45 38.01 28418.83 12235.56

0.59 1291 32 2141.55 36.33 28394.38 11799.33

0.6 1287 24 2111.82 28.60 28283.16 9862.87

0.61 1287 24 2136.32 28.82 28283.16 9862.87

0.62 1285 20 2119.50 24.86 28235.09 8804.88

0.63 1285 20 2118.12 24.90 28235.09 8804.88

0.64 1283 16 2166.24 21.10 28156.28 7660.45

0.65 1282 14 2099.66 20.03 28149.24 7055.75

0.66 1282 14 2098.28 19.80 28149.24 7055.75

0.67 1280 10 2096.25 16.30 28077.71 5747.10

0.68 1280 10 2136.72 16.70 28077.71 5747.10

0.69 1280 10 2136.82 16.64 28077.71 5747.10

0.7 1280 10 2182.55 17.16 28077.71 5747.10

0.71 1280 10 2131.52 17.44 28077.71 5747.10

0.72 1280 10 2211.48 17.03 28077.71 5747.10

0.73 1280 10 2211.36 17.48 28077.71 5747.10

0.74 1280 10 2229.68 16.54 28077.71 5747.10

0.75 1280 10 2160.90 16.90 28077.71 5747.10

0.76 1279 8 2148.83 14.81 28065.68 4814.00

0.77 1278 6 2123.78 12.07 28043.30 3854.32

0.78 1277 4 2480.75 10.30 28019.58 2873.42

0.79 1277 4 2472.16 9.77 28019.58 2873.42

0.8 1277 4 2501.70 9.92 28019.58 2873.42
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Table 3.6: Number of Exceedances of VaR Forecast

Model VaR α Expected Actual POF

TPCV0.1

99% 1% 5 7 1.4%

95% 5% 25 21 4.2%

90% 10% 50 41 8.2%

TPCV0.4

99% 1% 5 16 3.2%

95% 5% 25 43 8.6%

90% 10% 50 96 19.2%

CAV A

99% 1% 5 13 2.6%

95% 5% 25 39 7.8%

90% 10% 50 82 16.4%

PCV

99% 1% 5 7 1.4%

95% 5% 25 20 4%

90% 10% 50 40 8%
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Table 3.7: The Results of VaR Backtesting

Model VaR LRCC LRUC LRIC

TPCV0.1

99%
3.81 0.72 0.91

(0.149) (0.397) (0.44)

95%
2.01 0.71 0.74

(0.367) (0.399) (0.39)

90%
2.16 0.88 0.77

(0.340) (0.77) (0.379)

TPCV0.4

99%
13.21 15.47 6.32

(0.001) (0.000) (0.012)

95%
13.75 15.04 5.68

(0.001) (0.000) (0.017)

90%
14.60 16.18 6.03

(0.001) (0.000) (0.014)

CAV A

99%
11.96 10.99 5.16

(0.003) (0.001) (0.023)

95%
11.17 10.19 3.98

(0.004) (0.001) (0.046)

95%
11.73 10.45 4.64

(0.003) (0.001) (0.031)

PCV

99%
3.80 0.72 0.77

(0.149) (0.397) (0.381)

95%
2.00 0.71 0.84

(0.367) (0.399) (0.361)

90%
2.28 0.77 0.84

(0.320) (0.379) (0.361)
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Figure 3.6: The results of truncated and simplified partial canonical vine

against ρsign
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Figure 3.7: The Value at Risk forecasting of portfolio returns among mod-

els. From top to bottom figures, they are truncated PCV with ρsign=0.1,

truncated PCV ρsign=0.4, non-truncated PCV and CAVA.
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Chapter 4

Modeling Asymmetry and Tail

Dependence among Multiple

Variables by Using Partial

Regular Vine

4.1 Introduction

Learning dependencies among high-dimensional variables, has been widely

studied and applied in a large number of areas, such as social media and

financial markets. Existing studies focus on the degree of dependence, how-

ever, few of them focus on the other important aspect of dependence–the

dependence structure, especially the asymmetric and tail dependence char-

acteristics. Dependence structure studying plays an important role in the

financial area, especially in portfolio investment theory. Typical models of

investment theory impose strong restriction on the dependence structure,

which does not consider the asymmetric characteristics. It results in mod-

els which do not reflect the scenario in real world. For example, in the

cross-country stock market, the typical investment theory suggests portfo-

lio diversification. However, it is useless when all stocks tend to fall as the
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market falls, which is demonstrated in the 2008 global financial crisis. It

indicates that stock returns have stronger dependence during bear markets

than bull markets, which means that stock returns may fall together, rather

than boom together.

Recently, copula based dependence modelling emerges as a promising

tool. Copula based dependence modelling is free of the linear correlation

restriction, and allows dependence and correlation to vary over time. It uses

the correlation/conditional correlation to capture the natural dependence,

and at the same time, it can build flexible structures to model complex

high-dimensional dependencies structures. In order to model the asymmet-

ric dependence with high-dimensional financial variables, it is essential to

develop a flexible dependence model with parametric copula families, which

are suitable to multivariate data with various dependence structures. Hence,

the model should have desired properties, which are described as follows:

(i). Flexible dependence structure, without imposing any assumptions or

restrictions;

(ii). Wide range of dependence, allowing for both positive and negative

dependencies;

(iii). Flexible range of tail dependence, allowing for various lower and upper

tail dependencies;

(iv). Computationally feasible estimation for the joint density functions.

The existing multivariate copula models with parametric families did not

satisfy all of the above conditions. Typically, the multivariate Archimedean

copula model has the structure with only a narrow range of negative depen-

dence (McNeil & Nešlehová 2009). The multivariate Gaussian copula model

is not suitable to model the asymmetric characteristics, since (1) the Gaussian

copula does not have lower and upper tail dependence, and (2) the Gaussian

assumptions are not appropriate in the real world (Abdous et al. 2005, Fang

et al. 2002). The multivariate t copula model, which is studied by (Demarta
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& McNeil 2005, Nikoloulopoulos et al. 2009), does not have flexible lower and

upper tail dependence since the t copula has the same lower and upper tail

dependence. Canonical vine or D vine copula model, such as (Aas, Czado,

Frigessi & Bakken 2009, Aas & Berg 2009), have a wide range of depen-

dence by choosing appropriate bivariate copula families. However, they do

not have a flexible dependence structure due to their structurale assumption-

s. These assumptions which are imposed on the dependence structure lead

to a dependence structure which may not reflect the actual dependence in

high-dimensional data.

In order to fulfill the above needs, a new partial correlation-based regular

vine copula model with asymmetric dependence is proposed in this chapter.

The new model can capture asymmetric dependence in high-dimensional da-

ta. The new model employs regular vine theory to construct the dependence

structure, in which it does not impose any strong restriction on the depen-

dence structure. Hence, it can reflect the actual dependence structure of

high-dimensional data. In addition, the copula family with flexible lower

and upper tail dependence connects with the new models, which ensure the

new model has a wide range of lower and upper tail dependence.

This chapter has these contributions: (1) The chapter develops a new

partial correlation based algorithm to construct the regular vine structure,

which is called partial regular vine. The partial regular vine can uniquely

determine the correlation matrix and be algebraically independent. It indi-

cates that dependence structure constructed via partial correlation is more

flexible, since the current tree structure is independent from the established

tree structure and bivariate copulas selection. Hence, the model does not im-

pose any strong restriction on the dependence structure; (2) For all linking

bivariate copulas on the partial regular vine dependence structure, only the

BB1, survival BB1, BB7 and survival BB7 are used, since these copula have

both lower and upper tail dependence that can range independently from 0

to 1, and; (3) In the literature, it is the first time to analyse the moving

trends of lower and upper tail dependence with the high-dimensional data

118



CHAPTER 4. PARTIAL REGULAR VINE

structure. In addition, the trends of lower and upper tail dependence during

the dynamic period are also analysed.

The rest of this chapter is structured as follows. The partial correlation-

based regular vine model is introduced in Section 4.2. Section 4.3 discusses

how to estimate parameters in the partial regular vine copula and marginal

distribution. Value at Risk, which is the popular evaluation method used in

the financial market, and its related tests are discussed in Section 4.4. Section

4.5 shows the case study results in cross-country stock markets. Finally,

Section 4.6 concludes the chapter.

4.2 Regular Vine Copula Model with Asym-

metric Dependence

4.2.1 Regular Vine Copula Specification

The regular vine theory and its related definitions have been introduced in

Section 2.4.3. Thus, the regular vine copula model specification is presented

as follows:

Definition 4.1 (Regular Vine Copula Specification) A regular vine cop-

ula specification on n variables is a multivariate distribution function is de-

fined as C= (V R
ρe , B(V R

ρe ), θ(B(V R
ρe )))

(i). V R
ρe is a vine structure on n variables;

(ii). B(V R
ρe ) = {Ce(a),e(b)|De

|ei ∈ Ei, i = 1, ..., n− 1} is the set of n(n− 1)/2

copula families; and

(iii). θ(B(V R
ρe )) = {θe(a),e(b)|De

|e ∈ Ei, i = 1, ..., n − 1} is the set of parame-

ters, corresponding to the copula family in B(V R
ρe ).

Based on the definition of regular vine specification, the full specifica-

tion of a regular vine copula has three components: the vine tree structure

V R
ρe , the copula family set B(V R

ρe ), and the corresponding copula parameters
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θ(B(V R
ρe )). Then, there is a corresponding density distribution that realises

the regular vine copula specification, which is given as follows:

f1:n(x|V R
ρe , B, θ) =

n
∏

k=1

fk(xk)·

n−1
∏

i=1

∏

e∈Ei

ce(a),e(b) ;De
(Fe(a)|De

(xe(a) ; xDe
), Fe(b);De

(xe(b) ; xDe
))

(4.1)

where x = (x1, x2, ..., xn), e = a, b ∈ E and xDe
stands for the variables

in De. fi is denoted as the density function of the corresponding F for

i = 1, ..., n. The corresponding density function of multivariate vine copula

can be factorized in terms of many bivariate copulas, hence, various vine tree

structures V can be constructed. For n-dimensional regular vine, there are

(n − 1) bivariate copulas at tree level 1, and (n − 2) bivariate copulas at

tree level 2. Typically, there are (n − l) bivariate copulas in tree level l for

l = 2, ..., n− 1.

4.2.2 Regular Vine Tree Structure Construction

The construction of vine tree structure V R
ρe is discussed at first, and then the s-

election of bivariate copula for all edges in the vine tree structure is discussed.

The regular vine tree structure is a dependence structure which connects all

bivariate copula together. For a dependence structure with dimension < 5,

the vine tree structure is either the canonical vine or D vine. However, for a

dependence structure with high dimensions (dimension ≥ 5), there are three

dependence structures, including regular, canonical or D vine. The canonical

and D vine are two boundary cases of regular vine. The canonical vine impos-

es restrictions on the vine tree dependence structure, in which each variable

connect to one variable in each tree. Hence, the canonical vine has a star-

like structure. D vine has the restriction that each variable links to no more

than two variables, which results in a flat-path-like structure. Regular vine,

which does not impose any assumption or restriction on the vine structure,

can reflect the actual dependence structure of the high-dimensional data set.
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Hence, for high-dimensional data, regular vine is better than canonical vine

or D vine.

A new partial correlation-based algorithm is developed to construct the

regular vine, which is called the partial regular vine. The partial correlation

is used to produce the regular vine tree structure, since (1) The partial cor-

relation is obtained directly from the data, without knowing any structure

or parametric assumption. The partial correlation ρ is defined by:

ρ1,2:3,...,n = − K12√
K11K22

(4.2)

where Kij is denoted as the (i, j) cofactor of the correlation matrix. The par-

tial correlation can be computed from correlation with the following recursive

formula:

ρ1,2:3,...,n =
ρ1,2:3,...,n−1 − ρ1,n:3,...,n−1 · ρ2,n:3,...,n−1
√

1− ρ21,n:3,...,n−1

√

1− ρ22,n:3,...,n−1

(4.3)

Obviously, ρ1,2 is equal to correlation. Hence, when building the partial

regular vine tree structure, the current vine tree structure is independent

from the previous tree structure, and (2) As discussed in Section 4.2.1, for

copula selection, regular vine tree structure built by partial correlation can

ensure that copula selection in current tree structure is independent from the

copula selection result in the previous tree. Hence, the partial correlation-

based regular vine tree structure ensures that it can focus on the dependence

structure itself, ignoring the effect of the different copula family selection.

The algorithm to construct the partial regular vine tree structure is given

in Algorithm 4.1. Based on the partial correlation definition, the partial

correlation is equal to the correlation in the first tree T1. In this chapter,

Kendall’s tau τ is used to measure the correlation between any two variables,

since it can measure dependence independently of the assumed distribution.

Hence, in T1, ρ1,2 = τ1,2. To build the first tree T1, the partial correlations ρ

for all possible pair variables are calculated. Then, the Maximum Spanning

Tree (MST ) is employed to find the vine tree structure in T1. Typically, the

Algorithm of Prim is used to produce a Minimum Spanning Tree (Cormen,
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Algorithm 4.1 Regular Vine Construction via Top-to-Bottom Strategy

Require: Observations of n variables

1: Calculate partial correlation ρx,y ; I\{x,y} for all possible pair variables

{x, y}, x, y ∈ {1, ..., n} = I.

2: Find the Maximum Spanning Tree (MST ), which can maximise the sum

of absolute value of partial correlation ρ, such as: max
∑ |ρx,y ; I\{x,y}|.

3: for j = 2, ..., n− 1 do

4: In Tj, based on the structure in Tj−1, find all possible edges

{e(p), e(q) ; De} which are part of tree Tj, where e = {p, q} ∈ I, and

{p, q} 	∈ {x, y}.
5: Ensure that these edges satisfy the proximity condition in Definition

1;

6: Choose MST which can maximise the sum of absolute value of partial

correlation, i.e., max
∑

|ρe(p),e(q) ;De
|, where ρ is partial correlation.

7: end for

8: return Partial regular vine tree structure

Leiserson, Rivest, Stein et al. 2001). However, Algorithm of Prim can work

in both ways. That means that Algorithm of Prim can also produce the

Maximum Spanning Tree. By using the MST , a large number of regular

vine tree structures will be built, and the structure which can maximise

the sum of absolute value of partial correlation ρ can be selected. Once

the first tree structure is identified, the following trees are built and they

employ a similar strategy to that used in the first tree building. For tree

building from T2 to Tn−1, all edges must satisfy the proximity condition

mentioned in Section 4.2.1. The partial regular vine is obtained by assigning

a partial correlation ρ with a value chosen arbitrarily in the interval (-1,1) to

each edge e that is defined in Section 4.2.1. Therefore, the most important

advantage of the partial regular vine is that it can uniquely determine the

correlation matrix and algebraically independent. The limitation of partial

regular vine is that the partial regula vine structure V is built on elliptical
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Table 4.1: The Tail Dependence of Copula Family

Lower Tail Dependence Upper Tail Dependence

Gaussian - -

t 2tν+1(μ(ν, φ)) 2tν+1(μ(ν, φ))

Gumbel - 2−1/φ

Frank - -

Clayton 2−1/φ -

Joe - 2− 21/φ

BB1 2−1/(φδ) 2− 21/δ

S.BB1 2− 21/δ 2−1/(φδ)

BB6 - 2− 21/(δφ)

BB7 2− 21/δ 2− 21/φ

S.BB7 2− 21/φ 2− 21/δ

BB8 - 2−1/φ when δ = 1

S.BB1 and S.BB7 are survival BB1 and BB7 copula respec-

tively. φ and δ are parameters of the corresponding copula

family. For t copula, μ(ν, φ) =
(

−
√
ν + 1

√

1−φ
1+φ

)

.

copulas. However, the theorem in (Bedford & Cooke 2002) indicates that a

partial regular vine structure can provide a bijective mapping from (−1, 1)(
n
2)

into the set of positive definition matrices with 1’s on the diagonal. Therefore,

the partial regular vine structure is constructed firstly, and then mapped into

the conditional correlation based regular vine dependence structure. Then,

the whole structure is fitted with various copulas. The limitation of the

partial regular vine can be removed, and the tree structure can be fitted

with various copulas, other than the elliptical copula.

4.2.3 Bivariate Copula Family Selection

Once the vine tree structure is identified, the next step is to choose an appro-

priate bivariate copula for all edges. According to the theory in (Joe, Li &
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Nikoloulopoulos 2010), if the multivariate uniform vector U = (U1, ..., Un) =

(1−U1, ..., 1−Un), then U is a reflection of symmetry. If the copula density

function C = c(u1, ..., un) = c(1− u1, ..., 1− un), then the vine is a reflection

symmetric dependence structure. It means that if the copulas with the sym-

metric lower and upper tail dependence are selected, then it is a reflection of

symmetric dependence structure. If modelling the asymmetric dependence,

it is better to choose a copula with various levels of lower and upper tail de-

pendence. Currently, there are a huge of copula families, which have various

tail dependencies. The detail in relation to the tail dependence of copula

families are listed in Table 5.1. For one-parametric copula, Gaussian and

Frank copulas do not have any tail dependence, Clayton and Joe copulas

have only lower tail dependence, and the Gumbel copula has only upper tail

dependence. For two-parametric copulas, the t copula has symmetric upper

and lower tail dependence, which reflects the symmetric dependence. BB1,

S.BB1 BB7 and S.BB7 copulas have different lower and upper tail depen-

dencies, where S.BB1 and S.BB7 copula are short for survival (rotated 180

degree) BB1 and BB7 copulas respectively. BB6 and BB8 copulas have only

upper tail dependence. To capture the asymmetric characteristics, the BB1,

S.BB1, BB7 and S.BB7 copulas should be the best choice since they have var-

ious levels of lower and upper tail dependence, which can vary independently

from 0 to 1.

4.3 Marginal Distribution Specification and

Parameter Estimate

The marginal distribution specification and parameter estimate are discussed

in this Section. According to Equation (2.27), the multivariate joint density

function has two parts, the first is the multivariate copula mentioned in

the above section, the second is the marginal distribution. For financial

data, ARMA(1,1)-GARCH(1,1) model is the best choice for the marginal

distribution (Jondeau & Rockinger 2006a, Fantazzini 2009). Typically, let
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Xt(t = 0, 1, ..., Z) be a time series of the price on a financial asset, such as

stock the market index. Then the return of financial assets can be defined

as log(Xt/Xt−1). Suppose there are n assets with returns rt,1, ..., rt,n. The

estimate of partial regular vine copula model can be processed in two steps.

In the first step, the appropriate marginal distribution of the variable (i.e.

the financial asset) is selected. Due to the character of financial assets, such

as the volatility cluster, a common choice is ARMA(1,1)-GARCH(1,1) with

Student-t innovations, which is defined as follows:

rj,t = cj + Φjrj,t−1 +Θjεj,t−1 + εj,t,

εj,t = σj,t · Zj,t

σ2
j,t = ωj + αjε

2
j,t−1 + βjσ

2
j,t−1

(4.4)

where j = 1, ..., n, t = 1, ...,T and Zj,t is the innovations which follow

Student-t distribution. Let θmj = (cj,Φj,Θj, ωj, αj, βj) be denoted as the

parameter set of marginal distribution. Let θc be denoted as the parameters

of the multivariate copula functions. The multivariate joint log-likelihood is

given by:

L(θm1 , ..., θ
m
n , θ

c) =
T
∑

t=1

logf(r1,t, ..., rn,t; θ
m
1 , ..., θ

m
n , θ

c)

=
T
∑

t=1

log c(F1(r1,t), ..., Fn(rn,t); θ
c)

+
T
∑

t=1

n
∑

j=1

log fj(rj,t; θ
m
j )

(4.5)

where the multivariate c(· ; θc) is denoted as the regular vine model. Max-

imum Equation (5.3) is possible. However, it is time consuming when n is

large. Inference Functions for Margins (IFM) method (detail can be

found in Section 2.2.2 and (Joe 2005)) is used to resolve the issue. The IFM

is two-step estimate method, which can efficiently estimate the parameter-

s. In the first step, the marginal distribution ARMA(1,1)-GARCH(1,1)
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is employed to filter the financial returns and the univariate parameters

θmj = (cj,Φj,Θj, ωj, αj, βj) are derived. In the second step, the joint log-

likelihood in Equation (5.3) is maximised over copula parameters θc, and the

univariate parameters (cj,Φj,Θj, ωj, αj, βj) are fixed at the estimated value

in the first step. It means that the joint log-likelihood is reduced to the

equation which consists of only copula parameters due to the fact that the

parameters of the log-likelihood are fixed.

4.4 Value at Risk– A widely Used Evaluation

in Financial Market

Value at Risk (VaR) is a probabilistic metric of market risk and is an indus-

trial golden benchmark for measuring market risk. VaR at the level (1− α)

is defined by

V aRt(1− α) = −inf{c ∈ R : P (rt ≤ c|�t−1)| ≥ (1− α)} (4.6)

where �t−1 represents the past information at time t− 1. For a good model,

it is capable of producing a high quantity of VaR. Given a set of financial

returns, such as stock indices, the portfolio returns can be defined as:

rt,portfolio =
n

∑

j=1

μjrj,t (4.7)

Suppose the current time is t, the process for computing VaR forecasting

at time t+ 1 is given as follows:

(i). Fit ARMA(1,1)-GARCH(1,1) with Student-t innovations with returns

by using Equation (4.4) Then, the standardised residuals is obtained

by:

Ẑj,t =
rt,j − ĉj − Φ̂jrt,j−1 − Θ̂jσ̂t−1,jẐt−1,j

σ̂t,j

(4.8)

(ii). The ex-anteGARCH variance forecast for j = 1, ..., n can be computed

as follows:

σ̂2
t+1,j = ω̂j + α̂j ε̂

2
t,j + β̂jσ̂

2
t,j (4.9)
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(iii). The standardised residuals obtained from ARMA(1,1)-GARCH(1,1)

are transformed to approximately uniform data uj = u1,j, ..., ut,j by

using the Student-t cumulative distribution function;

(iv). Fit a regular vine structure with approximately uniform data uj and

estimate the parameters of the copula;

(v). Use the fitted regular vine structure with estimated copula parameters

to simulate a sample for each financial return variable, i.e.,vt+1,j ;

(vi). Transfer the sample to standard residuals by using the inverse Student-

t cumulative probability distribution functions with parameters ob-

tained in Step (i), and then obtain the simulated standardised residu-

als, i.e., êt+1,j ;

(vii). Calculate the one day forecast return and variance for each financial

variable by using the estimated ARMA(1,1)-GARCH(1,1) which is

calculated in Step (i), i.e.

r̂t+1,j = cj + Φ̂jrt,j + Θ̂j ε̂t,j + ε̂t+1,j (4.10)

(viii). The portfolio return is calculated by using Equation (5.6). Then, Steps

from (iv) to (vii) are repeated for N times (e.g. N = 10000). Then, the

99%, 95%, and 90% VaR forecasting is determined by taking the cor-

responding 1%, 5% and 10% quantiles of the portfolio return forecast

respectively.

To validate the VaR forecasting, the test of ex-post exceedance is used,

which is defined at time t as:

It =

{

1, if rt,portfolio < V aRt(1− α);

0, otherwise.
(4.11)

where rt,portfolio is the ex-post observed portfolio return at time t. If the VaR

forecasting is accurate, It should be equal to the significance level α. In ad-

dition, the quality of VaR forecasting can be judged by backtesting methods,

including unconditional, independent and conditional coverage tests, which

are presented in Section 3.5.
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4.5 Case Study

The daily log-return data of 8 major European indices are considered in the

experiment, including the Athen Index Composite (GD.AT), ATX(ˆATX),

Euronext BEL-20 (BFX), CAC40 (ˆFCHI), DAX(ˆGDAXI), FTSE 100 (ˆFTSE),

SMI (ˆSSMI), and AEX (AEX.AS), where symbols are in the corresponding

parenthesis. The number indicates the following indices of the European s-

tock market: v1=GD.AT, v2=ˆATX, v3=ˆBFX, v4=ˆFCHI, v5=ˆGDAXI,

v6=ˆFTSE, v7=ˆSSMI and v8=AEX.AS. The eight major indices cover the

majority of European stock, which reflects the general trading situation of

the European stock market. In particular, during period from 01/03/2006

to 28/12/2012, there were in total 1682 observations for the European indices.

All the data was downloaded from FRB St. Louis (http://research.stlouisfed.org).

4.5.1 Non-parametric Dependence Analysis

Before building the model to fit the data, a non-parametric method 1 is

implemented to analyse the lower and upper tail dependence. The results are

shown in Table 4.2. For a total of 56 pairs, 46 pairs have a strong upper tail

1Frahm et al (Frahm, Junker & Schmidt 2005) proposed a non-parametric method

to obtain the non-parametric estimator of lower and upper tail dependence by using

’Pickand’s dependence function (Pickands 1981)’. One simple nonparametric estimator

of tail dependence is the log estimator, which is denoted by:

λ̂lower =2− lim
u∗

→0

log
(

1− 2(1− u∗) + T−1

∑T

t=1
1{U1 ≤ 1− u∗, ..., Un ≤ 1− u∗}

)

log(1− u∗)

λ̂upper =2− lim
u∗

→0

log
(

T−1

∑T

t=1
1{U1 ≤ 1− u∗, ..., Un ≤ 1− u∗}

)

log(1− u∗)

(4.12)

For extreme value estimation, a threshold u∗ need to be chosen for estimation, which can

affect both the lower and upper tail dependence. The selection of threshold u∗ is the

actual trade-off variance in the estimator against bias (Frahm et al. 2005). In the chapter,

the non-parametric method is used for roughly analysing the tail dependence coefficient

before building the regular vine copula model.
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Table 4.2: Non-parametric Tail Dependence Analysis

v1 v2 v3 v4 v5 v6 v7 v8

v1 0.33 0.29 0.24 0.16 0.26 0.21 0.29

v2 0.18 0.23 0.28 0.36 0.21 0.43 0.25

v3 0.24 0.45 0.52 0.53 0.53 0.53 0.49

v4 0.11 0.34 0.46 0.63 0.60 0.48 0.61

v5 0.17 0.33 0.39 0.73 0.45 0.54 0.57

v6 0.18 0.31 0.51 0.58 0.50 0.39 0.41

v7 0.11 0.28 0.37 0.29 0.36 0.36 0.47

v8 0.14 0.37 0.46 0.52 0.55 0.48 0.29

The values above (below) the diagonal are corre-

sponding upper (lower) tail dependencies.

dependence, which indicates that their upper tail dependence is larger than

their lower tail dependence. In addition, only 11 pairs have a small gap (less

than 0.1) between the lower and upper tail dependence. These descriptive

statistics indicate that for most financial returns, they have a stronger upper

tail dependence than a lower tail dependence. Due to the large gap between

the lower and upper tail dependence, it seems that the two kinds of tail

dependencies are significantly different. Therefore, the regular vine copula

model with asymmetric dependence can be used to check whether the two

kind of tail dependencies are significantly different.

4.5.2 Regular Vine Copula Specification and Tail De-

pendence Analysis

Each index returns is fit with univariate ARMA(1,1)-GARCH(1,1) with

Student-t innovations. The tests of Box and Pierce (BP) (Box & Pierce 1970)

and Ljoung and Box (LB) (Ljung & Box 1978) are employed for checking

the autocorrelation of standardised residuals. Table 4.3 shows the result of

the two tests, which indicates that there are no autocorrelations left for all
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Table 4.3: Results of BP and LP Tests

j Zj (BP) Z2
j (BP) Zj(LP) Z2

j (LP)

GD.AT 0.573 0.199 0.573 0.199

ˆATX 0.500 0.113 0.499 0.113

ˆFCHI 0.798 0.150 0.798 0.149

ˆGDAXI 0.319 0.315 0.318 0.315

ˆFTSE 0.993 0.152 0.993 0.152

ˆSSMI 0.766 0.656 0.766 0.655

AEX.AS 0.223 0.713 0.222 0.713

Zj and Z2
j are standardised residuals and

squared standardised residuals respectively from

ARMA-AGRCH fits. The values in the corre-

sponding columns are the p-values for both the

BP and LP tests.

indices in the standardise residuals ej and squared standardised residuals

e2j (all p values > 0.05). Then, the standardised residuals are used as an

argument of the partial regular vine copula.

The next step is to build the partial regular vine copula model. The vine

tree structure V is obtained by using Algorithm 4.1. The Figure 4.1 shows

the full tree structure that is built by Algorithm 4.1. in Figure 4.1, there

are two main blocks in Tree 1. One is v2, which connects to three variables,

v1, v3 and v7. Another is v4, which connects to four indices, such as v5,

v6, v7 and v8. Once the structure is identified, the next step is to choose

the copula for each edge. According to the analysis in Section 4.5.1, the

bivariate copulas which can provide flexible lower and upper tail dependence

are most appropriate to build the partial vine copula model with asymmetric

dependence. Based on the Section 4.2.3, BB1, S.BB1, BB7 and S.BB7 copula

can provide both lower and upper tail dependence. Therefore, the BB1, BB7,

S.BB1 and S.BB7 copulas are used to build the regular vine copula model

with asymmetric dependence to capture the asymmetric characteristics. In
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Figure 4.1: The partial regular vine tree structure

order to compare the performance of various copula, only one copula family

(e.g., BB1) is used to fit the partial regular tree structure, which allow for

easily assessing the performance of each copula family.

The Table 4.4 shows the tail dependence in Tree 1 of Figure 4.1 during

131



CHAPTER 4. PARTIAL REGULAR VINE

the period from 2006 to 2012. The non-parametric and t copula results

are listed as a reference. The results show that the lower tail dependence

of pairs in Tree 1 is less than their corresponding upper tail dependence.

Various bivariate copulas provide different results. However, they show the

same conclusion that the lower tail dependence is less than the upper one.

In order to investigate the tail dependence and its movement trends, a

fixed period (e.g., one year) is used as the investigation period of tail depen-

dence. Moving windows of 890 observations corresponding to approximately

2.5 years of daily observations, from 6/02/2007 to 28/12/2012 are used in the

experiment. The partial regular vine copula is re-estimated daily in moving

windows to produce the tail dependence of the investigation period. While

estimating the tail dependence of the investigation period over the moving

windows, the vine tree structure (mentioned in Figure 4.1) is used as the

partial regular vine. For copula selection, the mixed copula candidatures

(including BB1, BB7, S.BB1 and S.BB7) are used to fit the vine tree struc-

ture. The selection criteria is based on the AIC, which means the copula

candidatures are selected with the smallest value of AIC. In order to find the

movement trend in different time periods, the 12, 24 or 36 months are used

as the investigation period. The results of pair {v1, v4} in tree 1 are shown

in Figure 4.2. The top 2, middle 2 and bottom 2 figures in Figure 4.1 use the

12, 24, 36 months as the investigation periods respectively. The left 3 figures

show the lower and upper tail dependence, and the right 3 figures indicate

the corresponding difference between lower and upper tail dependence. The

gap between the lower and upper tail dependence has sharply increase since

January 2009. The gap in the short investigation period (12 months) is larger

than those in the long investigation period (24 or 36 months). It indicates

that the difference between the lower and upper tail dependence is more sig-

nificant in the short investigated period than in the long one. However, the

difference decreases over the length of the longer investigation period. For

other pairs, these similar conclusions can be reached, which are shown by

Figures 4.3 to 4.8.
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4.5.3 Value at Risk Forecasting

The predictable performance of the model can be examined via Value at Risk

(VaR) forecasting. Moving windows from 04/01/2007 to 28/12/2012, totally

1417 observations, corresponds to approximately 4 years of trading days.

A training period from 04/01/2006 to 28/12/2006 with 264 observations is

approximately 1 year of trading days. Then, the model is re-estimated daily

to produce the one day ahead VaR forecasting. While re-estimating the

regular vine copula model, the partial regular vine tree structure shown in

Figure 4.1 is used. Various copulas are fitted in the regular vine copula

model, in order to compare performance capabilities and assess whether the

model with asymmetric dependence is better than the one with symmetric

dependence. In addition, the canonical vine and D vine tree structure are

fitted with copulas, in order to compare the performance and find whether

the regular vine tree structure is better than canonical vine or D vine.

Table 4.5 shows the backtesting results of the partial regular vine, canon-

ical vine and D vine with various copulas. The regular vine, canonical vine

or D vine with the copula which are displayer in the second row of Table 4.5

are fitted with different copulas. BB1, S.BB1, BB7 and S.BB7 copulas have

flexible lower and upper tail dependence, which is a reflection of asymmetric

dependence. The t copula has symmetric lower and upper tail dependence,

to reflect the symmetric dependence. The Clayton copula has only lower tail

dependence, and the Gumbel copula has only upper tail dependence. The

BB1 and S.BB1 copulas have the best performance, followed by the BB7 and

S.BB7 copulas. The model with t copula is better than the Clayton, Gumbel

and BB6 copulas which have only one tail dependence. Figure 4.9 shows the

corresponding VaR forecastings that are produced by the regular vine with

the BB1 and t copulas.

In conclusion, the results of VaR forecasting indicate that (1) the partial

regular vine copula with asymmetric dependence is better than the one with

symmetric lower and upper tail dependence, and (2) the models with two

tail dependencies are better than those with only one tail dependence.
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4.6 Summary

It is a very challenging task to model high-dimensional and asymmetric de-

pendence. Existing research has made only partial progress regarding high-

dimensional asymmetric dependence modelling. This chapter has proposed a

partial correlation-based regular vine copula model to address this challeng-

ing issue. It has been demonstrated by analysing the asymmetric dependence

in cross-country stock markets.
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Table 4.4: Tail Dependence Analysis by Using Various Copula

Non-para* BB1 S.BB1** t BB7 S.BB7**

λL λU λL λU λL λU λL λU λL λU λL λU

{v4, v6} 0.50 0.60 0.63 0.76 0.71 0.78 0.54 0.54 0.76 0.82 0.77 0.82

{v4, v5} 0.73 0.63 0.74 0.81 0.78 0.82 0.71 0.71 0.83 0.85 0.82 0.87

{v4, v8} 0.52 0.61 0.71 0.79 0.77 0.81 0.62 0.62 0.80 0.84 0.81 0.84

{v4, v7} 0.29 0.48 0.60 0.69 0.66 0.75 0.45 0.45 0.71 0.75 0.72 0.75

{v2, v7} 0.28 0.43 0.40 0.55 0.50 0.67 0.18 0.18 0.54 0.62 0.57 0.61

{v2, v3} 0.45 0.23 0.45 0.61 0.56 0.69 0.37 0.37 0.61 0.68 0.63 0.67

{v1, v2} 0.18 0.33 0.28 0.41 0.39 0.62 0.25 0.25 0.41 0.48 0.46 0.44

* Non-para means that the tail dependence coefficient is calculated via non-parametric

method;
** S.BB1 and S.BB7 are the survival BB1 and BB7 copula respectively.
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Table 4.5: The Backtesting Results of Value at Risk Forecasting

Partial Regular Vine Canonical Vine D Vine

1− α BB1 S.BB1 BB7 S.BB7 t Clayton Gumbel BB1 S.BB1 BB7 BB1 S.BB1 BB7

PoF

99%
14 14 14 14 14 14 14 14 14 14 14 14 14

14 14 13 13 15 15 21 15 14 15 13 14 14

95%
70 70 70 70 70 70 70 70 70 70 70 70 70

72 73 73 74 71 70 81 74 74 76 75 76 74

90%
141 141 141 141 141 141 141 141 141 141 141 141 141

134 131 140 137 130 136 136 135 132 145 138 141 140

LRuc

99%
0.002 0.002 0.100 0.100 0.048 0.354 3.74 0.048 0.032 0.248 0.100 0.062 0.100

(0.964) (0.964) (0.751) (0.751) (0.826) (0.552) (0.053) (0.826) (0.858) (0.618) (0.751) (0.803) (0.751)

95%
0.020 0.068 0.068 0.145 0.051 0.224 1.466 0.145 0.145 0.385 0.220 0.068 0.145

(0.899) (0.794) (0.794) (0.703) (0.821) (0.636) (0.264) (0.703) (0.703) (0.309) (0.488) (0.273) (0.225)

90%
0.473 0.919 0.023 0.175 1.101 1.101 0.258 0.357 0.753 0.385 0.423 0.917 0.175

(0.492) (0.338) (0.880) (0.676) (0.294) (0.294) (0.612) (0.550) (0.385) (0.535) (0.338) (0.338) (0.676)

LRcc

99%
0.282 0.282 0.341 0.341 0.369 0.859 4.434 0.369 0.282 0.569 0.641 0.382 0.541

(0.869) (0.869) (0.843) (0.843) (0.831) (0.651) (0.109) (0.831) (0.869) (0.831) (0.467) (0.171) (0.869)

95%
1.436 2.599 2.599 2.479 1.946 1.729 2.662 1.685 1.785 2.351 1.436 2.530 1.436

(0.488) (0.273) (0.273) (0.290) (0.378) (0.421) (0.264) (0.431) (0.410) (0.309) (0.488) (0.826) (0.488)

90%
1.467 2.316 0.862 0.837 1.613 1.997 1.023 1.633 2.008 1.374 2.316 3.447 1.387

(0.480) (0.314) (0.650) (0.658) (0.446) (0.369) (0.600) (0.442) (0.366) (0.503) (0.314) (0.826) (0.763)

LRic

99%
0.280 0.280 0.241 0.241 0.321 0.505 0.694 0.321 0.250 0.321 0.541 0.320 0.441

(0.597) (0.597) (0.624) (0.624) (0.571) (0.477) (0.405) (0.571) (0.617) (0.571) (0.462) (0.572) (0.507)

95%
1.417 2.531 2.531 2.334 1.895 1.505 1.196 1.540 1.640 1.966 1.217 2.531 2.834

(0.234) (0.112) (0.112) (0.127) (0.169) (0.220) (0.274) (0.215) (0.200) (0.161) (0.270) (0.112) (0.092)

90%
0.994 1.397 0.839 0.662 0.513 0.896 0.765 1.276 1.255 0.989 1.397 2.530 1.212

(0.319) (0.237) (0.360) (0.416) (0.474) (0.344) (0.382) (0.259) (0.263) (0.320) (0.237) (0.112) (0.271)

The POF is percentage of failure. The first row shows the expected number of exceedances, and the following row is the actual number of exceedances.

LRuc, LRic and LRcc are short for the likelihood ratio of conditional, independent and unconditional coverage respectively. The first row shows the

value, while the corresponding p value is given the parenthesis in the following row. The critical value of LRuc or LRic is 3.841, while the critical

value of LRcc is 5.991.
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Figure 4.2: The lower and upper tail dependence of variables v4 and v6
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Figure 4.3: The lower and upper tail dependence of variables v4 and v5
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Figure 4.4: The lower and upper tail dependence of variables v4 and v8

139



CHAPTER 4. PARTIAL REGULAR VINE

Feb 2007 Oct 2008 Jun 2010
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

T
a
il 

D
e
p
e
n
d
e
n
c
e

Lower Tail Dependence

Upper Tail Dependence

Feb 2007 Oct 2008 Jun 2010
−0.1

0

0.1

0.2

0.3

0.4

Time

T
a
il 

D
e
p
e
n
d
e
n
c
e

Tail Dependence Difference

Tail Dependence with 12 months Investigation Period

Feb 2007 Oct 2008 Jun 2010
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

T
a
il 

D
e
p
e
n
d
e
n
c
e

Lower Tail Dependence

Upper Tail Dependence

Feb 2007 Oct 2008 Jun 2010
−0.1

0

0.1

0.2

0.3

0.4

Time

T
a
il 

D
e
p
e
n
d
e
n
c
e

Tail Dependence Difference

Tail Dependence with 24 months Investigation Period

Feb 2007 Oct 2008 Jun 2010
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

T
a
il 

D
e
p
e
n
d
e
n
c
e

Lower Tail Dependence

Upper Tail Dependence

Feb 2007 Oct 2008 Jun 2010
−0.1

0

0.1

0.2

0.3

0.4

Time

T
a
il 

D
e
p
e
n
d
e
n
c
e

Tail Dependence Difference

Tail Dependence with 36 months Investigation Period

Figure 4.5: The lower and upper tail dependence of variables v4 and v7
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Figure 4.6: The lower and upper tail dependence of variables v2 and v7
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Figure 4.7: The lower and upper tail dependence of variables v2 and v3
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Figure 4.8: The lower and upper tail dependence of variables v2 and v1
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Figure 4.9: The VaR forecasting of portfolio returns
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Chapter 5

High-dimensional Dependence

Modelling through Truncated

Partial Regular Vine Copula

5.1 Introduction

Learning about high-dimensional dependence, that is, the dependence be-

tween a set of high-dimensional variables, is a critical but challenging issue

in many applications including social media analysis and financial market-

s. A particular problem is understanding the dependence between high-

dimensional variables with fat tail and asymmetric characteristics, which

appear widely in such areas as financial markets. In the currency market,

for example, the asymmetric responses of central banks to currency exchange

rate movements often result in asymmetric dependence on the currencies as

well. For instance, if the Japanese government wants to maintain export

competitiveness with the United States (US) when British products are al-

so exported to the US, the central bank of Japan will ensure the matching

depreciation of the Japanese Yen against the US dollar whenever the British

Pound is depreciated against the US dollar. Similar situations increasingly

occur in recognized big data applications, in which high dimensional variables
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are dependent on one another..

While there is an increasingly recognized need for effective techniques for

modelling high-dimensional dependence, it is very challenging to properly

model the complex dependencies between large scale variables. The chal-

lenges lie in the fact that the dependencies between high-dimensional vari-

ables interweave with different forms and complexities, such as the volatility

clustering and asymmetry phenomena in the currency market, which are

difficult to capture adequately. In addition, high-dimensional dependence

modelling with limited computational resources can be susceptible to the

curse of dimensionality.

Probabilistic graphical models (Pearl 1988), such as Bayesian logic pro-

gram (De Raedt & Kersting 2008), relational dependency networks (Neville

& Jensen 2007) and relational Markov networks (Getoor & Taskar 2007),

build a graph to represent the conditional dependence structure between

random variables. For example, the latent factor models with a dependen-

cy structure in the latent space are studied in (He et al. 2012). A set of

probabilistic dependencies are learned in (Gao & Suzuki 2003) to identify

the relationships between the headwords of each phrase. These models are

aimed at high-dimensional domains, and have the advantage of learning la-

tent relationships from data. However, as discussed in (Elidan 2013), they

tend to force the local quantitative part of the model to take a simple form

such as the discretized form of the data when multivariate Gaussian or its

mixtures cannot capture the data in the real world. The complex dependence

between high-dimensional variables is hard to be capture.

In statistics and finance, the copula has been shown to be a powerful

tool for modelling high-dimensional dependencies. The copula splits the

multivariate marginal distributions from dependence structures, so that the

specification of the dependence structures can be investigated independent-

ly of the marginal distributions. It can provide a flexible mechanism for

modelling real world distributions that cannot be handled well by graphi-

cal models. Thus, researchers have tried to combine copula and probability
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graphical models. The tree-structured copula (TSC) model (Kirshner 2007)

was first presented in the combination of a copula and a graphical model, fol-

lowing which the sparse undirected copula-based (SUC) model (Liu, Lafferty

& Wasserman 2009) and the copula Bayesian networks (CBN) (Elidan 2010)

were developed. These copula-based models aim to resolve the limitations of

discretizing data, but they impose assumptions and restrictions on the depen-

dence structure. For example, TSC imposes an independence assumption on

the tree structure, and SUC does not consider general (non-Gaussian) cases.

CBN has a conditional independence assumption in the dependence struc-

ture. These assumptions and restrictions are not appropriate for dependence

modelling among financial variables.

Another typical copula-based framework for dependence modelling is the

vine copula model (Bedford & Cooke 2002). The vine copula model builds

on successive conditioning, and uses bivariate copulas as building blocks to

construct multivariate distributions. Compared with CBN, the most impor-

tant difference is that vine models use conditional dependence to replace the

conditional independence assumed in CBN. Thus, vine copula models pro-

vide a flexible mechanism for modelling real world distributions that cannot

be handled well by probability graphical models. Recently, most studies of

vine copula models have focused on the canonical vine and D vine models

since they make an assumption on the dependence structure for simplifying

the dependence construction, such as (Aas et al. 2009). The canonical vine

assumes that one variable connects to all other variables, which results in a

star-like structure, and D vine assumes that one variable can only connect

to no more than 2 variables, which leads to a path-like structure. The de-

pendence structures satisfying their assumptions may not be consistent with

the actual dependence in real world scenarios. However, the generalized vine

model, which is called regular vine, is very difficult to construct since it

does not make any assumption on the dependence structure. In (Dissmann,

Brechmann, Czado & Kurowicka 2013), a sequential method is proposed to

build a regular vine, but its subsequent structures and bivariate copula se-
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lections are heavily dependent on established structures and selections. In

addition, the computational burden for high-dimensional data is huge. In

(Brechmann, Czado & Aas 2012), a statistical test-based truncation method

is presented for regular vine. It heavily depends on the result of the statisti-

cal test, which may lead to a scenario in which the model cannot completely

reflect the inherent dependence.

It is thus a challenging job to build a proper multivariate model with the

following desired properties: (i) A flexible dependence structure that does not

impose assumptions or restrictions; (ii) An appropriate truncation method

to ensure the model can be effectively applied to high-dimensional data; (i-

ii) A wide range of tail dependencies, allowing for a variety of lower and

upper tail dependencies, and; (iv) An estimation of joint density functions

that is computationally feasible. The existing multivariate copula models

or vine models, including canonical vine and D vine, do not satisfy all of

these conditions. The Archimedean copula-based multivariate models have

a structure that has only a narrow range of negative dependence (McNeil

& Nešlehová 2009). The multivariate Gaussian copula model is not suit-

able for modelling the asymmetric characteristics, because (i) the Gaussian

copula does not have lower and upper tail dependence, which is a measure

of dependence between extreme events (Nelsen 1999), and (ii) the Gaussian

assumption is not appropriate in the real world (Fang et al. 2002). The mul-

tivariate t copula model, which was studied by (Nikoloulopoulos et al. 2009),

does not have flexible lower and upper tail dependence, since t copula has on-

ly symmetric tail dependence. In addition, multivariate elliptical copulas and

multivariate Archimedean copulas are difficult to expand to high-dimensional

data since their desinence structure is fixed.

Building on the power of the copula, this work proposes a new trun-

cated partial correlation-based model called truncated partial regular vine

(TPRV ), to address the above issues. Our models capture actual asym-

metric dependence in high-dimensional data by incorporating regular vine

theory into the construction of the dependence structures, which does not
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impose assumptions on the dependence structures. In addition, our models

are embedded with the copula family which supports a wide range of flexible

lower and upper tail dependence. The proposed truncated partial correlation-

based regular vine has the following advantages: (i) The TPRV model can

uniquely determine the correlation matrix and be algebraically independent.

This indicates that a dependence structure constructed via partial correla-

tion is more flexible, since the current tree structure is independent of the

established tree structure and bivariate copula selection. In addition, by em-

ploying regular vine, our models do not impose assumptions or restrictions

on the complex dependence structures. (ii) The TPRV model is constructed

by a new bottom-up construction strategy, which ensures that the weakest

correlations are at the bottom, and the strongest correlations appear at the

top of dependence structures. (iii) There are n(n − 1)/2 parameters for n

variable regular vines. The TPRV model employs a new truncation method,

which effectively decreases the number of parameters and reduces the com-

putation burden without losing the most important information inherent in

the dependence. (iv) The TPRV model selects bivariate copulas from a large

number of mixed copula families rather than only using the elliptical copula

family, which ensures a wide range of lower and upper tail dependencies.

The rest of this chapter is structured as follows. Section 5.2 presents the

truncated partial regular vine model in detail, including truncated vine tree

structure building, bivariate copula selection, marginal distribution specifica-

tion and parameter estimation. Evaluation methods are discussed in Section

5.3 for verifying both the in-sample and out-of-sample performance of high-

dimensional financial variables. Section 5.4 shows the case study results in

currency markets. Section 5.5 concludes this chapter.
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5.2 Truncated Partial Regular Vine

5.2.1 Partial Regular Vine Specification

The reason of using partial correlation to construct the regular vine is dis-

cussed firstly, and the construction of regular vine tree structure, selecting bi-

variate copulas and estimate the parameters are discussed in following. There

are four main reasons why using partial correlation: (1) According to Defini-

tion 2.13, the partial correlation can be obtained directly from the data set,

without knowledge of assumed structure, bivariate copulas or corresponding

copula parameters; (2) A bottom-up strategy can be employed to build the

regular vine by using partial correlation, which ensures that the weakest cor-

relation is always at bottom; (3) In regular vine tree dependence structure,

the structure of the current tree (excluding the first tree) does not depend on

the structure of previous trees and the corresponding bivariate copulas and

parameters, and (4) The partial correlation-based regular vine can be eas-

ily truncated, which ensures that it is applicable to high-dimensional data.

Hence, the partial correlation-based regular vine is much more flexible than

a typical regular vine. For simplicity, the partial correlation-based regular

vine is called partial regular vine (PCV).

Let V R
ρe be denoted as partial correlation based-regular vine dependence

structure, and then a complete partial correlation based-regular vine is de-

fined below.

Definition 5.1 (Partial Regular Vine Specification). A complete partial cor-

relation based-regular vine specification is a regular vine with a partial corre-

lation ρe specified for each edge e. A distribution satisfies the complete partial

correlation specification, if and only if for any edge e = {a, b} in the vine,

the partial correlation of the variables in Ce,a and Ce,b given the variables in

De, is equal to ρe.

Thus, a Partial Canonical V ine Copula Specification (V R
ρe , B(V R

ρe ),

θ(B(V R
ρe ))) on n variables is a multivariate distribution function:
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(i). V R
ρe is a partial correlation-based regular vine structure on n variables;

(ii). B(V R
ρe ) = {Ce(a),e(b) ;De

| e ∈ Ei, i = 1, ..., n− 1} is the set of n(n− 1)/2

bivariate copulas; and

(iii). θ(B(V R
ρe )) = {θe(a),e(b) ;De

| e ∈ Ei, i = 1, ..., n− 1} is the set of parame-

ters, corresponding to the bivariate copulas in B(V R
ρe ).

According to the above definition, the edge e in a partial regular vine

can be written as {Ce ; De} or {Ce(a), Ce(b) ; De, e = {a, b}}, where Ce, De are

conditioned and conditioning sets respectively. For simplicity, the edge e will

be written as {e(a), e(b) ; De, e = {a, b}} in this work. A complete partial

regular vine copula consists of three components: the partial regular vine

tree structure Vρe , the bivariate copula set B(V R
ρe ), and the corresponding

bivariate copula parameters θ(B(V R
ρe )). In the following sections, the three

components are discussed respectively.

5.2.2 Partial Regular Vine Tree Structure Construc-

tion

The regular vine on n variables shares several important properties (see de-

tails in (Kurowicka & Cooke 2006b)):

(1). There are (n− 1) trees and
(

n
2

)

edges in total;

(2). Each pair appears once as a conditioned set of an edge;

(3). There are (j − 1) and (j + 1) variables in the conditioning sets and

constraint sets of an edge of the jth tree respectively;

(4). If two or more nodes have the same constraint sets, they are the same

node;

(5). If variable i is a member of the conditioned set of an edge e in a regular

vine, then i is a member of the conditioned set of exactly one of the

m-child of e, and the conditioning set of an m-child is a subset of De.
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According to the above properties, two lemmas, which are important for

constructing the partial regular vine tree structure, are derived. The two

lemmas are given as follows:

Lemma 5.1 Let I ∈ {1, ..., n}, x1, x2, y1, y2 ∈ I and x1 	= x2, the nodes of

Tj be N1 = {x1, y1 ; I\{x1, x2, y1}} and N2 = {x2, y2 ; I\{x1, x2, y2}}. For

a regular vine on n variables, nodes N1 and N2 have a common m-child. If

y1 	= y2, the common m-child is {y1, y2 ; I\{x1, x2, y1, y2}}.

Proof 5.2 According to Definition 2.12, each node has two m-children. For

N1, the constraint set CVx1 of its m-children are {x1, I\{x1, x2, y1}} and

{y1, I\{x1, x2, y1}}. For N2, the constraint set CVx2 of its m-children are

{x2, I\{x1, x2, y2}} and {y2, I\{x1, x2, y2}}. {y1, I\{x1, x2, y1}} and {y2,
I\{x1, x2, y2}} are equal, but indexed by different variables in a conditioned

set. According to Property (4), N1 and N2 have a common m-child. If

y1 	= y2, y1 and y2 should be in the conditioned set of the m-child.

Example 5.3 Suppose a regular vine has two nodes, N1 = {{1, 3} ; {4, 5, 6}}
and N2 = {{2, 4} ; {3, 5, 6}}, if the variable 3 is not equal to the variable 4,

N1 and N2 have a common m-child, which is {{3, 4} ; {5, 6}}.

Lemma 5.4 For a regular vine on n variables, j = 2, ..., n− 1, the edge e in

Tj has only two constraint sets of m-children in Tj−1, which are indexed by

different variables in a conditioned set.

Proof 5.5 Suppose there are three identical constraint sets indexed by dif-

ferent variables in a conditioned set, according to Property (4), nodes with

the same constraint sets should be the same node. Based on Property (5),

the variables in the conditioned set will still be in the conditioned set of its

m-children. This means that the node will have three variables in its con-

ditioned set, which violates Property (3) and the proximity condition in the

regular vine definition. Therefore, one edge has only two constraint sets which

are indexed by different variables in a conditioned set.
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Example 5.6 Suppose one edge in tree Tj is {{1, 2} ; {3, 4}}. In Tj−1, the

constraint sets of its m-children consists of {1, {3, 4}} and {2, {3, 4}}. Only

two identical constraint sets are indexed by different variables in the condi-

tioned set, not the three identical constraint sets.

According to the above properties of regular vine and the two lemmas,

the partial regular vine is built by using Algorithm 5.1. Then, the following

theorem can be proved.

Theorem 5.7 Algorithm 5.1 produces a partial regular vine.

Proof 5.8 According to Lemma 5.1, Steps 1 and 2 are evidently true since

the two edges in Tn−2, {x, pt(x) ; I\{x, y, pt(x)} and {y, pt(y) ; I\{x, y, pt(y)}
have a common m-child {I\{x, y}} in Tn−3. Lemma 1 ensures that the two

edges have a common m-child. Step 5 produces 2(n − j) constraint sets of

m-children of edges in Tj. These constraint sets are indexed by variables in

the conditioned sets. Step 6 ensures that the duplicated constraint sets are

removed. At this stage, some constraint sets are equal but are indexed by dif-

ferent variables in the conditioned sets. Step 7 employs Lemma 5.1 to ensure

that the same constraint sets are in one edge. After Step 7, all the different

constraint sets are obtained. For these different constraint sets, the Lemma

5.4 is applied to ensure that the selection of partners will satisfy the definition

of regular vine. For example, for the constraint set CV = {1, {2, 3, 4}} in

Tk, the indexed variable in the conditioned set is {1}. All possible edges in

Tk−1 are {{1, 2} ; {3, 4}}, {{1, 3} ; {2, 4}} or {{1, 4} ; {2, 3}}. The constraint
sets of m-children of all possible edges in Tk−2 which do not include variable

{1} are {2, {3, 4}} , {3, {2, 4}} and {4, {2, 3}}. These constraint sets are the

same because they have the same variables. However, they are indexed by d-

ifferent variables in conditioned sets. If there exist {2, {3, 4}} and {3, {2, 4}}
which are from other edges in Tk−2, {{1, 4} ; {2, 3}} are ;not selected due to

edges for which the Lemma 5.4. The reason is that the edge {{1, 4} ; {2, 3}}
in Tk−1 consists of constraint set {4, {2, 3}}. If {{1, 4} ; {2, 3}} is chosen,

there will be three identical constraint sets, which are indexed by different
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Algorithm 5.1 Tree Structure Construction via Bottom-Top Strategy
Require: Observations of n variables

1: Calculate all partial correlation values. Put the smallest absolute value of

partial correlation to the edge in Tn−1. Let I = {1, ..., n} and {x, y} ∈ I.

Then, in Tn−1, En−1 = {x, y ; I\{x, y}}. The constraint set for its m-children

are CVx = {x, I\{x, y}} and CVy = {y, I\{x, y}}.
2: Find the partners of x and y to minimise the function

∑ |ρe(x),e(pt(x)) ;D(e)| and
∑ |ρe(y),e(pt(y)) ;D(e)| where pt(x) and pt(y)

are partners of x and y respectively. Then, in Tn−2, En−2 =

{{x, pt(x) ; I\{x, y, pt(x)}}, {y, pt(y) ; I\{x, y, pt(y)}}}.
3: for k = 1, ..., n− 2 do

4: for j = 1, ..., n− 3 do

5: Obtain all constraint sets of m-children in Tj ;

6: Remove constraint sets for which CVp = CVq, p 	= q;

7: Select the partners of variables in conditioned sets by using Lemma 5.1;

8: Ensure they satisfy Lemma 5.4;

9: if Tj > Tk then

10: for left constraint sets, select their partners of variables in conditioned

sets which minimise the function
∑

|ρe(p),e(q) ;De
|;

11: else

12: for left constraint sets, select their partners of variables in conditioned

sets which minimise the function
∑

log(1− ρ2e(p),e(q) ;De
);

13: end if

14: end for

15: end for

16: This produces a total of n− 3 partial regular vine tree structures. The ‘best’

one is the vine tree structure which maximises the function −log(Demt), where

Demt is a determinant of vine (Kurowicka & Cooke 2006b),

Demt =
∏

e={a,b}∈E(Vρe )

(1− ρ2e(a),e(b) ;De
); (5.1)

17: return The partial regular vine tree structure
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variables. This can result in the violation of the definition and its property

of regular vine. Lemma 5.4 can ensure avoidance of the circumstance and

maintain the regularity of regular vine.

To obtain the ’best’ partial regular vine tree structure, it is essential to

catch as many correlations as possible while building the vine tree structure.

In Algorithm 5.1, a broken tree method is used to obtain the ’best’ vine tree

structure. If Tj > Tk, the selection of partners for variables in the conditioned

set has to minimise the function
∑ |ρe(p),e(q) ;De

|, which guarantees that the

weak partial correlations are assigned to the edges in Tj. If Tj < Tk, the

selection of partners for variables in the conditioned set has to minimise

the function
∑

log(1− ρ2e(p),e(q) ;De
), which ensures that the strong partial

correlations are in the edges of Tj. In this way, (n − 3) partial regular vine

tree structures are obtained. The ’best’ one is obtained through calculating

the value of −log(Demt).

5.2.3 Partial Regular Vine Tree Structure Truncation

The number of parameters increases exponentially as the dimension increases.

For a n-variable partial regular vine with bivariate t copula (two-parametric

copula), the number of parameters is n(n − 1). This may result in a huge

computational burden and be time consuming. Hence, it is necessary to

reduce the number of parameters by truncating the partial regular vine. The

conditional independence copula, which is discussed in (Aas et al. 2009), is

equal to 1, such as

C independence
e(a),e(b) |De

= 1

The partial regular vine tree structure can be truncated by using con-

ditional bivariate independence copula to replace those edges that have a

low absolute value of partial correlation. This ensures to retain the impor-

tant dependencies indicated by strong correlations, truncating the useless

dependencies indicated by weak correlations.

In the truncation procedure, those edges for which the absolute value of
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partial correlations are less than a specified truncation value ρtrun between 0

and 1 (e.g., 0.1), are replaced with conditionally independent copula. Then,

based on the specified truncation value ρtrun, the partial regular can be trun-

cated. The process of truncating the partial regular vine tree structure is

given in Algorithm 5.2.

Algorithm 5.2 Partial Regular Vine Tree Structure Truncation

Require: The n-variable partial canonical vine tree structure V R
ρe and truncation

value ρtrun

1: Calculate the corresponding partial correlations based on the partial regular

vine tree structure V R
ρe ;

2: for j = 1, ..., n− 1 do

3: In tree Tj , find all edges for which the absolute value of partial correlation

is less than ρtrun, e.g. ρe(p),e(q) ;D(e) < ρtrun, e = {p, q} ;

4: For those edges found in Step 4, replace all bivariate copulas with conditional

independence copulas;

5: end for

6: return The truncated partial regular vine tree structure

5.2.4 Bivariate Copula Selection

Once the partial regular vine tree structure Vρe is identified, the next step

is to select bivariate copulas for each edge in all trees. As discussed in

Section 2.6.2, the partial correlation is equal to its corresponding conditional

correlation for the elliptical family. This means that our partial regular vine

tree structure is built based on an elliptical copula family (i.e., Gaussian or

t copulas). However, according to the following theorem, the limitation of

partial correlation can be removed by mapping the partial regular vine tree

structure to typical regular vine via conditional correlation.

Theorem 5.9 For any regular vine on n variables, there is one-to-one cor-

respondence between the set of n × n positive definite correlation matrices

and the set of partial correlation specification of the vine.
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Table 5.1: The Tail Dependence of Bivariate Copulas

Lower Tail Dependence Upper Tail Dependence

Gaussian − −
t � �

Gumbel − �

Frank − −
Clayton � −
Joe − �

S.Gumbel � −
S.Clayton − �

The check mark (�) indicates the the bivariate has low-

er/upper tail dependence, and the dash mark (−) means there

is no corresponding tail dependence. The bivariate t copula

has symmetric lower and upper tail dependence, which indi-

cates that the lower tail dependence is equal to the upper tail

dependence.

The proof of Theorem 5.9 can be referred to (Bedford & Cooke 2002),

which is omitted here. It shows that there is a one-to-one relationship be-

tween the partial regular vine specification and the correlation matrix, which

ensures that it can map the partial regular vine tree structure to the typical

conditional correlation based-regular vine tree structure. Then the bivari-

ate copulas can be selected from a large number of copula family candidates,

rather than the elliptical copula family. Hence, the limitation can be removed

while selecting the bivariate copulas.

For a given partial regular vine tree structure Vρe and a set of bivariate

copula candidates, the AIC-based selection criterion is used to select an ap-

propriate bivariate copula with the highest p-value of the copula goodness

of fit test on Cramer-von Mises statistics (Brechmann et al. 2012). The tail

dependence is a key feature for identifying various copula families. Table 5.1
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provides the tail dependence for popular bivariate copulas (see (Nelsen 1999)

for details). In this work, the following bivariate copula families are used in

the experiment, including Gaussian, t, Clayton, Gumbel, Frank and Joe. The

survival bivariate copula 1 (including Survival Clayton and Gumbel copulas)

are also considered in this work, which covers a wide spectrum of dependence.

In these bivariate copulas, only the t copula is two-parametric, the others are

one-parametric.

5.2.5 Marginal Distribution Specification and Param-

eter Estimation

As discussed in Section 2.2.2, a copula has two parts: the copula function

and the marginal distributions. Here the financial variables are used as a real

world example. For the finance use of the partial regular vine copula model,

the volatility models (i.e. ARMA-GARCH models) is used as the margins.

Typically, let Xt(t = 0, 1, ...,T) be a time series of the prices of a financial

asset, such as the stock market index. The return of financial asset can be de-

fined as rt = log(Xt/Xt−1). If there are n assets with returns rt,1, ..., rt,n, The

appropriate marginal distribution of individual variables (i.e., returns of fi-

nancial variables) is chosen firstly. Due to the character of financial variables,

such as volatility cluster, a common choice is ARMA(1,1)-GARCH(1,1) with

Student-t error distribution, which is defined as follows:

rt,j = ηj +Ψjrt−1,j +Θjεt−1,j + εt,j,

σ2
t,j = ωj + αjε

2
t−1,j + βjσ

2
t−1,j

εt,j = σt,j · Zt,j

(5.2)

where j = 1, ..., n, t = 1, ...,T , and Zt,j is the error which follows the Student-

t distribution. Let θmj = (ηj,Ψj,Θj, ωj, αj, βj) and θc be denoted as the

1The survival copula is the copula with survival functions, i.e., C(x1, x2) = x1 + x2 −
1 + C(1− x1, 1− x2), where C is the survival copula. See details in (Nelsen 1999).
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parameter set of margins and the parameters of copula function respectively.

The multivariate joint log-likelihood is given by:

L(θm1 , ..., θ
m
n , θ

c) =
T
∑

t=1

logf(rt,1, ..., rt,n; θ
m
1 , ..., θ

m
n , θ

c)

=
T
∑

t=1

log c(F1(rt,1), ..., Fn(rt,n); θ
c)

+
T
∑

t=1

n
∑

j=1

log fj(rt,j; θ
m
j )

(5.3)

where the multivariate c( · ; θc) is denoted as the partial regular vine. It is

possible to maximise Equation (5.3) by using the Maximum Log-likelihood

Estimate (MLE). However, it is time consuming when n is large. Inference

Functions for Margins (IFM) method (detail can be found in Section 2.2.2

and (Joe 2005)) is then used to resolve the issue. IFM is a two-step esti-

mation method, which efficiently estimates the parameters of a model. In

the first step, the margins ARMA(1,1)-GARCH(1,1) with Student-t error

distribution are employed to filter the financial returns and the univariate

parameters θmj = (ηj,Ψj,Θj, ωj, αj, βj) are derived. In the second step, the

joint log-likelihood in Equation (5.3) is maximised over copula parameters

θc given the fixed parameters of margins θmj . This means that the joint log-

likelihood is reduced to the equation which consists of only copula parameters

because the parameters of log-likelihood are fixed.

5.3 Evaluation Methods

In this chapter, the high-dimensional dependence of financial variables are

used as an example to illustrate the above proposed truncated partial regu-

lar vine copula. In this section, different evaluation methods are discussed,

which consist of in-sample evaluation and out-of-sample evaluation. Two

frameworks are used to evaluate the performance of the proposed models.
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One is to measure in-sample performance by examining whether a model fits

the data well. The other is to measure the out-of-sample performance to

evaluate the prediction performance of the model.

5.3.1 In-Sample Evaluation Methods

Classic model evaluation criteria such as Akaike’s information criterion (A-

IC), the Bayesian information criterion of Schwarz (BIC), and the consistent

AIC of Bozdogan (CAIC) are used in the in-sample performance evaluation.

The model comparison test are also taken, such as the Vuong test (Vuong

1989). To compare models R1 and R2 with their estimated parameters θ1 and

θ2, the standardised sum υ of the log difference of their point-wise likelihoods

mj := log[
R1(xj |θ1)

R2(xj |θ2)
] for observations x = (x1, ..., xN)

′ ∈ RN×n is calculated.

Under fairly general regularity conditions, υ is shown to be asymptotically

standard normal, resulting in the following test – the Vuong test statistics

(υ) at level α are defined as:

statistics := υ =
(1/n)

∑n
j=1 mj

√

∑n
j=1 (mj − m̄)2

(5.4)

Here, Φ−1 is denoted as the inverse of the standard normal distribution

function. If υ > Φ−1(1− α/2), it prefers model R1 to model R2 at the level

α. If υ < −Φ−1(1−α/2), the model R2 is chosen over model R1. If, however,

|υ| ≤ Φ−1(1− α/2), no decision can be made between the two models. The

Vuong test does not take the effect of parameters into account. Hence, the

Vuong test with Akaike and Schwarz corrections, which correspond to the

penalty terms in the AIC and BIC respectively, are used.

5.3.2 Out-of-Sample Evaluation Method

To evaluate the out-of-sample performance, Value at Risk (VaR) is used,

since it is a probabilistic metric measuring market risk and is an industrial

golden benchmark for measuring market risk. VaR at the level (1 − α) is
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defined by

V aRt(1− α) = −inf{c ∈ R : P (rt ≤ c|�t−1)| ≥ (1− α)} (5.5)

where �t−1 represents the past information at time t − 1. A good model is

expected to produce a high quantity of VaR. Given a set of financial returns,

the portfolio returns can be defined as:

rportfolio,t =
n

∑

j=1

μjrj,t (5.6)

where rj,t is financial return at time t for i = 1, ..., n, and μj is the weight,

where
n
∑

j=1

μj = 1.

Suppose the current time is t, the process for computing VaR forecasting

at time t+ 1 is given as follows:

(i). Fit ARMA(1,1)-GARCH(1,1) with the Student-t error distribution

with returns by using Equation (5.2). The standardised residuals are

obtained by:

Ẑj,t =
rj,t − η̂j − Ψ̂jrj,t−1 − Θ̂jσ̂j,t−1êj,t−1

σ̂j,t

(5.7)

(ii). The ex-ante GARCH variance forecast (see detail in (Andersen 2009))

for j = 1, ..., n can be computed as follows:

σ̂2
j,t+1 = ω̂j + α̂j ε̂

2
j,t + β̂jσ̂

2
j,t (5.8)

(iii). The standardised residuals obtained from ARMA(1,1)-GARCH(1,1)

are transformed to approximately uniform data uj = u1,j, ..., ut,j by

using the Student-t cumulative distribution function;

(iv). Fit the partial regular vine tree structure with approximately uniform

data uj and estimate copula parameters;

(v). Use the fitted regular vine structure with estimated copula parameters

to simulate a sample for each financial return variable, i.e.,vt+1,j ;
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(vi). Transfer the sample to standard residuals by using the inverse Student-

t cumulative probability distribution functions with parameters ob-

tained in Step (i), and obtain the simulated standardised residuals,

i.e., Ẑj,t+1 ;

(vii). Calculate the one day ahead forecasting return and variance for each

financial variable by using the estimated ARMA(1,1)-GARCH(1,1)

which is calculated in Step (i), i.e.,

r̂j,t+1 = η̂j + Ψ̂jrj,t + Θ̂j ε̂j,t + ε̂j,t+1 (5.9)

(viii). The portfolio return is calculated by Equation (5.6). Steps from (iv)

to (vii) are repeated for N times (e.g. N = 10000). The 99%, 95%,

and 90% VaR forecasts are determined by taking the corresponding

1%, 5% and 10% quantiles of the portfolio return forecast respectively.

The quality of VaR forecasting can be judged by backtesting. Typically,

backtesting methods consist of unconditional, independent and conditional

coverage tests (Guermat & Harris 2002). In addition, another test for the

quality of VaR forecasting is ex-post exceedance (Andersen 2009), which is

defined at time t as:

It =

{

1, if rportfolio,t < V aRt(1− α);

0, otherwise.
(5.10)

where rportfolio,t is the ex-post observed portfolio return at time t. If the VaR

forecasting is accurate, It should be less than or equal to the significance

level α of the backtesting.

5.4 Experimental Results

5.4.1 Data and Marginal Distributions Specification

The real-world financial data sets are used to evaluate the in-sample and

out-of-sample performance. They are the returns of 17 currency exchange
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Table 5.2: Ljung-Box Test Results

j BRL CAD CNY KRW HKD INR

Zj 0.23 0.51 0.91 0.95 0.78 0.09

Z2
j 0.10 0.15 0.97 0.38 0.97 0.16

j JPY MXN NOK CHF SGD SEK

Zj 0.83 0.30 0.94 0.95 0.82 0.94

Z2
j 0.35 0.37 0.35 0.41 0.73 0.46

j TWD AUD EUR NZD GBP

Zj 0.06 0.61 0.97 0.89 0.66

Z2
j 0.96 0.67 0.42 0.27 0.43

rates against USD. These trading currencies are EUR, GBP, NOK, SEK,

CHF, CAD, KRW, HKD, JPY, INR, MXN, AUD, NZD, CNY, BRL, SGD

and TWD. They represent major currencies in the global market and can

be arranged into portfolios. For the in-sample performance test, these ob-

servations from 01/08/1999 to 12/01/2007, a total of 418 weekly returns,

are used for evaluation. Observations from 19/09/2005 to 23/06/2013, a to-

tal 310 weekly returns are used for out-of-sample testing. All the data was

downloaded from FRB St. Louis (http://research.stlouisfed.org).

The raw returns are fitted with univariate ARMA(1,1)-GARCH(1,1) mod-

els with the Student-t error distribution. The Ljung-Box (LB) tests (Ljung

& Box 1978) are used to remove the autocorrelation among these financial

returns. The results of LB tests are shown in Table 5.2, which give the

corresponding p-values for all returns. It suggests that there are no auto-

correlation left for all returns in the standardise residuals Zj and squared

standardised residuals Z2
j (all p-values > 0.05). The standardised residuals

are transferred to uniform data by using the empirical probability integral

transformation, which is actually the input of partial regular vine.
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5.4.2 Partial Regular Vine Truncation Analysis

The following vine copula models are used in the experiments which cover a

wide spectrum of vines to evaluate the proposed copula model:

• TPRV0.1: Truncated partial regular vine, built by Algorithm 5.1, and

then truncated by Algorithm 5.2 with truncation value 0.1;

• PRV : Partial regular vine, built by Algorithm 5.1, non-truncated;

• PCV : Partial Canonical vine, built by Algorithm 3.1;

• RSeq: Regular vine, built by (Dissmann et al. 2013);

• CSeq: Canonical vine, built by (Dissmann et al. 2013).

Considering the tail dependence of bivariate copula families, these bi-

variate copula families are considered for the five models, including t, Clay-

ton, Gumbel, Frank, Joe, S.Clayton and S.Gumbel, where S.Clayton and

S.Gumbel are the survival version of Clayton and Gumbel copula respective-

ly.

In general, the selection of ρtrun is determined by the characteristics of

data and domain knowledge. Table 5.3 shows the result of the total number

of edges against various truncation values (ρtrun) in the training data set. If

ρtrun = 0, it refers to the non-truncated vine, since no partial correlation is

less than 0. The total number of edges decreases when the truncation value

increases. To investigate the performance of the truncated partial regular

vine, an experiment is implemented to compare the performance between

truncated and non-truncated partial regular vines. The truncated partial

regular vines are used, with truncation value ρtrun from 0.01 to 0.4, separated

by 0.01. The training data set described in Section 5.4.1 is used to examine

the performance of non-truncated and truncated vines. The results are shown

in Figure 5.1. The top two figures show the total parameters and estimation
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Table 5.3: The Total Number of Edges in Truncated Partial Regular Vine

against Truncation Value

ρtrun 0 0.01 0.02 0.03 0.04 0.05 0.06

Total No. 136 121 111 101 87 80 74

ρtrun 0.07 0.08 0.09 0.1 0.15 0.2 0.3

Total No. 70 66 63 57 36 26 17

time 2 of truncated vine against non-truncated vine, and the bottom two

figures give the log-likelihood value and determinant of partial regular vine.

The x-axis of all four figures is ρtrun. The dashed line indicates the non-

truncated vine as reference. The number of parameters and the estimation

time of the truncated vine decreases significantly as ρtrun increases. However,

the log-likelihood and determinant (discussed in Algorithm 5.1) do not show

a great reduction. It can be concluded that the truncated vine efficiently

reduces the number of parameters and estimation time, and at the same time

retains the important dependencies, since the log-likelihood and determinant

decrease smoothly and slowly.

Considering the characteristics of the currency data (time series) and

the result shown in Table 5.3 and Figure 5.1, the truncated partial regular

vine ρtrun = 0.1 is chosen in our case study. The TPRV0.1 in the following

sections’indicates a truncated partial regular vine whose truncation value is

0.1. Table 5.4 provides a detailed comparison between TPRV0.1 and non-

truncated PRV models. The number of parameters and the estimation time

of TPRV0.1 are only half of PRV . However, the difference of log-likelihood

and determinant is not very significant, which indicates that TPRV0.1 retains

important dependencies but truncates the unnecessary information.

The comparison between partial regular vine model and the model with

copula-based probability graphical models (copula Bayesian networks) in our

2The estimation time refers to only the parameters of partial regular vine, excluding

the parameters of margins. The computation is on a Linux cluster computer with 6 Inter

Xeon CPU (3.74GHz) and 12G memory.
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Table 5.4: The Comparison between TPRV0.1 and PRV

TPRV0.1 PRV

Total Parameters 185 79

Estimation Time 1 5979 2357

Log-likelihood 6013 5913

Determinant 7.796 7.624

1 The estimation time is seconds.

case study, because those models are lack of efficient sampling methods.

Another reason is the difficulty of obtaining the one day ahead forecasting

returns for computing VaR forecasting.

5.4.3 In-Sample Performance Analysis

Table 5.5 presents the results with the bivariate copula selection and model

selection criteria. It shows that PRV takes the highest log-likelihood, fol-

lowed by TPRV , PCV , RSeq and CSeq models. For the model selection

criteria, the small value of AIC, BIC or CAIC indicates a good model. The

three criteria show that TPRV0.1 is the best of these five models, because

PRV has the highest log-likelihood, but it is penalized as a result of the num-

ber of parameters. Compared with PCV , RSeq and CSeq models, TPRV0.1

uses fewer parameters and obtains the higher log-likelihood.

Table 5.6 shows the Vuong test results with statistics and the correspond-

ing p-values in the parenthesis. The results are shown without correction and

with Akaike and Sch-warz corrections respectively. The Vuong test statisti-

cal value without correction cannot indicate which of the TPRV0.1 and PRV

models is better. However, the statistical values with Akaike and Schwarz

corrections suggest that TPRV0.1 is better than PRV , since PRV is penal-

ized due to its large number of parameters. Thus, it indicates that TPRV0.1

is better than PRV , since TPRV uses fewer parameters to capture the most

important dependencies. Comparison with the other three models shows that
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Table 5.5: Results of Bivariate Copula Selection and Model Selection

TPRV0.1 PRV PCV RSeq CSeq

t 22 49 48 41 48

Clayton 1 11 7 9 6

Gumbel 1 3 5 7 3

Frank 21 42 6 51 42

Joe 1 4 41 1 2

S.Clayton 1 4 16 19 6 12

S.Gumbel 1 7 11 13 4 12

Total Families 57 136 136 136 136

Total Parameters 79 185 184 160 173

Log-likelihood 5913 6013 5598 5578 5562

AIC -11669 -11656 -10828 -10836 -10778

BIC -11620 -11542 -10714 -10737 -10671

CAIC -11541 -11357 -10530 -10577 -10498

1 S.Clayton and S.Gumbel are survival versions of Clayton and

Gumbel copulas respectively.

TPRV0.1 is the best in all three Vuong tests.

In summary, the in-sample performance tests show that TPRV0.1 outper-

forms the other four models.

5.4.4 Out-of-Sample Performance Analysis

The out-of-sample performance is evaluated by the Value at Risk (VaR)

forecasting performance. The Multivariate ARMA-GARCH (MAG) model
3 is used as reference, since MAG is the benchmark used in the financial area.

3 The Multivariate ARMA-GARCH model used in the case study is multivariate

ARMA(1,1)-GARCH(1,1) with Student-t error distribution; see detail in (Andersen

2009).
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Table 5.6: Vuong Test Results

PRV PCV RSeq CSeq

No Corr
-0.3130 6.2331 6.6841 6.1411

(0.7543) (0.0000) (0.0000) (0.0000)

Akaike Corr
2.6653 7.9304 8.5481 7.9852

(0.0077) (0.0000) (0.0000) (0.0000)

Schwarz Corr
9.5028 11.8271 12.8276 12.2190

(0.0000) (0.0000) (0.0000) (0.0000)

No Corr, Akaike Corr or Schwarz Corr are short for

Vuont test without correction, and with Akaike and

Schwarz corrections respectively. The table shows re-

sults of Vuong tests at the 5% level, testing the R1 mod-

el (TPRV0.1) against the models R2 (including RPV ,

PCV , RSeq and CSeq models). If the statistical value

is greater than 1.96, it favors the model R1. If it is less

than -1.96, the model R2 is chosen. If between -1.96

and 1.96, no conclusion is made.

Table 5.7 presents the statistics of a conditional, independent and uncon-

ditional coverage and the percentage of exceedance failure. A large p-value

indicates that the VaR forecasting is accurate and reliable; however, the p-

value should at least be greater than 0.05. The percentage of failure for

exceedance should be less than or equal to α. The results in Table 5.7 show

that TPRV0.1 achieves the best performance of all six models. The other five

models fail in one or more tests since the p-value is less than 0.05. Compared

to the other five models, our model demonstrates better performance since

it has higher p-value for all three levels in all tests. Hence, the out-of-sample

performance is in line with that of the in-sample tests. The corresponding

VaR forecasting results are shown in Figure 5.2. The VaR forecasting gener-

ated by TPRV0.1 accurately predicts the volatility. In addition, the result in
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Table 5.7 suggests that the Multivariate ARMA(1,1)-GARCH(1,1) (MAG)

cannot deal with the high-dimensional data, since it can only capture the

linear dependence, not the complex dependence shown in high-dimensional

data.

5.5 Summary

This chapter presents a truncated partial regular vine model to resolve the

issue without imposing restrictions, and on the dependence structures. The

model’s merit has been demonstrated through an analysis of the complicat-

ed structures of portfolios in currency markets. Both in-sample and out-

of-sample performance evaluation results highly outperform other methods

from statistic and risk evaluation perspectives. It is found that our model

TPRV0.1 captures important (including asymmetric) dependencies with the

least parameters.
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Table 5.7: Backtesting Results of Value at Risk for Currencies

1− α PoF 1 LRUC
2 LRCC

2 LRIC
2

TPRV0.1

99%
2 0.458 0.484 0.026

0.65% (0.499) (0.785) (0.872)

95%
12 0.035 0.305 0.270

3.87% (0.852) (0.859) (0.270)

90%
27 0.089 0.455 0.366

8.71% (0.765) (0.796) (0.545)

PRV

99%
2 0.458 0.484 0.026

0.65% (0.499) (0.785) (0.872)

95%
15 0.075 0.505 0.430

4.84% (0.784) (0.777) (0.512)

90%
29 0.354 0.678 0.324

9.35% (0.552) (0.712) (0.569)

PCV

99%
3 6.008 6.271 0.263

0.97% (0.014) (0.043) (0.608)

95%
15 5.808 7.089 1.281

4.84% (0.016) (0.029) (0.258)

90%
30 6.128 9.845 3.717

9.68% (0.013) (0.007) (0.054)

1 The PoF is the percentage of exceedance failure. The first row

shows the exceedance number, and the second row gives the corre-

sponding percentage;

2 LRUC , LRIC and LRCC are short for the likelihood ratio of uncon-

ditional, independent and conditional coverage respectively. The

first row in each cell shows the statistics value, while the corre-

sponding p-value is given in the corresponding parenthesis. The

critical value of LRUC or LRIC is 3.841, while the critical value of

LRCC is 5.991.
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Table 5.8: Backtesting Results of Value at Risk for Currencies

1− α PoF 1 LRUC
2 LRCC

2 LRIC
2

RSeq

99%
2 3.571 5.816 2.245

0.65% (0.059) (0.055) (0.134)

95%
14 4.876 6.157 1.281

4.52% (0.027) (0.046) (0.258)

90%
28 7.073 7.306 0.233

9.03% (0.008) (0.026) (0.629)

CSeq

99%
3 6.007 7.471 7.073

0.97% (0.014) (0.027) (0.289)

95%
16 7.471 8.752 1.281

5.16% (0.006) (0.013) (0.258)

90%
32 7.073 10.789 3.716

10.32% (0.008) (0.005) (0.054)

MAG

99%
6 2.152 9.553 12.651

1.94% (0.014) (0.027) (0.289)

95%
22 6.231 31.802 65.324

7.10% (0.044) (0.000) (0.000)

90%
38 4.079 22.248 52.673

12.26% (0.043) (0.000) (0.000)

1 The PoF is the percentage of exceedance failure. The first row

shows the exceedance number, and the second row gives the

corresponding percentage;

2 LRUC , LRIC and LRCC are short for the likelihood ratio of un-

conditional, independent and conditional coverage respectively.

The first row in each cell shows the statistics value, while the

corresponding p-value is given in the corresponding parenthesis.

The critical value of LRUC or LRIC is 3.841, while the critical

value of LRCC is 5.991.
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Figure 5.1: Performance analysis of truncated partial regular vines
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Chapter 6

Optimal Allocation of High

Dimensional Assets through

Truncated Partial Canonical

Vines

6.1 Introduction

Financial asset returns follow non-normal distributions—asymmetries and

skewness very often exists in the distribution of financial asset returns such as

in stock returns (Ang & Bekaert 2002) and (Ang & Chen 2002). These asym-

metry facts violate the traditional distribution assumption on financial asset

returns, making the traditional mean-variance analysis (Markowitz 2012) un-

reasonable. Some previous studies (Patton 2004), (Riccetti 2012) and (Sun,

Rachev, Stoyanov & Fabozzi 2008) have attempted to compare the expect-

ed utility obtained from the mean-variance criterion with the approximated

utility obtained from the benchmark portfolios (those equally divided allo-

cation portfolios). It has been found that the mean-variance criterion had

poor performance in relation to analysing the skew and asymmetric portfo-

lios. The mean-variance criterion was good only at the portfolio that consists
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of riskless assets as riskless assets are driven by a normal distribution in line

with the mean-variance criterion assumption.

Arrow (1971) laid down a theoretical foundation for the importance of

using distributional asymmetries. He suggests that a desirable property of

utility functions, such as the Constant Relative Risk Aversion utility function

is the non-increasing absolute risk aversion. It means that under the non-

increasing absolute risk aversion, investors may have a preference for positive-

ly skewed portfolios. Asymmetries in the dependence structure have a direct

impact on the skewness of the portfolio return. Therefore, while making the

portfolio decision favourable to risky assets, it is also essential to consider the

existence of and the impact between asymmetries and skewness. In the past,

some studies, such as (Patton 2004, Jondeau & Rockinger 2006b, Hong, Tu

& Zhou 2007, Sun et al. 2008, Christoffersen & Langlois 2011)(detail refer

to 2.8.3), have proposed models to construct the dependence structure with

only two financial assets. However, they focus on only two or three asset al-

locations. That is far away from the need of investors. Investors and trading

agents generally purchase tens of risky assets, rather than two assets in order

to reduce aggressive risk. Therefore, it is important to develop a model that

can resolve the difficulties in the high dimensional asset allocation.

There are three challenges in high dimensional asset allocation. First,

as discussed above, the correlations between financial assets are asymmetric,

rather than normal. With high dimensional input, the dependence struc-

ture becomes extremely complex. Indeed, it is difficult to capture and model

all of these correlations between assets. Second, it is important to obtain

the joint probability density function. However, the high dimensional joint

distribution function has a large number of parameters which increases ex-

ponentially as the data dimensions increase. Third, each individual asset has

its own characteristics, such as volatility clustering and fat tail. It is a chal-

lenging task to combine these characteristics into the dependence structure.

To fulfill this need, a truncated partial canonical vine-based dependence

model is proposed for an optimisation of the high dimensional asset alloca-
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tion. The new model can capture asymmetric and skew correlations in the

dependence structure. To address the high dimensional issue, an idea of par-

tial correlation is employed to construct and truncate or simplify the canon-

ical vine dependence structure in the model. In addition, it can capture the

most important correlations in the dependence structure, and truncate the

useless dependencies(information), which can effectively reduce the complex-

ity of the dependence structure. Furthermore, the ARMA-GARCH model

is used for marginal distribution to capture volatility clustering and fat tail

in financial assets.

The main contribution made by this work is the truncated partial correla-

tion based canonical vine called truncated Partial Canonical Vine (PCV ) for

short. The truncated PCV is optimised to be suitable to high dimensional

data input as it can remarkably reduce the number of nodes and parameters

and simplify the canonical vine structure. For example, for a 50-variable

typical canonical vine model dependence model, it will generate 1225 param-

eters for dependence structure. However, in the truncated partial canonical

vine, the number of parameters is only one tenth of that (around 267 param-

eters). In addition, the method can test hypotheses in parallel such as: (1)

whether these asymmetries are predictable out of sample; and (2) whether it

can make better portfolio decisions by using the forecasts of these asymme-

tries. If the answer to any of these questions is ’yes’, then the asymmetries

are very important for high dimensional asset allocation. Finding models to

fit in-sample data very well without considering the asymmetries and skew-

ness does not imply that it will result in a better out-of -sample portfolio

decisions. In the chapter, the model which can capture all important asym-

metries and skewness in the dependence structure is built firstly, and then it

is compared with those models that do not consider the correlations and/or

asymmetric dependence structure between financial assets.

The rest of this chapter is organised as follows. Section 6.2 describes the

problem of optimal assets allocation in portfolio, including how to construct

the optimal canonical vine and marginal distribution. Section 6.3 discusses
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how to evaluate the performance of the model with equally divided allocation

and mean-variance criterion. In Section 6.4, it applies the truncated partial

canonical vine to capture the dependence structures of two portfolios, and

evaluate the performance of the model in comparison to the performance by

the mean-variance criterion and equally divided allocation method. Finally,

Section 6.5 concludes this chapter with a summary.

6.2 The Portfolio Optimisation Problem and

Partial Canonical Vine

6.2.1 CRRA Optimisation Function

Suppose that hypothetical investors follow the class of Constant Relative Risk

Aversion (CRRA) utility functions:

U(γ) =

{

(1− γ)−1 · (P0Rport)
1−γ, if γ 	= 1

log(P0Rport), if γ = 1
(6.1)

where γ is the risk aversion parameter, P0 is the initial wealth and Rport is

the portfolio return. In this chapter, the value of risk aversion parameter is

considered at four different levels, including γ = 2, 5, 7 and 10, as suggested

by (Campbell, Koedijk & Kofman 2002). CRRA utility function is used to

calculate the expected return of the hypothetical investors. If the results are

obtained by using the CRRA utility function, then the methods or algorithms

are used as a conservative estimate of the other possible results or gains by

using other more sensitive utility functions.

The next step is to build a portfolio of returns. The work is focused on

the portfolio return with high dimensional assets, which is defined as;

P0Rport = P0 · (1 +
n

∑

i=1

ωiri,t) (6.2)

where xi,t is the asset return at time t, and ωi is the proportion of wealth

for each asset i. Generally, the initial wealth P0 is set to zero as it does
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not affect the choice of weights. Suppose the joint distribution is Ft, with

the associated marginal distribution F1,t, ..., Fn,t, and copula Ct. The density

forecasts of the joint distribution F1,t+1, ..., Fn,t+1 and the copula function

Ct+1 are developed. Then, the forecast function is used to calculate the

optimal weights ω∗
t+1 for the portfolio. The optimal weights, ω∗

t+1, are found

by maximising the expected CRRA utility function:

ω∗
t+1 =argmax

ω∈W
EFt+1 [U(1 +

n
∑

i=1

ωi,t+1xi,t+1)]

= argmax
ω∈W

∫

x1,t+1

∫

x2,t+1

...

∫

xn,t+1

U(1 +
n

∑

i=1

ωixi)

· ft+1(x1, x2, ..., xn) · dx1 · · · dxn

=argmax
ω∈W

∫

x1,t+1

∫

x2,t+1

...

∫

xn,t+1

U(1 +
n

∑

i=1

ωi,t+1xi,t+1)

· f1,t+1(x1) · · · fn,t+1(xn)

· ct+1(F1,t+1(x1), F2,t+1(x2), ..., Fn,t+1(xn)) · dx1 · · · dxn

(6.3)

whereWt+1 = {(ω1,t+1, ..., ωn,t+1) ∈ [0, 1]n :
n
∑

i=1

ωi ≤ 1} for the short sales con-
strained investors. The investors will estimate the model of the conditional

distribution of returns by using maximum likelihood estimation, and then op-

timise the portfolio weights via the predicted distributions of return. For the

integral function, Monte Carlo replications are used to estimate the value of

integral. For the optimal portfolio weights, the Broyden-Fletcher-Goldfarb-

Shanno algorithm is employed to obtain the optimal weights.

6.2.2 Truncated Partial Canonical Vine

The key step in Equation (6.3) is to form the joint density function ft+1(x1, ..., xn)

at time t + 1. Equation (2.3) shows that the joint density function can be

divided into two parts: the copula function ct+1 and the marginal distribu-

tions f1,t+1(x1) · · ·fn,t+1(xn). This Section discusses how to produce a copula
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density function. The construction of marginal distributions is explained in

the following Section 6.2.3.

One way to build high-dimensional copula density function is to use

the canonical vine to build the dependence structure as proposed by (Aas

et al. 2009). The basic scheme for modelling high-dimensional dependence

structure with the canonical vine is to decompose multivariate density func-

tions into many conditional pair copulas. These pair copulas are bivariate

copulas in one time. The model based on the canonical vine transform-

s one high dimensional dependence structure into multiple two-dimensional

structures. However, one important issue of the canonical vine is that if the

variables are large in number, the canonical vine will become quite complex.

In addition, the number of bivariate copulas and their corresponding param-

eters of canonical vine will increase exponentially as the variables increase.

Therefore, the partial correlation-based canonical vine is developed to model

the high dimensional dependence structure.

The principle for new canonical vine construction is to capture the most

important correlation in the dependence structure while at the same time de-

creasing the number of nodes, and reducing the complexity of the dependence

structure. That is, the new canonical vine can capture the most important

correlation, and ignore the weak correlations. Following this principle, the

partial correlation based canonical vine is suitable, since (1) it is built via

partial correlation with the bottom to top strategy, which can ensures the

weak correlations are put to the edges in bottom trees, and (2) according to

Algorithm 3.2, it can be easily truncated, which ensure that it can be used

in high-dimensional cases. Please refer to Section 3.3.3 for the construction

of the partial correlation based canonical vine dependence structure.

Once the partial correlation based canonical vine dependence structure

is identified, the next step is to choose the bivariate copula for each edge of

trees. The bivariate t copulas are selected, since the t copulas have symmetric

tail dependence (see detail in Section 2.1.3).
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6.2.3 Marginal Distribution Specification and Param-

eters Estimate

Marginal Distribution Specification

Typically, ARMA(p,q)-GARCH(1,1) models are used as marginal distribu-

tions, since the stock returns (time series data) are examined in the empirical

analysis. Generally, AR(1)-GARCH(1,1) is suitable for all of these stock re-

turns. Please refer to Section 2.7, Section 3.4 and (Andersen 2009) for detail

in relation to the ARMA-GARCH models.

Suppose Xt(t = 0, 1, ...,T) be a time series of the price on a financial

asset, such as the stock market index. Then the return rt of financial asset

can be defined as log(Xt/Xt−1). There are n assets with returns rt,1, ..., rt,n.

The AR(1)-GARCH(1,1) is defined as follows:

rt,j = cj + Φjrt−1,j + εt,j,

εt,j = σt,j · Zt,j

σ2
t,j = ωj + αjε

2
t−1,j + βjσ

2
t−1,j

(6.4)

where j = 1, ..., n, t = 1, ...,T and Zt,j is the error distribution. In the

chapter, it follows skewed Student-t distribution.

Parameter Estimate

In the high-dimensional cases, the number of parameters is very large. As

discussed in Section 2.2.2, it is necessary to employ the two-stage procedure.

Typically, as shown in Equation (3.10), the log-likelihood has two parts, in-

cluding the log-likelihood of copula and the log-likelihood of margins. Let

θm and θc be the parameters set of the marginal distributions and copula

function respectively. For example, the parameters of jth marginal distri-

bution is θmj = (μj,Φj,Θj, αj, βj) The parameters of marginal distributions

(θm) are estimated at first, and then, the parameters of the copula functions

θc are estimated given θm. The two-stage procedure can effectively reduce

the computation burden.

180



CHAPTER 6. OPTIMAL ALLOCATION OF FINANCIAL ASSETS

6.3 Evaluation Methods

The final amount of the portfolio, the utility obtained by daily returns, are

used to compare the assets allocation with different portfolio decisions. The

final amount is the amount in dollars obtained at the end of the entire out

of sample period (testing period). To compare the utility between different

portfolio decisions, the opportunity cost, also called management fee or fore-

cast premium, is calculated in the experiment. The opportunity cost is the

amount that investor would pay to switch from the the equally divided allo-

cation portfolio to analysed allocation. The benchmark of assets allocation

is by equally dividing the allocation portfolio, which means the weights of all

assets are equal. The performance of the partial canonical vine is compared

with mean-variance criterion and the equally divided allocation. Suppose

that rport is the optimal portfolio return obtained by partial canonical vine

or mean-variance, and r∗port is the return obtained from the equally divid-

ed allocation portfolio. In other words, the opportunity cost is actually the

return which is added to the return obtained from the equally divided alloca-

tion portfolio, to make sure the investor is indifferent to the returns obtained

from the analysed model. Then, the opportunity cost ∆ can be defined as:

U(1 + rport +∆) = U(1 + r∗port) (6.5)

Equation (6.5) can be resolved via the Taylor approximation with the CRRA

utility function in (Jondeau & Rockinger 2006b). For example, the opportu-

nity cost ∆ can be rewritten as follows:

∆ =(μ∗
port − μport)−

γ

2
(m∗2

port −m2
port) +

γ(γ + 1)

3!
(m∗3

port −m3
port)

− γ(γ + 1)(γ + 2)

4!
(m∗4

port −m4
port)

(6.6)

where μ∗
port and μport represents the mean return obtained from the equal-

ly divided allocation portfolio and the analysed portfolio respectively, and

m represents the non central moments: mi
port = mean[riport] , where i =

1, 2, 3 and 4. Equation (6.6) calculates the opportunity cost. The opportuni-
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ty cost can be used to compare the performance between different portfolio

decisions.

6.4 Case Study

6.4.1 Data and Model Specification

Two financial asset portfolios are used in the evaluation of the performance

of the proposed model. One portfolio composes a comprehensive index

S&P 500, and 50 stocks from 10 industries. The other portfolio consist-

s of a comprehensive index Stoxx50 Euro, five national leading stock in-

dices, and 44 stocks. All the data are downloaded from Yahoo Finance

(http://finance.yahoo.com). The data in the both portfolios span 1200 trad-

ing days from 01/10/2004 to 31/07/2009. In the data pre-processing step,

these returns and indices are calculated by taking the log difference of the

prices on every two consecutive trading prices.

As described in Section 6.2.3, AR(1,1)-GARCH(1,1) is considered as the

marginal distribution to capture the skewness. The Ljung Box test (McLeod

& Li 1983) was used for checking the existence of residual autocorrelation for

all of the stocks and indices. Table 6.1 shows all of the partial correlations

in the non-truncated partial canonical vine. All of these partial correlations

are used with the absolute value as the study is focused on the extent of

correlations rather than positive/negative correlations. It can be seen that

Stoxx50E has a value larger than S&P500 at all levels. It indicates that the

stocks in the portfolio of Stoxx50E have much stronger correlations than

those in the portfolio of S&P500. This is understandable as the portfolio

of S&P500 is built by using 500 stocks from 10 industries. The stocks in

the portfolio S&P500 are strictly selected from the least correlations to each

other.

Then, the following models are used in the case studies.

• TPCV0.05: Truncated partial canonical vine, built by Algorithm 5.1,
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Table 6.1: The Partial Correlation Analysis for Portfolios S&P500 and

Stoxx50E

S&P500 Stoxx50E

Min 0.0002 0.0004

Max 0.5281 0.8702

Mean 0.0572 0.0787

25%Quantile 0.0144 0.0171

25%Quantile 0.034 0.0422

75%Quantile 0.0641 0.0929

and then truncated by Algorithm 3.2 with truncation value 0.05 (ρsign =

0.05);

• TPCV0.1; Truncated partial canonical vine, built by Algorithm 5.1, and

then truncated by Algorithm 3.2 with truncation value 0.01(ρsign =

0.1);

• MV : Mean-variance model, built by (Markowitz 2012);

• ED: Equally Divided Allocation.

Figure 6.1 presents the result of the truncated and simplified partial

canonical vine for two portfolios S&P500 respectively. The truncated par-

tial canonical vines are using conditional independence copulas to replace

the weak correlations (refer to Algorithm 3.2). The dash lines in all figures

indicate the non-truncated/simplified partial canonical vine. In Figure 6.1,

the total number of the truncated vine decreases sharply, and then goes s-

lowly after the significant value 0.14. However, the simplified vine decreases

at the beginning, and then remains at a certain level. The estimate time for

both the truncated and simplified vine reduces greatly. The truncated vine

uses less time than the simplified one with the same significant value ρsign.

For log-likelihood, the gap between the simplified vine and the non-truncated
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Table 6.2: The Comparison between Truncated, Simplified and Non-

truncated Vines

ρsign
Total Estimate * Log

Parameters Time likelihood

S&P500

Simplified PCV
0.05 1521 6401 15478

0.1 1408 3172 15247

Truncated PCV
0.05 826 2889 14911

0.1 338 597 12874

Non-truncated PCV 1641 10055 15669

Stoxx50E

Simplified PCV
0.05 1590 8983 24255

0.1 1439 6196 24040

Truncated PCV
0.05 1049 6141 23702

0.1 518 1811 22625

Non-truncated PCV 1729 14158 24537

* The estimate time is seconds.

vine is very small. The log-likelihood of truncated vine decreases smooth-

ly at the beginning, and then reduces quickly. A similar conclusion can be

reached for the portfolio Stoxx50E via Figure 6.2. Thus, according to the

compared results of Figure 6.1 and Figure 6.2, the truncated canonical vine

with significant value 0.05 and 0.1, such as TPCV0.05 and TPCV0.1 are used

in the case studies. The details of the two models are shown in Table 6.2.

6.4.2 Experiment Results and Analysis

The performance of truncated partial canonical vines are evaluated by mea-

suring the opportunity cost. A moving window of 1200 observations, approx-

imately 5 years of daily returns from 01/10/2004 to 31/07/2009, was used to
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construct the model. The test period was from 01/08/2010 to 01/03/2012

with 730 observations of daily returns. The performance of models is evaluat-

ed in the two portfolios: the European stock markets Stoxx50E and United

Stated stock markets S$P500. All the portfolio decisions are re-balanced

at the end of every month, and no cost is assumed for the re-balancing.

The performance of models (TPCV0.05 and TPCV0.1) are compared with the

mean-variance criterion (MV ) and the equally divided allocation (ED), to

understand whether new models are useful.

Table 6.3 and 6.4 shows the results related to the opportunity costs,

utilities and the final amounts for the two portfolios S$P500 and Stoxx50E

respectively. The utilities are calculated by using the CRRA utility functions

with the sample returns. The two tables provide strong evidence that the

two truncated partial canonical vine models are the best at all levels γ for

both portfolios. In detail, for the portfolio S&P500, the performance of

two truncated partial canonical vines TPCV0.05 and TPCV0.1 are compared.

There is no obvious difference between these two truncated partial canonical

vines, indicating that the two vines implement a similar forecasting of the

samples. However, the number of parameters in TPCV0.1 is only half of those

in TPCV0.1. TPCV0.1 is sufficient to model the dependence structure.

The mean-variance criterion has a poor performance as the opportunity

cost is negative at all of the levels γ. It indicates that if investors conduct

assets allocation on the basis of mean-variance analysis, the final profit would

be less than those on the basis of the equally divided allocation. Therefore,

the mean-variance criterion is not useful. Considering the good performances

of the canonical vine model, the mean-variance criterion, which is caused

by the normal distributions, cannot catch the features of asymmetry and

skewness within these stocks and indices. For the portfolio Stoxx50E, the

mean-variance criterion is not useful either. The performance by the mean-

variance criterion in Stoxx50E is worse than those in S&P500. The final

amount is even less than one, suggesting that investors will obtain loss if

they allocate the assets under the mean-variance criterion. The trouble with
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the mean-variance criterion is that Stoxx50E has stronger asymmetry and

skewness than the criterion in S&P500. However, the two canonical vines in

Stoxx50E perform better than those in S&P500 as the opportunity cost is

large at all level γ.

Figure 6.3 shows the portfolio values obtained from the truncated partial

canonical vines, the mean-variance criterion and equally divided allocations

at the end of each month. The trend obtained from the canonical vine in

Stoxx50E shows stronger increasing trends and less volatility than those in

S&P500. It indicates that the canonical vine has a better performance in

Stoxx50E. For the trend obtained from the mean-variance criterion, there

is no obviously different from the trends from the equally divided allocation

in S&P500. However, the trend of mean-variance is worse than those of

the equally divided allocation. It can be concluded that the mean-variance

criterion performs a bit better in S&P500 than inStoxx50E.

In summary, it can be concluded that:

(i). The truncated partial canonical vine has a better performance in high

dimensional assets portfolios of strong asymmetry and skewness,

(ii). The mean-variance criterion does not have a good performance in a

high dimensional assets portfolio that has asymmetry and skewness,

(iii). Compared with the equally divided allocation, the new partial canon-

ical vine has a better performance

However, the performance by the mean-variance criterion has no obvious

difference, or is even worse if the high dimensional assets portfolio has strong

asymmetry and skewness.

6.5 Summary

This chapter proposes a truncated partial canonical vine to resolve the issue

of high-dimensional asset allocations. To address the touch computational
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issues caused by high dimensional assets, the partial correlation technique is

employed to reduce the complexity of the dependence structure to make in-

vestors understand the model easily. The experimental results and analysis

have shown that the truncated partial canonical vine has a better perfor-

mance for portfolios of strong asymmetry and skewness in comparison to the

mean-variance criterion, which is currently a widely used method.
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Table 6.3: The Results of the Opportunity Costs, Final Amounts and Utilities

for S&P500

S&P500

Relative Risk Aversion (γ) 2 5 7 10

Opportunity Cost

TPCV0.1 1.33% 3.21% 5.64% 7.32%

TPCV0.05 1.31% 3.18% 5.56% 7.21%

Mean Variance Model -2.36% -3.62% -1.24% -1.19%

Utilities

TPCV0.1 -0.719 -0.063 -0.017 -0.005

TPCV0.05 -0.714 -0.061 -0.017 -0.003

Mean Variance Model -0.980 -0.250 -0.132 -0.078

Equally Divided Allocation -0.952 -0.206 -0.124 -0.072

Final Amount

TPCV0.1 1.39 1.41 1.46 1.50

TPCV0.05 1.40 1.42 1.47 1.50

Mean Variance Model 1.02 1.00 1.04 1.04

Equally Divided Allocation 1.05 1.05 1.05 1.05

188



CHAPTER 6. OPTIMAL ALLOCATION OF FINANCIAL ASSETS

Table 6.4: The Results of the Opportunity Costs, Final Amounts and Utilities

for Stoxx50E

Stoxx50E

Relative Risk Aversion (γ) 2 5 7 10

Opportunity Cost

TPCV0.1 1.91% 4.19% 6.14% 10.01%

TPCV0.05 1.89% 4.17% 6.12% 9.95%

Mean Variance Criterion -2.55% -6.52% -3.20% -1.40%

Utilities

TPCV0.1 -0.6654 -0.040 -0.009 -0.001

TPCV0.05 -0.0649 -0.038 -0.009 -0.001

Mean Variance Model -1.075 -0.610 -0.293 -0.122

Equally Divided Allocation -0.943 -0.198 -0.117 -0.066

Final Amount

TPCV0.1 1.53 1.58 1.62 1.64

TPCV0.05 1.54 1.60 1.62 1.65

Mean Variance Model 0.93 0.80 0.91 0.99

Equally Divided Allocation 1.06 1.06 1.06 1.06
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Figure 6.1: The results of truncated and simplified partial canonical vine

against ρsign for S&P500
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Figure 6.2: The results of truncated and simplified partial canonical vine

against ρsign for Stoxx50E
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Figure 6.3: The portfolio values over 35 months for the truncated partial

canonical vine (TPCV0.1), mean-variance, and equally divided allocation,

γ = 2. The up one is for S&P500, and the bottom one is for Stoxx50E
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In conclusion, this thesis has proposed techniques to address four important

issues in high-dimensional dependence modelling, including high dimensional

data (RI 1), dependence structure assumption (RI 2), dependence structure

truncation and optimization (RI 3) and high dimensional dependence evalu-

ation (RI 4).

In particular, Chapter 3 has addressed the research issues RI 1, 3 and

4. It presents the truncated partial correlation-based canonical vine copula.

The partial correlation is employed to build the canonical vine dependence

structure by using bottom to top construction strategy. Then, it develops a

truncation method, which sets bivariate copulas with weak correlation to the

conditional independence copula. Compared with the non-truncated canon-

ical vine, the truncated one can still maintain the most important depen-

dence but many unimportant nodes are removed to simplify the canonical

vine structure. Thus, the truncation method can greatly reduce the com-

putation burden of the canonical vine with high-dimensional data, without

losing any important dependence. The truncated partial correlation-based

canonical vine is applied to construct and analyze dependence structures of

European stocks as case studies. Its performance is evaluated by measuring
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a portfolio of Value at Risk, a widely used risk management measure. In

comparison to a very recent canonical vine autoregressive model, the trun-

cated partial correlation-based model has a much better quality of Value at

Risk, providing insightful knowledge for investors to control and reduce the

aggregation risk of the portfolio.

Chapter 4 has addressed the research issues RI 1 and 2. It presents

the partial correlation-based regular vine to model the asymmetric, up-

per and lower tail dependence between multivariate variables. The partial

correlation-based regular vine can uniquely determine the correlation matrix

and be algebraically independent. It indicates that dependence structure con-

structed via partial correlation is more flexible, since the current tree struc-

ture is independent from the established tree structure and bivariate copulas

selection. In addition, for all linking bivariate copula on the partial regular

vine dependence structure, only the BB1, survival BB1, BB7 and survival

BB7 are used since these copula have both lower and upper tail dependence

that can range independently from 0 to 1. The partial correlation-based reg-

ular vine copula is tested on a cross-country stock market data set to analyse

the asymmetry and tail dependence. The high prediction performance is

examined by the Value at Risk, and the results show that the partial regu-

lar vine copula with asymmetric dependence and two tail dependence has a

better performance in predicting Value at Risk.

Chapter 5 has addressed the research issues RI 1 and 2 and 3. It pro-

poses the truncated partial correlation-based regular vine with bottom to

top building strategy to model high-dimensional dependence. It can identify

important dependencies and information among high-dimensional variables,

truncating the irrelevant information to reduce the parameter estimation

time significantly. The truncated partial correlation-based regular vine can

capture actual asymmetric dependence in high-dimensional data by incorpo-

rating regular vine theory into the construction of the dependence structures,

which does not impose assumptions on the dependence structures. In addi-

tion, the model is embedded with the copula family which supports a wide
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range of flexible lower and upper tail dependence. The model is constructed

by a new bottom-up construction strategy, which ensures that the weakest

correlations are at the bottom, and the strongest correlations appear at the

top of dependence structures. The model is applied to construct the depen-

dence structures of 17 currency markets over 17 years as a case study. The

model’s in-sample performance is evaluated via a standard model selection

criteria Vuong test, and the out-of-sample performance is evaluated by Val-

ue at Risk, a widely used industrial benchmark. The extensive experiment

results show that our model and its intrinsic design significantly outperforms

industry baselines, and provide financially interpretable knowledge and pro-

found insights into the high-dimensional dependence structures of complex

financial variables.

Chapter 6 addresses the research issue RI 1, 3 and 4. It proposes the con-

stant relative risk aversion utility function through the partial-correlation

based-canonical vine, which aims to resolve the assets allocation optimi-

sation issue. To address the high dimensional issue, a truncated partial

correlation-based canonical vine is built. Thus, the utility function can mod-

el the asymmetries and skewness of joint distributions of assets in high di-

mensional space. The importance of using the asymmetries information is

assessed by comparing the performance of a portfolio based on the typical

mean-variance criteria and that of a portfolio based on the truncated partial

correlation-based canonical vine. The results show that the investors using

the forecasts of these asymmetries can make better portfolio decisions than

those who ignore the asymmetries information.

7.2 Future Work

The exploration in this thesis shows that there is great potential in applying

vine copula models to complex dependence modelling. In future research,

potential directions can be explored from both a theoretical and applied

perspective. These tasks include:
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(i). Partial correlation-based D vine: This thesis has implemented the

partial correlation-based canonical vine and regular vine. The canon-

ical vine and D vine are two special case of the regular vine. D vine,

however, may be more efficient for those with a path-like dependence

structure.

(ii). Model simplification: This thesis has proposed the truncated meth-

ods for both the partial correlation-based canonical vine and regular

vine. However, the methodology is mainly dependent on the domina

knowledge. From the data-driven perspective, it is not enough. Is it

possible to define the significant value of truncation method through

the data information prior to modelling dependence? For a given vine,

how do we select the vine (canonical vine or regular vine) which has

all of the specified conditional independence statement? Is it possible

to find a more efficient conditional independence test that may allow

us to find all conditional copulas that can be set to conditional inde-

pendence?

(iii). Vine copula and graphical models: The relationship between vine

copula models and graphical models, such as the Bayesian copula net-

work or chain graphs are investigated in this thesis. However, whether

the combination of the vine copula and the probability graphical mod-

els are better than the individual model is of particular importance.

For example, is it possible to combine the hidden Markov model with

the vine copula, since they are both from the graphical models?

(iv). Vine copula with time-varying parameters: The models with

time-varying parameters are of great interest in the financial field. Vine

can provide the flexibility to model the dependence in time. If allow-

ing for the parameters to vary over time, the predictive power of the

vine copula model may grow significantly. The task, however, is very

challenging since it will add extra parameters into the vine copulas,

and make the model much more complex.

196



Appendix A

Dependence Measurements

In the section, two different dependence measures are introduced, including

the Pearson correlation and Kendall’s tau (τ ).

A.1 Pearson Correlation

Classically, the Pearson correlation, which is also called produce moment

correlation or correlation coeddicient, is the most common measure of de-

pendence, and especially in finance field. It is a skalar measure for the linear

correlation of two random variables.

Definition A.1 (Pearson Correlation) The Pearson correlation of two

random variables X1 and X2 with finite expectations E(X1) and E(X2) and

corresponding finite variances σ2
X1

and σ2
X2

is

Corrpearson(X, Y ) =
cov(X, Y )
√

σ2
Xσ

2
Y

=
E[XY ]− E[X]E[Y ]

√

σ2
Xσ

2
Y

(A.1)

X and Y are uncorrelated if CorrPearson(X, Y ) = 0.

The Pearson correlation can have values between−1 and +1, e.g., CorrPearson ∈
[−1, 1]. For normal distributed random variables, the Pearson correlation is

very useful since it fully specifies the dependence between them. However,
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for general distribution, it can only measure the linear dependence. In addi-

tion, Kurowicka and Cooke (Kurowicka & Cooke 2006c) present some some

disadvantages of the Pearson correlation, which are given as follow :

(i). The Pearson correlation is not defined if the expectation or variance of

X and Y are not finite, such as Cauchy distribution ;

(ii). The Pearson correlation is not invariant under non-linear strictly in-

creasing transformations ;

(iii). The possible values of the Pearson correlation depend on marginal

distribution;

To model the dependence and marginal distribution separately, the above

disadvantages (ii) and (iii) are unpleasing, since they are influencing each

other. The Kendall’ tau τ can overcome these shortcomings.

A.2 Kendall’s Tau

Kendall’s tau (τ) is a rank correlation, which indicate that it does not depend

directly on the values, instead it is a function of relations between realizations.

Definition A.2 (Kendall’s Tau) Let (X1, Y1) and X2, Y2 be two indepen-

dent pairs of random variables with joint cdf F and marginal distributions

FX and FY . Kendall’s tau is given by

τ(X, Y ) = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1, Y2) < 0] (A.2)

In case X and Y independent, τ(X, Y ) = 0. In terms of copula, the

Kendall’s tau is expressed as follow:

τ(X, Y ) = 4

∫ ∫

[0,1]2
C(u1, u2)− 1 (A.3)
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for continuousX and Y with u1 = FX and u2 = FY . For the empirical version

of Kendall’s tau, Nelsen (Nelsen 1999) defines concordant and discirdant pair

of variables. Two continuous random variables X and Y are said to form a

concordant pair if large values of one are associated with larhe valyes of the

other one. By the discordance are the large values of one random variable

associate with small values of the other respectively. For X, Y and their pairs

of observation (xi, yi) and (xj, yj),

(i) concordant, if (xi − xj)(yi − yj) > 0;

(ii) discordant, if (xi − xj)(yi − yj) < 0.

Further let Nconc and Ndisc denote the number of concordant pairs and

the number of discordant pairs respectively. Let Nextra−x and Nextra−y denote

the number of tied pairs among all pairs in the x and y respectively. Then,

the empirical Kendall’s tau can be estimated from an underlying data set by:

τ̂(X, Y ) =
Nconc −Ndisc√

Nconc +Ndisc +Nextra−x

√

Nconc +Ndisc +Nextra−y

(A.4)

A high value in the numerator means that most pairs are concordant,

suggesting that two two rankings are consistent and τ̂ will tale a value close

1. One the other hand, if most pairs are discordant, τ̂ will take a value close

−1.
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The Determinant of Partial

Correlation-based Canonical

Vine and Regular Vine

One important property of partial correlation is that the product of 1 minus

the square partial correlation equals to the determinant of the correlation

matrix. Before discussing the important property of partial correlation, the

multivariate correlation is reviewed firstly,which is defined by:

Definition B.1 (Multiple Correlation) The multiple correlation R1{2,...,n}

of variables X1 with respect to X2, ..., Xn is

1−R2
1{2,...,n} =

Demt

K11

(B.1)

where demt is determinant of the correlation matrix, and K11 is denoted as

the (1, 1)th cofactor of the correlation matrix.

Kendall and Stuar (Kendall & Stuart 1961) show that R1{2,...,n} is non-

negative and satisfies:

1−R2
1{2,...,n} = (1−ρ21n)(1−ρ21,n−1 ;n)(1−ρ21,n−2 ;n−1,n)...(1−ρ21,2 ; 3...n) (B.2)
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It is shown that R1{2,...,n} is invariant under permutation of {2, ..., n} and

Demt = (1−R1{2,...,n})(1−R2{3,...,n})...(1−Rn−1{n}) (B.3)

Obviously, Rn−1{n} = ρn−1,n.

Then, the following theorem is presented and proved. The detail refers

to (Kurowicka & Cooke 2006a).

Theorem B.1 Let Demt be the determinant of the n-dimensional correla-

tion matrix (Demt > 0). For any partial correlation vine,

Demt =
n−1
∏

i=1

∏

e∈Ei

(1− ρ2Ce(a),Ce(b) ;De
) (B.4)

where Ce, e = {a, b}, and De are conditioned and conditioning sets of edge e.

Proof B.2 Let {1, 2 | 3, ..., n} denote the constraint of the single edge of the

bottom tree Tn−1. Then, all m-descendants of the edge containing the variable

1 are collected. Due to the property of regular vine, variable 1 only can occurs

only in the conditioning set of its m-descendent edges, and the conditioning

set of an m-child is a subset of the conditioning set of its m-parent. Therefore,

variable 1 occurs exactly once with every ither variable in the conditioned set

of some edges. The constraints of the edges containing variable 1 can be

rewritten as follow :

{1, 2 | 3, ..., n}, {1, 3 | 4, ..., n}, ..., {1, n− 1 | , n}, {1, n}

The corresponding partial correlations with these m-descendent edges are

ρ1,2 ; 3,...,n, ρ1,3 ; 4,...,n, ..., ρ1,n−1 ;n, ρ1,n

they are exactly the terms occurring in Equation (B.3). Hence, the terms

in the product on the right hand side of Equation (B.4) containing these

partial correlations are replaced by 1−R1{2,...,n}. Equation (B.3) is invariant

under permutation of {2, ..., n}. Remove variable 1 and edges containing 1.

These are just the edges whose constrains are give above. The subvine over
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variables {2, ..., n} are obtained. The variable 2 is in the conditioned set of

the top edge of the subvine. The same argument re-indexing {3, ..., n} are

applied. With the re-indexing, the produce of terms in Equation (B.4) are

replaced as following:

(1− ρ22,3 ; 4,...,n)(1− ρ22,4 ; 5,...,n)...(1− ρ22,n)

by 1 − R2{3,...,n}. Finally, Equation (B.4) can be obtained by proceeding in

this way.
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Model Selection Criteria

To select appropriate model, researchers have to balance sensitivity, which

indicates having enough parameters to adequately model the relationships

among variables in the population, and specificity, which suggests not over-

fitting a mode or suggesting nonexistent relationships. The typical, most

common used model selection criterion is log-likelihood functions with sim-

ple penalties. They consist of Akaike’s Information Criterion (AIC) (Akaike

1992), the Bayesian Information Criterion (BIC) (Schwarz et al. 1978) and

Bozdogan consistent AIC (CAIC) (Bozdogan 1987). These criteria include a

goodness-of-fit term plus a penalty to control overfitting and provide a stan-

dardized way to balance sensitivity and specificity. They can be expressed

by the following equation;

−2L+ Anp

where L is the log-likelihood, p is the number of parameters in the model,

and An is some constant or some function of the sample size n. The An of

AIC, BIC and CAIC are 2, log(n) and log(n+1) respectively. The detail and

comparison of these criterion refer to (Dziak, Coffman, Lanza & Li 2012).
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List of Symbols

The following list is neither exhaustive nor exclusive, but may be helpful.

Pi,t The price of asset i at time t

ri,t The return of asset i at time t

u uniform data between 0 and 1

C The copula function

c The copula density

cdf The cumulative distribution function

pdf The probability distribution function

θm The set of parameters of marginal distributions

θc The set of parameters of copula function

Φ The standard normal cumulative distribution function

Φ−1 The inverse of standard normal cumulative distribution

function

ρ1,2;3,...,n The partial correlation between variable 1 and variable 2

given variable 3,...,n
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C(e) or Ce The conditioned set for an edge e

D(e) or De The conditioning set for an edge e

CV The constraint set for vine

Ue The complete union for edge e

V C
ρe The partial cationical vine tree structure

B(V C
ρe ) The corresponding bivariate copulas for V C

ρe

θ(B(V C
ρe )) The corresponding parameters of bivariate copulas for V C

ρe

V R
ρe The partial regular vine tree structure

B(V R
ρe ) The corresponding bivariate copulas for V R

ρe

θ(B(V R
ρe )) The corresponding parameters of bivariate copulas for V R

ρe

AIC Akaike’s Information Criterion

ARMA Autoregressive Moving Average

BIC Schwarz’s Bayesian Information Criterion

GARCH Generalized Autoregressive Conditional Heteroscedastic-

ity

IFM Inference For the Margins

IID Independence and Identical Distribution

MLE Maximum Likelihood Estimator

V aR Value at Risk

Z The standardised residuals
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McNeil, A. J. & Nešlehová, J. (2009), ‘Multivariate archimedean copulas, d-

monotone functions and l1-norm symmetric distributions’, The Annals

of Statistics pp. 3059–3097.

Milch, B. & Russell, S. (2007), First-order probabilistic languages: Into the

unknown, in ‘Inductive Logic Programming’, Springer, pp. 10–24.

Mills, F. C. (1927), The Behavior of Prices, National Bureau of Economic

Research, Inc.

Min, A. & Czado, C. (2010), ‘Bayesian inference for multivariate copu-

las using pair-copula constructions’, Journal of Financial Econometrics

8(4), 511–546.

Nelsen, R. B. (1999), An introduction to copulas, Springer.

Neville, J. & Jensen, D. (2007), ‘Relational dependency networks’, The Jour-

nal of Machine Learning Research 8, 653–692.

Nikoloulopoulos, A. K., Joe, H. & Li, H. (2009), ‘Extreme value properties

of multivariate t copulas’, Extremes 12(2), 129–148.

Oh, D. H. & Patton, A. J. (2013), ‘Simulated method of moments estimation

for copula-based multivariate models’, Journal of the American Statis-

tical Association 108(502), 689–700.

Okimoto, T. (2008), ‘New evidence of asymmetric dependence structures

in international equity markets’, Journal of Financial and Quantitative

Analysis 43(03), 787–815.

Owen, J. & Rabinovitch, R. (1983), ‘On the class of elliptical distributions

and their applications to the theory of portfolio choice’, The Journal of

Finance 38(3), 745–752.

Panagiotelis, A., Czado, C. & Joe, H. (2012), ‘Pair copula constructions for

multivariate discrete data’, Journal of the American Statistical Associ-

ation 107(499), 1063–1072.

222



BIBLIOGRAPHY

Patton, A. J. (2004), ‘On the out-of-sample importance of skewness and

asymmetric dependence for asset allocation’, Journal of Financial E-

conometrics 2(1), 130–168.

Patton, A. J. (2006a), ‘Modelling asymmetric exchange rate dependence’,

International economic review 47(2), 527–556.

Patton, A. J. (2006b), ‘Estimation of multivariate models for time series of

possibly different lengths’, Journal of applied econometrics 21(2), 147–

173.

Patton, A. J. (2009), ‘Are market neutral?hedge funds really market neu-

tral?’, Review of Financial Studies 22(7), 2495–2530.

Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference, Morgan Kaufmann Publishers Inc.

Pickands, J. (1981), Multivariate extreme value distributions, in ‘Proceedings

43rd Session International Statistical Institute’, Vol. 2, pp. 859–878.

Pitt, M., Chan, D. & Kohn, R. (2006), ‘Efficient bayesian inference for gaus-

sian copula regression models’, Biometrika 93(3), 537–554.

Rémillard, B. (2010), ‘Goodness-of-fit tests for copulas of multivariate time

series’, Social Science Research Network .

Riccetti, L. (2012), ‘A copula–garch model for macro asset allocation of a

portfolio with commodities’, Empirical Economics pp. 1–22.

Richardson, M. & Domingos, P. (2006), ‘Markov logic networks’, Machine

learning 62(1-2), 107–136.

Rivers, D. & Vuong, Q. (2002), ‘Model selection tests for nonlinear dynamic

models’, The Econometrics Journal 5(1), 1–39.

Rodriguez, J. C. (2007), ‘Measuring financial contagion: A copula approach’,

Journal of Empirical Finance 14(3), 401–423.

223



BIBLIOGRAPHY

Rosenberg, J. V. (2003), ‘Non-parametric pricing of multivariate contingent

claims’, The Journal of Derivatives 10(3), 9–26.

Rosenberg, J. V. & Schuermann, T. (2006), ‘A general approach to integrated

risk management with skewed, fat-tailed risks’, Journal of Financial

economics 79(3), 569–614.

Salmon, M. & Schleicher, C. (2006), Pricing multivariate currency option-

s with copulas, Technical report, Warwick Business School, Finance

Group.

Sancetta, A. & Satchell, S. (2004), ‘The bernstein copula and its applications

to modeling and approximations of multivariate distributions’, Econo-

metric Theory 20(3), 535–562.

Savu, C. & Trede, M. (2006), Hierarchical archimedean copulas, in ‘Interna-

tional conference on high frequency finance, Konstanz, Germany, May’.

Savu, C. & Trede, M. (2010), ‘Hierarchies of archimedean copulas’, Quanti-

tative Finance 10(3), 295–304.

Scaillet, O. & Fermanian, J.-D. (2002), ‘Nonparametric estimation of copulas

for time series’, International Center for Financial Asset Management

and Engineering Research Paper (57).
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