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Abstract This paper presents an overview of the literature on applications of copulas

in the modelling of �nancial time series. Copulas have been used both in multivariate

time series analysis, where they are used to charaterise the (conditional) cross-sectional

dependence between individual time series, and in univariate time series analysis, where

they are used to characterise the dependence between a sequence of observations of a scalar

time series process. The paper includes a broad, brief, review of the many applications of

copulas in �nance and economics.

1 Introduction

The central importance of risk in �nancial decision-making directly implies the importance

of dependence in decisions involving more than one risky asset. For example, the variance

of the return on a portfolio of risky assets depends on the variances of the individual assets

and also on the linear correlation between the assets in the portfolio. More generally, the

distribution of the return on a portfolio will depend on the univariate distributions of the

individual assets in the portfolio and on the dependence between each of the assets, which

is captured by a function called a �copula�.

The number of papers on copula theory in �nance and economics has grown enormously

in recent years. One of the most in�uential of the �early� papers on copulas in �nance is

1This paper was prepared for the forthcoming Handbook of Financial Time Series, T. G. Ander-

sen, R. A. Davis, J.-P. Kreiss and T. Mikosch (eds.), Springer Verlag. I would particularly like to

thank B. Beare, P. Embrechts, J.-D. Fermanian, T. Mikosch and J. Rosenberg for detailed comments

and suggestions on this chapter. I would also like to thank Y. Fan, J.-C. J.-P. Kreiss, Rodriguez, C.

Schleicher and T. Schuermann for helpful comments. Some Matlab code for copulas is available from

http://www.economics.ox.ac.uk/members/andrew.patton/code.html.
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that of Embrechts, McNeil and Straumann (2002), which was circulated as a working paper

in 1999. Since then, scores of papers have been written, exploring the uses of copulas in

�nance, macroeconomics, and microeconomics, as well as developing the estimation and

evaluation theory required for these applications. Nelsen (2006) and Joe (1997) provide

detailed and readable introductions to copulas and their statistical and mathematical

foundations, while Cherubini, et al. (2004) focus primarily on applications of copulas in

mathematical �nance and derivatives pricing. In this survey I focus on �nancial time series

applications of copulas.

A copula is a function that links together univariate distribution functions to form

a multivariate distribution function. If all of the variables are continuously distributed,2

then their copula is simply a multivariate distribution function with Uniform (0; 1) uni-

variate marginal distributions. Consider a vector random variable, X = [X1; X2; :::; Xn]
0,

with joint distribution F and marginal distributions F1; F2; :::; Fn: Sklar�s (1959) theorem

provides the mapping from the individual distribution functions to the joint distribution

function:

F (x) = C (F1 (x1) ; F2 (x2) ; :::; Fn (xn)) ; 8 x 2 Rn: (1)

From any multivariate distribution, F; we can extract the marginal distributions, Fi; and

the copula, C. And, more useful for time series modelling, given any set of marginal

distributions (F1; F2; :::; Fn) and any copula C; equation (1) can be used to obtain a joint

distribution with the given marginal distributions. An important feature of this result is

that the marginal distributions do not need to be in any way similar to each other, nor is

the choice of copula constrained by the choice of marginal distributions. This �exibility

makes copulas a potentially useful tool for building econometric models.

Since each marginal distribution, Fi; contains all of the univariate information on the

individual variable Xi; while the joint distribution F contains all univariate and multivari-

2Almost all applications of copulas in �nance and economics assume that that variables of interest are

continuously distributed. Notable exceptions to this include Heinen and Rengifo (2003) and Grammig,

et al. (2004). The main complication that arises when considering marginal distributions that are not

continuous is that the copula is then only uniquely de�ned on the Cartesian product of supports of the

marginal distributions. Obtaining a copula that is de�ned on Rn requies an interpolation method. See

Denuit and Lambert (2005) for one such method.
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ate information, it is clear that the information contained in the copula C must be all of

the dependence information between the Xi�s
3. It is for this reason that copulas are some-

times known as �dependence functions�, see Galambos (1978). Note that if we de�ne Ui

as the �probability integral transform� of Xi; i.e. Ui � Fi (Xi) ; then Ui s Uniform (0; 1) ;

see Fisher (1932), Casella and Berger (1990) and Diebold, et al. (1998). Further, it can

be shown that U = [U1; U2; :::; Un]
0
s C; the copula of X:

If the joint distribution function is n-times di¤erentiable, then taking the nth cross-

partial derivative of equation (1) we obtain:

f (x) �
@n

@x1@x2 � � � @xn
F (x)

=
nY

i=1

fi (xi) �
@n

@u1@u2 � � � @un
C (F1 (x1) ; F2 (x2) ; :::; Fn (xn))

�

nY

i=1

fi (xi) � c (F1 (x1) ; F2 (x2) ; :::; Fn (xn)) ; (2)

and so the joint density is equal to the product of the marginal densities and the �copula

density�, denoted c: This of course also implies that the joint log-likelihood is simply the

sum of univariate log-likelihoods and the �copula log-likelihood�, which is useful in the

estimation of copula-based models:

log f (x) =
nX

i=1

log fi (xi) + log c (F1 (x1) ; F2 (x2) ; :::; Fn (xn)) : (3)

The decomposition of a joint distribution into its marginal distributions and copula

allows the researcher a great deal of �exibility in specifying a model for the joint distribu-

tion. This is clearly an advantage when the shape and goodness-of-�t of the model for the

joint distribution is of primary interest. In situations where the researcher has accumu-

lated knowledge about the distributions of the individual variables and wants to use that

in constructing a joint distribution, copulas also have a valuable role. In other situations,

for example when the researcher is primarily focussed on the conditional mean and/or con-

ditional variance of a vector of variables, copulas may not be the �right tool for the job�,

3 It is worth noting that some dependence measures of interest in �nance, and elsewhere, depend on both

the copula and the marginal distributions; standard linear correlation is the leading example. Depending

on one�s orientation, and the application at hand, this is either a drawback of such dependence measures

or a drawback of copula theory.
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and more standard vector autoregressive models and/or multivariate GARCH models, see

Silvennoinen and Teräsvirta (2007), may be more appropriate. For a lively discussion of

the value of copulas in statistical modelling of dependence, see Mikosch (2006) and the

associated discussion (in particular that of Embrechts, Joe, and Genest and Rémillard)

and rejoinder.

To illustrate the potential of copulas for modelling �nancial time series, I show in Figure

1 some bivariate densities constructed using Sklar�s theorem. All have F1 = F2 = N (0; 1),

while I vary C across di¤erent parametric copulas,4 constraining the linear correlation

to be 0.5 in all cases. The upper left plot shows the familiar elliptical contours of the

bivariate Normal density (with Normal marginals and a Normal copula), while the other

plots show some of the �exibility that various copula models can provide.

To quantify the di¤erent dependence structures provided by each copula, we can

compare the dependence measures implied by each of these distributions, see Table 1.

�Quantile dependence� is related to a measure due to Coles, et al. (1999), and mea-

sures the probability of two variables both lying above or below a given quantile of

their univariate distributions. It is de�ned as � (q) = C (q; q) =q for q � 1=2 and

� (q) = f1� 2q + C (q; q)g = (1� q) for q > 1=2: Lower and upper tail dependence can

be de�ned as the limits of the quantile dependence measures: limq!0 � (q) = �L and

limq!1 � (q) = �
U , if the limits exist, which they do for the six copulas presented here.

Figure 1 and Table 1 show the variety of joint densities that may be constructed using

copulas, even when we impose that both margins are Normal and that the correlation

coe¢cient is 0.5. In many �nancial applications di¤erences in, for example, lower tail

dependence will have important implications. For example, if two assets have the Student�s

t copula rather than the Normal copula, then the probability of both asset returns lying

below their lower 5% quantile (i.e., their 5% Value-at-Risk, see Embrechts, et al. 2007,

and Christo¤ersen, 2007) is 0.37 rather than 0.24, meaning that a portfolio of these two

4The Normal and Student�s t copulas are extracted from bivariate Normal and Student�s t distributions.

The Clayton and Gumbel copulas are discussed in Nelsen (2006), equations 4.2.1 and 4.2.4 respectively.

The symmetrised Joe-Clayton (SJC) copula was introduced in Patton (2006a) and is parameterised by the

upper and lower tail dependence coe¤�cients, �U and �L: The mixed Normal copula is an equally-weighted

mixture of two Normal copulas with parameters �
1
and �

2
respectively.
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assets will exhibit more extreme returns than identical assets with a Normal copula.

2 Copula-based models for time series

The application of copulas to time series modelling currently has two distinct branches.

The �rst is the application to multivariate time series, where the focus is in modelling

the joint distribution of some random vector, Xt= [X1t; X2t; :::; Xnt]
0 ; conditional on some

information set Ft�1: (The information set is usually Ft�1 = � (Xt�j ; j � 1), though this

need not necessarily be the case.) This is an extension of some of the early applications of

copulas in statistical modelling where the random vector of interest could be assumed to be

independent and identically distributed (iid) ; see Clayton (1978) and Cook and Johnson

(1981) for example. This application leads directly to the consideration of time-varying

copulas.

The second application in time series is to consider the copula of a sequence of ob-

servations of a univariate time series, for example, to consider the joint distribution of

[Xt; Xt+1; :::; Xt+n]
0 : This application leads us to consider Markov processes and general

nonlinear time series models. We discuss each of these branches of time series applications

of copulas below.

2.1 Copula-based models for multivariate time series

In this sub-section we consider the extension required to consider the conditional distribu-

tion of Xt given some information set Ft�1: Patton (2006a) de�ned a �conditional copula�

as a multivariate distribution of (possibly correlated) variables that are each distributed

as Uniform (0; 1) conditional on Ft�1:With this de�nition, it is then possible to consider

an extension of Sklar�s theorem to the time series case:

Ft(xjFt�1) = Ct(F1;t(x1jFt�1); F2;t (x2jFt�1) ; :::; Fn;t (xnjFt�1) jFt�1); 8 x 2 Rn; (4)

where XijFt�1 s Fi;t and Ct is the conditional copula of Xt given Ft�1:

The key complication introduced when applying Sklar�s theorem to conditional distri-

butions is that the conditioning set, Ft�1, must be the same for all marginal distributions

and the copula. Fermanian and Wegkamp (2004) and Fermanian and Scaillet (2005) con-
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sider the implications of a failure to use the same information set, and de�ne a �conditional

pseudo copula� to help study this case5. Failure to use the same information set for all

components on the right-hand side of equation (4) will generally imply that the function

on the left-hand side of equation (4) is not a valid conditional joint distribution function.

See Patton (2006a) for an example of this failure.

It is often the case in �nancial applications, however, that some of the information

contained in Ft�1 is not relevant for all variables. For example, it might be that each

variable depends on its own �rst lag, but not on the lags of any other variable. De�ne

Fi;t�1 as the smallest subset of Ft�1 such that XitjFi;t�1
D
= XitjFt�1: With this it is

possible to construct each marginal distribution model using only Fi;t�1; which will likely

di¤er across margins, and then use Ft�1 for the copula, to obtain a valid conditional

joint distribution. However, it must be stressed that in general the same information set

must be used across all marginal distribution models and the copula model, before possibly

reducing each of these models by eliminating variables that are not signi�cant/important6.

The consideration of conditional copulas leads naturally to the question of whether

these exhibit signi�cant changes through time. Conditional correlations between �nan-

cial asset returns are known to �uctuate through time, see Andersen, et al. (2006) and

Bauwens et al. (2006) for example, and so it is important to also allow for time-varying

conditional copulas. Patton (2002, 2006a) allows for time variation in the conditional

copula by allowing the parameter(s) of a given copula to vary through time in a manner

analogous to a GARCH model for conditional variance (Engle, 1982 and Bollerslev, 1986).

Jondeau and Rockinger (2006) employ a similar strategy. Rodriguez (2007), on the other

hand, considers a regime switching model for conditional copulas, in the spirit of Hamilton

(1989). Chollete (2005), Garcia and Tsafack (2007), and Okimoto (2006) employ a sim-

ilar modelling approach, with the latter author �nding that the copula of equity returns

5The �pseudo-copula� of Fermanian and Wegkamp (2004) is not to be confused with the �quasi-copula�

of Alsina, et al. (1993) and Genest, et al. (1999), which is used to characterise operations on distribution

functions that cannot correspond to an operation on random variables.
6For example, in Patton (2006a) I study the conditional joint distribution of the returns on the Deutsche

mark/U.S. dollar and Japanese Yen/U.S. dollar exchange rates. In that application Granger-causality tests

indicated that the marginal distributions depended only on lags of the �own� variable; lags of other variables

were not signi�cant.
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during the low mean-high variance state is signi�cantly asymmetric (with non-zero lower

tail dependence) while the high mean-low volatility state has a more symmetric copula.

Panchenko (2005b) considers a semi-parametric copula-based model of up to �ve assets,

building on Chen and Fan (2006b), discussed below, where the marginal distributions are

estimated nonparametrically and the conditional copula is speci�ed to be Normal, with a

correlation matrix that evolves according to the DCC speci�cation of Engle (2002). Lee

and Long (2005) combine copulas with multivariate GARCH models in an innovative way:

they use copulas to construct �exible distributions for the residuals from a multivariate

GARCH model, employing the GARCH model to capture the time-varying correlation,

and the copula to capture any dependence remaining between the conditionally uncorre-

lated standardised residuals.

It is worth noting that, for some of the more complicated models above, it can be

di¢cult to establish su¢cient conditions for stationarity, which is generally required for

standard estimation methods to apply, as discussed in Section 2.3 below. Results for

general classes of univariate nonlinear processes are presented in Carrasco and Chen (2002)

and Meitz and Saikkonen (2004), however similar results for the multivariate case are not

yet available.

2.2 Copula-based models for univariate time series

In addition to describing the cross-sectional dependence between two or more time series,

copulas can also be used to describe the dependence between observations from a given uni-

variate time series, for example, by capturing the dependence between [Xt; Xt+1; :::; Xt+n]
0 :

If the copula is invariant through time and satis�es a constraint on its multivariate mar-

ginals7, and the marginal distributions are identical and also invariant through time, then

this describes a stationary Markov process. The main bene�t of this approach to uni-

variate time series modelling is that the researcher is able to specify the unconditional

(marginal) distribution of Xt separately from the time series dependence of Xt:

For example, the six joint distributions plotted in Figure 1 could be used to generate a

stationary �rst-order Markov process, with the marginal distribution of Xt being N (0; 1) ;

7For example, if n = 3; then it is required that the marginal joint distribution of the �rst and second

arguments is identical to that of the second and third arguments. Similar conditions are required for n > 3:
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and with various copulas describing the dependence between Xt and Xt+1: In Figure

2 I plot the conditional mean of Xt+1 given Xt = x; along with the conditional mean

�1.65 times the conditional standard deviation of Xt+1 given Xt = x; for each of the six

distributions from Figure 1. In the upper left panel is the familiar case of joint normality: a

linear conditional mean and constant conditional variance. The other �ve panels generally

display non-linear conditional mean and variance functions. In Figure 3 I plot the density

of Xt+1 conditional on Xt = �2; 0; and 2: Now in the upper left panel we see the

familiar �gure of Normal conditional densities, while in the other panels the conditional

densities are non-Normal. Amongst other things, the �gures for the Student�s t and mixed

Normal copulas emphasise that radial symmetry of the joint distribution (i.e., symmetry

around both the main diagonal and the o¤-diagonal) is not su¢cient for symmetry of the

conditional marginal densities.

Darsow, et al. (1992) study �rst-order Markov processes based on copulas. They

provide a condition equivalent to the Chapman-Kolmogorov equations for a stochastic

process that focusses solely on the copulas of the variables in the process. Furthermore, the

authors are able to provide a necessary and su¢cient condition for a stochastic process to

be Markov by placing conditions on the multivariate copulas of variables in the process (in

contrast with the Chapman-Kolmogorov equations which are necessary but not su¢cient

conditions). Ibragimov (2005, 2006) extends the work of Darsow, et al. (1992) to higher-

order Markov chains and provides several useful results, and a new class of copulas. Beare

(2007) studies the weak dependence properties of Markov chains through the properties

of their copulas and, amongst other things, shows that tail dependence in the copula

may result in the Markov chain not satisfying standard mixing conditions. Gagliardini

and Gourieroux (2007b) propose and study copula-based time series models for durations,

generalising the autoregressive conditional duration model of Engle and Russell (1998).

2.3 Estimation and evaluation of copula-based models for time series

The estimation of copula-based models for multivariate time series can be done in a vari-

ety of ways. For fully parametric models (the conditional marginal distributions and the

conditional copula are all assumed known up to a �nite-dimensional parameter) maximum

likelihood (ML) is the obvious approach. If the model is such that the parameters of the
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marginal distributions can be separated from each other and from those of the copula, then

multi-stage ML estimation is an option. This method, sometimes known as the �inference

functions for margins� (IFM) method, see Joe and Xu (1996) and Joe (1997, Chapter 10),

involves estimating the parameters of the marginal distributions via univariate ML, and

then estimating the parameter of the copula conditional on the estimated parameters for

the marginal distributions. This estimation method has the bene�t of being computa-

tionally tractable, at the cost of a loss of full e¢ciency. The theory for this estimation

method for iid data is presented in Shih and Louis (1995) and Joe and Xu (1996). Patton

(2006b) presents the theory for time series data, drawing on the work on Newey and Mc-

Fadden (1994) and White (1994), and some simulation results that motivate multi-stage

estimation.

Fully nonparametric estimation methods for copula models in the iid case were studied

by Genest and Rivest (1993) and Capéraà, et al., (1997), amongst others. Fully nonpara-

metric estimation of copulas for time series data was studied by Fermanian and Scaillet

(2003) and Ibragimov (2005).

An important bene�t of using copulas to construct multivariate models is that the

models used in the marginal distributions need not be of the same type as the model used

for the copula. One exciting possibility that this allows is non- or semi-parametric esti-

mation of the marginal distributions, combined with parametric estimation of the copula.

Such a model avoids the �curse of dimensionality� by only estimating the one-dimensional

marginal distributions nonparametrically, and then estimating the (multi-dimensional)

copula parametrically. The theory for this estimator in the iid case is presented in Gen-

est, et al. (1995) and Shih and Louis (1995). Theory for the time series case is presented

in Chen and Fan (2006b) and Chen, et al. (2006). Chen and Fan (2006b) also consider

the important case that the copula model may be mis-speci�ed. Gagliardini and Gourier-

oux (2007a) consider copula speci�cations that are semi-parametric, while Sancetta and

Satchell (2004) consider semi-nonparametric copula models.

The estimation of fully parametric copula-based univariate time series models is dis-

cussed in Joe (1997, Chapter 8). Chen and Fan (2006a) consider the estimation of semi-

parametric copula-based univariate time series models, where the unconditional distribu-

tion is estimated nonparametrically and the copula is estimated parametrically. The work
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of Ibragimov (2006) and Beare (2007) on conditions for some form of mixing to hold are

also relevant here.

The evaluation of a given model is important in any econometric application, and

copula-based modelling is of course no exception. The evaluation of copula-based models

takes two broad approaches. The �rst approach evaluates the copula-based multivariate

density model in its entirety, and thus requires methods for evaluating multivariate den-

sity models, see Diebold, et al. (1999) and Corradi and Swanson (2005). In the second

approach one seeks to evaluate solely the copula model, treating the marginal distribu-

tion models as nuisance parameters. Fermanian (2005) and Scaillet (2007) consider such

an approach for models based on iid data, while Malevergne and Sornette (2003) and

Panchenko (2005a) consider tests for time series models. Genest et al. (2007) provide an

extensive review of goodness-of-�t tests for copulas, focussing on the iid case, and present

the results of a simulation study of the size and power of several tests.

Comparisons between a set of competing copula-based models can be done either via

economic criteria, such in some of the papers reviewed in the next section, or statistical

criteria. For the latter, likelihood ratio tests (either nested or, more commonly, non-

nested, see Vuong (1989) and Rivers and Vuong (2002) for example) can often be used.

Alternatively, information criteria, such as the Akaike or Schwarz�s Bayesian Information

Criteria (AIC, BIC) can be used to penalise models with more parameters.

3 Applications of copulas in �nance and economics

The primary motivation for the use of copulas in �nance comes from the growing body

of empirical evidence that the dependence between many important asset returns is non-

normal. One prominent example of non-normal dependence is where two asset returns

exhibit greater correlation during market downturns than during market upturns. Evi-

dence against the univariate normality of asset returns has a long history, starting with

Mills (1927), but evidence against �copula normality� has accumulated only more recently.

Erb, et al. (1994), Longin and Solnik (2001) and Ang and Chen (2002), Ang and Bekaert

(2002), Bae, et al. (2003) all document, without drawing on copula theory, evidence that

asset returns exhibit non-normal dependence, that is, dependence that is not consistent
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with a Normal copula. This evidence has wide-ranging implications for �nancial decision-

making, in risk management, multivariate option pricing, portfolio decisions, credit risk,

and studies of �contagion� between �nancial markets. In the remainder of this section I

discuss some of the research done in these areas.

The �rst area of application of copulas in �nance was risk management. Just as �fat

tails� or excess kurtosis in the distribution of a single random variable increases the likeli-

hood of extreme events, the presence of non-zero tail dependence increases the likelihood

of joint extreme events. As illustrated in Table 1, even copulas that are constrained to

generate the same degree of linear correlation can exhibit very di¤erent dependence in or

near the tails. The focus of risk managers on Value-at-Risk (VaR), and other measures

designed to estimate the probability of �large� losses, makes the presence of non-normal

dependence of great potential concern. Cherubini and Luciano (2001), Embrechts, et al.

(2003) and Embrechts and Höing (2006) study the VaR of portfolios using copula methods.

Hull and White (1998) is an early paper on VaR for collections of non-normal variables.

Rosenberg and Schuermann (2006) use copulas to consider �integrated� risk management

problems, where market, credit and operational risks must be considered jointly. McNeil,

et al. (2005) and Alexander (2008) provide clear and detailed textbook treatments of

copulas and risk management.

In derivatives markets non-normal dependence has key pricing, and therefore trading,

implications. Any contract with two or more �underlying� assets will generally have a price

that is a¤ected by both the strength and the shape of the dependence between the assets.

A simple such contract is one that pays £1 if all underlying assets have prices above a

certain threshold on the contract maturity date; another common contract is one that

has a pay-o¤ based on the minimum (or the maximum) of the prices of the underlying

assets on the contract maturity date. Even derivatives with just a single underlying asset

may require copula methods if the risk of default by the counter-party to the contract

is considered economically signi�cant: these are so-called �vulnerable options�. A recent

book by Cherubini, et al. (2004) considers derivative pricing using copulas in great detail,

and they provide an interesting introduction to copulas based on option pricing, as an

alternative to the more standard statistical introductions in Joe (1997) and Nelsen (2006)

for example. Other papers that consider option pricing with copulas include Rosenberg
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(2003), Bennett and Kennedy (2004), van den Goorbergh, et al. (2005) and Salmon and

Schleicher (2006). Other authors, see Taylor and Wang (2004) and Hurd, et al. (2005),

have instead used observed derivatives prices to �nd the implied copula of the underlying

assets.

The booming market in credit derivatives (credit default swaps and collateralised debt

obligations, for example) and the fact that these assets routinely involve multiple under-

lying sources of risks has lead to great interest in copulas for credit risk applications. An

early contribution is from Li (2000), who was �rst to use copulas in a credit risk applica-

tion, and was more generally one of the �rst to apply copulas in �nance. See also Frey and

McNeil (2001), Schönbucher and Schubert (2001) and Giesecke (2004) for applications to

default risk. Du¢e (2004) argues that copulas are too restrictive for certain credit risk

applications.

One of the most obvious places where the dependence between risky assets impacts

on �nancial decisions, and indeed was the example used at the start of this survey, is

in portfolio decisions. Under quadratic utility and/or multivariate Normality (or more

generally, multivariate ellipticality, see Chamberlain, 1983) the optimal portfolio weights

depend only upon the �rst two moments of the assets under consideration, and so linear

correlation adequately summarises the necessary dependence information required for an

optimal portfolio decision. However when the joint distribution of asset returns is not el-

liptical, as the empirical literature cited above suggests, and when utility is not quadratic

in wealth, the optimal portfolio weights will generally require a speci�cation of the entire

conditional distribution of returns. Patton (2004) considers a bivariate equity portfolio

problem using copulas, and Garcia and Tsafack (2007) consider portfolio decisions involv-

ing four assets: stocks and bonds in two countries. The extension to consider portfolio

decisions with larger numbers of assets remains an open problem.

The �nal broad topic that has received attention from �nance researchers using cop-

ula methods is the study of �nancial �contagion�. Financial contagion is a phenomenon

whereby crises, somehow de�ned, that occur in one market lead to problems in other mar-

kets beyond what would be expected on the basis of fundamental linkages between the

markets. The Asian crisis of 1997 is one widely-cited example of possible contagion. The

di¢culty in contagion research is that a baseline level of dependence between the mar-
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kets must be established before it can be asserted that the dependence increased during

a period of crisis. The heavy focus on levels and changes in dependence has lead several

researchers to apply copula methods in their study of contagion. Rodriguez (2007) was

the �rst to apply copulas to contagion, which he studies with a Markov switching copula

model. See Chollete, et al. (2005) and Arakelian and Dellaportas (2005) for alternative

approaches.

Finally, there are a number of interesting papers using copulas in applications that do

not �t into the broad categories discussed above. Bouyé and Salmon (2002) use copulas

for quantile regressions, Breymann, et al. (2003) study the copulas of �nancial assets

using intra-daily data, sampled at di¤erent frequencies, Daul, et al. (2003) and Demarta

and McNeil (2005) study the Student�s t copula and some useful extensions, Heinen and

Rengifo (2003) use copulas to model multivariate time series of counts, Smith (2003) uses

copulas to model sample selection, related to earlier work touching on copulas for this

problem by Lee (1983), Bonhomme and Robin (2004) use copulas to model a large panel of

earnings data, Bartram, et al. (2006) use a time-varying conditional copula model to study

�nancial market integration between seventeen European stock market indices, Granger,

et al. (2006) use copulas to provide a de�nition of a �common factor in distribution�, Hu

(2006) uses mixtures of copulas to separate the degree of dependence from the �shape� of

dependence, and Brendstrup and Paarsch (2007) use copulas in a semiparametric study

of auctions.

4 Conclusions and areas for future research

In this survey I have brie�y discussed some of the extensions of standard copula theory

that are required for their application to time series modelling, and reviewed the existing

literature on copula-based models of �nancial time series. This is a fast-growing �eld and

the list of references will no doubt need updating in the near future.

In reviewing the extant literature on copulas for �nance a number of topics stand out

as possible avenues for future research. The most obvious, and perhaps di¢cult, is the

extension of copula-based multivariate time series models to high dimensions. Existing

models are not well-designed for higher-dimension applications; what is needed is a �exible
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yet parsimonious way of characterising high dimension copulas. A similar problem was

faced in the multivariate ARCH literature in the mid-1990s, see Bauwens, et al. (2006).

Two popular approaches to solve that problem are factor-based ARCH models and exten-

sions, see Alexander and Chibumba (1998) and van der Weide (2002) for example, and the

DCC model of Engle (2002) and its extensions, see Cappiello, et al. (2006) for example.

Perhaps similar approaches will prove fruitful in high-dimensional copula modelling.
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Table 1: Measures of dependence for joint distributions with various copulas

Tail 5% Quantile
Linear Dependence Dependence

Copula Parameter(s) Correlation Upper Lower Upper Lower

Normal(�) 0:5 � 0.50 0.00 0.00 0.24 0.24
Student�s t(�; �) 0:5 3 0.50y 0.31 0.31 0.37y 0.37y

Clayton(�) 1 � 0.50y 0.00 0.50 0.10 0.51
Gumbel(�) 1:5 � 0.50y 0.41 0.00 0.44 0.17
SJC

�
�U ; �L

�
0:45 0:20 0.50y 0.45 0.20 0.46 0.27

Mixed Normal(�1; �2) 0:95 0:05 0.50 0.00 0.00 0.40 0.40

Figures marked with �y� are based on simulations or numerical quadrature.
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Figure 1: Iso-probability contour plots for joint distributions with N (0; 1) marginal distri-
butions and linear correlation coe¢cients of 0.5.
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Figure 2: Conditional mean �1:64 times the conditional standard deviation, for joint
distributions with N (0; 1) marginal distributions and linear correlation coe¢cients of 0.5.
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Figure 3: Conditional densities of Y given X=-2 (thin line), X=0 (thick line), X=+2
(dashed line), for joint distributions with N (0; 1) marginal distributions and linear corre-
lation coe¢cients of 0.5.
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