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The federal crop insurance program has been a major fixture of U.S. agricultural policy since
the 1930s, and continues to grow in size and importance. Indeed, it now represents the most
prominent farm policy instrument, accounting for more government spending than any other
farm commodity program. The 2014 Farm Bill further expanded the crop insurance program and
introduced a number of new county-level revenue insurance plans. In 2013, over $123 billion in
crop value was insured under the program. Crop revenue insurance, first introduced in the 1990s,
now accounts for nearly 70% of the total liability in the program. The available plans cover losses
that result from a revenue shortfall that can be triggered by multiple, dependent sources of risk—
either low prices, low yields, or a combination of both. The actuarial practices currently applied
when rating these plans essentially involve the application of a Gaussian copula model to the pric-
ing of dependent risks. We evaluate the suitability of this assumption by considering a number of
alternative copula models. In particular, we use combinations of pair-wise copulas of conditional
distributions to model multiple sources of risk. We find that this approach is generally preferred
by model-fitting criteria in the applications considered here. We demonstrate that alternative
approaches to modeling dependencies in a portfolio of risks may have significant implications for
premium rates in crop insurance.
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Agriculture is subject to a wide variety of
risks, including many hazards arising from
widespread natural disasters. The U.S. fed-
eral crop insurance program, which was
initially introduced on a small scale in 1938,
now carries a total liability in excess of $123
billion and insures 295 million acres (Risk
Management Agency 2014). The premiums
paid by farmers in this program are highly
subsidized (in excess of 60% of the total
premium) and private insurance companies

Barry Goodwin is a William Neal Reynolds Distinguished
Professor in the Departments of Economics and Agricultural
and Resource Economics at North Carolina State University.
Ashley Hungerford is a research agricultural economist at
ERS-USDA. Earlier versions of this article were presented
at the National Bureau of Economic Research Conference
on Insurance Markets and Catastrophe Risk and in invited
seminars at Georgia State University, Kansas State Uni-
versity, and Mississippi State University. Research support
from the U.S. Forest Service and the North Carolina Agricul-
tural Research Service is gratefully acknowledged. The views
expressed here are those of the authors and should not be
attributed to the ERS or the USDA. Correspondence to be
sent to: barry_goodwin@ncsu.edu.

also receive significant taxpayer subsidies
to operate and administer the program. Pri-
vate insurance companies are also provided
with an advantageous taxpayer-supported
reinsurance agreement. In recent years, the
program has accounted for approximately
$7.3 billion annually in subsidies to farmers
and insurance companies, making it the most
expensive agricultural commodity program
(Risk Management Agency 2014). The 2014
Farm Bill further expanded crop insurance
programs by introducing options to select
“Agricultural Risk Coverage” (ARC), which
functions as an aggregate county-level or
whole-farm level revenue insurance pro-
gram, as well as the “Supplemental Coverage
Option” (SCO), which provides farmers with
an optional, county-level insurance program
that covers a portion of the deductible on
existing crop insurance plans. Cotton has its
own version of SCO in the “Stacked Income
Protection Plan” (STAX). The crop insur-
ance title also mandates development of a
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revenue-minus-cost insurance plan. All of
these new insurance plans provide revenue
coverage, meaning that payments may be
triggered by multiple, dependent sources of
risk—low prices, low yields, or a combination
of both that results in a revenue shortfall.

Critics of subsidized crop insurance, such
as Smith (2011), often question whether the
government is providing welfare-enhancing
support because the market has failed to
provide it or, conversely, whether private
insurance markets have been crowded out
by such huge government subsidies. Advo-
cates for government intervention frequently
point to the substantial systemic risk that
characterizes agriculture. In particular, the
argument maintains that the $114 billion in
liability is simply too large for private insur-
ers and reinsurers to adequately cover due
to the potential systemic risk associated with
natural disasters such as drought and floods
(e.g., Miranda and Glauber 1997).

Quantifying the degree of systemic risk
is central to addressing public policy issues
involving the necessity of large subsidies
for agricultural insurance. Of particular
concern to the debate is the role of “state-
dependent” risks. Empirical evidence has
demonstrated that the spatial correlation of
crop yields tends to be significantly stronger
during extreme weather conditions such
as droughts than is the case in a typical
year (e.g., Goodwin 2001). As shown by
Embrechts, McNeil, and Straumann (2002),
standard models of systemic risk and insur-
ance portfolio diversification nearly always
assume that risks are linearly correlated
and that this dependence is constant. In
reality, the extent to which these risks may
change across various states of nature has
important implications for the pricing of
revenue insurance and the availability of
reinsurance.

This article applies a variety of copula
models to evaluate the extent to which
weather and natural disaster risks in agricul-
ture tend to be systemic and state-dependent.
Our empirical analysis investigates two spe-
cific aspects of dependence in measuring the
risks associated with crop insurance contracts
and insurance portfolios. First, we consider
the pricing of aggregate, county-level rev-
enue insurance contracts. Revenue coverage
currently accounts for about 70% of the
total liability of the federal crop insurance
program. County-level revenue insurance
has existed under the Group Risk Income

Protection (GRIP) program since 1999.
According to unpublished Risk Management
Agency (RMA) data, over 3 million acres and
$3.5 billion in liability were insured under the
GRIP program in 2013. In a second segment
of the analysis, we consider the dependency
relationships relevant to pricing yield insur-
ance at the individual crop insurance unit
level. Using unpublished RMA policy-level
data on individual yield histories, we evaluate
the risks associated with portfolios comprised
of individual unit-level contracts. Our results
demonstrate that the approach adopted for
measuring multiple, correlated sources of
risk may have very substantial implications
for the accurate measurement of portfolio
risks. The standard assumption—a Gaus-
sian copula model—is shown to significantly
underprice risk. This may reflect the fact that
this model does not allow for non-zero tail-
dependence—a critical factor when risks are
state-dependent.

Empirical Framework

Though the concept dates back to work by
Sklar (1959), copula models have recently
realized widespread application in empirical
models of joint probability distributions.
Details on the construction and properties
of copulas are provided by Joe (1997) and
Nelsen (2006). The models essentially use a
“copula” function to tie together two or more
marginal probability functions that may (or
may not) be related to one another to form a
joint probability distribution function. Much
of the work on copulas has been motivated
by their applicability to issues in risk manage-
ment, insurance, and financial economics (see,
among others, Rodriguez (2003); Cherubini,
Luciano, and Vecchiato (2004); Hu (2006);
Patton (2006); and Jondeau and Rockinger
(2006)). In the empirical literature, copula
models have been used extensively in the
design and rating of crop revenue insurance
contracts, where the inverse correlation of
prices and yields plays an important role in
pricing revenue risk.

A p-dimensional copula, C(u1, u2, . . . , up),
is a multivariate distribution function in
the unit hypercube [0, 1]p with uniform
U(0, 1) marginal distributions. As long as
the marginal distributions are continuous,
a unique copula is associated with the joint
distribution, F , that can be obtained as:
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C(u1, u2, . . . up)(1)

= F
(

F−1
1 (u1), . . . , F−1

p (up)
)

.

In a similar fashion, given a p-dimensional
copula, C(u1, . . . up), and p univariate dis-
tributions, F1(x1), . . . , Fp(xp), then equation
(1) is a p-variate distribution function with
marginals F1, . . . Fp whose corresponding
density function can be written as:

f (x1, x2, . . . xp)(2)

= c(F1(x1), . . . , Fp(xp))

p∏
i=1

fi(xi).

Provided that it exists, the density function of
the copula, c, can be derived using equation
(1) and marginal density functions, fi:

c(u1, u2, . . . up)(3)

= f (F−1
1 (u1), . . . , F−1

p (up))∏p
i=1 fi(F−1

i (ui))
.

There are several parametric families of cop-
ulas applied in the literature. Two of the most
commonly used copula families are elliptical
copulas and Archimedean copulas. Gaussian
and t copulas are examples of elliptical copu-
las, while the Clayton and Gumbel are among
Archimedean copulas.

A multivariate density essentially conveys
information about the distribution of individ-
ual random variables (through the marginals)
and the interrelationships among individual
variables. A number of different concep-
tual metrics are commonly used to measure
and communicate these interrelationships—
Pearson’s linear correlation, Spearman rank
correlation, and Kendall’s τ measure of rank
correlation. Copula models differ in terms of
how these interrelationships are represented.
For example, a Gaussian copula assumes
linear correlation and imposes zero depen-
dence in the tails of the distributions. A t
copula allows for non-zero tail dependence
(which increases as the degrees of freedom
parameter falls) but imposes symmetry in the
dependence relationships in alternative tails
of the distributions. Archimedean copulas
typically allow for dependence in only one
tail and represent the dependence relation-
ship by using a single parameter, even when
the copula includes multiple random vari-
ables. Thus, the choice of a copula function

determines the nature of the relationships
among dependent random variables. For
example, while an Archimedean copula
may be used to represent a multivariate
distribution, it imposes a very strong set of
restrictions on the dependency relationships
among the variables. Our goal in this analysis
is to achieve as much flexibility as possible
in representing the joint distribution of a set
of dependent random variables (prices and
crop yields) while, at the same time, main-
taining a tractable approach to estimation
and inference in light of the significant “curse
of dimensionality” that such a multivariate
problem presents. To this end, we consider
multivariate versions of common elliptical
and Archimedean copulas, as well as a rela-
tively new innovation in the representation of
multivariate distributions—vine copulas.

Following Aas et al. (2009), a joint mul-
tivariate density function for a set of k
random variables can be written in factored
form as

f (x1, x2, . . . , xk) = fk(xk) · f (xk−1|xk)(4)

· f (xk−2|xk−1, xk) . . . · f (x1|x2, . . . , xk).

This density is unique for a given ordering
of variables. The joint density can also be
expressed in terms of a copula function, as
noted above, as

f (x1, x2, . . . , xk)(5)

= c1...k(F1(x1), . . . , Fk(xk)) ·
k∏

i=1

fi(xi).

In the case of two random variables, this
reduces to

(6) f (x1, x2) = c12(F1(x1), F2(x2)) · f1(x1)f2(x2).

Thus, with rearranging, a bivariate conditional
density can be written as

(7) f (x1|x2) = c12(F1(x1), F2(x2)) · f1(x1).

Following this line of reasoning, Joe
(1996) demonstrated that each of the terms
in equation (4) can be decomposed into
the product of a pair-wise copula and a
conditional marginal density:

f (x|v) = cx,vk |v−k (F(x|v−k), F(vk|v−k))(8)

· f (x|v−k).
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Thus, as Aas et al. (2009) demonstrate, a
multivariate density can be expressed as
a product of pair-wise copulas. Following
Joe’s (1996) observations, recent research
has focused on the notion of vine copulas
as a means for representing high-ordered
distributions in terms of a combination
of individual pair-wise copula functions.
Bedford and Cooke (2002) introduced a
“regular vine” representation that allows
considerable flexibility in representing mul-
tivariate densities in terms of combinations
of pair-wise copulas. Kurowicka and Cooke
(2006) derived two special cases of vine
copulas—the “canonical vine,” also known
as the “C-vine,” and the “D-vine.” In both
cases, a general multivariate density is repre-
sented in terms of combinations of pair-wise
copula functions. Both cases afford a degree
of flexibility and generality not typically
available in the application of conventional
copula functions to higher-ordered prob-
lems. That said, it is important to note that
any such representation is unique only with
regard to a particular ordering of variables.
Vine copulas are best represented in terms
of a collection of “trees,” where the distri-
bution of each variable is represented by
conditional distributions at a higher level
on the tree. The D-vine and canonical vine
copulas differ in terms of the decomposition
used to represent a multivariate density as
combinations of pair-wise copula functions.
As Aas et al. (2009) note, a D-vine has pair-
wise combinations of variables in the initial
level of the tree while the canonical-vine
relates a single variable to all others in the
initial level of the tree. Aas et al. (2009) note
that a D-vine is most appropriate when a
particular ordering of variables is suggested
(such as in a time series context), while a
canonical-vine is suggested when variables
can be ordered according to their influence
on other variables.

It is important to note that many different
factorizations and combinations of pair-wise
copulas are possible. In the case of a canon-
ical vine or D-vine copula representation of
a set of k random variables, a total of k!/2
different specifications is possible.1 A vine
representation of a multivariate distribution
is therefore dependent upon the specific
decomposition into pair-wise conditional
copulas, which in implementation will be

1 In the more general case of a regular vine, k!
2 × (k−2)!

2! .
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Figure 1. Trees for a canonical vine with five
variables

reflected in the ordering of variables. Exam-
ples of the trees used to depict canonical and
D-vines—similar to the examples given in
Bedford and Cooke (2002)—can be seen in
figures 1 and 2, respectively. An additional
inferential limitation of vine copulas has
also been recently noted by Acar, Genest,
and Nešlehová (2012). In particular, the
factorization implicitly assumes a restricted
relationship whereby the pair-wise condi-
tional copula is invariant for all values of the
conditioning variable. Although such struc-
tural restrictions and simplifying assumptions
are typical in hierarchical structural models, it
is important to note that the flexibility gained
through vine copulas does indeed impose
restrictions on the resulting multivariate
distribution.

As noted, vine copula models are deter-
mined by a particular ordering of the
variables. Different heuristic data-driven
specification selection mechanisms have been
suggested in the literature. In the case of a
canonical vine copula, Brechmann and Czado
(2013) suggest adopting the ordering that
maximizes the sum of pair-wise dependencies
(measured by Kendall’s τ) in the root node of
the vine (i.e., the node with maximum column
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Figure 2. Trees for a D-vine with five variab-
less

sum in Kendall’s τ matrix). For D-vines, we
choose the specification that minimizes the
Hamiltonian path of the nodes.2

Our estimation strategy involves the
application of sequential estimation of the
pair-wise canonical copula model. The opti-
mal copula functions for each conditional
pair are chosen (again, heuristically) using
the minimized value of the Akaike informa-
tion criterion (AIC). A wide variety of copula
functions (thirty-two in all) are considered
for each combination. These copula functions
include the Student t, Gaussian, Clayton,
Gumbel, and Joe copulas, as well as other
variations of the Archimedean copula family.
Likewise, we adopt standard maximum like-
lihood estimation techniques to estimate the
joint densities associated with higher-ordered,
multivariate elliptical and Archimedean
copula models.3

The benchmark for our applied compar-
isons is the Gaussian copula model, which
realizes significant prominence in pricing
crop revenue risk in the current federal crop
insurance program. In particular, current
rating methods use the Iman and Conover
(1982) method with normal score functions
to represent the correlation associated with
prices and yields in setting rates for revenue

2 The Hamiltonian or traceable path visits each node only
once. Brechmann (2010) describes a solution to the “traveling
salesman problem” that selects the ordering of variables in a
D–vine. We adopt her suggestion in the analysis that follows.

3 Estimation and inferences were accomplished using the“COP-
ULA” procedure of SAS and the “copula,” “VineCopula,” and
“CDVine” packages of the R language. Details are available in
Chvosta, Erdman, and Little (2011), Schepsmeier and Brechmann
(2012), Schepsmeier et al. (2013), and Yan and Kojadinovic (2012).
Excellent overviews of the R packages and implementation issues
are presented by Yan (2007) and Czado (2011).

coverage. Mildenhall (2006) demonstrates
that the Iman and Conover resorting pro-
cedure, when based upon normal scores,
is essentially equivalent to the use of a
Gaussian copula.

Empirical Application

Our application consists of two empirical
models of crop insurance contracts. The
first addresses the specification and rating
of county-level corn and soybean revenue
insurance contracts. These contracts are fully
analogous to the GRIP policies currently
available in the U.S. program. Although this
segment of the analysis applies to aggregate,
county-level insurance contracts, its impli-
cations are entirely relevant to the rating of
revenue insurance contracts at the individual
farm level. In particular, indications of tail
dependence in county-level revenue distri-
butions may suggest a reevaluation of the
current application of Gaussian copulas in
farm-level insurance contracts. The second
segment of our analysis utilizes unit-level
data drawn from individual crop insurance
policies to consider dependencies among
yields among insurance units in a single
county. The empirical application is intended
to demonstrate the relevance of the tech-
niques to the pricing of crop insurance and
reinsurance contracts, and to highlight the
potential consequences associated with the
choice of a specific representation of the joint
distribution.

County-Level Revenue Insurance

As we have noted above, liability in the
current federal crop insurance program
for most major crops is overwhelmingly
skewed toward crop revenue coverage, which
involves the joint distribution of crop yields
and prices. We utilize county-level crop yield
data taken from the USDA’s National Agri-
cultural Statistics Service (NASS) databases.
Relevant crop prices are taken as the average
of February closing quotes on the Chicago
Board of Trade for futures contracts that
expire at harvest time (November and
December). These price quotes represent
a market-based assessment, made at the time
of planting, of the expected price after har-
vest. Such price quotes are used in pricing
crop revenue insurance in the United States.
We focus on corn and soybeans—the two
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most prominent crops grown in the United
States. In 2013, these two crops made up 68%
of the total liability of $123 billion in the
U.S. federal crop insurance program (Risk
Management Agency 2014). We further focus
on four specific counties in Illinois that are
among the largest producers of corn and
soybeans in the U.S. Corn Belt. These four
counties are in a common crop-reporting
district and thus are in close proximity to one
another. The specific counties are McClean,
Logan, Macon, and Tazewell.4 Our data cover
the 53-year period spanning 1960–2012.

An initial complication pertinent to any
modeling of crop yields observed over time
involves an adjustment for the significant
upward trend that has characterized crop
yields. This is commonly handled by applying
a detrending process, with deviations from
trend being “recentered” or “recalibrated”
to a common time period. In our case, we
utilize local regression (loess) to represent
trends for each county-crop combination in
a nonparametric fashion.5 We then recenter
yields on 2012 by adding the deviations to the
predicted 2012 yield. Specifically, we estimate
the nonparametric trend equation

(9) yt = g(t) + εt

and generate a sample of detrended yields as

(10) ŷt = ŷ2012 + εt .

The nonparametric loess estimates are
illustrated below in figure 3.

We use rank-based empirical distributions
to represent the marginals. An alternative
approach is to estimate parametric marginal
distributions and use the cumulative distribu-
tion function (CDF) values of the estimates
at each data point to estimate the copula.
Using the nonparametric, empirical marginals
is preferred in that the asymptotic distribu-
tions of the copula estimates are not affected
by the first-stage estimation of the marginals,
as has been shown by Chen and Fan (2006).
Further, Charpentier, Fermanian, and Scaillet
(2007) have noted that copula estimates
based upon the empirical CDFs may be

4 In the discussion of results that follows below, we denote
these four counties as 1, 2, 3, and 4. This particular ordering
reflected prominence in terms of planted corn acreage in 2012.

5 The loess is estimated in SAS using PROC GAM. The
supplementary online appendix provides a detailed explanation
on loess and its estimation. For our analysis, we utilize a quadratic
function in the loess regression.

preferred because this approach can lead to
smaller estimation variations compared to
those based on the true marginals, even if
known.6 It should be noted that the estimates
are made using detrended data and thus are
conditional on the models used to detrend
the yield data. This approach is very common
when working with yield data collected over
time. This approach is also followed in prac-
tice in the rating of county-level yield and
revenue insurance contracts by the RMA.
There is also an element of uncertainty in
the estimation of the shape and location
parameters of the parametric marginals
used to simulate rates. Again, this first-stage
estimation error has implications for the
variability of the rate estimates. The fact that
the data are detrended in a first stage nec-
essarily results in an “Inference Functions
for Margins” (IFM) estimator, even though
the copulas are estimated using conventional
maximum likelihood techniques. Joe (2005)
provides additional details on the distinc-
tion and efficiency differences between full
maximum likelihood and the IFM estimator.

In order to actually implement the esti-
mated copula models in simulating random
yields and prices to derive rate estimates, we
need some representation of the marginal
distributions. One could use either nonpara-
metric or parametric marginals, though a
parametric specification provides an explicit
functional representation of the marginals.
Thus, we also independently estimate para-
metric marginals for each of the yield and
price distributions. These estimates are not
used in estimating the copula models but
are applied in the simulation of the random
distributions of yields and prices. A number
of different parametric specifications have
been used to represent crop yield distri-
butions. Common choices include the beta
and Weibull distributions, both of which
can accommodate the negative skewness
commonly observed for crop yield distribu-
tions. We use the Weibull here in light of its
simplicity.7 In the case of prices, we adopt
the common assumption of log-normality
and model the log of the ratio of planting-
time and harvest-time prices using a normal

6 We are grateful to an anonymous referee for pointing out
these advantages to the nonparametric approach.

7 The Weibull distribution is represented by two parameters,
whereas the beta requires three or four parameters to be estimated.
Direct estimation of the minimum and maximum possible values
for a beta can be challenging and we therefore opt in favor of
the Weibull.
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Figure 3. Local quadratic regression of Illinois yield trends

distribution. Plots of the detrended yield
data and prices are presented in figures 4
and 5. As expected, a high degree of positive
dependence among yields is apparent, while
negative dependence between yields and
prices is also confirmed. This is consistent

with the high degree of systemic risk that is
reflected in the impact on yields of common
weather conditions.

The set of 10 random variables associated
with corn and soybean yields and prices in
the four counties results in 45 correlation
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Figure 4. Empirical distributions for detrended corn yields and price
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Figure 5. Empirical distributions for detrended soybeans yields and price
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coefficients to be estimated in the Gaus-
sian and t copula models. The t copula also
requires estimation of an additional degrees
of freedom parameter. As the value of this
parameter rises, the t copula converges to
the Gaussian. Maximum likelihood estimates
and summary statistics of the Gaussian and t
copulas are presented in table 1. Parameter
estimates are very similar and the degrees
of freedom parameter estimate is 5.84. The
parameter estimates reflect the correlation
patterns illustrated in figures 4 and 5.

We used sequential maximum likelihood
procedures within the context of the IFM
estimator to estimate the vine copulas;
we considered both canonical and D-vine
copula models. Upon estimation of both
specifications, we conducted Vuong’s (1989)
non-nested specification test (Dißmann et al.
2013). The test statistic and other goodness-
of-fit statistics (AIC and Schwarz Bayesian
criteria [SBC]) are presented in table 2. The
test statistic significantly favors the D-vine
specification. Likewise, the D-vine model has
a higher log-likelihood function value and
smaller AIC and SBC values, all of which
favors the D-vine over the C-vine specifica-
tion. The heuristic approaches to determining
the ordering of data (which was applied to
both the C-vine and D-vine models) resulted
in the following ordering of variables for the
D-vine model: (C2, C4, C1, C3, S3, S2, S4, S1,
SP , CP), where C and S indicate whether the
crop is corn or soybeans, respectively.8 The
resulting vine copula parameter estimates
along with the pair-wise copulas chosen for
each node are presented in table 2. The vine
copula model has a larger likelihood func-
tion value and smaller values of the AIC and
Bayesian information criteria (BIC) than the
Gaussian and t copulas, suggesting a supe-
rior fit over the more restrictive versions
considered above.

The critical question to be addressed in
this research involves the extent to which
pricing of insurance contracts based upon
multiple sources of risk may be affected by
the approach used to measure and represent

8 Herein lies one apparent weakness in the vine copula rep-
resentation. As noted, the resulting estimates are not invariant
with respect to ordering. Given the set of ten random vari-
ables, 1,814,400 possible orderings exist. Other approaches to
copula models of high-ordered multivariate distributions, such
as Oh and Patton’s (2012) factor model approach, do not suffer
from this shortcoming but do involve other specification issues,
such as defining the factors. Sensitivity of the estimates to such
specification issues remains an important area of research.

dependence. This question is relevant on sev-
eral levels. First, revenue insurance contracts,
which consider two sources of risk—yield and
price—are very common in the U.S. federal
crop insurance program. Expansions to the
program brought about by the 2014 Farm Bill
make the issues even more pressing. Yields
and prices are, of course, inversely correlated
and such dependence must be represented
in pricing a revenue insurance contract in
order to derive an actuarially-fair rate. The
U.S. federal program also offers “whole farm”
revenue coverage for farmers growing both
corn and soybeans. In this case, the total
revenue from both crops provides the basis
for coverage. Rates for such coverage are
lower by virtue of the imperfect correlation
of losses across crops. Likewise, more com-
plicated gross margin insurance plans that
consider up to twenty-four correlated sources
of risk exist for livestock products.9 Finally,
from a reinsurer’s perspective, the pricing
of a portfolio of risks is a critical factor in
determining the terms of reinsurance treaties
and contracts for coverage. In spite of the
significant federal involvement in the U.S.
crop insurance program, reinsurance plays
a very significant role in the industry. We
consider the pricing of synthetic contracts
that cover all revenue risks for a single crop
across the four counties, as well as pooled
coverage across both crops in all counties
(e.g., total revenue). We consider two levels
of coverage—75% and 95% of expected
revenue. Although the rates and loss prob-
abilities are transparent to the commodity
price for individual crop revenues, we use
prices of $4.57 per bushel of corn and $11.15
per bushel of soybeans (reflecting the market
prices at the time of the writing of this arti-
cle). Of course, the pooling of revenue across
crops is impacted by the relative prices. We
do not adjust the portfolio for differences
in exposure (i.e., different levels of acreage)
across the counties and therefore assume an
identical level of acreage for all counties and
both crops.

Using simulated, correlated uniform vari-
ates from each respective copula model and
the estimated marginal distributions, we esti-
mated loss probabilities and actuarially-fair
premium rates for each contract. Loss prob-
abilities and corresponding premium rates

9 For example, the livestock gross margin (LGM) dairy
insurance plan is based upon the combination of 24 futures
contracts—12 for milk, 5 for corn, and 7 for soybean meal.
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Table 1. Elliptical (Gaussian and t) Copula Estimates

Gaussian Copula t Copula

Parameter Standard Parameter Standard
Parameter Estimate Error Estimate Error

ρC1C2 0.8868 0.0217∗ 0.8831 0.0252∗
ρC1C3 0.9068 0.0180∗ 0.9013 0.0221∗
ρC1C4 0.9286 0.0136∗ 0.9231 0.0170∗
ρC1S1 0.5681 0.0777∗ 0.6466 0.0708∗
ρC1S2 0.5368 0.0836∗ 0.6270 0.0757∗
ρC1S3 0.6669 0.0636∗ 0.6995 0.0613∗
ρC1S4 0.5281 0.0861∗ 0.5969 0.0798∗
ρC1Cp −0.5351 0.0881∗ −0.5401 0.0922∗
ρC1Sp −0.3873 0.1082∗ −0.4072 0.1161∗
ρC2C3 0.9017 0.0190∗ 0.9048 0.0215∗
ρC2C4 0.9378 0.0121∗ 0.9400 0.0134∗
ρC2S1 0.4067 0.0964∗ 0.4639 0.0926∗
ρC2S2 0.5092 0.0917∗ 0.5924 0.0828∗
ρC2S3 0.5719 0.0769∗ 0.6054 0.0734∗
ρC2S4 0.4552 0.0972∗ 0.5089 0.0919∗
ρC2CP −0.5734 0.0827∗ −0.5518 0.0895∗
ρC2Sp −0.4259 0.1045∗ −0.4134 0.1145∗
ρC3C4 0.9126 0.0169∗ 0.9148 0.0189∗
ρC3S1 0.4875 0.0869∗ 0.5391 0.0869∗
ρC3S2 0.4968 0.0858∗ 0.5580 0.0840∗
ρC3S3 0.6977 0.0583∗ 0.6980 0.0610∗
ρC3S4 0.4808 0.0895∗ 0.5214 0.0902∗
ρC3Cp −0.5650 0.0839∗ −0.5439 0.0914∗
ρC3Sp −0.4078 0.1058∗ −0.4097 0.1141∗
ρC4S1 0.4020 0.0951∗ 0.4785 0.0913∗
ρC4S2 0.4996 0.0917∗ 0.5955 0.0827∗
ρC4S3 0.5942 0.0738∗ 0.6393 0.0705∗
ρC4S4 0.4515 0.0967∗ 0.5252 0.0908∗
ρC4Cp −0.5724 0.0829∗ −0.5829 0.0861∗
ρC4Sp −0.4119 0.1059∗ −0.4312 0.1150∗
ρS1S2 0.8011 0.0385∗ 0.7935 0.0471∗
ρS1S3 0.7606 0.0455∗ 0.7566 0.0527∗
ρS1S4 0.8111 0.0368∗ 0.8083 0.0438∗
ρS1Cp −0.3520 0.1132 −0.3671 0.1156∗
ρS1Sp −0.4026 0.1091 −0.4210 0.1214∗
ρS2S3 0.8453 0.0293 0.8590 0.0307∗
ρS2S4 0.8903 0.0213∗ 0.8692 0.0291∗
ρS2Cp −0.4420 0.1029∗ −0.4735 0.1034∗
ρS2Sp −0.4964 0.0959∗ −0.4924 0.1056∗
ρS3S4 0.8161 0.0352∗ 0.8015 0.0428∗
ρS3Cp −0.4225 0.1035∗ −0.4088 0.1071∗
ρS3Sp −0.4282 0.1043∗ −0.4120 0.1121∗
ρS4Cp −0.4524 0.1010∗ −0.4948 0.0982∗
ρS4Sp 0.5315 0.0910∗ 0.5509 0.0969∗
ρCpCp 0.7694 0.0453∗ 0.7717 0.0516∗
ν 5.8463 1.7839∗

LLF 333.7 343.5
AIC −577.4 −595.0
BIC −488.7 −504.4

Note: An asterisk indicates statistical significance at the α = .10 or smaller level.
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Table 2. D-vine Copula Model Estimates

Parameter 1 Standard Parameter 2 Standard
Factorization Copula Family Estimate Error Estimate Error

C2, C4 R180 Gumbel 4.8626 0.5685∗
C4, C1 R180 Gumbel 4.3485 0.4956∗
C1, C3 R180 Gumbel 3.7854 0.4337∗
C3, S3 Clayton 1.6533 0.3401∗ 0.6848∗
S3, S2 BB7 2.1508 0.4449∗ 3.2092
S2, S4 BB7 2.6232 0.5094∗ 3.7795 0.8183∗
S4, S1 BB7 2.5324 0.4776∗ 2.4664 0.6429∗
S1, SP R90 Joe −1.6194 0.2390∗
SP , CP Student t 0.7737 0.0632∗ 2.9862 1.9575
C2, C1 |C4 Frank 0.6322 0.8196
C4, C3 |C1 R180 Gumbel 1.3238 0.1411∗
C1, S3 |C3 Joe 1.2067 0.1815∗
C3, S2 |S3 Student t −0.1619 0.1620
S3, S4 |S2 Frank 1.3875 0.7733∗
S2, S1 |S4 R180 Clayton 0.3700 0.1850∗
S4, SP |S1 Frank −2.5358 0.8926∗
S1, CP |SP R270 Clayton −0.2250 0.1921 1.2410∗
C2, C3 |C4, C1 Student t 0.3141 0.1448∗ 2.6997
C4, S3 |C1, C3 R90 Clayton −0.2671 0.1804
C1, S2 |C3, S3 Gaussian 0.2389 0.1206∗
C3, S4 |S3, S2 R90 Joe −1.2063 0.1569∗
S3, S1 |S2, S4 Frank 1.0841 0.8475
S2, SP |S4, S1 R90 Clayton −0.1956 0.1712
S4, CP |S1, SP Gaussian −0.0816 0.1310
C2, S3 |C4, C1, C3 R90 Clayton −0.1926 0.1538
C4, S2 |C1, C3, S3 Frank 2.2234 0.8666∗
C1, S4 |C3, S3, S2 Joe 1.2615 0.1787
C3, S1 |S3, S2, S4 Clayton 0.1042 0.1360
S3, SP |S2, S4, S1 Frank 0.6354 0.8823
S2, CP |S4, S1, SP R270 Joe −1.1270 0.1346∗
C2, S2 |C4, C1, C3, S3 Gaussian 0.3806 0.1070∗
C4, S4 |C1, C3, S3, S2 Frank −0.8525 0.7817
C1, S1 |C3, S3, S2, S4 Gaussian 0.2421 0.1201∗
C3, SP |S3, S2, S4, S1 R90 Clayton −0.3240 0.2045
S3, CP |S2, S4, S1, S P R90 Joe −1.0953 0.1083∗
C2, S4 |C4, C1, C3, S3, S2 R90 Joe −1.1636 0.1631∗
C4, S1 |C1, C3, S3, S2, S4 Frank −4.3714 1.0200∗
C1, SP |C3, S3, S2, S4, S1 Gaussian 0.0885 0.1352
C3, CP |S3, S2, S4, S1, SP Gaussian −0.3706 0.1142∗
C2, S1 |C4, C1, C3, S3, S2, S4 Frank −1.1901 0.8107
C4, SP |C1, C3, S3, S2, S4, S1 R90 Gumbel −1.0859 0.0872∗
C1, CP |C3, S3, S2, S4, S1, SP R90 Clayton −0.2097 0.1868
C2, SP |C4, C1, C3, S3, S2, S4, S1 Gaussian −0.0620 0.1388
C4, CP |C1, C3, S3, S2, S4, S1, SP Clayton 0.0831 0.1324
C2, CP |C4, C1, C3, S3, R180 Joe 1.0956 0.1865∗

S2, S4, S1, SP
C-Vine Log-Likelihood 358.7699
D-Vine Log-Likelihood 380.6401
C-Vine AIC −623.5399
D-Vine AIC −659.2802
C-Vine SBC −530.9361
D-Vine SBC −558.7953
Vuong Test (C-Vine vs. D-Vine) −2.4193
Vuong Test p-Value 0.0156

Note: An asterisk indicates statistical significance at the α = .10 or smaller level.
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Table 3. Revenue Insurance Probabilities of Claims and Rates

Insurance Gaussian Student t D-vine

Instrument Prob(Loss) Rate Prob(Loss) Rate Prob(Loss) Rate

75% Coverage Level
Corn Revenue County 1 0.0458 0.0029 0.0452 0.0035 0.0483 0.0034
Corn Revenue County 2 0.0415 0.0026 0.0446 0.0035 0.0490 0.0034
Corn Revenue County 3 0.0422 0.0026 0.0454 0.0036 0.0523 0.0038
Corn Revenue County 4 0.0391 0.0023 0.0393 0.0029 0.0423 0.0027
Soybean Revenue County 1 0.0201 0.0010 0.0209 0.0014 0.0243 0.0014
Soybean Revenue County 2 0.0131 0.0006 0.0157 0.0009 0.0161 0.0008
Soybean Revenue County 3 0.0203 0.0010 0.0233 0.0017 0.0229 0.0013
Soybean Revenue County 4 0.0115 0.0005 0.0129 0.0007 0.0173 0.0009
Corn Revenue Total 0.0382 0.0022 0.0406 0.0030 0.0452 0.0030
Soybean Revenue Total 0.0129 0.0005 0.0151 0.0009 0.0183 0.0010
Total Revenue 0.0149 0.0006 0.0194 0.0012 0.0211 0.0012

95% Coverage Level
Corn Revenue County 1 0.4259 0.0449 0.4203 0.0437 0.4168 0.0446
Corn Revenue County 2 0.4253 0.0436 0.4213 0.0436 0.4217 0.0452
Corn Revenue County 3 0.4259 0.0439 0.4207 0.0438 0.4183 0.0458
Corn Revenue County 4 0.4224 0.0428 0.4166 0.0416 0.4181 0.0431
Soybean Revenue County 1 0.3844 0.0334 0.3759 0.0321 0.3583 0.0322
Soybean Revenue County 2 0.3764 0.0301 0.3696 0.0297 0.3538 0.0289
Soybean Revenue County 3 0.3846 0.0334 0.3786 0.0329 0.3680 0.0325
Soybean Revenue County 4 0.3735 0.0292 0.3646 0.0281 0.3467 0.0285
Corn Revenue Total 0.4223 0.0425 0.4170 0.0420 0.4166 0.0438
Soybean Revenue Total 0.3760 0.0300 0.3678 0.0294 0.3518 0.0295
Total Revenue 0.3902 0.0321 0.3819 0.0318 0.3718 0.0319

are presented in table 3. As expected, the
probabilities and rates reflect the lower risks
associated with pooling across various risks
that are not perfectly correlated. The rates
generally fall when the contract includes cov-
erage across multiple counties and crops. The
loss probabilities indicate that the probabil-
ities of a payable claim also fall as the risks
are further aggregated.

The premium rates differ across the alter-
native copula models, and the differences are
substantial in some cases. For example, the
rate for covering 75% of expected revenue
for corn in county 3 is 0.38% according to the
vine copula model, while a Gaussian copula
implies a rate of only 0.26%. In the case of a
75% coverage contract for total revenue, the
vine copula model suggests an actuarially-fair
premium rate of 0.12%, while the Gaussian
copula implies a rate of 0.06%. To put this
into perspective, in 2013 total crop insurance
liability for these crops in these four counties
was $988,647,318. Thus, the rate differences,
if applied to the 2013 total crop insurance
book, suggests a potential difference of over
$593,000 for these four counties alone. Thus,
assumptions underlying the representation of
dependencies among multiple sources of risk

definitely have important impacts on the pric-
ing, viability, and profitability of crop insur-
ance contracts. In light of the huge magnitude
of the federal program ($123 billion in liabil-
ity in 2013), such seemingly small differences
may translate into very significant implica-
tions for private insurers and taxpayers.

Perhaps most important is the finding that
the rate differences are much greater because
one considers coverage of lower-probability
events, which correspond to deep losses
occurring in the tails of the distributions. The
average percentage rate differences between
the D-vine copula and the Gaussian copula
across all contracts is −0.6% at the 95% cov-
erage level, and 50% at the 75% coverage
level. The rate differences between the Gaus-
sian copula and the t copula are similar to the
rate differences between the Gaussian copula
and D-vine copula. Thus, the differences in
rates and implications of applying a copula
that is less supported by the data are exagger-
ated in the tails of the revenue distribution,
which reflects significant differences in tail
dependence and the risks of deep losses
across the alternative copula models.

One interesting result is that the pricing
that results from the D-vine copula model
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are closer to those implied by the t copula
than is the case for the Gaussian copula that
is currently used to rate revenue contracts.
Thus, the imposition of zero tail dependence
in the Gaussian copula model appears to
result in greater pricing deviations compared
to the results of the t copula. This is not unex-
pected since the t copula allows for non-zero
tail dependence, though such dependence is
restricted to be symmetric in alternate tails.
The estimated degrees of freedom parame-
ter in the t copula was 5.85 (table 1), which
indicates a substantial degree of tail depen-
dence compared to the Gaussian copula. Put
differently, the t copula, which converges to
a Gaussian copula as the degrees of freedom
parameter increases, offers additional flexi-
bility that is supported by the data and that
results in substantial differences in estimates
of loss-probabilities and premium rates. This
may imply that improvements in the accuracy
of revenue insurance premium rates could
be possible by considering a t copula as an
alternative to the Gaussian copula currently
in use.

The Gaussian copula model tends to sug-
gest less tail risk and lower rates than is the
case with the D-vine copula. This may reflect
the “state-dependent” nature of agricultural
yield and price risk, which is not captured in
the Gaussian copula estimates. In particu-
lar, one expects that the imposition of zero
tail dependence, as is the case for the Gaus-
sian, may result in significantly underpricing
portfolio risk. One expects that periods
of significant yield shortfalls, such as in a
drought, may experience a higher degree of
correlation among yields in individual areas
and therefore yields and prices on an aggre-
gate level. Again, this reflects the systemic
nature of weather and the fact that weather
extremes may tend to impact a larger geo-
graphic area. Such conditions were observed
in the 1988 and 2012 droughts and the 1993
Midwest floods, which caused widespread
crop losses.

Hierarchical Unit-level Copulas

The preceding analysis considered D-vine
copula estimates and calculated rates for
county-level revenue insurance contracts.
Such county-level revenue insurance pro-
grams have played an important role in the
U.S. crop insurance program over the last fif-
teen years. As noted above, recent changes to
U.S. farm policy that include the Agricultural

Risk Coverage (ARC) and Supplementary
Coverage Option (SCO) will offer a signifi-
cantly expanded set of county-level revenue
insurance options, making accurate pricing
of these revenue risks even more pressing.
However, the majority of liability in the U.S.
crop insurance program exists in the form of
individual (farm unit-level) insurance. Farm-
ers currently have the option to insure farm
units (generally defined as all land within a
section/township/range) individually or as
an aggregated group. Aggregation lowers
risk, and premium rates are thus adjusted
downward to account for this lower risk. The
extent to which correlation may exist among
yields on individual crop insurance units is
an important consideration in the opera-
tion of the program and in the reinsurance
decisions made by insurers. Until recently,
differences in unit structure were priced
using assumed, fixed discount rates. For
example, units aggregated to form a “basic
unit” received a 10% premium rate discount.
The RMA recently adopted variable unit dis-
counts; the conceptual and empirical methods
used to determine these unit discounts are
discussed by Knight et al. (2010).

In addition to high-ordered vine copulas,
we also consider a hierarchical copula model
that evaluates dependencies and rating at the
individual unit level. To this end, we utilize
unpublished actual production history (APH)
records for individual corn crop insurance
units in each of the Illinois counties evalu-
ated above. These data, which are typically
proprietary, were made publicly available
by the RMA in 1998.10 The unit-level data
include the production histories for each
unit for up to 10 years. We utilize unit-level
records containing actual yields for units in
the counties that had a complete yield his-
tory (i.e., 10 years of actual yields). For this
analysis, we assume that the unit size remains
constant over time.11

The model utilizing hierarchical copu-
las estimates the marginal distributions of

10 Unfortunately, this is the only publicly available source of
unit-level or farm-level data. The histories covered by these
yield records largely apply to conventional yield insurance since
revenue coverage did not exist over most of the history covered
by the yield records. To the extent that more current data on
revenue coverage can be obtained from the RMA, this line
of research may benefit from an updated consideration of the
dependence relationships that are considered here.

11 We had an overall sample of, respectively, 498, 1,658, 656,
and 165 units in Logan, Macon, McLean, and Tazewell counties.
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Figure 6. Hierarchical copula model with one county-level copula and four unit-level copulas

yields for policy units, the copulas for join-
ing together policy units in a given county
(the unit-level copula), and the copula join-
ing together the unit-level copulas (the
county-level copula). Figure 6 illustrates
this hierarchical copula, with C1, . . . , C4
representing the unit-level copulas for the
four counties and CCL representing the
county-level copula. For the marginal distri-
butions of the unit-level copulas, we again
use rank-based, empirical distributions. The
probabilities acquired from the unit-level
copulas are used as the marginal distributions
in the county-level copula that connects the
unit-level copulas of the four counties. We
utilize four types of copulas that have pre-
viously been discussed: Clayton, Gumbel,
Gaussian, and t. The Gaussian and t copulas
have exchangeable correlation matrices; in
other words, the correlation is assumed to be
the same among all pairs of units for a given
county.12 This assumption is reasonable in
that we expect the units to be exposed to rel-
atively homogeneous production conditions
within a particular county.

We randomly select ten insurance units
from each county. With the ten units, we esti-
mate each of the four types of copula models
under consideration here: Clayton, Gum-
bel, Gaussian, and t. This random selection
is repeated for 5,000 iterations to estimate
the sampling distribution for the parame-
ter of each copula model for each county.
These estimated copulas are then used in the
county-level copulas of the corresponding
copula. Percentile coverage intervals for
the replicated parameter estimates of the
unit-level and county-level copulas are then
constructed, and actuarially fair premium
rates are estimated based on the unit-level
copulas.

Table 4 summarizes the distributional
aspects of the replicated copula estimates.
We also present summaries of the fit (AIC
and BIC values) and statistical significance of
the replicated parameter estimates. For each

12 Note that the limited span of our data—ten years—necessarily
limits the scope of our empirical analysis. Our exchangeability
assumption is made necessary by the data limitations.

of the 5,000 iterations, we observe which of
the four copulas (Clayton, Gumbel, Gaus-
sian, and t) has the lowest AIC and BIC. The
frequency in which a certain copula model
has the lowest AIC or BIC is recorded in
the “AIC” and “BIC” columns of table 4.
In all of the counties, the coverage intervals
are relatively wide, though the proportions
of the 5,000 replicates that have statistically
significant parameter estimates is high in
nearly every case.13 For all four counties, the
unit-level copulas are best estimated by the t
copula according to the AIC and BIC values.
We also see that the median for the degrees
of freedom for the unit-level t copulas is low,
indicating a substantial degree of platykur-
tosis. The more restrictive Archimedean
copula models receive much less support,
particularly in the case of the Gumbel copula.
For the county-level copulas, the parameter
estimates are higher than the parameter esti-
mates for the unit-level copulas. Therefore, at
the county-level, the rank-based correlation
is higher than at the unit-level. This is likely
due to more noise at the unit-level compared
to the county-level. Also, for the county-level
t copulas, the median estimate for the degrees
of freedom is much higher at 13.93, which
indicates that the tails of the county-level
t copulas are slimmer than the tails of the
unit-level t copulas. Table 4 shows the Clay-
ton copula to be the preferred copula at the
county-level according to AIC and BIC. The
Clayton copula is an intuitive choice at the
county-level because widespread droughts or
other natural disasters causing lower yields
would lead to lower tail dependence. How-
ever, it is important to note that none of the
coefficients are significant for the Clayton
copula.

We evaluate the premium rates implied by
the replicated estimates. Table 5 presents the
premium rates for individual units. There is
very little variation among the rates derived

13 The null hypotheses for the Clayton, Gaussian, and t copulas
are parameters equal to zero. However, the null hypothesis for
the Gumbel copula is a parameter equal to one. These null
hypotheses correspond with a correlation equal to zero.
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Table 4. Unit and County–level Copula Estimates Based upon Unit–level Data

Lower Upper Median AIC BIC No.
Copula 2.5% Median 97.5% df for t Count Count Significant
Unit-level Copula Estimates
Logan

Clayton 0 1.991 3.04 189 198 4,573
Gumbel 1 1.99 2.57 4 4 4,327
Gaussian 0.68 0.80 0.88 143 165 5,000
t 0.45 0.73 0.89 1.15 4,664 4,633 4,940

Macon
Clayton 0.66 1.68 2.67 234 249 4,857
Gumbel 1.364 1.85 2.38 9 10 4,575
Gaussian 0.61 0.76 0.85 169 197 5,000
t 0.35 0.68 0.84 1.21 4,588 4,544 4,974

McLean
Clayton 0 2.11 3.28 466 485 4,743
Gumbel 1 1.98 2.53 0 0 4,547
Gaussian 0.72 0.81 0.88 183 201 5,000
t 0.58 0.77 0.87 1.26 4,351 4,314 4,999

Tazewell
Clayton 0 1.49 2.81 165 170 4,142
Gumbel 1 1.80 2.52 12 12 3,767
Gaussian 0.65 0.78 0.87 163 178 5,000
t 0.39 0.66 0.85 1.09 4,660 4,640 4,977

County-level Copula Estimates
Clayton 0 2.18 4.33 2,441 2,454 0
Gumbel 1 3.12 4.35 284 286 299
Gaussian 0.81 0.90 0.95 1,458 1,493 4,996
t 0.65 0.87 0.94 13.93 817 767 4,271

Note: The first four columns present the distribution (at percentiles of 2.5%, 50%, and 97.5%) for the copula parameter estimates obtained from
the 5,000 replicated sets of estimates. To conserve space, we only present the median for the t copula degrees of freedom. The AIC Count and
BIC Count represent the number of occurrences out of 5,000 samples where a given copula (Clayton, Gumbel, Gaussian, or t) has the lowest value
for the respective model selection criteria. Likewise, “No. Significant” represents the number of occurrences where the parameter estimates of the
copula is statistically significant at the α = .05 level.

Table 5. Yield Insurance Premium Rates Based upon Unit–level Copulas

75% Coverage 95% Coverage

Copula Lower 2.5% Median Upper 97.5% Lower 2.5% Median Upper 97.5%

Logan
Clayton 0.0220 0.1733 0.5569 0.0207 0.1593 0.5251
Gumbel 0.0219 0.1731 0.5549 0.0205 0.1594 0.5246
Gaussian 0.0225 0.1724 0.5565 0.0210 0.1591 0.5241
t 0.0225 0.1731 0.5513 0.0207 0.1588 0.5236

Macon
Clayton 0.0201 0.1751 0.5614 0.0186 0.1612 0.5335
Gumbel 0.0221 0.1748 0.5642 0.0196 0.1608 0.5336
Gaussian 0.0208 0.1750 0.5645 0.0193 0.1604 0.5371
t 0.0204 0.1745 0.5627 0.0191 0.1602 0.5308

McLean
Clayton 0.0214 0.1738 0.5563 0.0200 0.1599 0.5282
Gumbel 0.0221 0.1748 0.5642 0.0207 0.1611 0.5270
Gaussian 0.0217 0.1745 0.5592 0.0202 0.1600 0.5275
t 0.0216 0.1735 0.5609 0.0205 0.1603 0.5250

Tazewell
Clayton 0.0229 0.1733 0.5306 0.0211 0.1600 0.5006
Gumbel 0.0228 0.1729 0.5341 0.0212 0.1584 0.5043
Gaussian 0.0227 0.1728 0.5345 0.0217 0.1592 0.5090
t 0.0227 0.1733 0.5352 0.0211 0.1591 0.5076
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from the four copula functions for each
county at the unit-level. This result is not
surprising considering that the correlation
among units is relatively weak compared to
the correlation at the county-level. In the
premium rates determined at the county-
level found in table 3, we see much greater
variation depending on the model selected.
At the county-level, the presence of systemic
risk is more pronounced and the observa-
tions are less noisy than at the unit-level.
Therefore, the presence of tail-dependence
can more readily be observed through the
premium rates at the county-level.

Conclusions

The federal crop insurance program has been
a major fixture of U.S. agricultural policy
since the 1930s. The scale of the program con-
tinues to grow and a number of new revenue
and margin insurance instruments will be
introduced as a result of the 2014 Farm Bill.
Revenue insurance, which was introduced
in the mid 1990s, involves multiple sources
of dependent risk (i.e., prices and yields).
Revenue coverage accounts for nearly 70%
of the total liability in the program. The plans
cover losses from a revenue shortfall that
can be triggered by either low prices, low
yields, or a combination of both. The actuar-
ial practices currently applied in rating these
plans essentially involve the application of
a Gaussian copula model to the pricing of
dependent risks. The margin insurance plans
that currently exist for many livestock prod-
ucts involve combinations of many correlated
instruments in deriving the terms of coverage
and rates. Dependencies among these indi-
vidual instruments is an even greater concern
here.

We evaluate the suitability of these
assumptions by considering a number of
alternative copula models. We utilize com-
binations of pair-wise copulas of conditional
distributions to model multiple sources of
risk within the framework of a vine copula
model. We find that this approach is gen-
erally preferred by model-fitting criteria in
the applications considered here. We also
demonstrate that alternative approaches
to modeling dependencies in a portfolio of
risks may have significant implications to the
pricing of such risks. Although this point is
obvious to any observer of contemporary
financial conditions, the implications for

pricing crop revenue insurance have yet to be
explored. Our article is a first step in such an
exploration.

The multivariate vine copulas presented
here are not without their own limitations.
In particular, the estimates are not invariant
with respect to the factoring of the multivari-
ate density, which is reflected in the ordering
of individual variables in the model. In light
of the substantial number of possible speci-
fications that could be used to characterize
dependency relationships, vine copulas have
an inherent curse of dimensionality prob-
lem. Future research should explore more
formal approaches to determining the most
appropriate specification. Likewise, other
approaches to higher-ordered copula models
merit consideration, as well as comparison to
the estimates presented here.

Supplementary Material

Supplementary online appendix is available
at http://oxfordjournals.org/our_journals/ajae/
online.
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