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Abstract

Modelling of spatio-temporal count data has received considerable attention in recent sta-

tistical research. However, the presence of massive correlation between locations, time

points and variables imposes a great computational challenge. In existing literature, la-

tent models under the Bayesian framework are predominately used. Despite numerous

theoretical and practical advantages, likelihood analysis of spatio-temporal modelling on

count data is less wide spread, due to the difficulty in identifying the general class of

multivariate distributions for discrete responses.

In this thesis, we propose a Gaussian copula regression model (copSTM) for the anal-

ysis of multivariate spatio-temporal data on lattice. Temporal effects are modelled through

the conditional marginal expectations of the response variables using an observation-

driven time series model, while spatial and cross-variable correlations are captured in

a block dependence structure, allowing for both positive and negative correlations. The

proposed copSTM model is flexible and sufficiently generalizable to many situations.

We provide pairwise composite likelihood inference tools. Numerical examples suggest

that the proposed composite likelihood estimator produces satisfactory estimation perfor-

mance.

While variable selection of generalized linear models is a well developed topic, model

subsetting in applications of Gaussian copula models remains a relatively open research

area. The main reason is the computational burden that is already quite heavy for sim-

ply fitting the model. It is therefore not computationally affordable to evaluate many

candidate sub-models. This makes penalized likelihood approaches extremely inefficient

because they need to search through different levels of penalty strength, apart from the

fact suggested by our numerical experience that optimization of penalized composite like-

lihoods with many popular penalty terms (e.g LASSO and SCAD) usually does not con-

verge in copula models. Thus, we propose to use a criterion-based selection approach

that borrows strength from the Gibbs sampling technique. The methodology guarantees

to converge to the model with the lowest criterion value, yet without searching through

all possible models exhaustively.

Finally, we present an R package implementing the estimation and selection of the

copSTM model in C++. We show examples comparing our package to many available

R packages (on some special cases of the copSTM), confirming the correctness and ef-
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ficiency of the package functions. The package copSTM provides a competitive toolkit

option for the analysis spatio-temporal count data on lattice in terms of both model flexi-

bility and computational efficiency.
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Chapter 1

Introduction

1.1 Motivation

Longitudinal image data based on fluorescent proteins play a crucial role for both in

vivo and in vitro analysis of various biological processes such as gene expression and

cell lineage fate. Assessing the growth patterns of different cell types within a hetero-

geneous population and monitoring their interactions enables biomedical researchers to

determine the role of different cell types in important biological processes such as organ

development and regeneration, malignant growth or immune responses under various ex-

perimental conditions. For example, tumor progression has been shown to be affected

by bidirectional interactions among cancer cells or between cancer cells and cells from

the microenvironment, including tumor-infiltrating immune cells Medema and Vermeulen

(2011). Being able to study these interactions in a laboratory setting is therefore highly

relevant, but is complicated by the difficulty of dissecting the effect of the different cell

types as soon as the number of cell types exceeds two. In the present study we used

longitudinal image data collected from multicolor live-cell imaging growth experiments

of co-cultures of cancer cells and fibroblasts (a key cell type in the tumor microenvi-

ronment) as well as behaviourally distinct (cloned) cancer cells. Using a high-content

imaging system, we were able to acquire characteristics for each individual cell at sub-

sequent times, including fluorescent properties, spatial coordinates, and morphological

features. The motivation of this work was to design a model allowing the determination

of spatio-temporal growth interactions between these multiple cell populations.

In longitudinal growth experiments, the two important goals are to determine growth

rates for different cell populations and to assess how interactions between cell types may

affect their growth. Whilst a wide range of descriptive data analysis approaches has been

used in applications, inference based on a comprehensive model of multicolor cell data

is an open research area. The main challenges are related to the difficulties related to

tracking individual cells across time from image data and the presence of complicated
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Figure 1.1: Microscope images for the cancer cell growth data obtained from a high-

content imager (Operetta, Perkin Elmer).

spatio-temporal interactions amongst cells.

1.2 Cancer cell growth data with RGB marking

The technique of RGB marking has been recently introduced to facilitate the identification

of individual cell clones (Weber et al, 2012). Since the colored cells are easily identifiable

within whole organ structures, scientists can track the cells and determine their role during

processes such as organ regeneration, malignant outgrowth or immune responses. A raw

image data representing colorectal cancer cells are shown in Figure1.1.

Typical longitudinal experiments consist of a relatively small number of measure-

ments (e.g. 5 to 20 images taken every few hours), which is adequate for monitoring cell

growth. However, tracking individual cells would typically require more frequent mea-

surements, complicating the practicality of the experiments in terms of the storage cost

of very large image files and the cytotoxicity induced by the imaging process. Tracking

individual cell trajectories is difficult also because of cell migration, overlapping cells,

changes in cell morphology, image artifacts, cell death and division. But obtaining a

clustering of cell types with respect to colour is feasible and can be automated.

RGB marking introduces three lentiviral vectors in individual cells encoding the basic

colors red, green and blue. The cells were imaged on a high-content imager (Operetta,

Perkin Elmer). In particular, the data set consists of measurements on colorectal cancer

cell lines expressing various quantities of three different fluorescent proteins: Cerulean

(blue), Venus (yellow/green), and mCherry (red).

The genes coding for the fluorescent proteins were transferred into the cells via lentivirus-

mediated transduction at a less than 100% efficiency so that most cells expressed differ-

ent quantitative combinations of all three fluorescent proteins as described by Weber et

al (2012). Due to variability of the vector insertion, single RGB-marked cells express

fluorescent proteins at different and very characteristic levels. The underlying principle

2
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of additive color mixing, similar to that in computer or TV screens, generates different

color combinations that can be used to discriminate individual cell clones.

The final data consisted of fluorescent intensities of red, blue and green color channels

(electromagnetic wavelength in nanometers, nm), spatial coordinates and morphology pa-

rameters including cell areas, roundness etc. Here we propose to preprocess the data by

clustering cell populations according to their colour combinations, so that in the down-

stream analysis, we can focus on modelling spatio-temporal impacts on growth between

different cell clusters.

1.2.1 Preprocessing the data

To cluster cell types according to the colours they express, we first standardise each of

the three colour Original intensities by subtracting its mean and dividing by its standard

deviation, which keeps the shape of data while scales the intensities to achieve the same

mean and standard deviation. Figure 1.2 show histograms of original and standardised

colour intensities of Ceuriliean, Venus and mCherry respectively.
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Figure 1.2: Histograms of original and stan-

dardised RGB colour intensities.

One of the most popular clustering

methods is the K-means, of which the at-

tractiveness lies in its simplicity and in its

local-minimum convergence probabilities.

However, one shortcoming of K-means is

that it is very sensitive to outliers. Since

we observe a concentrated collection of

outliers on the lower end of the histogram

of Venus in Figure 1.2, a traditional K-

means does not suit. Thus, we carry out a

robust version of K-means with an R pack-

age RSKC by Kondo et al. (2016). Instead

of updating the cluster centers to the sam-

ple mean of all the observations in each

cluster, the robust K-means trims α100%

of the observations with the largest dis-

tance to their cluster centres, and update the cluster centers with the remaining observa-

tions. Our numerical result show that α = 0.1 gives reasonably stable clustering results.

Another difficulty is that the intrinsic variability of the underlying biological mech-

anisms make the actual number of distinguishable colors generated by RGB marking in

a tissue difficult to predict. In addition, cell intensities for different colors are known to

vary depending on the cell area, which is an indicator of cell morphology.

In the following section, we introduce a regression clustering method that not only
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cluster individual cells according to colour combinations, but also takes into account the

dependency between response (cell colours) and explanatory variables, such as the cell

area.

1.3 A Semi-supervised Regression Clustering

This section is a condensed version of a collaborative work with Qian et al. (2016).

1.3.1 Methodology

Let zzz1 = (y1,xxx
′
1)

′, · · · ,zzzn = (yn,xxx
′
n)

′ be the observed data set of n data points, where

(y j,xxx
′
j), j = 1, . . . ,n, where xxx j is an explanatory column vector and y j ∈R a random depen-

dent variable for the jth data point. Suppose the data coming from k different populations.

The goal of regression clustering is to recover the latent partitioning Π = (C1, · · · ,Ck) of

{zzz1, . . . ,zzzn} to conform to their respective populations as much as possible.

A grouped linear model is used to describe the data,

y j = xxx′jβββ i + e j, e j ∼ N(0,σ2
i ) for all j ∈ Ci; i = 1, . . . ,k. (1.1)

Optimal parameter estimation and partition can be achieved using the maximum like-

lihood principle. Under the fixed partition model (1.1), the log-likelihood function is

given by

logLn(k,Π,(βββ 1,σ
2
1 ), · · · ,(βββ k,σ

2
k )) =−1

2

k

∑
i=1

∑
j∈Ci

(
log2π + logσ2

i +
(y j −βββ ′

ixxx j)
2

σ2
i

)
.

(1.2)

It is clear that the best estimates of the parameters and the partition should be those

maximizing the log-likelihood (1.2) for given k. However, due to the large number of

possible partitions, it is almost impossible to find the global optimal partition by enumer-

ation. Thus we use an iterative estimation method to find a local optimal estimates of

(βββ i,σ
2
i )i=1,...,k and Π for a given k, that extends the exchange method of Späth (1979,

1982).

When fixing (βββ i,σ
2
i )i=1,...,k at given estimates (β̂ββ i, σ̂i

2)i=1,...,k, (1.2) achieves the max-

imum if each data point j belongs to cluster

Ĉi = arg min
1≤i≤k

(
log σ̂2

i +
(y j − β̂ββ

′
ixxx j)

2

σ̂i
2

)
. (1.3)

At given Ĉi, i = 1, · · · ,k, (1.2) is the sum of the usual log-likelihood functions for homo-

geneous linear regressions within clusters. Hence, it is maximized at the least squares(LS)

4
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estimates β̂ββ i obtained based on the data points within Ĉi, and

σ̂2
i =

∑ j∈Ĉi
(y j − β̂ββ

′
ixxx j)

2

n̂i
, where n̂i = |Ĉi| is the size of Ĉi, i = 1, . . . ,k. (1.4)

Then log L̂n is monotonically increased if the steps (1.3) and (1.4) are carried out alter-

nately. This procedure leads to a local maximum in finitely many steps. It is expected to

be a good approximation of the global maximum if an initial partition is properly chosen.

It is well-known that the least squares method is very sensitive to outliers and violation

of the normality assumption in the data. Robust methods can be developed to overcome

this vulnerability. Among them, procedures based on M-estimation(RM) are considered

here. M-estimation can be regarded as a generalization of the maximum likelihood esti-

mation. A particular one is the maximum likelihood estimation based on Huber’s least

favourable distribution, whose density function is the normal at around the origin and the

exponential in the tails. Using Huber’s M-estimation method, we can drop the assump-

tion e j ∼ N(0,σ2
i ) in (1.1) and estimate βββ i by minimizing ∑ j∈Ĉi

ρc(y j −βββ ′
ixxx j) for given

partition Ĉi, i = 1, . . . ,k. Here ρc(·) is Huber’s discrepancy function defined as

ρc(t) =





1

2
t2, |t|< c,

c|t|− 1

2
c2, |t| ≥ c,

(1.5)

where c is determined by the scale parameter in Huber’s least favourable distribution.

We find that assuming a constant scale parameter across all clusters tends to give a bet-

ter robust results, so adopt this assumption in this section. Now for given estimates β̂ββ i,

i= 1, . . . ,k, each data point j is assigned or reassigned to cluster Ĉi = argmin1≤i≤k ρc(y j−
β̂ββ
′
ixxx j). At this point, it can be seen that, instead of log L̂n, the function ∑

k
i=1 ∑ j∈Ci

ρc(y j −
βββ ′

ixxx j) will be monotonically increased if the above two M-estimation steps are carried out

alternately. This gives a robust counterpart of the likelihood-based local optimal estima-

tion and selection introduced earlier in this section.

1.3.2 Determining the number of clusters

Depending on the experiment setups, the number of cell populations is known in some of

the data sets analysed in this thesis, if not, one can decide the optimal number of clusters

by minimizing an information criterion function.

For LS regression clustering, Shao and Wu (2005) develop a criterion as

D(Πk) =
k

∑
i=1

||yyyCi
−XCi

β̂ββ i||2 +q(k)An, (1.6)

5



Chapter 1

where q(k) is a strictly increasing positive function of k, An is a sequence of positive

constants, β̂ββ i are least squares estimators, and || · || is the Euclidean norm. Typically

q(k) = kp and An ∝ log(n) or An ∝ log log(n) are chosen.

For the RM method, we adopt the robust information criterion by Rao et al. (2007):

R(Πk) =
k

∑
s=1

∑
j∈Cs

ρc(y j,Cs
−xxx′j,Cs

β̂ββ s)+q(k)An, (1.7)

where ρc is the Huber’s discrepancy function, and β̂ββ s are the M-estimators.

1.3.3 Point-wise iterative algorithm

The first terms in information criteria (1.6) and (1.7) measure the goodness-of-fit of the

model, similar to which we define the within-cluster sum of residual squares as

SRSS(Πk,βββ 1, · · · ,βββ k) =
k

∑
i=1

||yyyCi
−XCi

βββ i||2 (1.8)

for LS regression clustering and

RRSS(Πk,βββ 1, · · · ,βββ k) =
k

∑
i=1

ni

∑
j=1

ρc(y j,Ci
−xxx′j,Ci

βββ i) (1.9)

for an M-estimation based robust regression clustering.

For a fixed number of clusters, k, the iterative optimization procedure can be accom-

plished according to the following algorithm:

(i) Label all the observations from 1 to n (order does not matter). Given an initial

partition Πk = {C1, · · · ,Ck} of {zzz1, . . . ,zzzn}, fit a regression model (or a robust re-

gression model with a ρc(·) function) in each of the k clusters and obtain the sum

of the residual squares sums RRSS0 for this partition. Let i = 0.

(ii) Set i = i+1, and reset i = 1 if i > n. Identify C j such that i ∈ C j. Then move i into

Ch with h = 1, · · · ,k, h 6= j respectively. For each of these k− 1 relocations, re-fit

the model by regression clustering (or robust regression clustering) and calculate

the sum of the residual squares sums (or RRSS) accordingly. Denote the small-

est one by SRSSh or RRSSh. If SRSSh < SRSS0 (or RRSSh < SRSS0 in robust

procedure), redefine C j = C j −{i}, Ch = Ch + {i}, and set SRSS0 = SRSSh (or

RRSS0 = RRSSh). Otherwise return to the beginning of (ii).

(iii) Repeat (ii) until the objective function (1.8) or (1.9) does not decrease any further,

which means no observation relocation is necessary and the optimal clustering is

achieved.
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1.3.4 Clustering RGB marked cancer cell data

In this section, we use a small data set that contains 128 cells, as an illustrative example

showing the performance of the proposed clustering method. Figure 1.3 (a) shows the raw

image data.

Clustering result

Recall that the iterative algorithm described in Section 1.3.3 guarantees only local mini-

mization, thus it is important to start from a good initial partition. We take the result from

the robust K-means discussed in Section 1.2.1 as an initial clustering. In Figure 1.3 (b),

we show the clustering result of the robust K-means with α = 0.1, in which the colorectal

cancer cells are represented by the colored dots. The five different colours indicate five

clusters. Each colour is specified as the combination of the three channels (red, green and

blue) according to the cluster center, and spatial locations of the dots are the same with

the cells, so as to resemble the real image in (a). The size of the dots indicate the area

of the corresponding cell. In (c), we show the final clustering result obtained by the LS

regression clustering, where the response is the three dimensional vector of standardised

RGB colour intensities and explanatory variable is the cell area. The difference between

(b) and (c) suggests that the cell morphology information used in the regression clustering

plays a role in separating different cell types.

(a) (b) (c)

Figure 1.3: (a) Raw spatial data on 128 colorectal cancer cells. (b) Initial clustering by

robust K-means, with cells represented by the coloured dots. Colours indicate clusters,

size of the dots suggests the area of the cells. (c) Clustering result using LS multivariate

regression clustering with the cell area being the explanatory variable.

Figure 1.4 shows a scattered plot of observed 3 dimensional responses, in which the

position of each dot represents the 3-dimensional colour vector of a cell, and the colour

of a dot indicates which cluster this cell belongs to. For example, the cluster at the bottom
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left of the image contains cells that express low fluorescent protein intensities in all three

channels, therefore the cluster is coloured as (almost) black.

Figure 1.4: 3D-scattered plot of the clustered RGB intensities of the 128 cells. Colors of

the points show the same 5 clusters shown in

In Table 1.1, we summarize the outcome for the LS regression clustering.

Cluster Mean (Red, Green, Blue) ŜD (Red, Green, Blue) Cluster size

1 (4.99, 5.02, 5.78) (0.10, 0.17, 0.25) 25

2 (5.66, 5.83, 5.78) (0.23, 0.26, 0.18) 23

3 (5.40, 5.36, 5.57) (0.12, 0.18, 0.14) 20

4 (4.55, 4.19, 5.52) (0.28, 0.16, 0.11) 41

5 (6.32, 6.50, 5.92) (0.22, 0.24, 0.18) 19

Table 1.1: Summary statistics of clusters obtained from the multivariate LS regression

clustering by including the cell area covariate. Table columns show sample means and

standard deviations of cluster centers, as well as the number of cells in each cluster.

We only show clustering result of the LS regression clustering, because it outperforms

the RM method in our case, which we will show later in this section.

Selecting the number of clusters

To select the optimal number of clusters, we used the information criterion function (1.6)

for LS and (1.7) for RM, with q(k) = k, where k is the unknown number of clusters that

8
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we are seeking for. Figure 1.5 shows the optimal numbers of clusters using An = log logn

(C1) and An = logn (C2) for both clustering approaches. Robust clustering is carried out

using Huber’s discrepancy function (1.5) with the tuning constant c= 1.345 being chosen.

The resulting optimal number of clusters based on C1 is 5 by both LS and RM regression

clustering criterion, which is compatible with biological considerations.
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Figure 1.5: Information criteria for Selecting of the number of clusters. Criterion function

is specified in (1.6) for LS and (1.7) for RM, with An equal to log logn (C1) and logn (C2).

All criterion values are scaled to between 0 and 1.

Clustering assessment

Finally, we assess the performances of the LS and RM regression clustering, and com-

pare them with that of the robust K-means method. The prediction strength (PS) statistic

introduced by Tibshirani and Walther (2005) is used for the assessment.

For a candidate number of clusters k (k = 5 in our case), let Ĉte = {Ĉte,1, . . . , Ĉte,k}
denote the partition of the test set resulting from regression clustering on all the data. Let

n1, . . . ,nk be the number of observations in these clusters. Let Ĉtr be the partition of the

test set resulting from regression clustering on the training set. In particular, in the latter

case each data point in the test set is clustered using (1.3) with β̂i, i = 1, . . . ,k produced

by the training set.

Following notations of Tibshirani and Walther (2005), denote D[Ĉtr, Ĉte] as the n×n

co-membership matrix, with ii′th element D[Ĉtr, Ĉte]ii′ = 1, if a pair of observations i and
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i′ that belong to the same cluster in Ĉte (i.e. i 6= i′ ∈ Ĉte, j, j = 1, . . . ,k ) also fall into the

same cluster in Ĉtr, and 0 otherwise. The prediction strength statistic can be written as

PS = min1≤ j≤k

1

n j(n j −1) ∑
i6=i′∈Ĉte, j

D[Ĉtr, Ĉte]ii′ .

Therefore, the prediction strength is the proportion of observation pairs in the worst per-

forming test cluster whose clustering results remain unchanged when clustering them by

the training set clustering rule. Clearly, a regression clustering result has higher predictive

power if the associated PS is higher.

For our data, we assess the clustering performance by cross-validation using 4 random

partitions of our sample. Cross-validated prediction strength values for K-means, LS and

RM regression clustering methods are 0.44, 0.80 and 0.66, respectively. This suggests

that the LS regression clustering is superior to the to robust K-means. Moreover, due to

the absence of strong deviations from the multivariate normal model for these data, the

out-of-sample prediction strength of the LS regression clustering is larger than that of the

robust RM regression clustering approach. Thus, we adapt the LS regression clustering

to our datasets.

In the remaining chapters of this thesis, we assume the data has already been clustered

and focus only on modelling the spatio-temporal interactions on growth between cell

types.

1.4 A selective overview on Spatio-Temporal Models

1.4.1 Conditionally Auto-Regressive (CAR) Models

To model spatio-temporal data, one could choose to approximate the spatio-temporal pro-

cess by a spatial process of time series, that is, to view the process as a multivariate spatial

process where the multivariate dependencies are inherited from temporal dependencies.

In other words, it can be seen as a temporal extension of spatial processes.

The most popular way of developing a spatial process is through the conditionally

auto-regressive (CAR) model proposed by Besag (1974). Under Gaussian assumption,

the general form of a CAR can be expressed as

Zi|ZN(i) ∼ N
(

f
(
ZN(i)

)
,τ2

i

)
, (1.10)

where i indices for location, N(i) denotes the neighbourhood of i and function f (·) is most

often taken as a weighted sum of observations in the neighbourhood ∑ j 6=i wi jZ j.

Waller et al. (1997) extend the CAR model into a spatio-temporal setting by allowing

spatial effects to vary across time. Specifically, let Yi,t be observed data at time t, Yi,t =
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Xi,tγ +θi,t +Zi,t , where Xi,t are covariates, θi,t denotes a random effect variable with zero

expectation and Zi,t denotes spatial effects that follow a CAR model in (1.10) for each

t independently. However, the model lacks a specification of temporal dependency, as

also noted by Knorr-Held (2000), who discussed a variety of possible spatio-temporal

interactions, although the focus is still on single outcomes.

The extensions to multivariate spatio-temporal settings has been more recent, Quick

et al. (2015) proposed a non-separable multivariate space-time CAR model (MSTCAR)

on Gaussian data, which itself is a special case of the multivariate CAR models of Gelfand

and Vounatsou (2003). Quick et al. (2017) generalize the MSTCAR model to accomodate

Poisson data of multiple groups, where both temporal and between group dependencies

are modelled as multivariate dependencies.

Y
(c)
i,t = X

(c)
i,t γ +Z

(c)
i,t + ε

(c)
i,t ,

where ZZZ ∼ MCAR(1,Σ), that is

ZZZ
(.)
i,. |ZZZ

(.)
N(i),.

,Σ ∼ N

(
∑

j∈N(i)

Z
(.)
j,./|N(i)|, 1

|N(i)|Σ
)
,

where Σ is a non-separable covariance matrix capturing temporal and between group cor-

relations. Other works related to spatial process of time series include Sans et al. (2008)

and Quick et al. (2016), see Carlin et al. (2014) for a more complete coverage.

1.4.2 Latent Process Time Series Models

Alternatively, one also think of the process as a time series of spatial process, or a spatial

extension of time series. This is the approach we take in our spatio-temporal modelling.

The underlying notion is that “the temporal dependence is more natural to model than the

spatial dependence” (Cressie and Wikle, 2015).

Gaussian data response

Data for which Gaussian distribution is assumed is typically modelled by a multivariate

Gaussian process with an additive zero-mean error, called the data model:

Y
(c)
i,t = Z

(c)
i,t + ε

(c)
i,t ,

where Y
(c)
i,t denotes observed data with indices i for locations, t for time and c for groups

or variables, and Z
(c)
i,t is a Gaussian process. The major difference between latent process

models is the specification of Zi,t , which is usually called the process model. For sim-

plicity, we abuse the use of ε and denote all independent zero-mean errors with the same
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notation, although those in different equations should be different variables.

Wikle et al. (1998) propose the hierarchical space-time model for climate data: Zi,t =

αi +M(t;γi)+Ui,t , where αi represents site specific intercept, M(t;γi) models seasonal

effects for each site and Ui,t is a spatio-temporal dynamic process, which follows the

VAR(1) model introduced by Cressie and Wikle (2015) in Section 6.4.2 as a special case

of the spatial-temporal autoregressive moving-average (STARMA) model. Specifically,

the VAR(1) model has the form

UUU t =HHHtUUU t−1 +εεε t , (1.11)

where HHHt is a matrix of regression coefficients.

Shaddick and Wakefield (2002) implement a similar model on pollutant data, different

in that: i) external covariates, X
(c)
i,t , are included; ii) ZZZt follows the VAR(1) model directly

with HHHt taken as an identity matrix; iii) the presence of multiple variables (or pollutants).

The process model is then written as

Z
(c)
i,t = X

(c)
i,t γ +Z

(c)
i,t−1 + ε

(c)
i,t , (1.12)

where c denotes the types of pollutants and X
(c)
i,t represents explanatory variables, such as

the temperature and location of each site.

Bradley et al. (2015) propose a general model for multivariate spatio-temporal Gaus-

sian data, the MSTM, and show the prediction performance in terms of space (i.e. predic-

tion at unobserved locations). The process model is expressed as

Z
(c)
i,t = X

(c)
i,t γ +SSS

(c)
i,t UUU t + ε

(c)
i,t , (1.13)

where the column vectors of SSS
(c)
i,t are Moran’s I basis functions, and UUU t follows the same

VAR(1) model structure in (1.11). However HHHt does not contain any parameter to be esti-

mated, instead it is a carefully chosen propagator matrix. Such structure allows effective

rank reduction for high dimensional data. Bradley et al. (2016) implement this model on

survey data about unemployment statistics.

Poisson data response

However, assessing and modelling multivariate dependence when the outcomes are dis-

crete can be challenging, since traditional methods for detecting dependence in additive

Gaussian error are inappropriate. To address this issue, the most common approach is

to assume that the conditional expectation of the observed process (on log-scale), as a

latent process, has a nice distribution, for example, multivariate Gaussian. The spatial

dependency is then modelled by the latent process, which cannot be observed directly
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and which evolves independently of the past and present values of the observed process.

There are extensive work relating to latent spatial-temporal models under the Bayesian

framework. Typical examples are shown as follows.

Data models for count data usually take the form

Y
(c)
i,t |YYY t−1 ∼ Poisson(λ

(c)
i,t ),

where g
(

λ
(c)
i,t

)
= Z

(c)
i,t + ε

(c)
i,t

and g(·) is the link function, which is log in this case.

This conveniently maps the problem of modelling Poisson data into that of a latent

Gaussian process in the conditional expectation λ
(c)
i,t . Thus, the process models for Gaus-

sian data from previous paragraphs can also be adopted in this context. For example,

Mugglin et al. (2002) use a process model similar to (1.12): Zi,t = log(ni)+Xi,tγ +Ui,t ,

where Ui,t is defined the same as (1.11). Holan and Wikle (2015) propose a process model

that resembles that of (1.13) except for the different choice of basis functions and matrix

HHHt . Bradley et al. (2017) extend the MSTM proposed by Bradley et al. (2015) to acco-

modate count-valued data, by introducing a conjugate distribution of Poisson distribution,

the log-gamma distribution for the random effects in (1.13), UUU t .

Remarks

Following Cox et al. (1981), in the analysis of time series data, this type of modelling ap-

proach is termed as parameter driven models. Unfortunately, as stated by several authors,

parameter driven models requires considerable computational effort and are not yet ready

for complex model settings (Davis et al., 2003; Benjamin et al., 2003; Schrödle et al.,

2012; Dunsmuir et al., 2015).

1.4.3 Observation-driven Time Series Models and Spatial Extensions

In contrast, in the other type of models termed by Cox et al. (1981), called observation-

driven models, time dependence arises because the conditional expectation of the outcome

given the past depends explicitly on the past values. Zeger and Qaqish (1988) review var-

ious observation-driven time series models with a quasi-likelihood estimation. Fokianos

and Tjøstheim (2011) develop and study the probabilistic properties of a log-linear au-

toregressive time series model for Poisson data,

λt = α0 +αλt−1 +β log(yt−1 +1),

as an extension of the model considered by Fokianos et al. (2009). Although λt−1 is

present in the autoregressive terms, it can be fully expressed by log(yt−l + 1), l > 1,
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through repeated substitution. The model therefore falls to the category of observational

driven models. See Dunsmuir et al. (2015) and Kedem and Fokianos (2005) for a com-

plete review.

Benjamin et al. (2003) propose a quite general class of models, called generalised

autoregressive moving average (GARMA) models. The most general form of the gener-

alised autoregressive moving average model, GARMA(p,q), is defined as

g(µt) = Xtα +
p

∑
t ′=1

βt ′Ht ′(yt−t ′)+
q

∑
t ′=1

γt ′Dt ′(µt−t ′),

where g(·) is the canonical link function, Ht ′(·) and Dt ′(·) are known functions for all t ′.

The autoregressive part of the model proposed in Chapter 3 borrows the structure of the

GARMA model .

However, spatial extension for discrete observational-driven time series is challenging.

Unlike parameter-driven models, which impose continuous distributional assumptions on

expectation of the observe process, observation-driven models face the difficulty of iden-

tifying the multivariate distribution of discrete variables. Literature about spatio-temporal

models of this kind is relatively sparse. Held et al. (2005) propose a multivariate time

series model

λi,t = βyi,t−1 + vi,t , (1.14)

where yi,t denote observed count data at time t and geographical region i, β is the autore-

gressive parameter and

logvi,t = αi +∑
s

(γs sin(ωst)+δs cos(ωst)) (1.15)

captures seasonal dependency, where ωs are Fourier frequencies and αi’s are model pa-

rameters are allowed to vary across space. Yet, the model lacks specification of spatial

dependency.

Paul et al. (2008) extended the second part of the model to allow seasonality terms to

vary across regions by changing γs and δs in (1.15) to γi,s and δi,s respectively. They also

generalised the first part of the model (1.14) as

λi,t = βiyi,t−1 +φi ∑
j 6=i

w jiy j,t−l + vi,t , (1.16)

so that different locations are allowed to have different autoregressive parameters, and the

influence of y j,t−l for j 6= i or lag l > 1 is quantified by model parameter φi. The weight

w ji could be set as an indicator of whether j within a neighbouring area of i, in this case,

φi captures spatial dependences of previous time points with lag l, but still lacking the

spatial correlations at the same time point.
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Paul and Held (2011) further extend the model by introducing random effects. Specif-

ically, they decompose unknown quantities in the model (including some model parame-

ters), specifically βi,φi,vi,t , additively on the log scale, for example log(βi) = a(β )+b
(β )
i ,

where a(β ) denotes intercept of β and b
(β )
i is a random effect.

Note that these models are modelling directly on the conditional expectation of the

count data, meaning they are using an identity link function, instead of the canonical

log-link. Thus, it is required that the parameters are positive to ensure that the resulting

conditional expectation is positive.

Remarks

While parameter driven models require complicated estimation techniques, observation

models enable inferences in a (penalised) likelihood framework and therefore can be eas-

ily fitted even for quite complex regression models (Davis et al., 2003). Schrödle et al.

(2012) proposed a parameter-driven version of spatio-temporal model, which is very sim-

ilar to the observation-driven model proposed by Paul et al. (2008) in (1.16):

λi,t = βλi,t−1 +φ ∑
j 6=i

w jiλ j,t−1 + εi,t ,

where εi,t is a white noise. They then compare the performance of both versions and

conclude that the parameter-driven models perform slightly better in terms of prediction

in some cases, however, while the computation time for the observation-driven model is

mostly less than a second, fitting a parameter-driven model takes several hours if it ever

converges, because of the complexity with the latent autoregressive process. Besides, their

model contains only five parameters, while in our application, the number of parameters

of interest grows quadratically with the number of cell populations, which makes the

parameter-driven models intractable even with a moderate number of cell populations.

For this reason, we choose to work with a spatial extension of observation-driven time

series.

1.5 Thesis Outline

In this thesis, we develop modelling tools for the analysis of multivariate spatio-temporal

count data on lattice. Chapter 2 is directly motivated by the RGB marked cell data imaged

on a high-content imager (Operetta, PerkinElmer) in longitudinal experiments. We are

primarily concerned about how interactions between cell types may affect their growth.

To do this, we divide the image into a regular lattice and transfer each image data into

a spatial lattice data of cell counts in each tile. We propose a conditional autoregres-

sive model with Poisson response, where model parameters can directly be interpreted
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as impacts between different cell populations in neighbouring tiles. Numerical results

from simulated and real data confirm the validity of the proposed approach in terms of

prediction, goodness-of-fit and estimation accuracy.

In Chapter 3, we extend the model in Chapter 2 to incorporate correlation parameters

through a Gaussian copula regression model, where temporal dependences are modelled

through the marginal expectations by an log-linear autoregressive model while both spa-

tial and cross groups correlations are incorporated by the Gaussian copula. Poisson and

Negative binomial marginal distributions are implemented. The model allows for both

positive and negative correlations and could potentially be generalized to handle any cor-

relation structures. We provide pairwise composite likelihood inference tools in closed

forms, the proposed methodology strikes a good balance between computational feasibil-

ity and statistical accuracy, which we demonstrate with examples.

In Chapter 4, we implement an information criterion-based model selection method in

the applications of the copula-based model proposed in Chapter 3. The method guarantees

to converge to the model with the lowest information criterion and is efficient enough to

handle large candidate model set. Although in this thesis we only focus on selection of the

copula-based model, the proposed methodology is extremely flexible and can be applied

to a wide variety of regression based models as an efficient variable subsetting toolkit, as

long as the information criterion is properly chosen.

To make our numerical results reproducible and our methodologies available to other

practitioners, we present in Chapter 5 an R package implementing estimation and selec-

tion tools for the proposed copula-based model. The real data analysed in this thesis is

also made available in the package. We demonstrate the usage of our package with exam-

ples and compare the performance with other packages on both simulated and real data.

Although to our knowledge there is no existing package that implements exactly the same

type of model as ours, we obtain similar results with other package functions on some

special cases, confirming the correctness of our computations. Besides, our package is

usually faster than other packages when performing the same task. Finally, we provide

for non-R users a web application using the package Shiny (Chang et al., 2018), in which

we offer tools for visualising data spatially and temporally, as well as estimation and se-

lection tools for the simpler model proposed in Chapter 2. The application can handle

relatively large data set, in the built-in example data, there are 13 groups with over 200

parameters, yet estimation typically takes only a few seconds.

In the final chapter of this thesis, we present an overall summary of the advantages

and limitations of the research. We also discuss future research directions that lead on

from this work.
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A Spatio-Temporal Model for

Longitudinal Count Data on

Multicolour Cell Growth

2.1 Introduction

In this chapter, we develop a conditional spatial-temporal model for grouped count data

on tiled images, and provide its application in the context of longitudinal cancer cell

monitoring experiments. Our model enables us to measure the effect on the growth rate

of each cell population and changes due to local cross-population interactions.

Specifically, in order to describe the spatial distribution for different cell types, we

first divide an image into a number of contiguous regions (tiles) to form a regular lattice

structure as shown in Figure 2.1. We then record the frequency of cells of different colors

in each tile at subsequent time points, and based on which we model the spatial and

temporal dependencies of the cell growth. Finally, we propose a Poisson model with

intensity modelled as a log-linear form similar to those in Knorr-Held and Richardson

(2003) and Fokianos and Tjøstheim (2011), and we quantify spatio-temporal impacts of

different cell populations in neighboring tiles through model parameters, as illustrated in

Figure 2.1 (b). Impacts are allowed to be positive or negative, and unlike latent models

that describe between group dependence through a covariance matrix, influences do not

have to be symmetrical in our model.

Since the model complexity can be potentially very large in the presence of many cell

types, it is also important to address the question of how to select an appropriate model

by retaining only the meaningful spatio-temporal interactions between cell populations

We carry out a model selection using the common model selection criteria for parametric

models, the Akaike and the Bayesian information criteria (AIC and BIC). For this chapter

only, we search through all candidate models to find the one with the lowest criterion
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(a)
t = 0

t = 8

(b)

t

t+ 1

Figure 2.1: (a) Microscope images for the cancer cell growth data obtained from a high-

content imager (Operetta, Perkin Elmer) at the initial and final time points of the exper-

iment. In each image, colors for non-fluorescent fibroblasts, as well as red and green

fluorescent cancer cells are merged. (b) Illustration of the local structure for the model in

(2.1). The two planes correspond to 3×3 tiles at times t and t +1. The average number

of cells of color c in a given tile at time t +1 is assumed to depend on the number of cells

of other colors in contiguous neighboring tiles at time t.

value, since we have a reasonably small number of parameters in our experiments. But

we propose in Chapter 4 a more elegant way of searching for the best model when a large

candidate model set is expected.

The remainder of this chapter is organized as follows. In Section 2.2, we introduce the

conditional spatio-temporal lattice model for grouped count data and develop maximum

likelihood inference tools. In the same section, we discuss the asymptotic properties of

our estimator and standard errors. In Section 2.3, we study the performance of the esti-

mator using simulated data. In Section 2.4, we apply our method to analyze datasets from

two in-vitro experiments: One where cancer cells are co-cultured with fibroblasts, and

one where individually recognisable cloned cancer cell populations are cultured together

in different combinations. In Section 2.5, we conclude and give final remarks.

2.2 Methods

2.2.1 Multicolour spatial autoregressive model on the lattice

Let L ∈ N
2 be a discrete lattice. In the context of our application, the lattice is obtained

by tilling a microscope image into nL tiles, denoted by Ln(⊂ L ). The total number of

tiles nL is a monotonically increasing function of n. One can choose various forms of

lattice, for example, the regular or hexagonal lattices. For simplicity, we tile the image

into n× n regular rectangular tiles, which makes nL = n2. An example of a tiled image

with n = 10 is shown in Figure 2.1 (a). Denote a pair of neighbouring tiles {i, j} with

i ∼ j, if tiles i and j share the same border or coincide (i = j). Each tile may contain
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cells of different colours; thus, we let C = {1, . . . ,nC } be a finite set of colours and

denote by nC the total number of colours. Let YYY = {YYY t , t = 1, . . . ,T} be the sample of

observations whereYYY t = {YYY (c)
t ,c∈C } is the collection of observations at time point t, and

YYY
(c)
t = (Y

(c)
1,t , . . . ,Y

(c)
nL ,t)

⊤ is the vector of observed frequencies for color c on the lattice Ln

at time t. The joint distribution for the spatio-temporal process on the lattice is difficult

to specify, due to local spatial interactions for neighboring tiles and global interactions

occurring at the level of the entire image. Therefore, in this chapter, we focus mainly on

modelling the conditional marginal expectations of YYY .

Due to the fact that cells tend to be clustered together due to the cell division pro-

cess and other biological mechanisms; it is not uncommon to observe low counts in a

considerable portion of tiles, thus, a Gaussian assumption would not be appropriate.

We suppose that the count for the ith tile Y
(c)
i,t follows a marginal Poisson distribution

Y
(c)
i,t |YYY t−1 ∼ Pois(λ

(c)
i,t ). The intensity is modelled through a canonical log-link v

(c)
i,t =

logλ
(c)
i,t , where v

(c)
i,t takes the following spatial autoregressive form:

v
(c)
i,t = α(c)+ ∑

c′∈C

β (c|c′)S(c
′)

i,t−1, (2.1)

S
(c′)
i,t−1 =

1

ni
∑

i∼ j: j∈Ln

log
(

1+Y
(c′)
j,t−1

)
, (2.2)

for all c ∈ C , t = 1, . . . ,T , with ni = {# j : i ∼ j, j ∈ Ln} being the number of tiles in a

neighbourhood of tile i. Although we are adopting the regular grids for simplicity, the

model is readily applicable to other tiling strategies. Changing the tiling strategy would

only change the realisations of S
(c′)
i,t−1 in (2).

Here, we assume that the conditional count for different tiles at time t is independent

conditioning on information from t −1, i.e.

P
(
Y
(c)
i,t Y

(c′)
j,t |YYY t−1

)
= P

(
Y
(c)
i,t |YYY t−1

)
P
(
Y
(c′)
j,t |YYY t−1

)
,

for all c,c′ ∈ C , t = 1, . . . ,T, and i, j ∈ Ln, i 6= j. This does not suggest that they (Y
(c)
i,t

and Y
(c′)
j,t ) are independent, but rather that their spatio-temporal dependence is due to

the structure of intensity λ
(c)
i,t in (2.1). Conditional independence is a commonly used

assumption for spatio-temporal models in a non-gaussian setting Waller et al. (1997);

Wikle and Anderson (2003), since it’s exceedingly difficult to work with multivariate

non-Gaussian distribution Cressie and Wikle (2015).

The elements of the parameter vector ααα = (α(1), . . . ,α(nC ))⊤ correspond to a baseline

average count for cells of different colours. The spatio-temporal interactions are regressed

on the statistic S
(c′)
i,t−1 in (2.2), which essentially counts the average number of cells of

colour c′ in the neighbourhood of tile i at time t −1. Hence, the autoregressive parameter
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β (c|c′) is interpreted as positive or negative change in the average number of cells with

colour c, due to interactions with cells of colour c′ in neighbouring tiles. A positive (or

a negative) sign of β (c|c′) means that the presence of cells of colour c′ in neighboring

tiles promotes (or inhibits) the growth of cells of colour c. The spatio-temporal effects

β (c|c′),c,c′ ∈ C , are collected in the nC × nC weighted incidence matrix BBB. This may

be used to generate weighted directed graphs, as shown in the example of Figure 2.2,

where the nodes of the directed graph correspond to cell types, and the directed edges are

negative or positive spatio-temporal interactions between cell types.

Equation (2.1) could be extended to some more specific form, for example, v
(c)
i,t =

α(c)+∑c′∈C β
(c|c′)
1 S

(c′)
i,t−1 +β

(c|c′)
0 log

(
1+Y

(c′)
i,t−1

)
, where β

(c|c′)
1 are interpreted as the ef-

fect of cells of color c′ from neighbouring (but not the same) tiles have on the growth of

cells with color c, while β
(c|c′)
0 as the effect of cells of color c′ from the same tile. How-

ever, we stick to the model in (2.1) because we have no evidence showing that the more

complex model is advantageous from model selection view point.

We choose to work with a log-linear form for the autoregressive equation of v
(c)
i,t in

Equation (2.1), where we apply a logarithmic transform and add 1 to the counts at time

t − 1, Y
(c)
i,t−1. It offers several advantages compared to the more commonly used linear

form. First, λ
(c)
i,t and Y

(c)
i,t−1 are transformed on the same scale. Moreover, this model can

accommodate both positive and negative correlations, while it is not possible to account

for positive association in a stationary model if past counts are directly included as ex-

planatory variables. For example, with the model vi,t = α +βYi,t−1 for a single colour, the

intensity would be λi,t = exp(α)exp(βYi,t−1) , which may lead to instability of the Pois-

son means if β > 0 since λi,t is allowed to increase exponentially fast. Finally, adding 1 to

Y
(c)
i,t−1 is for coping with zero data values, since log(Y

(c)
i,t−1) is not defined when Y

(c)
i,t−1 = 0,

which arises often, and it maps zeros of Y
(c)
i,t−1 into zeros of log(1+Y

(c)
i,t−1).

2.2.2 Likelihood inference

Let θθθ be the overall parameter vector θθθ = (ααα⊤,vec(BBB)⊤)⊤ ∈ R
p, where ααα is a nC -

dimensional vector defined in Section 2.2.1 and BBB is a nC × nC matrix of colour in-

teraction effects, p = nC (1+nC ) is the total number of parameters. Then the maximum

likelihood estimator(MLE) is written as

Ln(θθθ) =
T

∏
t=1

∏
c∈C

∏
i∈Ln

P(Y
(c)
i,t |YYY t−1;θθθ)w

(c)
i,t =

T

∏
t=1

∏
c∈C

∏
i∈Ln

(
e
−λ

(c)
i,t (θθθ)

λ
(c)
i,t (θθθ)

y
(c)
i,t

y
(c)
i,t !

)w
(c)
i,t

, (2.3)
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where λ
(c)
i,t (θθθ) is the expected number of cells with colour c in tile i at time t defined in

(2.1). The MLE θ̂θθ is obtained by maximizing the log-likelihood function

ℓn(θθθ) = ∑
i∈Ln

T

∑
t=1

∑
c∈C

[
Y
(c)
i,t v

(c)
i,t (θθθ)− exp

{
v
(c)
i,t (θθθ)

}]
, (2.4)

where v
(c)
i,t (θθθ) ≡ logλ

(c)
i,t (θθθ). Equivalently, θ̂θθ is formed by solving the estimating equa-

tions

0 = uuun(θθθ)≡
1

nL

∇ℓn(θθθ) =
1

nL
∑

i∈Ln

T

∑
t=1

γγγ i,t(θθθ)⊗∇vvvi,t , (2.5)

where γγγ i,t(θθθ) =
(

y
(1)
i,t − exp

{
v
(1)
i,t (θθθ)

}
, . . . ,y

(nC )
i,t − exp

{
v
(nC )
i,t (θθθ)

})
, ⊗ denotes the Kro-

necker product, ∇ is the gradient operator with respect to θθθ and ∇vvvi,t ≡ ∇vvv
(c)
i,t (θθθ) =

(1,S
(1)
i,t−1, . . . ,S

(nC )
i,t−1)

⊤. The solution to Equation (2.5) is obtained by a standard Fisher

scoring algorithm, which is found to be stable and converges fast in all our numerical

examples.

Finally, in practical applications it is also important to address the question of how to

select an appropriate model by retaining only the meaningful spatio-temporal interactions

between cell populations, and avoid over-parametrized models. Model selection plays

an important role by balancing goodness-of-fit and model complexity. Here, we select

non-zero model parameters based traditional model selection approaches: the Akaike

Information criterion, AIC =−2ℓ(θ̂θθ)+2p, and the Bayesian information criterion, BIC =

−2ℓ(θ̂θθ)+ p log(|nL T |).

2.2.3 Asymptotic properties and standard errors

In this section, we overview the asymptotic behavior of the estimator introduced in Sec-

tion 2.2.2. In typical longitudinal experiments, the number of time points seldom go

beyond 50 due to experimental, storage and processing cost, while nL can be relatively

large. So we work under the framework where T is assumed to be finite, while nL is al-

lowed to grow to infinity. This reflects the notion that the statistician is allowed to choose

an increasingly fine tiling grid as the number of cells increases. If the regularity conditions

stated in the Appendix hold, then
√

nL HHHn(θθθ 0)
1/2(θ̂θθ n −θθθ 0) converges in distribution to

a p-variate normal distribution with zero mean vector and identity variance, as nL → ∞,

with HHHn(θθθ) given in (2.6). Asymptotic normality of θ̂θθ n follows by applying the limit

theorems for M-estimators for nonlinear spatial models developed by Jenish and Prucha

(2009). One condition required to ensure this behaviour is that YYY t has constant entries at

the initial time point t = 0, which is quite realistic since typically cells are seeded ran-

domly at the beginning of the experiment. Our proofs mostly check α-mixing conditions

and L2-Uniform Integrability of the score functions uuui,t(θθθ) ensures a pointwise law of
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large numbers, with additional stochastic equicontinuity, a uniform version of the law of

large numbers required by Jenish and Prucha (2009).

The asymptotic asymptotic variance of θ̂θθ is VVV n(θ̂θθ) = HHH−1
n (θθθ 0), where HHHn(θθθ) is the

p× p Hessian matrix

HHHn(θθθ) =−E
[
∇2ℓ(θθθ)

]
=−E

(
∑

i∈Ln

∇uuui(θθθ)

)
, (2.6)

with uuui(θθθ) = uuui,1(θθθ)+ · · ·+uuui,T (θθθ) being the partial score function for the ith tile. Direct

evaluation of HHH(θθθ) may be challenging since the expectations in (2.6) is intractable. Thus,

we estimate HHHn(θθθ) by the empirical counterpart

ĤHHn(θθθ) =




ĤHH
(1)
(θθθ) 000 · · · 000

000 ĤHH
(2)
(θθθ) · · · 000

...
...

. . .
...

000 000 · · · ĤHH
(nC )

(θθθ)



,

where

ĤHH
(c)
(θθθ) = ∑

i∈Ln

T

∑
t=1

exp
[
v
(c)
i,t (θθθ)

]
[∇vvvi,t ] [∇vvvi,t ]

⊤ . (2.7)

Note that the above estimators approximate the quantities in formula (2.6) by condi-

tional expectations. Our numerical results suggest that the above variance approxima-

tion yields confidence intervals with coverage very close to the nominal level (1−α).

Besides the above formulas, we also consider confidence intervals obtained by a para-

metric bootstrap approach. Specifically, we generate B bootstrap samples YYY ∗
(1), . . . ,YYY

∗
(B)

by sampling at subsequent times from the conditional model specified in Equations (2.1)

and (2.2) with θθθ = θ̂θθ . From such bootstrap samples, we obtain bootstrapped estima-

tors, θ̂θθ
∗
(1), . . . ,θ̂θθ

∗
(B), which are used to estimate Var(θ̂θθ 0) by the usual covariance estimator

V̂VV boot(θ̂θθ) = ∑
B
b=1(θ̂θθ

∗
(b)−θθθ

∗
)2/(B−1), where θθθ

∗
= ∑

B
b=1 θ̂θθ

∗
(b)/B. Finally, a (1−α)100%

confidence interval for θθθ j is obtained as θ̂θθ j ± z1−α/2{V̂VV}1/2
j j , where zq is the q-quantile of

a standard normal distribution, and V̂VV is an estimate of Var(θ̂θθ) obtained by either Equation

(2.7) or bootstrap resampling.

2.3 Monte Carlo simulations

In our Monte Carlo experiments, we generate data from a Poisson model as follows. At

time t = 0, we populate nL tiles using equal counts for cells of different colors. For

t = 1, . . . ,T , observations are drawn from the multivariate Poisson model Y
(c)
i,t |YYY t−1 ∼
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Poisson(λ
(c)
i,t ),c ∈ C . Recall that the rate λ

(c)
i,t defined in Section 2.2.1 contains autore-

gressive coefficients β (c|c′), which are collected in the nC ×nC matrix BBB.

We assess the performance of MLE under different settings concerning the size and

sparsity of BBB. Consider the three models with the following choices of BBB:

B1B1B1 =




0.7 −0.7 0.7

0.7 0.7 −0.7

−0.7 0.7 0.7


 ,B2B2B2 =




0.05 −0.15 0.25

0.35 0.45 −0.55

−0.65 0.75 0.85


 ,B3B3B3 =




0.7 −0.7 0.7

0 0.7 0

0 0 0.7


 .

Denote Model i as the model corresponding to BBBi, i = 1,2,3. In Model 1, all the

effects in BBB have the same size; in Model 2, the effects have decreasing sizes; Model 3 is

the same as Model 1, but with some interactions exactly equal to zero.

We set α(1) = · · ·= α(nC ) =−0.1 for all three models, in which the parameter choices

reflect the situation where the generated process YYY has a moderate growth.

In Tables 2.1 and 2.2, we show results based on 1000 Monte Carlo runs generated

from Models 1-3, for n = 25,nC = 3 and T = 10 and 25. In Table 2.1, we show Monte

Carlo estimates of squared bias and variance of θ̂θθ . Both squared bias and variance of our

estimator are quite small in all three models, and decrease as T gets larger. The variances

of Model 2 are slightly larger than those in the other two models due to the increasing

difficulty in estimating parameters close to zero.

T = 10 T = 25

B̂ias
2

V̂ar B̂ias
2

V̂ar

Model 1 0.45(0.57) 5.75(0.26) 0.29(0.32) 2.36(0.11)

Model 2 0.64(0.91) 9.66(0.42) 0.67(0.71) 4.45(0.20)

Model 3 0.77(0.97) 8.09(0.36) 0.52(0.51) 3.47(0.16)

Table 2.1: Monte Carlo estimates for squared bias (×10−6) and variance (×10−4) of the

MLE from 1000 simulated runs with the number of time points T = 10 and 25. The three

models differ in parameter settings described in Section 2.3. Simulation standard errors

are shown in parenthesis.

In Table 2.2, we report the coverage probability for symmetric confidence intervals of

the form θ̂θθ ± z1−α/2ŝd(θ̂θθ), where zq is the q−quantile for a standard normal distribution,

with α = 0.01,0.05,0.10. The standard error, ŝd(θ̂θθ), is obtained by the squared root of di-

agonal elements ofVVV n(θ̂θθ) and the parametric bootstrap estimate, V̂VV est and V̂VV boot , described

in Section 2.2.3. The coverage probability of the confidence intervals are very close to the

nominal level for both methods.

In Table 2.3, we show results for the model selection based on 1000 Monte Carlo
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T = 10 T = 25

V̂VV boot V̂VV est V̂VV boot V̂VV est

Model 1 98.6 99.0 98.9 99.0

α = 0.01 Model 2 99.0 99.0 98.8 98.9

Model 3 98.9 99.0 98.9 98.9

Model 1 94.2 95.2 94.9 95.0

α = 0.05 Model 2 95.2 95.1 95.0 95.3

Model 3 95.4 95.5 94.9 95.1

Model 1 89.2 90.3 90.1 90.3

α = 0.10 Model 2 90.6 90.0 89.7 90.0

Model 3 90.6 90.6 90.2 90.2

Table 2.2: Monte Carlo estimates for the coverage probability of (1−α)% confidence

intervals θ̂θθ ± z1−α/2ŝd(θ̂θθ), with ŝd(θ̂θθ) obtained from the parametric bootstrap (V̂VV boot) and

the estimated inverse Hessian matrix (V̂VV est) specified in Section 2.2 and 2.3 respectively.

samples from Model 3 using the AIC and the BIC given in Section 2 for n = 25 and

T = 10,25. We report Type A error (a term is not selected when it actually belongs to the

true model ) and Type B error (a term is selected when it is not in the true model ). For

both AIC and BIC model selection is more accurate for large T . As expected AIC tends

to over select, and BIC outperforms AIC, with zero Type A error, and very low Type B

error.

T = 10 T = 25

Type A Type B Type A Type B

AIC 0.00 10.00 0.00 10.38

BIC 0.00 0.22 0.00 0.20

Table 2.3: Monte Carlo estimates for % Type A error (a term is not selected when it

actually belongs to the true model) and % Type B error (a term is selected when it is not

in the true model) using AIC and BIC criteria. Results are based on 1000 Monte Carlo

samples generated from Model 3 with n = 25 and T = 10,25.

Finally, we compare the performance of our model with the following Multivariate

conditional autoregressive (MCAR) model proposed by Leroux et al. (2000):

Y
(c)
i,t ∼ Pois

(
exp
(
xxxT

i,tβββ +ZZZi

))
,
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where ZZZi, i ∈ Ln are random effects with conditional distribution

ZZZi|ZZZ−i ∼ N

(
ρ ∑ j∼i: j∈Ln

ZZZ j

ρni +1−ρ
,

ΣΣΣZ

ρni +1−ρ

)
,

where ρ is a spatial autocorrelation parameter, with ρ = 0 corresponding to independence,

while ρ = 1 corresponds to the intrinsic model, and ΣΣΣZ is a nC T ×nC T between variable

covariance matrix, which is assumed to have no fixed structure, and ni is the number of

tiles in a neighbourhood of tile i as defined in Section 2.1. Let βββ = (αT ,vec(BBB)T )T be a

vector of regression parameters, where BBB is defined in Section 2.1 and α is the intercept.

Let the covariate xxxi,t be a n2
C

-dimensional vector consists of nC vectors: (S
(1)
i,t−1, . . . ,S

(nC )
i,t−1),

where S
(c)
i,t−1 carries the information from the neighbouring tiles on the previous time

point, defined in (2).

An independent Gaussian prior, N(0,100000), is specified for each regression param-

eter in βββ . A uniform prior on the unit interval, U(0,1), is specified for ρ . For covariance

matrix ΣΣΣZ , assume an inverse Wishart distribution with identity scale matrix and nC T

degree of freedom.

To evaluate the performance of MLE under our model and estimators obtained by the

MCAR model, we generate 1000 set of data from Model 1 described in Section 3. Es-

timation of the MCAR model is done by MCMC sampling, using R package CARBayes

by Lee (2013). Table 4 show Monte Carlo estimates of squared bias, variance, the cov-

erage probability of 95% confidence intervals and computation time for n,T ∈ {10,25}
and nC = 1,2,3. Two of the settings are the same as those shown for Model 1 in Table

1 in Section 3: n = 25,nC = 3,T = 10 and n = 25,nC = 3,T = 25 . In estimation of

MCAR, we also show results of two MCMC settings: 1. MCAR1: 1000 MCMC samples

generated and 200 discarded as the burn-in period; 2. MCAR2: 5000 samples with 100

discarded. Coverage probabilities of our model is computed as θ̂θθ ± z0.975ŝd(θ̂θθ), where zq

is the q−quantile for a standard normal distribution. The standard error, ŝd(θ̂θθ), is obtained

by taking the squared root of diagonal elements of VVV n(θ̂θθ) described in Section 2.3.

In overall, our method performs better than MCAR at analysing the kind of data that

we generate, especially when n and/or T is small, with much smaller bias and variance,

as well as computation time. The performance of MCAR improves significantly as the

model gets more complicated (i.e. larger nC ), and when n and T increases. In the case

where n = 25,T = 25 and nC = 3, it almost performs equally well as our model, however,

it takes almost an hour to obtain the estimates, while our method requires less than a

minute. Besides, for the coverage probabilities to reach the nominal level, it seems that

MCAR requires larger MCMC sample size as the model gets more complicated, while

those of our model has been stable and close to the nominal level in all cases.
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n = 10

T = 10 T = 25

B̂ias
2

V̂ar 95% Time B̂ias
2

V̂ar 95% Time

nC = 1

Model 1 2.89(3.40) 21.22(0.98) 94.5 1s 1.29(1.62) 10.18(0.46) 94.6 3s

MCAR1 420.20(44.63) 33.98(1.60) 90.1 4s 395.58(29.60) 13.75(0.60) 93.4 10s

MCAR2 381.20(44.99) 30.07(1.33) 96.7 17s 143.09(15.44) 13.54(0.58) 94.8 45s

nC = 2

Model 1 3.86(3.87) 43.81(1.95) 95.3 2s 3.51(1.96) 33.64(1.52) 94.6 3s

MCAR1 348.09(34.23) 90.85(4.11) 89.7 8s 177.33(15.29) 31.63(1.41) 92.7 25s

MCAR2 202.02(38.77) 85.59(3.97) 93.7 34s 26.82(9.87) 32.64(1.56) 93.1 105s

nC = 3
Model 1 4.83(5.10) 34.66(1.59) 94.9 3s 4.4(2.48) 14.21(0.65) 94.7 7s

MCAR1 217.09(17.38) 44.89(2.08) 82.6 12s 72.72(6.68) 13.73(0.62) 88.2 46s

MCAR2 82.64(14.25) 38.71(1.77) 93.0 52s 13.64(3.75) 13.27(0.61) 93.0 190s

n = 25

T = 10 T = 25

B̂ias
2

V̂ar 95% Time B̂ias
2

V̂ar 95% Time

nC = 1

Model 1 0.51(0.56) 3.18(0.14) 94.9 10s 0.40(0.37) 1.73(0.08) 94.5 23s

MCAR1 20.98(3.82) 3.99(0.17) 93.4 31s 41.21(1.63) 2.41(0.08) 92.0 70s

MCAR2 4.35(1.57) 4.64(0.21) 95.6 145s 10.37(3.75) 1.98(0.11) 93.5 345s

nC = 2

Model 1 0.76(0.34) 13.22(0.56) 94.4 8s 0.59(0.67) 5.69(0.25) 94.4 19s

MCAR1 26.17(5.61) 14.33(0.62) 91.9 54s 16.14(1.65) 5.54(0.24) 92.6 157s

MCAR2 10.84(4.67) 13.87(0.60) 93.7 260s 3.15(0.83) 5.44(0.24) 92.9 2290s

nC = 3
Model 0.67(0.66) 5.91(0.27) 94.6 24s 0.31(0.44) 2.35(0.14) 94.9 55s

MCAR1 15.42(2.17) 12.66(0.59) 60.6 82s 14.10(1.48) 4.43(0.28) 30.5 300s

MCAR2 2.13(2.14) 6.53(0.30) 92.3 390s 0.64(0.73) 2.16(0.13) 92.7 3387s

Table 2.4: Monte Carlo estimates for squared bias (×10−6), variance (×10−4), the cov-

erage probability of 95% confidence intervals as well as computation time for n,T ∈
{10,25} and nC = 1,2,3 of MLE of our model, and MCAR, where in MCAR1, 1000

MCMC samples generated and 200 discarded as the burn-in period; and in MCAR2,

5000 samples with 100 discarded. True values of regression parameters are shown as BBB1

in Section 3. Estimates are obtained from 1000 Monte Carlo runs.

2.4 Analysis of the cancer cell growth data

Cancer cell behaviour is believed to be determined by several factors including genetic

profile and differentiation state. However, the presence of other cancer cells and non-

cancer cells has also been shown to have a great impact on overall tumor behaviour

(Tabassum and Polyak, 2015; Kalluri and Zeisberg, 2006). It is therefore important to be

able to dissect and quantify these interactions in complex culture systems. The data sets

in this section represent two scenarios: cancer cell-fibroblast co-culture and cloned cancer

cell co-culture experiments. The data sets analyzed consist of counts of cell types (differ-

ent cancer cell populations expressing different fluorescent proteins, and non-fluorescent

fibroblasts) from 9 subsequent images taken at an 8-hour frequency over a period of 3

days using the Operetta high-content imager (Perkin Elmer). Information regarding cell

type (fluorescent profile) and spatial coordinates for each individual cell were extracted

using the associated software (Harmony, Perkin Elmer).

Each image was subsequently tiled using a 25×25 regular grid. We choose the num-
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ber of tiles for a balance between the fit of the model and capturing the local impact

between cell populations. More specifically, decreasing tile sizes enables one to detect

local impacts between cell populations, which is one of the objectives of our analysis.

However, if the tiles are too small, we will end up with mostly no cells in most tiles.

In this situation the conditional Poisson model would not fit well the data. On the other

hand, when the tiles are too large the model would fit the data well (the conditional Pois-

son would be approximately a conditional normal model), but we lose information on

local impacts. We recommend 0 to 20 average cells per tile, since for such choice our

diagnostic and goodness-of-fit analyses suggest that the conditional Poisson model fits

well the data whilst enabling us to measure local correlation effects between populations.

2.4.1 Cancer cell-fibroblast co-culture experiment

In this experiment, cancer cells are co-cultured with fibroblasts, a predominant cell type in

the tumor microenvironment, believed to affect tumor progression, partly due to interac-

tions with and activation by cancer cells (Kalluri and Zeisberg, 2006). In this experiment,

fibroblasts (F) are non-fluorescent whereas cancer cells fluoresce either in the red (R)

or green (G) channels due to the experimental expression of mCherry or GFP proteins,

respectively. Cells were initially seeded at a ratio of 1:1:2 (R:G:F).

Model selection and inference. We applied our methodology to quantify the magnitude

and direction of the impacts have on growth for the considered cell types. To select the

relevant terms in the intensity expression (2.1), we carry out model selection using the BIC

model selection criterion. In Table 5, we show estimated parameters for the full and the

BIC models, with bootstrap 95% confidence intervals in parenthesis. Figure 2.2 illustrates

estimated spatio-temporal impacts between cell types using a directed graph. The solid

and dashed arrows represent respectively significant and not significant impacts between

cell types at the 95% confidence level. Significant impacts coincide with parameters

selected by BIC.

The interactions within each cell type (β̂ (c|c),c=R,G,F) are significant, which is con-

sistent with healthy growing cells. As anticipated, the effects β̂ (c|c) for the cancer cells are

larger than those for the slower growing fibroblasts. The validity of the estimated param-

eters is also supported by the similar sizes of the parameters for the green and red cancer

cells. This is expected, since the red and green cancer cells are biologically identical ex-

cept for the fluorescent protein they express. Interestingly, the size of the estimated effects

within both types of cancer cells (β̂ (c|c),c = R,G) are larger than the impact they have on

one another (β̂ (G|R) and β̂ (R|G)). This is not surprising, since β̂ (c|c)(c = R,G) reflects

not only impacts between cells from the same cell population, but also cell proliferation.

The fact that we are able to detect the impacts between the red and green cancer cells

27



Chapter 2

confirms that our methodology is sensitive enough to detect biologically relevant impacts

even though no interactions were found between the cancer cells and the fibroblasts. This

might be due to the fact that we used normal fibroblasts that had not previously been in

contact with cancer cells and thus had not been activated to support tumor progression as

is the case with cancer-activated fibroblasts.

+1.23

(1.10, 1.35) +1.09

(0.96, 1.21)

+0.28

(0.17, 0.38)

+0.34

(0.21, 0.48)

+0.92

(0.81, 1.03)

R
G

F

Figure 2.2: Directed graph showing fitted spatio-temporal interactions between GFP can-

cer cells (G), mCherry cancer cells (R) and fibroblasts (F). The solid and dashed arrows

represent respectively the significant and not significant interactions between cell types at

the 95% confidence level.

Goodness-of-fit and one-step ahead prediction To illustrate the goodness-of-fit of

the estimated model, we generate cell counts for each type in each tile, ŷ
(c)
i,t , from the

Pois(λ̂
(c)
i,t ) distribution for t ≥ 1, where λ̂

(c)
i,t is computed using observations at time t −1,

with parameters estimated from the entire dataset. In Figure 4, we compare the actually

observed and generated cell counts for GFP cancer cells (G) and mCherry cancer cells

(R) and fibroblasts (F) across the entire image. The solid and dashed curves for all cell

types are close, suggesting that the model fits the data reasonably well. As anticipated,

the overall growth rate for the red and green cancer cells are similar, and sensibly larger

than the growth rate for fibroblasts.

To assess the prediction performance of our method, we consider one-step-ahead fore-

casting using parameters estimated from a moving window of five time points. In Figure

2.3, we show quantiles of observed cell counts against predicted counts for each tile.

The upper and lower 95% confidence bounds are computed non-parametrically by tak-

ing F̂−1
1

(
F̂0(y

(c)
t )− 0.95

)
and F̂−1

1

(
F̂0(y

(c)
t )+ 0.95

)
, where F̂0 and F̂1 are the empirical

distributions of the observations and predictions at time t respectively Koenker (2004).

The identity line falls within the confidence bands in each plot, indicating a satisfactory

prediction performance.
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Figure 2.3: QQ-plots for cell growth, comparing observed (horizontal axis) and one-time

ahead predicted (vertical axis) cell counts per tile on the entire image at times t = 6,7,8
for GFP cancer cells (G), mCherry cancer cells (R) and fibroblasts (F). One-time ahead

predictions are based on the model fitted using a moving window of five time points.

Comparison with MCAR model Next, we compare the estimates as well as the goodness-

of-fit on the real data with the MCAR model. Parameter estimates are shown in Table 5,

with 95% confidence intervals given in parenthesis. Results from both models are mostly

consistent with each other, specifically, both models show that impacts within each cell

type (β̂ (c|c),c = R,G,F) are significant, the effects β̂ (c|c) for cancer cells are larger than

those for the slower growing fibroblasts, the green and red cancer cells have positive im-

pact on each other, and cancer cells have no impact on fibroblasts. The only difference

is, the MCAR model shows a negative impact of fibroblasts on the green cancer cells

only, while our model detect no significant impact on either cancer cells. Since the red

and green cancer cells are biologically identical except for the fluorescent protein they

express, we expect a symmetrical result with both cancer cells.

In Figure 2.4, apart from the observed (solid curve) and generated (dashed curve) cell

counts from our model, we also show the generated cell counts from the MCAR model

(dotted curve) for the green cancer cells (G), red cancer cells (R) and fibroblasts (F) across

the entire image. Compared to the dotted curves, the dashed curves are slightly closer to
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Full model

c = G R F

α̂(c) -0.99 (-1.19, -0.79) -0.50 (-0.70, -0.30) -0.26 (-0.45, -0.06)

β̂ (G|c) 1.23 (1.10, 1.35) 0.34 (0.21, 0.48) 0.12 (-0.03, 0.27)

β̂ (R|c) 0.28 (0.17, 0.38) 1.09 (0.96, 1.21) 0.02 (-0.09, 0.13)

β̂ (F |c) 0.10 (-0.01, 0.21) 0.02 (-0.07, 0.12) 0.92 (0.81, 1.03)

BIC model

c = G R F

α̂(c) -0.88 (-1.04, -0.72) -0.49 (-0.66, -0.31) -0.19 (-0.36, -0.02)

β̂ (G|c) 1.24 (1.11, 1.37) 0.35 (0.21, 0.48) /

β̂ (R|c) 0.28 (0.17, 0.39) 1.09 (0.96, 1.21) /

β̂ (F |c) / / 0.93 (0.82, 1.04)

MCAR

c = G R F

α̂(c) -0.45 (-0.54, -0.38) -0.45 (-0.54, -0.38) -0.45 (-0.54, -0.38)

β̂ (G|c) 1.06 (0.93, 1.16) 0.16 (0.09, 1.16) -0.15 (-0.22, -0.09)

β̂ (R|c) 0.25 (0.15,0.31) 1.01 (0.92,1.08) 0.05 (-0.02,0.10)

β̂ (F |c) 0.03 (-0.06,0.20) 0.03 (-0.07,0.19) 0.96 (0.83,1.08)

Table 2.5: Estimated parameters for the full, the BIC models and the MCAR model based

on the cancer cell growth data described in Section 2.4. Bootstrap 95% confidence inter-

vals based on 50 bootstrap samples are given in parenthesis.

the solid ones, which means our model seems more appropriate for analysing this type of

data than the MCAR model.
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Figure 2.4: Goodness-of-fit of the estimated models. Observed (solid) and predicted

(dashed for our model and dotted for the MCAR model) number of GFP cancer cells (G),

mCherry cancer cells (R) cancer cells and fibroblasts (F) for the entire image. Predicted

cell counts for each cell type in each tile ŷ
(c)
i,t is generated from the conditional Poisson

model with intensity λ̂
(c)
i,t defined in Equation (2.1) and (2.2), where the coefficients β̂ (c|c′)

are estimated from the entire dataset.
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2.4.2 Cloned cancer cell co-culture experiment

In the second example, cloned cancer cells showing different behaviors are cultured to-

gether in different combinations. Three cloned cancer cell populations (populations were

generated from one single cell), called F7, F8, and G10, were co-cultured in pairs (seeded

at 1:1 ratio) or all together (at a 1:1:1 ratio). A total number of 3,000 cells was initially

seeded for all tested co-cultures. The three cloned cancer cell populations can be readily

distinguished based on image data, due to their experimentally-induced differential ex-

pression of Red, Green and Blue fluorescent proteins. Unlike for the cancer cell-fibroblast

G10 F7

F8

+1.12
+1.12

+1.18

+0.21

+0.11

+0.12
+0.10

+0.16

G10 F7

+1.08 +1.04

+0.22

+0.05

G10 F8

+1.16 +1.04

+0.20

+0.20

F7 F8

+0.99 +1.09

+0.40

Figure 2.5: Directed graph showing fitted spatio-temporal interactions between three

cloned cancer cell populations: G10, F7 and F8. The solid and dashed arrows repre-

sent respectively the significant and not significant interactions between cell types at the

99% confidence level.

co-culture experiment, cancer cell populations in this second example display different

growth behaviours. As shown in Figure 2.5 these different behaviours translate into dif-

ferent interaction patterns in terms of size and symmetry of interactions. Interactions

between two individual clones is frequently modified upon addition of a third different

clone, which can affect the amplitude of these interactions (F7 on F8, F8 on G10, G10

on F7), trigger an otherwise undetectable interaction (F8 on F7), or repress an interac-

tion detected in the pairwise setting (G10 on F8). In contrast, other interactions remain

similar in pairwise and triple co-cultures. These comparisons of the pairwise and triple

co-cultures confirms the importance of studying cellular behaviour in a relevant context

as the majority of interactions between the different cloned cell populations are changed

when another clone is added. This is consistent with a recently published study showing

that the growth properties of cloned cell populations varies depending on whether they

are cultured alone or together with other cloned populations (Mohme et al., 2017).
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2.5 Conclusion and final remarks

In this chapter, we introduced a conditional autoregressive model and accompanying in-

ference tools for spatio-temporal cell count data. The proposed methodology enables one

to measure the overall cell growth rate in longitudinal experiments and spatio-temporal

interactions with either homogeneous or heterogeneous cell populations. The proposed

inference approach is computationally tractable and strikes a good balance between com-

putational feasibility and statistical accuracy. Numerical findings from simulated and real

data in Sections 3 and 4 confirm the validity of the proposed approach in terms of predic-

tion, goodness-of-fit and estimation accuracy.

The data sets described in this chapter serve as a proof-of-concept that the proposed

methodology works. However, the potential applications and the relevant questions that

the methodology can help to answer in cancer cell biology are plentiful. To build on from

the examples given in this chapter, the methodology can be used to study interactions be-

tween cancer cells and a wide range of cancer-relevant cell types such as cancer-activated

fibroblasts, macrophages, and other immune cells when co-cultured. Since a substantial

proportion of cancer cells in tumors are in close proximity to other cell types that have

been shown to affect tumor progression, using these co-cultures is more representative of

the situation in a patient compared to studying cancer cells on their own. In addition to just

giving the final cell number, the presented approach can dissect which cell types affect the

growth of others and to what extent in complex heterogeneous populations. This could be

relevant in a drug discovery setting to determine if a drug affects cancer cell growth due

to internal effects (on other cancer cells) or by interfering with the interaction between

the cancer cells and other cell types. Finding drugs with different targets and mechanisms

of action are particularly sought after as they provide a wider target profile, increasing the

chance of patients responding as well as reducing the risk of tumors becoming resistant.

The impact of different genes and associated pathways in different cell types in relation

to inter-cellular interactions can also be studied by genetically modifying the cell type(s)

in question before mixing the cells together. This could be beneficial to identify new po-

tential drug targets. Our approach is also applicable in other kinds of studies where local

spatial cell-cell interactions are believed to affect cell growth such as studies of neurode-

generative diseases (Garden and La Spada, 2012) and wound healing/tissue re-generation

(Leoni et al., 2015). In addition to evaluating cell growth, our approach can also be used to

study transitions between cellular phenotypes upon interaction with other cell types, pro-

vided that the different phenotypes studied can be distinguished from one another based

on the image data. Finally, it is worth noting that issues may arise when cells become too

confluent/dense, this may lead to segmentation problems of the imaging system. If they

become completely confluent, they are likely to progressively stop growing. If one wants

to measure for longer period of time, experiments can be performed in larger wells/plates
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or with smaller starting cell numbers.

Our methods offer several practical advantages to researchers interested in analysing

count data on heterogeneous cell populations. First, the conditional Poisson model does

not require tracking individual cells across time, a process that is often difficult to au-

tomate due to cell movement, morphology changes at subsequent time points, and addi-

tional complications related to storage of large data files. Second, we are able to quantify

local spatio-temporal interactions between different cell populations from a very simple

experimental set-up where the different cell populations are grown together in a single

experimental condition (co-culture). An alternative, solely experimentally-based strat-

egy would require monitoring the different cell types alone and together at different cell

densities (number of cells per condition) in order to make inferences in terms of poten-

tial interactions. However, such an approach would give no possibility of evaluating the

spatial relations in the co-culture conditions and would still restrict the number of simul-

taneously tested cell types to two.

In the future, we foresee several useful extensions of the current methodology, pos-

sibly enabling the treatment of more complex experimental settings. First, complex

experiments involving a large number of cell populations, nC , would imply an over-

parametrized model. Clearly, this large number of parameters would be detrimental to

both statistical accuracy and reliable optimization of the likelihood objective function

ℓn(θ) (3.4). To address these issues, one possible direction is a penalized likelihood of

form ℓn(θ)−penλ (θ), where pen(θ) is a nonnegative sparsity-inducing penalty function.

For example, in a different likelihood setting, Bradic et al. (2011) consider the L1-type

penalty pen(θ) = λ ∑ |θ |, λ > 0.

Second, for certain experiments, it would be desirable to modify the statistics in (2.2)

to include additional information on cell growth such as the distance between heteroge-

neous cells, and covariates describing cell morphology. Beside, it would be useful to

develop a more principled way to select the tile sizes/number, and consider tiling the mi-

croscope image into a hexagonal lattice, which is a more natural choice in real application,

since the distance between neighbouring tiles would be more even than that of a regular

lattice.

Thirdly, although numerical results (results not reported here) show that our method

are quite robust in the presence of mild outliers (with around 5% of contaminated data),

for more severe situations, we expect that severe or numerous outliers will have some

influence on the estimates since the Poisson score function is unbounded. To address

this problem, the log-likelihood scores in Equation (5) should be replaced by some other

robust alternative. Following Ferrari and Vecchia (2011) and La Vecchia et al. (2015), ro-

bustness can be obtained by the so-called q-entropy estimation method simply obtained by

replacing the usual logarithm in the log-likelihood estimating equation by the q-logarithm

logarithm function logq(x) = (x1−q − 1)/(1− q)if q 6= 1, and logq(u) = log(x) if q = 1,
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for all x > 0. This ensures a bounded influence function for the implied estimator and

therefore guarantees control of the bias under contamination.

Last but not the least, it would be desirable to take into consideration the correlations

between response variables, for example, the correlation between Y
(
i,tc1) and Y

(
j,tc2) for

i 6= j,c1 6= c2. The correlation structure can be incorporated via a Gaussian copula or a

multivariate latent process.

2.6 Appendix

In the first part of this section, we provide technical lemmas required to prove asymptotic

properties of the estimator θ̂θθ n.

Denote Et [·] as the expectation with respect to YYY t = {YYY i,t , i ∈ Ln}, and E[·] as the

expectation of YYY = {YYY t , t = 1, . . . ,T}. Let Ni,r be the set of tiles in the neighbourhood of

tile i, with radius r. Specifically, for two locations i and j, we say j ∈ Ni,r if ‖i− j‖ ≤ r.

Thus, the neighbourhood defined in Section 2 is of radius 1, i.e. { j : j ∼ i}= { j : j ∈Ni,1}.

Denote nr = maxi∈Ln
|Ni,r|= r2+r+1. Actually, for any tile i that is not on the boundary

of the image, |Ni,r|= nr.

In the remainder of this paper we use the following assumptions:

• A.1: The parameter space ΘΘΘ is a compact subset of Rp, and that θθθ 0 is the unique

maximiser of ℓ(θθθ) = limnL →∞ ℓn(θθθ).

• A.2: The (nC + 1)× nL T matrix (∇vvv1,1,∇vvv1,2, . . . ,∇vvv1,T ,∇vvv2,1, . . . ,∇vvvn,T ) is full

rank.

Lemma 1. Let Y1, . . . ,Yn be independent Poisson random variables with mean λ1, . . . ,λn

respectively, where N is a finite positive integer. Then for any positive integer h,

E

[
max

i=1,...,n
Y h

i

]
≤ nh max

i=1,...,n
E
[
Y h

i

]
.

Proof.

E

[
max

i=1,...,n
Y h

i

]
≤ E



(

n

∑
i=1

Yi

)h



≤ nh−1E

[
n

∑
i=1

Y h
i

]
(convexity)

≤ nh max
i=1,...,n

E
[
Y h

i

]
.
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Lemma 2. Denote ỸNi,r,t = max j∈Ni,r,c∈C Y
(c)
j,t , with corresponding observation ỹNi,r,t and

conditional mean λ̃Ni,r,t , then

E
[(

ỸNi,r,t +1
)B
]
≤ wr,t

Bt

∑
k=0

ft(k)e
kα̃
(
1+ ỹNi,r+t ,0

)Bk
, t = 1,2, . . . ,T (2.8)

where

ft(k) =
Bt−1

∑
h=⌈k/B⌉

eα̃hg(k,Bh) ft−1(h), g(a,b) =
b

∑
k=a

(
b

h

){
h

a

}
,

f1(k) = g(k,B) =
B

∑
h=k

(
B

h

){
h

k

}
, wr,t =

t−1

∏
k=0

nr+k2nr+k ,

the {·} denotes Stirling number of the second kind, α̃ =maxc∈C α(c), B=maxc

(
∑c′∈C β (c|c′))n1.

Proof.

λ
(c)
i,t = exp

[
α(c)+ ∑

c′∈C

β (c|c′) ∑
j∈Ni,1

log
(
y
(c′)
j,t−1 +1

)
]
≤ eα̃

(
ỹNi,1,t−1 +1

)B
. (2.9)

Similarly, for any c ∈ C , we have λ
(c)
Ni,r,t

≤ eα̃
(
ỹNi,r+1,t−1 +1

)B
, since { j′ ∈ N j,1; j ∈

Ni,r, i ∈ Ln,r > 0}= { j ∈ Ni,r+1; i ∈ Ln,r > 0}.

Next, we proceed by induction. For T = 1, by the conditional independence assump-

tion and Lemma 1, we have

ET−1

[
ET

((
ỸNi,r,T +1

)B |YYY T−1

)]
= ET−1

[
B

∑
h=0

(
B

h

)
ET

(
max

j∈Ni,r,c∈C
Y
(c)
i,T

h
|YYY T−1

)]

< nr2
nrET−1

[
B

∑
k=0

B

∑
h=k

(
B

h

){
h

k

}
λ̃ k

Ni,r,T

]
≤ wr,1

B

∑
k=0

f1(k)e
kα̃ET−1

[(
1+ ỸNi,r+1,T−1

)Bk
]
.

Since T −1 = 0 and Yt has constant entries at time point 0, ET−1

[(
1+ ỸNi,r+1,T−1

)Bk
]
=

(
1+ ỹNi,r+1,0

)Bk
.
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Suppose (2.8) is true for T = t, then for T = t +1, we have

ET−t−1ET−tET−t+1 . . .ET

[(
ỸNi,r,T +1

)B
∣∣∣YYY T−1, . . . ,YYY T−t−1

]

≤ ET−t−1

{
wr,t

Bt

∑
k=0

ft(k)e
kα̃ET−t

[(
1+ ỸNi,r+t ,T−t

)Bk
∣∣∣YYY T−t−1

]}

= wr,t

Bt

∑
k=0

ft(k)e
kα̃

{
Bk

∑
k′=0

(
Bk

k′

)
ET−t−1

[
ET−t

(
Ỹ k′

Ni,r+t ,T−t

∣∣∣YYY T−t−1

)]}

≤ wr,t

Bt

∑
k=0

ft(k)e
kα̃

{
Bk

∑
k′=0

(
Bk

k′

)
ET−t−1

[
nr+t2

nr+t max
j∈Ni,r+t ,c∈C

ET−t

(
Y
(c)
j,T−t

k′∣∣∣YYY T−t−1

)]}

= wr,t+1

Bt

∑
k=0

ft(k)e
kα̃

[
Bk

∑
k′′=0

Bk

∑
k′=k′′

(
Bk

k′

){
k′

k′′

}
ET−t−1

(
λ̃ k′′

Ni,r+t ,T−t

)]

≤ wr,t+1

Bt+1

∑
k′′=0

Bt

∑
k=⌈k′′/B⌉

ft(k)e
kα̃g(k′′,Bk)ek′′α̃ET−t−1

[(
1+ ỸNi,r+t+1,T−t−1

)Bk′′
]

= wr,t+1

Bt+1

∑
k′′=0

ft+1(k
′′)ek′′ᾱ (1+ ỹNi,r+t+1,0

)Bk′′
.

Lemma 3. Given Assumption A.1, for any finite constant a,b≥ 0 and θ ∈Θ, E
(

λ
(c)
i,t

a
S
(c′)
i,t−1

b)
<

∞, ∀c,c′ ∈ C , i ∈ Ln, t = 1, . . . ,T.

Proof. By the definition of ft(k) given in Lemma 2, we know that ft(k) is bounded for all

bounded t under assumption A.1. Thus, Lemma 2 implies

E
(

λ
(c)
i,t

a
S
(c′)
i,t−1

b)
= E



(

∑
j∈Ni,1

log(1+Y
(c′)
j,t−1)

)b

λ
(c)
i,t

a




≤ E
[(

1+ ỸNi,1,t−1

)bB
λ
(c)
i,t

a]
≤ E

[
eaᾱ
(
1+ ỸNi,1,t−1

)(a+b)B
]

≤ eaα̃w1,t

Bt

∑
k=0

ft(k)e
kα̃
(
1+ ỹNi,1+t ,0

)Bk
< ∞.

For simplicity, define the distance between tile i and j as d(i, j) = r if r−1< ‖i− j‖≤
r.

Lemma 4. For any i ∈ Ln, t1 = 1, . . . ,T,

Cov(Yi,t1 ,Yj,t2) = 0, for ∀ j ∈ Ln, t2 = 1, . . . ,T, if d(i, j)> t1 + t2.
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and

|( j, t2) : Cov(Yj,t2 ,Yi,t1) 6= 0; j ∈ Ln, t2 = 1, . . . ,T, | ≤ T (8T 2 +4T +1)

Proof. Let N∗
i,t = { j : Cov(Yj,0,Yi,t) 6= 0; j ∈ L } be the collection of counts in tiles at

time 0 that are correlated with the count in tile i at time t (Yi,t). Due to the neighbourhood

structure in the autoregressive term described in Section 2, one can easily tell that N∗
i,t is

a neighbourhood around tile i, with the radius equal to t. Due to the condition that Yt has

constant entries at time 0, we have Cov(Yi,t1 ,Yj,t2) = 0 if N∗
i,t1

∩N∗
j,t2

= /0, which is true

when d(i, j)> t1 + t2.

For any (i, t1) ∈ Dn, {( j, t2) : N∗
i,t1

∩N∗
j,t2

6= /0} is a neighborhood around tile i, with a

radius t1 + t2. Since nr = 2r2 +2r+1, we have

|( j, t2) : N∗
i,t1

∩N∗
j,t2

6= /0| ≤ T | j : N∗
i,T ∩N∗

j,T 6= /0|= T N2T = T (8T 2 +4T +1).

In the second part of this section, we study the asymptotic properties of the estimator

θ̂n.

Proposition 1 (Existence and uniqueness). If assumption A.3 holds, then there exist

unique maximizer of ℓn(θθθ), denoted by θ̂θθ n.

Proof. First, since ΘΘΘ is compact and ℓn(θθθ) is continuous, at least one maximiser of ℓn(θθθ)

exist. Next, we wish to prove that the maximiser is unique. The p× p Hessian matrix of

−ℓn(θθθ) can be written as a block matrix

HHHn(θθθ) =−∇2ℓn(θθθ) =




HHH
(1)
n (θθθ) 000 · · · 000

000 HHH
(2)
n (θθθ) · · · 000

...
...

. . .
...

000 000 · · · HHH
(nC )
n (θθθ)



,

where HHH
(c)
n (θθθ) = ∑i∈Ln ∑

T
t=1 exp

[
vvv
(c)
i,t (θθθ)

]
[∇vvvi,t ] [∇vvvi,t ]

⊤
is a (nC + 1)× (nC + 1) ma-

trix. Matrix [∇vvvi,t ] [∇vvvi,t ]
⊤

is positive semidefinite with rank 1. By Assumption A.2,

∑i∈Ln ∑
T
t=1 [∇vvvi,t ] [∇vvvi,t ]

⊤
is full rank, which means HHH

(c)
n (θθθ) is positive definite for all

c ∈ C and θθθ ∈ ΘΘΘ, since exp
[
vvv
(c)
i,t (θθθ)

]
> 0. This shows that −ℓn(θθθ) is strictly convex,

which implies θ̂θθ n is unique.

Proposition 2 (Consistency). If the regularity assumption A.1 holds, then θ̂θθ n
p→ θθθ 0 with

probability tending 1, as nL → ∞.

Proof. We proceed by verifying the conditions of Theorem 2 in Jenish and Prucha (2009).

37



Chapter 2

First we show that the score functions are Lp-Uniform Integrable for p < 3, i.e.

lim
n→∞

sup
i∈Ln

t=1,...,T

sup
θθθ∈ΘΘΘ

E
[
uuu

p
i,t(θθθ)I

(
uuui,t(θθθ)> k

)]
→ 0, as k → ∞. (2.10)

The general form of each entry of uuui,t(θθθ) is (λ
(c)
i,t − y

(c)
i,t )S

c′
i,t−1, take p = 3, we have

E
[(
(λ

(c)
i,t − y

(c)
i,t )S

c′
i,t−1

)3
]

= E1 . . .Et−2Et−1

[
Et

[(
(λ

(c)
i,t −Y

(c)
i,t )Sc′

i,t−1

)3|YYY t−1

]
|YYY t−2

]
. . .

= E1 . . .Et−2Et−1

[
Sc′

i,t−1

3
[
λ
(c)
i,t

3
−3λ

(c)
i,t

2
Et

[
Y
(c)
i,t |YYY t−1

]
+3λ

(c)
i,t Et

[
Y
(c)
i,t

2
|YYY t−1

]
+Et

[
Y
(c)
i,t

3
|YYY t−1

]]
|YYY t−2

]
. . .

= E1 . . .Et−2Et−1

[
Sc′

i,t−1

3
(

2λ
(c)
i,t

3
+6λ

(c)
i,t

2
+λ

(c)
i,t

)
|YYY t−2

]
. . . ,

which is finite by lemma 3. This gives us the L3−boundedness of uuui,t(θθθ), i.e.

lim
n→∞

sup
i∈Ln

t=1,...,T

sup
θθθ∈ΘΘΘ

E
[
uuu
(c)
i,t (θθθ)

3]
< ∞,

which implies Lp-Uniform Integrability, for p < 3.

Second, we show the stochastic equicontinuity of uuui,t(y;θθθ), i.e.

lim
n→∞

sup
i∈Ln

t=1,...,T

P


 sup

θθθ ,θθθ ′∈ΘΘΘ

‖θθθ−θθθ ′‖<δ

|uuui,t(θθθ)−uuui,t(θθθ
′)|> ε


= 000.

The ∇uuui,t(θθθ) is a p× p matrix, with each column being either
∂γγγ i,t(θθθ)

∂β (c|c′) ⊗∇vvvi,t or
∂γγγ i,t(θθθ)

∂α(c)
⊗

∇vvvi,t , and

∂γγγ i,t(θθθ)

∂β (c|c′) = (0, . . . ,0,λ
(c)
i,t S

(c)
i,t ,0, . . .), and

∂γγγ i,t(θθθ)

∂α(c)
= (0, . . . ,0,λ

(c)
i,t ,0, . . .).

Thus, the non-zero entries of E supθθθ∈ΘΘΘ [∇uuui,t(θθθ)] have the general form: E supθθθ∈ΘΘΘ

[
λ
(c)
i,t S

(c)
i,t S

(c′)
i,t

]
,

which are bounded by an equivalent analogous to Lemma 3.

Thirdly, we check α−mixing conditions. Let U and V be two subsets of Dn, and let

σ(U) = σ{Yi,t ;(i, t)∈U} be the σ−algebra generated by random variables Yi,t ,(i, t)∈U .

Define

α(U,V ) = sup
{
|P(A∩B)−P(A)P(B)|;A ∈ σ(U),B ∈ σ(V )

}
.

Then the α−mixing coefficient for the random field {Yi,t , i ∈ Ln, t = 1, . . . ,T} is defined
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as

α(k, l,m) = sup
{

α(U,V ), |U | ≤ k, |V | ≤ l,d(U,V )≥ m
}
.

Following Bai et al.Bai et al. (2012), in an a−dimensional space, we need

(a) ∃δ > 0s.t.∑∞
m=1 ma−1α(1,1,m)δ/(2+δ ) < ∞, (b) For k+ l ≤ 4,∑∞

m=1 ma−1α(k, l,m)<

∞, (c) ∃ε > 0 s.t.α(1,∞,m)=O(m−a−ε), where k, l,m∈N and d(U,V )=min{‖i− j‖ :

i ∈U, j ∈V} is the distance between sets U and V .

For any fixed i1, . . . , ik ∈Ln,k<∞ and t1 = 0, . . . ,T , consider U = {Yi,t1 = yi,t1 , . . . ,Yik,t1 =

yik,t1} and V = {Yj,t2 = y j,t2; j ∈ Ln, t2 = 0, . . . ,T}, then |U | = k and |V | → ∞ as n → ∞.

By Lemma 4, we have P(Yi,t1 = yi,t1 ,Yj,t2 = yi,t1)−P(Yi,t1 = yi,t1)P(Yj,t2 = y j,t2) = 0, if

d(i, j)> t1 + t2. Thus, α(U,V ) = 0 for any |U |= k, provided that d(U,V )> 2T , that is,

α(k,∞,m) = 0 if m > 2T . This implies all three mixing conditions.

Finally, by Theorem 3 in Jenish and Prucha Jenish and Prucha (2009), Uniform Inte-

grability in (2.10) and mixing condition (a) ensure that the score functions uuui,t(yyy;θθθ) satisfy

a point wise law of large numbers in the sense that

1

nL
∑

i∈Ln

T

∑
t=1

sup
θθθ∈ΘΘΘ

(
uuuuuuuuui,t(yyy,θθθ)−Euuui,t(yyy;θθθ)

)
p−→ 000,as nL → ∞,

for all θθθ ∈ΘΘΘ.

Proposition 3. If the regularity assumptions A.1 and A.2 hold, we have
√

nLVVV n(θθθ)
−1/2(θ̂θθ n−

θθθ 0) converges in distribution to a p−variate Normal with zero mean vector and identity

variance, as nL → ∞.

Proof. First, we show the uniform law of large numbers for ∇uuun(θθθ):

sup
θθθ

‖∇uuun(θθθ)−E [∇uuun(θθθ)]‖
p→ 000, as nL → ∞, (2.11)

where uuun(θθθ) = ∇ℓn(θθθ)/nL as defined in Section 2. Note that

Var(∇uuun(θθθ)) =
1

n2
L

Var

(
n

∑
i=1

T

∑
t=1

∇uuui,t(θθθ)

)

=
1

n2
L

∑
i∈Ln

T

∑
t=1

Var(∇uuui,t(θθθ))

+
1

n2
L

∑
i∈Ln

T

∑
t1=1

∑
j∈Ln

j 6=i

T

∑
t2=1
t2 6=t1

Cov
(
∇uuui,t1(θθθ),∇uuu j,t2(θθθ)

)
(2.12)

The first term in (2.12) is O(n−1
L
), since Var(∇uuui,t(θθθ))≤ [E (∇uuui,t(θθθ))]

2
, which is shown

to be finite in the proof of Proposition 2.
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For the second term in (2.12), by Lemma 2 we have

1

n2
L

∑
i∈Ln

T

∑
t1=1

∑
j∈Ln

j 6=i

T

∑
t2=1
t2 6=t1

Cov
(
∇uuui,t1(θθθ),∇uuu j,t2(θθθ)

)

≤ 1

n2
L

∑
i∈Ln

T

∑
t1=1

T (8T 2 +4T +1) max
j:d(i, j)≤2T

t2 6=t1

Cov
(
∇uuui,t1(θθθ),∇uuu j,t2(θθθ)

)
,

where Cov
(
∇uuui,t1(θθθ),∇uuu j,t2(θθθ)

)
≤E

(
∇uuui,t1(θθθ),∇uuu j,t2(θθθ)

)
≤E (∇uuui,t1(θθθ))

2+E (∇uuui,t2(θθθ))
2

is finite by Lemma 2. Thus, the second term in (2.12) is also of order O(n−1
L
) element

wise, which means Var(∇uuun(θθθ))→ 0 as n→∞. Therefore, (2.11) follows by Chebyshev’s

inequality.

Second,VVV n(θθθ)= 1/nL Var
(
∑i∈Ln ∑

T
t=1uuuit(θθθ)

)
=−1/nL E

(
∑i∈Ln ∑

T
t=1uuuit(θθθ)

)
= 1/nL HHHn(θθθ),

which is shown to be positive definite under Assumption A.2 in Proposition 1. Thus, to-

gether with uniform Integrability in (2.10) and the mixing conditions, by Theorem 1 in

Jenish and Prucha (2009), we have

√
nLVVV n(θθθ)

−1/2uuun(θθθ)→ N(000,IIIp) (2.13)

Finally, by Taylor’s expansion,

uuun(θ̂θθ n) = 000 =uuun(θθθ 0)+∇uuun(θθθ 0)(θ̂θθ n −θθθ 0)+
1

2
∇2uuun(θθθ 0)(θ̃θθ n −θθθ 0)

2

⇒ 000 =
√

nLVVV n(θθθ 0)
−1/2uuun(θθθ 0)+

√
nLVVV n(θθθ)

−1/2∇uuun(θθθ 0)(θ̂θθ n −θθθ 0)+

1

2

√
nLVVV n(θθθ 0)

−1/2∇2uuun(θ̃θθ n)(θ̂θθ n −θθθ 0)
2, (2.14)

where θ̃θθ n is a vector with elements between θ̂θθ n and θθθ 0. Since θ̂θθ n = θθθ 0 +op(111) by Propo-

sition 2, we have (θ̃θθ n − θθθ 0)
2 = (θ̂θθ n − θθθ 0)op(111). The second derivative ∇2uuun(θθθ) is a

p× p× p matrix, with entries being either 0 or λ
(c)
it S

(c1)
i,t−1S

(c2)
i,t−1S

(c3)
i,t−1, where i = 1, . . . ,n,

and t = 1, . . . ,T, and c,c1,c2,c3 ∈C . Due to the structure of λ
(c)
it and S

(c)
i,t−1 in Section 2, all

non-zero elements in ∇2uuun(θθθ) are monotone with respect to θθθ . Thus, there exists θθθ s ∈ΘΘΘ

such that ∇2uuun(θθθ s) ≥ ∇2uuun(θθθ) for all θθθ ∈ ΘΘΘ. Therefore, we have E supθθθ∈ΘΘΘ ∇2uuun(θθθ) =

supθθθ∈ΘΘΘ E∇2uuun(θθθ), which can be shown to be finite by an equivalent analogous to Lemma

3.

Thus, (2.14) can be written as

000 =
√

nLVVV n(θθθ 0)
−1/2uuun(θθθ 0)+

√
nLVVV n(θθθ)

−1/2 (∇uuun(θθθ 0)+op(111))(θ̂θθ n −θθθ 0),

By (2.11), ∇uuun(θθθ 0)
p−→ E [∇uuun(θθθ 0)] =−VVV n(θθθ 0), since ℓn(θθθ) is the full likelihood. There-
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fore, by (2.13) and (2.14), we have

√
nLVVV n(θθθ 0)

1/2(θ̂θθ n −θθθ 0)
d−→ N(000,IIIp).
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Chapter 3

A Copula-based Multivariate

Spatio-temporal Model (copSTM)

3.1 Introduction

Correlated data with discrete marginal distributions are typically modelled by the general-

ized estimating equations (GEE) approach (Liang and Zeger, 1986). The GEE method is

suitable when the regression coefficients in the marginal model is of central interest since

it treats dependence parameters as nuisance components, and thus not appropriate if the

estimation of correlation parameters is also important. One popular approach for evaluat-

ing the dependence structure is through latent models under the Bayesian framework by

assuming a multivariate Gaussian process for the conditional marginal expectation of the

responses, However, estimation of latent models requires the MCMC algorithms that are

known to be very time consuming (Davis et al., 2003).

The maximum likelihood (ML) approach for inference are generally considered one of

the most statistically efficient options for estimating the model parameters. However, like-

lihood analysis of discrete marginal regression models is less widespread (Diggle et al.,

2002). The main reason is the difficulty in identifying the general class of multivariate

distributions for discrete responses. Gaussian copulas (Xue-Kun Song, 2000) provide

a flexible general framework for modelling dependent responses of any distributions by

combining the marginal regression modelling with the separate specification of depen-

dence structure. They can accommodate full dependence with correlation coefficients

approaching one, and full independence with zero correlation. They also allow for pos-

itive and negative correlations. Such level of felxibility is not offered by other copulas

such as Archimedean copulas (Kazianka and Pilz, 2010).

Despite all the merits, Gaussian copula regression models had still a limited use since

the evaluation of the likelihood function for discrete dependent responses requires approx-

imation of high-dimensional integrals. One possible solution is to employ the simulation
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methods, for example, Masarotto et al. (2012) adopted a sequential importance sampling

algorithm and Nikoloulopoulos (2013) studied simulated maximum likelihood based on

randomized quasi-Monte Carlo integration.

In this chapter, we adopt the composite likelihood methods (CL) to reduce the com-

putational burdens by reducing the integral dimensionality in the likelihood function. A

composite likelihood is constructed from low-dimensional likelihood objects defined over

small subsets of data. Besag (1974) was an early proponent of composite likelihood esti-

mation for data with spatial dependence; Lindsay (1988) developed composite likelihood

inference in its generality and systematically studied its properties. Over the years, com-

posite likelihood methods have been demonstrated to have desirable theoretical properties

including estimation consistency and asymptotic normality, and have been successfully

used in a range of complex applications, including models for survival data, genetics (Gao

and Song, 2010) and spatial statistics (Heagerty and Lele, 1998; Varin and Vidoni, 2005;

Bai et al., 2014). See Varin et al. (2011) for a comprehensive survey in this regard. In

this chapter, we carry out model estimation through a pairwise composite likelihood ap-

proach that reaches satisfactory balance between statistical efficiency and computational

complexity.

The following is a brief summary of the chapter. Section 3.2, we develop the copula

based spatio-temporal model on lattice for multivariate count data and provide composite

likelihood inference tools. In Section 3.3, we study the performance of the composite

likelihood estimator using simulated data. In Section 3.4, we apply our method to analyze

the RGB marked cancer cell growth data. In Section 3.5, we conclude and give possible

future directions.

3.2 The Gaussian copula spatio-tempoal multivariate model

on lattice (copSTM)

Let L ∈ N
2 be a discrete regular lattice. In the context of our application, the lattice is

obtained by tiling a microscope image into nL rectangular tiles, denoted by Ln(⊂ L ).

The total number of tiles nL is a monotonically increasing function of n. For simplicity,

we tile the image into n× n tiles, that is, nL = n2. Denote a pair of neighbouring tiles

{i, j} with i ∼ j, if the two tiles are in the neighbourhood of each other. Here we take the

Moore neighbourhood that is composed of a central tile and the eight tiles surrounding it.

For example, in Figure 3.1, the blue tiles form a complete neighbourhood.

Let Y
(c)
i,t represent a discrete random variable and y

(c)
i,t be the corresponding realisa-

tions, where subscript t denotes discrete time (t = 1, . . . ,T ), i indexes tiles in space (i =

1, . . . ,nL ) and superscript c indexes different groups of interest (c = 1, . . . ,nC ). Consider

{YYY t} as a multivariate time series, whereYYY t =(YYY 1,t , . . . ,YYY nL ,t) andYYY i,t =(Y
(1)
i,t , . . . ,Y

(nC )
i,t ).
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Thus, YYY t is a d-dimensional vector of random variables, where d = nC nL . Let XXX t =

(XXX
(1)
1,t , . . . ,XXX

(nC )
nL ,t) be the d-dimensional explanatory variables or covariates, and Ft =

σ{YYY t−1, . . . ,YYY 1,XXX t , . . .} represent all the information that is known to the observer be-

fore time t, which include past responses, as well as past and present covariates.

The model structure of the copSTM is demonstrated in Figure 3.1, where each plane/lattice

represents a multivariate response variable at one time point YYY t . Suppose the variable rep-

resented by the red tile is a nC -dimensional vectorYYY i,t , we model the temporal dependence

through a marginal regression model. Specifically, we assume that the expectation of the

conditional marginal distribution E[Y
(c)
i,t |Ft ],c = 1, . . . ,nC depends on observations in the

neighbourhood of the previous time point, YYY j,t−1, j ∼ i, that is the blue tiles. On the other

hand, the spatial dependence is captured by a d × d correlation matrix of Yt through the

Gaussian copula model. For the computational concern, we only consider spatial as well

as cross group correlations in neighbouring locations, that is for YYY i,t , we only consider

correlation with the green tiles, YYY j,t , j ∼ i.

t

t −1

Figure 3.1: Illustration of the spatial and temporal structure of the copSTM model.

3.2.1 Observation-driven autoregressive model

The temporal part of the copSTM is captured through the conditional marginal expec-

tations of Y
(c)
i,t by an autoregressive model that falls into a general class of time series

models, the generalised autoregressive moving average model, GARMA(p,q), proposed

by Benjamin et al. (2003). Following notation of Benjamin et al. (2003), the marginal dis-

tribution of response Y
(c)
i,t conditional of Ft is assumed to be a member of the exponential

family with expectation µ
(c)
i,t = E[Y

(c)
i,t |Ft ]. The most general form of the GARMA(p,q)
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model is defined as

g(µt) = Xtα +
p

∑
t ′=1

βt ′Ht ′(yt−t ′)+
q

∑
t ′=1

γt ′Dt ′(µt−t ′),

where g(·) is the canonical link function, Ht ′(·) and Dt ′(·) are known functions for all

t ′. Benjamin et al. (2003) also state that the GARMA model of the above form “ is too

general for practical application”. Thus, in this chapter we focus on a special case of the

GARMA model with p = 1, q = 0 and the logarithm link function to form a log-linear

model

log(µ
(c)
i,t ) = β

(c)
0 +

nC

∑
c′=1

β (c|c′)H(y
(c′)
i,t−1), (3.1)

where H(y
(c′)
i,t−1) =

[
∑i∼ j log

(
1+Y

(c′)
j,t−1

)]
/ni. Transforming past observations by log so

that they are on the same scale as the linear predictor log(µ
(c)
i,t ). Several authors show

that the addition of a constant to each observation for avoiding zero values does not affect

inference, and that 1 is a reasonable choice for the constant since it conveniently maps

zero count with zero values of H(·) (Knorr-Held and Richardson, 2003; Fokianos and

Tjøstheim, 2011). Apart from slightly different notations, this expression is similar to the

model proposed in Chapter 2. Regression coefficients β (c|c′) are interpreted as impacts on

the growth of group c due to the presence of group c′ in the neighbourhood at the previous

time period and can be presented in the same kind of incidence matrix as in Chapter 2 with

the cth column being βββ c = (β
(c)
0 ,β (c|1), . . . , β (c|nC )), where β

(c)
0 is the intercept of group

c.

Assume that Y
(c)
i,t given the past is marginally Poisson distributed, i.e. Y

(c)
i,t |Ft−1 ∼

Poisson(µ
(c)
i,t ) then it implies that

P(Y
(c)
i,t = y|Ft−1) =

µ
(c)
i,t

y
exp(−µ

(c)
i,t )

y!
, y = 0,1, ...

and Var(Y
(c)
i,t |Ft−1) = E(Y

(c)
i,t |Ft−1) = µ

(c)
i,t . Hence, in the case of a conditional Poisson

response marginal model, the conditional mean is identical to the conditional variance

of the observed variable. The Negative binomial distribution allows for a conditional

variance to be larger than the mean µ
(c)
i,t , which is often referred to as overdispersion.

Following Christou and Fokianos (2014), it is assumed that Y
(c)
i,t |Ft−1 ∼ NegBin(µ

(c)
i,t ,φ ),

where the negative binomial distribution is parameterized in terms of its mean with an

additional dispersion parameter φ > 0,

P(Y
(c)
i,t = y|Ft−1) =

Γ(φ + y)

Γ(y+1)Γ(φ)

(
φ

φ +µ
(c)
i,t

)φ( µ
(c)
i,t

φ +µ
(c)
i,t

)y

, y = 0,1, ....
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In this case, Var(Y
(c)
i,t |Ft−1) = µ

(c)
i,t +µ

(c)
i,t

2
/φ , and thus the conditional variance increases

quadratically with µ
(c)
i,t . The Poisson distribution is a limiting case of the negative bino-

mial when φ → ∞. In this chapter and the rest of this thesis, we focus on Poisson and

Negative binomial marginal distributed responses for our models, but parameters of in-

terest are regression coefficients βββ and correlation parameters discussed in the following

section, while the dispersion parameter φ is considered as nuisance parameter.

3.2.2 Gaussian-copula model

To account for spatial and cross variable dependence at the same time point, we use a

copula-based model, which allows us to model the marginal distributions and correla-

tion structure separately before joining them by way of the probability integral trans-

form (Sklar, 1959). Consider a random vector YYY = (Y1, . . . ,Yd) with joint distribution

F and write Fi = Fi(yi|βββ ,xi) for the marginal distribution of Yi. A copula associated

with F (equivalently, Y ) is a function C that satisfies F(y) = C(F1(y1), . . . ,Fd(yd)),y =

(y1, . . . ,yd) ∈ R
d.

In this chapter, we focus our attention to Gaussian copulas introduced by Xue-Kun Song

(2000), similar to the model developed by Masarotto et al. (2012). Specifically, let F
µ
(c)
i,t

be the marginal cumulative distribution function of Y
(c)
i,t |Yt−1 and ΣΣΣ be a working d × d

correlation matrix independent of t, then we have the copula representation

ZZZ = (Z1, . . . ,Zd)∼ MV N(0,ΣΣΣ),

YYY t |YYY t−1 = (Y
(1)
1,t , . . . ,Y

(nC )
1,t ,Y

(1)
2,t , . . . ,Y

(nC )
nL ,t |YYY t−1)

=

(
F−1

µ
(1)
1,t

[Φ(Z1)] , . . . ,F
−1

µ
(nC )
1,t

[Φ(ZnC
)] ,F−1

µ
(1)
2,t

[
Φ(ZnC+1)

]
, . . . ,F−1

µ
(nC )
nL ,t

[Φ(Zd)]

)
,

(3.2)

where Φ is the standard normal cdf and F−1
i (u) = inf{y : Fi(y) ≤ u} for 0 ≤ u ≤ 1. It

is worth noting that the mapping between Yi and Zi is one-to-one only in the continuous

case, in other cases, the mapping is one-to many. The copula model specification allows

any kind of continuous, discrete and categorical marginal distributions. It conveniently

models the marginal component in (3.1) and the dependence component ΣΣΣ separately,

allowing for extremely flexible correlation structures.

Various forms of dependence in the data can be modelled by suitably parameterising

the correlation matrix ΣΣΣ as a function of a vector of parameter ρρρ . In this thesis, we

consider a straightforward construction of the correlation structure but the model can

easily be generalized to handle any other isotropic correlation functions, for instance, the

popular Matérn family or the power exponential family. The dependence structure is built
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based on the assumption that observations in the same neighbourhood are more correlated

than those that are further apart. Thus, we specify correlation parameters only for those

variables in the same or neighbouring tiles:

Cor
(

Y
(c)
i,t ,Y

(c′)
j,t |YYY t−1

)
=





1 if i = j,c = c′

ρ
(c,c′)
0 if i = j,c 6= c′

ρ
(c,c′)
1 if i ∼ j,c 6= c′

ρ
(c)
0 if i ∼ j,c = c′

,

where ρ
(c)
0 denote spatial correlation of the same group between neighbouring tiles, ρ

(c,c′)
0

and ρ
(c,c′)
1 denote correlation between group c and c′ in the same tile and neighbouring

tiles respectively. Correlations between variables in non-neighbouring tiles are not pa-

rameterized, thus are considered as independent in the composite likelihood specified in

the following section. But we show in our numerical examples that the model estimate is

relatively stable with mild correlations between non-neighbouring tiles.

With this parameterization, ΣΣΣ takes the form of a block adjacency matrix




RRR0 RRR1 000 000 ... RRR1 000 ... ...

RRR1 RRR0 RRR1 000 ... ... RRR1 ... ...

000 RRR1 RRR0 RRR1 ... ... ... ... ...

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... RRR0




nL ×nL

,

where each entry is a nC × nC matrix representing cross group/cluster correlation in the

same tile RRR0 and neighbouring tiles RRR1 parameterized as

RRR0 =




1 ρ
(1,2)
0 ρ

(1,3)
0 ... ρ

(1,nC )
0

ρ
(1,2)
0 1 ρ

(2,3)
0 ... ρ

(2,nC )
0

... ... ... ... ...

ρ
(1,nC )
0 ... ... ... 1



, RRR1 =




ρ
(1)
1 ρ

(1,2)
1 ρ

(1,3)
1 ... ρ

(1,nC )
1

ρ
(1,2)
1 ρ

(2)
1 ρ

(2,3)
1 ... ρ

(2,nC )
1

... ... ... ... ...

ρ
(1,nC )
1 ... ... ... ρ

(nC )
1



.

48



Chapter 3

3.2.3 Composite likelihood inference with discrete marginals

The joint likelihood of the copSTM model is defined as

L(θθθ) =
T

∏
t=1

P
(

Y
(c)
i,t |YYY t−1;θθθ

)

=
T

∏
t=1

P
(

Y
(1)
1,t = y

(1)
1,t , . . . ,Y

(nC )
nL ,t = y

(nC )
nL ,t |YYY t−1

)

=
T

∏
t=1

P
(

y
(1)
1,t −1 < Y

(1)
1,t ≤ y

(1)
1,t , . . . ,y

(nC )
nL ,t < Y

(nC )
nL ,t ≤ y

(nC )
nL ,t |YYY t−1

)

=
T

∏
t=1

∫ b
(1)
1,t

a
(1)
1,t

· · ·
∫ b

(nC )
nL ,t

a
(nC )
nL ,t

fΣΣΣ(z1, . . . ,zd)dz1 . . .dzd, (3.3)

where the upper and lower bounds of the integrals are b
(c)
i,t = b

(c)
i,t (βββ

(c),y
(c)
i,t )=Φ−1[F

µ
(c)
i,t

(y
(c)
i,t )]

and a
(c)
i,t = a

(c)
i,t (βββ

(c),y
(c)
i,t ) = Φ−1[F

µ
(c)
i,t

(y
(c)
i,t − 1)] respectively, and fΣΣΣ denotes the density

function of a d-dimensional multivariate normal distribution, with mean zero, and corre-

lation matrix ΣΣΣ specified in Section 3.2.2. The full parameter vector θθθ = (βββ ,ρρρ)′, where

βββ = (βββ 1, . . . ,βββ nC
)′ and ρρρ = (ρ(1), . . . ,ρ(nC ), ρ

(1,2)
0 , . . . ,ρ

(nC−1,nC )
0 ,ρ

(1,2)
1 ,. . . ,ρ

(nC−1,nC )
1 )

with dimension p = nC (nC +1) (for βββ ) +n2
C

(for ρρρ).

The difficulty with the usual maximum likelihood method is apparent, because the

rectangle probability is difficult to compute accurately in high dimensions, making the

optimization of (3.3) computationally intractable for large d. In contrast to the full joint

likelihood (3.3), the composite likelihood (CL) function (Lindsay, 1988) is constructed

from likelihoods of subsets of the data, proceeding as though these subsets were inde-

pendent, thus reducing the computational burden. Here, we adopt the pairwise CL as a

compromise between statistical and computational efficiency.

In consideration of computational efficiency, as well as the correlation structure as-

sumed in Section 3.2.2, we allow only pairs of observations in neighbouring tiles. Thus,

the pairwise log-CL function is

cl(θ ; yθ ; yθ ; y) =
T

∑
t=1

∑
i1∼i2

i1,i2∈{1,...,nL }

nC

∑
c1=1

nC

∑
c2=1

log

[∫ b
(c1)
i1,t

a
(c1)
i1,t

∫ b
(c2)
i2,t

a
(c2)
i2,t

fρ(z1,z2)dz1dz2

]
, (3.4)

where fρ(z1,z2) denotes a 2-dimensional multivariate normal density function, where the

mean is vector zero and the correlation is ρ , which equals the correlation between Y
(c1)
i1,t

and Y
(c2)
i2,t

defined in Section 3.2.2. Note that there is exactly one correlation parameter in

each component likelihood.

The maximum CL estimates of θθθ are obtained by maximizing cl(θ ; yθ ; yθ ; y), which pro-

ceeds iteratively using Fisher-scoring updates: θ̂θθ
(k+1)

= θ̂θθ
(k)

+HHH(θ̂θθ
(k)

;yyy)−1uuu(θ̂θθ
(k)

; yyy),
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where

HHH(θθθ ; yyy) =−E

[
∂ 2cl(θθθ ; yyy)

∂θθθ 2

]
, uuu(θ ; yθ ; yθ ; y) =

∂cl(θθθ ; yyy)

∂θθθ
, (3.5)

are the Hessian matrix and score vector respectively. Except for the integral bounds a
(c)
i,t

and b
(c)
i,t , the first and second derivatives of cl(θθθ ; yyy) can be derived analytically (see Ap-

pendix for details).

3.2.4 Standard error estimation

As the data dimension d × T increases, theory of unbiased estimating equations (Go-

dambe, 1960) suggested that under appropriate regularity conditions, the estimator θ̂θθ fol-

lows approximately a p-variate normal distribution with mean equal to the true parameter

θθθ 0 and asymptotic variance VVV (θ̂θθ) = GGG−1(θθθ 0), where GGG(θ̂θθ) = HHH(θ̂θθ)KKK−1(θ̂θθ)HHH(θ̂θθ) is the

p× p Godambe information matrix associated with the log-CL function (3.4), HHH(θθθ) is

defined in (3.5) and KKK(θθθ) = Var[uuu(θθθ ; yyy)]. If cl(θθθ ; yyy) is a true log-likelihood function,

then HHH =KKK.

The estimation of HHH(θθθ) is relatively straightforward, with the details shown in the

Appendix, difficulties arise for the variability matrix KKK(θθθ). Similar to Varin et al. (2011)

Section 5.1 and Cattelan and Sartori (2016), we estimate KKK(θθθ) via a parametric bootstrap

approach. Specifically, the estimator of KKK(θθθ) is

K̂KK(θθθ) =
1

B

B

∑
b=1

uuu(θ̂θθ ; yyy∗(b))uuu(θ̂θθ ; yyy∗(b))
T , (3.6)

where yyy∗(b) denote the bth bootstrap sample simulated from the copSTM model at θθθ = θ̂θθ .

3.2.5 Goodness of fit test

To test the goodness of fit of the estimated model, we carry out a composite likelihood

ratio test, with test statistic

W = 2
[
cl(θ̂θθ ; yyy)− cl(θθθ 0; yyy)

]
.

Its asymptotic distribution is a weighted sum of the square of p independent standard nor-

mal variables, precisely ∑
p
i=1 wiZ

2
i , where w1, . . . ,wp are the eigenvalues of [HHH(θθθ)]−1GGG(θ̂θθ)

(Varin et al., 2011).

The non-standard distribution prevents the use of composite likelihood ratio test statis-

tics when p > 1. Thus, we adopt two adjusted likelihood ratio tests:

W1 =
W

w̄
∼ χ2

p, where w̄ =
∑

p
i=1 wi

p
, (3.7)
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W2 =
vW

(pw̄)
∼ χ2

v , where v =
(∑

p
i=1 wi)

2

∑
p
i=1 w2

i

, (3.8)

proposed by Geys et al. (1999) and Satterthwaite (1946) respectively.

3.3 Monte Carlo simulations

First, to assess the performance of the pairwise CL estimator of the copSTM, we carry out

a simulation experiment with settings for different number of tiles (i.e. nL = 10×10,25×
25) and time points (i.e. T = 10,25). We fix nC to be 3, which creates 21 parameters (12

regression coefficients and 9 correlation parameters). We also consider different setups of

the correlation parameters (ρ
(1)
1 ,ρ

(2)
1 ,ρ

(3)
1 ,ρ

(1,2)
0 ,ρ

(1,3)
0 ,ρ

(2,3)
0 ,ρ

(1,2)
1 ,ρ

(1,3)
1 ,ρ

(2,3)
1 ), specif-

ically, let ρρρa = (0,0,0,−0.6,0.3,−0.2,0,0,0)′, while ρρρb = (0.3,0.2,0.1,−0.6,0.2,−0.3,

− 0.1,0.1,−0.2). The main difference between ρρρa and ρρρb, is that ρρρa naturally produces

a positive definite block correlation matrix ΣΣΣ, while ρρρb does not. The working correlation

matrix used in the case of ρρρb is the nearest positive definite matrix of the original block

matrix, calculated by the nearPD function in R package Matrix. This introduces some

noise in the correlation structure, and thus the performance under ρρρb is expected to be at

least slightly worse than that under ρρρa. In each setting, 500 data sets are generated from

the copSTM specified in (3.1) and (3.2).

Table 3.1 and Table 3.2 show Monte Carlo estimates of absolute values of bias and

variance of θ̂θθ , as well as the true value of the parameters for the Poisson and Negative

binomial marginals respectively. As expected, increasing the sample size by increasing

T or n from 10 to 25 dramatically improves estimation performance for both marginals,

reaching around a half of the bias and one third of the variance compared to the first

case where both T = n = 10. In general, the case where n = 25 provides smaller bias

and variance than the one where T = 25, which is most likely due to a larger increase in

sample size if we consider sample size as n2T . Also as anticipated, both estimated bias

and variance for ρρρb are larger than those for ρρρa, however the difference is quite mild when

n= 25. More often than not, results are very similar with both marginal distributions, with

the only exception for longer time series data (i.e. T = 25), where the negative binomial

marginal case looks a bit unstable in estimating some correlation parameters.

Next, we assess the estimation of the standard errors of parameter θθθ , which we take

as the square root of diagonal elements of GGG(θ̂θθ) specified in Section 3.2.4. We show

estimates for the coverage probability of 90%,95% and 99% confidence intervals with

increasing bootstrap sample sizes in Table 3.3 and Table 3.4 for Poisson and Negative

binomial marginals respectively. All results shown in the table are averages taken over

mean parameters (βββ ) and correlation parameters (ρρρ). For Poisson marginals, coverage

probabilities seem quite unstable when B = 50, especially for the second setup of corre-
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nC nL T
parameters β (1|1) β (1|2) β (1|3) β (2|1) β (2|2) β (2|3) β (3|1) β (3|2) β (3|3)

true value 1 0.5 -0.6 0.4 1 -0.2 0.2 0.1 1

|B̂ias|

ρa

10×10 10 11.45 12.52 20.07 5.36 5.51 9.28 2.07 1.81 2.61

25×25 10 4.59 5.03 8.17 1.95 2.00 3.51 0.75 0.66 1.09

10×10 25 6.57 8.25 5.85 3.28 4.25 3.19 1.57 1.43 1.12

ρb

10×10 10 13.55 15.27 23.93 5.50 5.63 10.46 2.07 1.61 2.62

25×25 10 5.66 6.38 9.78 2.09 2.12 3.96 0.79 0.70 1.28

10×10 25 9.77 11.67 7.21 3.98 4.16 3.13 1.76 1.53 1.15

V̂ar

ρa

10×10 10 20.12 24.64 63.85 4.32 4.75 13.17 0.66 0.50 1.04

25×25 10 3.33 4.06 10.71 0.59 0.62 1.90 0.08 0.07 0.19

10×10 25 6.68 10.39 5.34 1.65 2.90 1.61 0.39 0.32 0.19

ρb

10×10 10 30.03 40.16 87.58 4.30 4.79 16.7 0.65 0.44 1.02

25×25 10 4.67 6.22 13.58 0.70 0.69 2.43 0.10 0.08 0.23

10×10 25 14.06 21.53 8.52 2.32 3.03 1.67 0.47 0.34 0.22

nC nL T

parameters ρ(1) ρ(2) ρ(3) ρ
(1,2)
0 ρ

(1,3)
0 ρ

(2,3)
0 ρ

(1,2)
1 ρ

(1,3)
1 ρ

(2,3)
1

true valuea 0 0 0 -0.6 0.2 -0.3 0 0 0

true valueb 0.3 0.2 0.1 -0.6 0.2 -0.3 -0.1 0.1 -0.2

|B̂ias|

ρa

10×10 10 2.56 1.67 1.38 2.27 3.51 2.54 1.53 1.32 1.03

25×25 10 0.87 0.61 0.57 1.01 1.42 0.99 0.58 0.54 0.44

10×10 25 1.43 1.02 0.86 1.61 2.16 1.66 0.91 0.84 0.65

ρb

10×10 10 2.99 2.02 1.49 2.92 3.45 2.89 2.03 1.79 1.22

25×25 10 1.37 0.95 0.64 1.51 1.29 0.99 1.00 0.80 0.55

10×10 25 1.92 1.25 1.24 1.68 2.04 1.52 1.30 1.11 0.93

V̂ar

ρa

10×10 10 0.94 0.41 0.30 0.89 1.88 1.00 0.38 0.27 0.17

25×25 10 0.12 0.06 0.05 0.16 0.30 0.16 0.05 0.05 0.03

10×10 25 0.34 0.16 0.11 0.41 0.71 0.43 0.14 0.11 0.07

ρb

10×10 10 0.99 0.58 0.38 1.35 1.83 1.40 0.61 0.53 0.24

25×25 10 0.21 0.11 0.06 0.29 0.27 0.15 0.14 0.10 0.04

10×10 25 0.47 0.22 0.21 0.45 0.66 0.38 0.25 0.18 0.11

Table 3.1: Monte Carlo estimates for the absolute values of the bias (×10−2) and variance

(×10−3) of the CL estimator with Poisson marginals under different setups of nC ,nL and

T .

lation parameters ρb, with an overestimation for standard errors of regression coefficients

and underestimation for those of correlation parameters. When B = 100, all coverage

probabilities become stable and very close to the nominal level. However, we do not ob-

serve much improvement as B increase from 100 to 500. Most results look very similar

with both marginals. Generally, all results with ρa performs better than those with ρb,

and T = 25 with ρb seems to be the most difficult case, especially for the Negative bino-

mial marginals. Coverage probabilities show an underestimation of standard errors with

the misspecification of the correlation matrix, although estimation is improving with the

increase of B, the coverage is still below the nominal level even with the largest B = 500.

Apart from the coverage probabilities, we include at the end of both tables the com-

putational time required, which grows in proportion of the size of B as anticipated. We

observe that for n = 25, the running time needed is about 15 times than n = 10, this
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nC nL T
parameters β (1|1) β (1|2) β (1|3) β (2|1) β (2|2) β (2|3) β (3|1) β (3|2) β (3|3)

true value 1 0.5 -0.6 0.4 1 -0.2 0.2 0.1 1

|B̂ias|

ρa

10×10 10 11.88 13.25 19.98 5.06 5.41 9.82 1.81 1.67 2.78

25×25 10 4.92 5.63 8.29 2.16 2.25 3.58 0.86 0.76 1.17

10×10 25 5.93 7.98 5.58 3.7 4.56 3.21 1.70 1.59 1.19

ρb

10×10 10 15.12 17.28 25.09 5.99 5.67 10.75 2.14 1.74 3.11

25×25 10 5.86 6.45 9.90 2.40 2.57 4.39 0.77 0.71 1.19

10×10 25 9.50 11.83 9.09 4.43 5.07 3.82 2.11 2.32 1.75

V̂ar

ρa

10×10 10 24.43 30.42 63.90 3.77 4.31 14.37 0.50 0.44 1.21

25×25 10 3.87 4.86 10.33 0.70 0.77 1.85 0.10 0.08 0.21

10×10 25 5.58 9.62 4.99 2.19 3.05 1.57 0.48 0.53 0.25

ρb

10×10 10 35.26 44.71 96.63 5.36 4.89 18.25 0.67 0.45 1.44

25×25 10 5.34 6.43 14.81 0.91 1.02 3.18 0.09 0.08 0.23

10×10 25 13.76 20.96 13.79 3.55 3.78 2.36 0.67 1.35 0.66

nC nL T

parameters ρ(1) ρ(2) ρ(3) ρ
(1,2)
0 ρ

(1,3)
0 ρ

(2,3)
0 ρ

(1,2)
1 ρ

(1,3)
1 ρ

(2,3)
1

true valuea 0 0 0 -0.6 0.2 -0.3 0 0 0

true valueb 0.3 0.2 0.1 -0.6 0.2 -0.3 -0.1 0.1 -0.2

|B̂ias|

ρa

10×10 10 2.57 1.58 1.47 2.62 3.31 2.33 1.65 1.33 1.03

25×25 10 0.88 0.67 0.55 0.99 1.16 0.96 0.61 0.51 0.40

10×10 25 1.56 1.31 1.74 1.90 2.06 2.03 1.02 0.86 1.05

ρb

10×10 10 3.64 2.44 1.73 3.18 3.77 2.63 2.52 2.13 1.48

25×25 10 1.21 0.95 0.67 1.46 1.41 1.11 0.89 0.72 0.56

10×10 25 2.10 2.27 7.57 3.23 3.15 3.31 2.08 2.14 2.43

V̂ar

ρa

10×10 10 0.89 0.35 0.34 1.00 1.72 0.84 0.38 0.27 0.17

25×25 10 0.11 0.07 0.05 0.16 0.22 0.15 0.06 0.04 0.03

10×10 25 0.36 0.41 5.97 0.82 0.76 1.00 0.19 0.25 0.83

ρb

10×10 10 1.64 0.75 0.43 1.70 2.21 1.15 0.93 0.65 0.35

25×25 10 0.15 0.11 0.07 0.24 0.29 0.20 0.12 0.07 0.05

10×10 25 0.53 1.36 39.83 3.47 1.79 3.42 0.78 1.07 2.62

Table 3.2: Monte Carlo estimates for the absolute values of the bias (×10−2) and variance

(×10−3) of the CL estimator with Negative binomial marginals under different setups of

nC ,nL and T .

because the number of component pairwise likelihoods grows roughly at the order of n2
L

.

Finally, we carry out the adjusted composite likelihood ratio tests described in Section

3.5. Specifically, for each simulated dataset, we carry out both tests as described in (3.7)

and (3.8) with significance level 5% and θ̂θθ taken as the parameter estimates from the

dataset. In Table 3.5, we report the percentage of rejections among the 100 simulated

datasets for both marginals. While the Geys et al. (1999) likelihood ratio test (W1) tends

to produce more type 1 errors than anticipated, the rejection rate of the test proposed by

Satterthwaite (1946) (W2) is very close to the significance level in all settings.

53



Chapter 3

β ρ

B nC nL T 90% 95% 99% 90% 95% 99% Time (h:m.s)

50

ρa

10×10 10 89.2 93.7 98.6 89.4 93.1 97.9 00:01.16

25×25 10 92.2 96.2 99.2 90.0 94.7 98.8 00:15.12

10×10 25 92.5 96.0 98.8 91.3 94.9 99.0 00:03.00

ρb

10×10 10 93.2 97.0 99.7 92.3 96.1 99.6 00:01.14

25×25 10 94.2 97.4 99.0 88.6 93.8 98.5 00:15.23

10×10 25 95.0 97.3 99.1 87.3 92.6 98.0 00:03.03

100

ρa

10×10 10 91.6 95.5 98.1 90.8 95.2 98.8 00:02.24

25×25 10 91.9 96.0 98.8 91.0 96.7 99.2 00:29.27

10×10 25 92.9 97.4 99.2 89.9 94.8 98.9 00:05.38

ρb

10×10 10 90.2 94.3 98.2 89.9 94.8 99.4 00:02.28

25×25 10 89.9 94.4 98.7 89.8 95.2 99.1 00:29.37

10×10 25 92.8 96.6 98.9 91.2 96.2 99.4 00:05.54

200

ρa

10×10 10 90.7 96.2 98.9 90.1 94.9 98.9 00:04.40

25×25 10 92.0 95.2 98.8 91.2 95.6 99.4 01:10.00

10×10 25 92.7 96.8 99.2 92.1 96.6 98.7 00:11.33

ρb

10×10 10 91.4 94.4 99.0 91.7 95.7 98.9 00:04.47

25×25 10 91.2 95.3 99.6 88.9 94.7 99.2 01:21.00

10×10 25 91.8 96.7 99.6 90.8 96.3 99.2 00:11.51

500

ρa

10×10 10 90.2 95.6 99.3 89.8 95.0 98.6 00:11.30

25×25 10 91.4 95.2 98.9 90.3 95.1 99.2 02:38.35

10×10 25 92.9 96.4 99.2 90.2 95.6 99.6 00:28.01

ρb

10×10 10 90.3 94.9 99.0 90.3 94.4 99.0 00:11.53

25×25 10 89.8 94.4 97.7 90.3 95.6 99.4 02:43.39

10×10 25 91.4 95.6 98.8 89.2 96.3 99.0 00:28.36

Table 3.3: Monte Carlo estimates for the coverage probability of 90%,95% and 99%

confidence intervals for Poisson marginals, where the estimate of the standard errors of θθθ
is given in Section 3.2.4.All coverages shown in the table are averages taken over mean

parameters (β ), and correlation parameters (ρ).

3.4 Real data analysis

In this section, we reanalyze the cancer cell growth data from the co-culture experiment

with fibroblasts analyzed in Chapter 2. Recall that the datasets analyzed consist of counts

of cell types (different cancer cell populations expressing different fluorescent proteins,

and non-fluorescent fibroblasts) from 9 subsequent images taken at 8-hour frequency over

a period of 3 days. In the experiment, fibroblasts (F) are non-fluorescent whereas cancer

cells fluoresce either in the red (R) or green (G) channels due to the experimental expres-

sion of mCherry or GFP proteins respectively. Each image was subsequently tiled using
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β ρ

B nC nL T 90% 95% 99% 90% 95% 99% Time (h:m.s)

50

ρa

10×10 10 92.5 96.0 98.5 89.7 93.6 98.3 00:02.05

25×25 10 93.4 97.3 99.2 91.4 96.0 98.9 00:16.22

10×10 25 94.3 97.5 99.3 88.5 93.2 97.7 00:04.51

ρb

10×10 10 90.9 95.1 99.3 88.0 92.5 97.9 00:02.54

25×25 10 90.3 94.4 99.0 88.6 94.1 98.4 00:16.48

10×10 25 90.8 94.0 97.4 80.8 86.6 93.9 00:05.04

100

ρa

10×10 10 91.2 94.7 98.6 89.8 94.6 98.4 00:06.57

25×25 10 92.4 96.0 99.0 91.1 95.4 99.3 00:32.42

10×10 25 94.1 97.2 99.2 89.3 93.9 98.3 00:15.23

ρb

10×10 10 91.2 95.8 98.9 88.2 93.4 98.6 00:06.08

25×25 10 89.5 94.3 98.4 92.0 97.0 99.4 00:33.32

10×10 25 91.3 94.8 98.3 82.6 87.8 95.3 00:19.18

200

ρa

10×10 10 91.1 95.1 98.6 89.2 94.4 98.3 00:04.58

25×25 10 91.4 95.3 99.1 90.9 95.5 99.0 01:03.52

10×10 25 93.6 96.8 99.1 88.3 93.9 98.6 00:34.45

ρb

10×10 10 91.2 95.1 98.4 88.5 93.5 98.5 00:05.07

25×25 10 92.6 96.4 99.3 89.8 95.0 98.3 01:07.42

10×10 25 91.5 95.0 98.5 84.9 89.1 95.5 00:30.56

500

ρa

10×10 10 90.7 94.4 98.1 90.9 95.3 99.1 00:24.42

25×25 10 91.4 95.3 99.1 90.7 96.0 99.3 02:21.08

10×10 25 93.4 96.3 98.9 90.3 95.3 98.9 01:05.20

ρb

10×10 10 90.7 94.8 99.0 90.0 95.5 99.3 00:25.06

25×25 10 90.2 95.1 98.5 90.1 95.4 99.5 02:51.50

10×10 25 91.2 95.3 99.2 85.2 92.8 96.7 01:24.05

Table 3.4: Monte Carlo estimates for the coverage probability of 90%,95% and 99%

confidence intervals for Negative binomial marginals, where the estimate of the standard

error of θθθ is given in Section 3.2.4. All coverages shown in the table are averages taken

over mean parameters (β ), and correlation parameters (ρ).

a 25×25 regular grid.

Table 3.6 shows estimated parameters of both models, with 95% bootstrap confidence

intervals in parenthesis. Estimates significantly different from zero are shown in bold

numbers. As anticipated, the regression parameter estimates in both models are consistent

with each other, in that: both models show that impacts within each cell type (β̂ (c|c),c =

R,G,F) are significant, the effects β̂ (c|c) for cancer cells are larger than those for the

slower growing fibroblasts, the green and red cancer cells have positive impact on each

other, while cancer cells and fibroblasts have no impact on each other. Also note that

impacts related to the red and green cancer cells are symmetric, that is β̂ (R|c) is similar to
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Poisson Negative Binomial

nL T W1(%) W2(%) W1(%) W2(%)

ρa

10×10 10 11 6 13 5

25×25 10 10 4 12 4

10×10 25 11 6 14 6

ρb

10×10 10 11 4 14 6

25×25 10 10 5 12 5

10×10 25 12 6 15 7

Table 3.5: Percentage of rejection of goodness-of-fit test (at significance level of 5%)

among 100 simulated data sets with Poisson and Negative binomial marginals. Goodness-

of-fit tests with adjusted composite likelihood ratio tests with test statistics described in

(3.7) and (3.8).

β̂ (G|c), and β̂ (c|R) is similar to β̂ (c|G) for all c ∈ {R,G,F}, which aligns with the fact that

the red and green cancer cells are biologically identical except for the fluorescent protein

they express.

Estimated correlation parameters from the copSTM model are displayed as two cor-

relation matrices, correspond to RRR0 and RRR1 specified in Section 3.2.2. Recall that ρ̂0
(c,c′)

is the between group correlation within the same tile and ρ̂1
(c,c′)

denotes the between

and within group correlation in neighbouring (but not the same) tiles. Diagonal elements

in the second matrix, ρ̂1
(c,c)

is the same ρ̂
(c)
1 in Section 3.2.2 and 3.3. Both correlation

matrices are shown as upper triangular matrices, omitting repetitive symmetrical entries.

Significant positive ρ̂0
(R,G)

indicates that the cancer cells of the two colours not only pro-

mote the growth of each other, but also likely to tend to stay together, i.e. the more green

cancer cells in one tile, the more red cancer cells are likely to be in the same tile, and vice

versa. On the other hand, both types of cancer cells have negative local correlations with

fibroblasts (ρ̂0
(G,F)

and ρ̂0
(R,F)

). It seems to suggest although cancer cells are likely to

stay close to each other, they tend to keep some distance from fibroblasts.

Red caner cell Green caner cell

Fibroblast

The second goal is to assess the goodness-of-fit and prediction performance of the esti-

mated model. To illustrate the goodness-of-fit, we generate cell counts of each time point,
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Model 1

c = G R F

β̂0

(c)
-0.99 (-1.19, -0.79)-0.99 (-1.19, -0.79)-0.99 (-1.19, -0.79) -0.50 (-0.70, -0.30)-0.50 (-0.70, -0.30)-0.50 (-0.70, -0.30) -0.26 (-0.45, -0.06)-0.26 (-0.45, -0.06)-0.26 (-0.45, -0.06)

β̂ (G|c) 1.23 (1.10, 1.35)1.23 (1.10, 1.35)1.23 (1.10, 1.35) 0.34 (0.21, 0.48)0.34 (0.21, 0.48)0.34 (0.21, 0.48) 0.12 (-0.03, 0.27)

β̂ (R|c) 0.28 (0.17, 0.38)0.28 (0.17, 0.38)0.28 (0.17, 0.38) 1.09 (0.96, 1.21)1.09 (0.96, 1.21)1.09 (0.96, 1.21) 0.02 (-0.09, 0.13)

β̂ (F |c) 0.10 (-0.01, 0.21) 0.02 (-0.07, 0.12) 0.92 (0.81, 1.03)0.92 (0.81, 1.03)0.92 (0.81, 1.03)

copMSTM model

c = G R F

β̂0

(c)
-1.06 (-1.18, -1.94)-1.06 (-1.18, -1.94)-1.06 (-1.18, -1.94) -0.60 (-0.69, -0.51)-0.60 (-0.69, -0.51)-0.60 (-0.69, -0.51) -0.42 (-0.52, -0.32)-0.42 (-0.52, -0.32)-0.42 (-0.52, -0.32)

β̂ (G|c) 1.45 (1.35, 1.56)1.45 (1.35, 1.56)1.45 (1.35, 1.56) 0.22 (0.14, 0.30)0.22 (0.14, 0.30)0.22 (0.14, 0.30) 0.06 (-0.03, 0.15)

β̂ (R|c) 0.31 (0.22, 0.41)0.31 (0.22, 0.41)0.31 (0.22, 0.41) 1.26 (1.18, 1.34)1.26 (1.18, 1.34)1.26 (1.18, 1.34) 0.05 (-0.04, 0.14)

β̂ (F |c) 0.08 (-0.02, 0.18) 0.01 (-0.08, 0.09) 1.08 (0.99, 1.17)1.08 (0.99, 1.17)1.08 (0.99, 1.17)

ρ̂0
(G,c)

1 0.05( 0.02, 0.08)0.05( 0.02, 0.08)0.05( 0.02, 0.08) -0.03 (-0.05, -0.01)-0.03 (-0.05, -0.01)-0.03 (-0.05, -0.01)

ρ̂0
(R,c)

– 1 -0.02 (-0.03, -0.01)-0.02 (-0.03, -0.01)-0.02 (-0.03, -0.01)

ρ̂0
(F,c)

– – 1

ρ̂1
(G,c)

0.01 (-0.03, 0.01) 0.00(-0.00, 0.02) -0.01 (-0.02, 0.00)

ρ̂1
(R,c)

– -0.00 (-0.02, 0.01) -0.02(-0.03, -0.00)

ρ̂1
(F,c)

– – 0.01 (-0.00, 0.02)

Table 3.6: Estimated parameters of the model in Qiao et al. (2018) (denoted as Model 1)

and the copSTM model based on the cancer cell growth data. Bootstrap 95% confidence

intervals based on 100 bootstrap samples are given in parenthesis.

yt = (y1,t , . . . ,ynL ,t), t = 1, . . . ,8 from a multivariate Poisson distribution, with marginal

expectation µ
(c)
i,t described in (3.1) with βββ (c) and H(y

(c)
i,t−1) specified earlier in this section,

and correlation matrix as the block matrix described in Section 3.2.2, with regression and

correlation parameters taken as the estimated values shown in Table 3.6 and yt−1 as ob-

servations from the previous time point. For each time point, we compare the generated

total cell count of each type (green cancer cells (G), red cancer cells (R) and fibroblasts

(F)) across the image with the observed count. In Figure 3.2, The observed cell count

growth curves are shown as solid lines, while the generated counts correspond to dashed

lines. The solid and dashed curves for all cell types are close, suggesting that the model

fits the data reasonably well. As anticipated, the overall growth rate for the red and green

cancer cells are similar, and sensibly larger than the growth rate for fibroblasts.

Next, we carry out a one-step-ahead forecasting using parameters estimated from a

moving window of five time points. In Figure 3.3, we show quantiles of observed cell

counts against predicted counts for each tile. The upper and lower 95% confidence bounds

are computed non-parametrically by taking F̂−1
1

(
F̂0(y

(c)
t )−qα

)
and F̂−1

1

(
F̂0(y

(c)
t )+qα

)
,

where F̂0 and F̂1 are the empirical distributions of the observations and predictions at

time t respectively and qα is the (1−α) quantile of the Kolmogorov-Smirnov statistic
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Figure 3.2: Goodness-of-fit of the estimated models. Observed (solid) and predicted

(dashed) number of green cancer cells (G), red cancer cells (R) cancer cells and fibroblasts

(F) for the entire image at time points t = 1, . . . ,8.

supy |F̂0(y)− F̂1(y)| (Nair, 1982). The identity line falls within the confidence bands in

each plot, indicating a satisfactory prediction performance.
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Figure 3.3: QQ-plots for cell growth, comparing observed (horizontal axis) and one-time

ahead predicted (vertical axis) cell counts per tile on the entire image at times t = 6,7,8
for GFP cancer cells (G), mCherry cancer cells (R) and fibroblasts (F). One-time ahead

predictions are based on the model fitted using a moving window of five time points.
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3.5 Discussions

In the analysis of spatio-temporal data, Bayesian methods are predominantly used owing

to the numerical limitations of the traditional likelihood methods. The proposed Gaus-

sian copula regression model (copSTM) and pairwise CL inference offer a competitive

alternative for analyzing correlated count data.

Specifically, we consider count data set observed on a n × n regular lattice for T

consecutive time periods, yielding an array of n× n× T spatial-temporal observations.

Temporal parameters are captured as regression coefficients in a GARMA(1, 0) marginal

model, while dependence between observed responses at the same time point are mod-

elled through the Gaussian copula. The model specification allows for straightforward

interpretation of marginal regression coefficients and great flexibility in specification of

correlation structures. The correlation matrix accommodates for both spatial and between

group correlations, and all correlations are allowed to be positive or negative.

On the modelling side, although we particularly focus on count lattice data in this

chapter, the proposed copSTM model is so flexible that it can easily be extended to fit

other types of spatio-temporal data. First, apart from Poisson and Negative binomial

marginals considered in this chapter, the marginal distribution could be any exponential

family distributions. Second, the marginal condition mean can be generalized to depend

on previous observations with time lag greater than one as well as on its own previous

values. This makes a GARMA(p, q) model where p,q ≥ 1, in which case the score func-

tion needs to be computed recursively. Besides, external explanatory variables may also

be allowed. Thirdly, the correlation matrix can be extended to other dependence struc-

ture designs. For example, since the straightforward correlation parametrization of our

model has positive definite problems, it may be helpful to consider the correlation ma-

trix proposed by Tang et al. (2019), which is parametrized in hyperspherical coordinates,

with no constraint on parameters and guarantees to be nonnegative definite. Although

in such design, the correlation parameters are less interpretable, it is a possible future

research direction. Other dependence structures worth considering include the popular

isotropic correlation functions like the Matérn, the power exponential and the spherical

families adopted by Han and De Oliveira (2018) and Bai et al. (2014). By including these

Euclidean distances-based correlation functions, the model can be extended to handle

geographical data.

On the inference side, a clear advantage of the proposed pairwise CL method is the

computational feasibility. Besides, we derive the closed forms of the score function and

Hessian matrix, making the model fitting fairly fast. It is shown in our simulation stud-

ies that the CL estimator performs well for both Poisson and Negative binomial data,

and that a certain level of misspecification can be tolerated. Our numerical experiences

also suggest that the parametric bootstrap works well in estimating standard errors, apart
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from being slightly computationally costly. One possible future extension is the further

improvement of statistical efficiency (maybe at some cost of computational efficiency),

which can be achieved by adding some properly chosen weights to the CL estimating

functions. For example, the joint composite estimating function (JCEF) proposed by Bai

et al. (2014) for the analysis of spatial data clustered in terms of locations, where pairwise

score functions are grouped into between and within cluster pairs: uB(θθθ) and uW (θθθ) re-

spectively. Then the JCEF is defined as ΓΓΓ(θθθ)′KKK(θθθ)−1ΓΓΓ(θθθ), where Γ(θθθ) = (uB(θθθ),uW (θθθ))

and KKK(θθθ) = Var(Γ(θθθ)) can be estimated with the parametric bootstrap method.

Last but not the least, the number of parameters in the proposed model grows quadrat-

ically with the number of groups nC at each location (specifically 2n2
C
+ nC ), therefore

it would be useful to perform model selection in order to control model complexity and

avoid an over-parametrized model. Although our likelihood framework allows us to fa-

cilitate a penalized likelihood function like LASSO or SCAD, these methods encounter

convergence problems with the presence of correlations. Therefore, we plan to explore a

model selection method first introduced by Qian and Field (2002), that employs the Gibbs

sampler and is consistent and efficient even with a large model space.

3.6 Appendix

1. Score vector

The score vector is

u(θθθ ; yyy) =
∂cl(θθθ ; yyy)

∂θθθ
=

T

∑
t=1

∑
i1∼i2

nC

∑
c1=1

nC

∑
c2=1

∂cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂θθθ
,

where

cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

) = log
[
CL(θθθ ; y

(c1)
i1,t

,y
(c2)
i2,t

)
]
= log

[∫ b
(c1)
i1,t

a
(c1)
i1,t

∫ b
(c2)
i2,t

a
(c2)
i2,t

φρ(z1,z2)dz1dz2

]

is the component CL of one pair.

1.1 Score vector of mean parameters

The first 2nC entries of the score vector are the derivatives of the CL function with respect

to mean parameters. Partial derivatives with respect to α(c) and β (c) have the same form,

so without loss of generosity, consider only the derivative with respect to α(c1).

For simplicity, let a1 = a
(c1)
i1,t

,b1 = b
(c1)
i1,t

,a2 = a
(c2)
i2t ,b2 = b

(c2)
i2,t

.
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• If c1 6= c2, then

∂cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂α(c1)
=

∂b1

∂α(c1)
f (a2,b2,b1,ρ)−

∂a1

∂α(c1)
f (a2,b2,a1,ρ)

CL(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)
, (3.9)

where ρ = ρ
(c1,c2)
0 if i1 = i2 and ρ = ρ

(c1,c2)
1 otherwise.

• If c1 = c2 = c, then

∂cl(θθθ ; y
(c)
i1,t

,y
(c)
i2,t

)

∂α(c)
=

1

CL(θθθ ; y
(c)
i1,t

,y
(c)
i2,t

)

[
∂b1

∂α(c)
f (a2,b2,b1,ρ)−

∂a1

∂α(c)
f (a2,b2,a1,ρ)

+
∂b2

∂α(c)
f (a1,b1,b2,ρ)−

∂a2

∂α(c)
f (a1,b1,a2,ρ)

]
,

(3.10)

where ρ = ρ
(c)
1 and

f (a,b,c,ρ)=
∫ b

a
φρ(c,z)dz=

1√
2π

exp

(
−c2

2

)∫ b

a

1√
2π
√

1−ρ2
exp

(
−1

2

(z−ρc)2

1−ρ2

)
dz,

(3.11)

in which the second term is the probability of Z′ ∼ N(ρc,1−ρ2) between a and b.

1.2 Score vector of correlation parameters

First, note that among all n2
C

correlation parameters, only one appears in each component

likelihood, thus

∂cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂ρ
(c)
1

6= 0 only when c1 = c2 = c and i1 6= i2,

∂cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂ρ
(c1,c2)
0

6= 0 only when i1 = i2,

∂cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂ρ
(c1,c2)
1

6= 0 only when i1 6= i2.

The general form of the derivative of the component likelihood with respect to correlation

parameters is

∂cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂ρ
=

∫ b1
a1

∫ b2
a2

∂φρ(z1,z2)

∂ρ
dz1dz2

CL(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)
, (3.12)
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where ρ ∈ {ρ
(c)
1 ,ρ

(c1,c2)
0 ,ρ

(c1,c2)
1 }, c,c1,c2 ∈ {1, . . . ,nC }. The numerator of (3.12)

∫ b1

a1

∫ b2

a2

∂φρ(z1,z2)

∂ρ
dz1dz2 =

∫ b1

a1

∫ b2

a2

∂

∂ρ

[
1

2π|ΣΣΣ|1/2
exp

(
−1

2
zzzTΣΣΣ−1zzz

)]
dz1dz2,

wherezzz = (z1,z2)
T ,ΣΣΣ =

(
1 ρ
ρ 1

)
,

=
∫ b1

a1

∫ b2

a2

− 1

4π|ΣΣΣ|3/2
|ΣΣΣ|tr

(
ΣΣΣ−1 dΣΣΣ

dρ

)
exp

(
−1

2
zzzTΣΣΣ−1zzz

)
dz1dz2

+
∫ b1

a1

∫ b2

a2

− 1

4π|ΣΣΣ|1/2

(
zzzTΣΣΣ−1 dΣΣΣ

dρ
ΣΣΣ−1zzz

)
dz1dz2 (3.13)

The first term in (3.13) =−1

2
tr

(
ΣΣΣ−1 dΣΣΣ

dρ

)∫ b1

a1

∫ b2

a2

1

2π|ΣΣΣ|1/2
exp

(
−1

2
zzzTΣΣΣ−1zzz

)
dz1dz2

=
ρ

(1−ρ2)
CL(θθθ ; y

(c1)
i1,t

,y
(c2)
i2,t

)

The second term in (3.13) =
ρ

(1−ρ2)2

∫ b1

a1

∫ b2

a2

z2
1φρ(z1,z2)dz1dz2

− 1+ρ2

(1−ρ2)2

∫ b1

a1

∫ b2

a2

z1z2φρ(z1,z2)dz1dz2

+
ρ

(1−ρ2)2

∫ b1

a1

∫ b2

a2

z2
2φρ(z1,z2)dz1dz2

Let A=
∫ b1

a1

∫ b2
a2

z2
1φρ(z1,z2)dz1dz2, B=

∫ b1
a1

∫ b2
a2

z1z2φρ(z1,z2)dz1dz2 and C =
∫ b1

a1

∫ b2
a2

z2
2φρ(z1,z2)dz1dz2.

Then (3.13) can be simplified as

∫ b1

a1

∫ b2

a2

∂φρ(z1,z2)

∂ρ
dz1dz2 =

ρ

(1−ρ2)
CL(θθθ ; y

(c1)
i1,t

,y
(c2)
i2,t

)+
ρ

(1−ρ2)2
A− 1+ρ2

(1−ρ2)2
B+

ρ

(1−ρ2)2
C.

(3.14)

Next, we derive A, B and C.

First, we start from A,

A =
1

2π
√

1−ρ2

∫ b1

a1

∫ b2

a2

z2
1 exp

(
−1

2

z2
1 −2ρz1z2 + z2

2

1−ρ2

)
dz2dz1

=
1

2π
√

1−ρ2

∫ b1

a1

∫ b2

a2

(z2
1 −ρz1z2)exp

(
−1

2

z2
1 −2ρz1z2 + z2

2

1−ρ2

)
dz2dz1

+
1

2π
√

1−ρ2

∫ b1

a1

∫ b2

a2

ρz1z2 exp

(
−1

2

z2
1 −2ρz1z2 + z2

2

1−ρ2

)
dz2dz1

=
1

2π
√

1−ρ2

∫ b2

a2

∫ b1

a1

−(1−ρ2)z1d exp

(
−1

2

z2
1 −2ρz1z2 + z2

2

1−ρ2

)
dz2 +ρB (3.15)
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The first term in (3.15) =−
√

1−ρ2

2π

∫ b2

a2

[
z1 exp

(
−1

2

z2
1 −2ρz1z2 + z2

2

1−ρ2

)∣∣∣
b1

a1

]
dz2

+(1−ρ2)
∫ b2

a2

∫ b1

a1

1

2π
√

1−ρ2
exp

(
−1

2

z2
1 −2ρz1z2 + z2

2

1−ρ2

)
dz1dz2

=(1−ρ2)
[
b1 f (a2,b2,b1,ρ)−a1 f (a2,b2,a1,ρ)+CL(θθθ ; y

(c1)
i1,t

,y
(c2)
i2,t

)
]
,

where f (a,b,c,ρ) is defined in (3.11). Thus, the first equation between A and B is ob-

tained by substituting the above expression into (3.15):

A = (1−ρ2)
[
b1 f (a2,b2,b1,ρ)−a1 f (a2,b2,a1,ρ)+CL(θθθ ; y

(c1)
i1,t

,y
(c2)
i2,t

)
]
+ρB (3.16)

Second, we start from B,

B =
1

2π
√

1−ρ2

∫ b1

a1

∫ b2

a2

z1z2 exp

(
−1

2

z2
1 −2ρz1z2 + z2

2

1−ρ2

)
dz2dz1

=
1

2π
√

1−ρ2

∫ b1

a1

∫ b2

a2

(z1z2 −ρz2
1)exp

(
−1

2

z2
1 −2ρz1z2 + z2

2

1−ρ2

)
dz2dz1

+
1

2π
√

1−ρ2

∫ b1

a1

∫ b2

a2

ρz2
1 exp

(
−1

2

z2
1 −2ρz1z2 + z2

2

1−ρ2

)
dz2dz1 (3.17)

The second term in (3.17) is ρA, the first term can be simplified as

− (1−ρ2)
∫ b1

a1

z1
1

2π
√

1−ρ2

[
exp

(
−1

2

z2
1 −2ρz1z2 + z2

2

1−ρ2

)∣∣∣
b2

a2

]
dz1

=(1−ρ2)

[∫ b1

a1

z1φρ(a2,z1)dz1 −
∫ b1

a1

z1φρ(b2,z1)dz1

]

It can be derived that

∫ b

a
zφρ(c,z)dz = (1−ρ2)

[
φρ(a,c)−φρ(b,c)

]
+ρc f (a,b,c,ρ). (3.18)

Substituting (3.18) to the first term in (3.17), we can get the second equation between

A and B:

B =(1−ρ2)2
[
φρ(a1,a2)−φρ(b1,a2)−φρ(a1,b2)+φρ(b2,b1)

]

+(1−ρ2)ρ [a2 f (a1,b1,a2,ρ)−b2 f (a1,b1,b2,ρ)]+ρA. (3.19)

Solving Equations (3.16) and (3.19) gives the expression of A and B, the expression

of C is symmetrical to A in terms of indexes.

Finally, substitute A, B and C to (3.14), which is the numerator of (3.12), one can

get, after some algebra, the partial derivative of the composite likelihood with respect to
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correlation parameters

∂cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂ρ
=

φρ(b1,a2)+φρ(a1,b2)−φρ(a1,a2)−φρ(b2,b1)

CL(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)
(3.20)

2. Hessian matrix

The Hessian matrix is estimated as

ĤHH(θθθ) =
T

∑
t=1

∑
i1∼i2

nC

∑
c1=1

nC

∑
c2=1

∂ 2cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂θθθ 2
,

where the second derivative of cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

) can be written as a bock matrix

∂ 2cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂θθθ 2
=

[
ĤHH11(θθθ ,y

(c1)
i1,t

,y
(c2)
i2,t

) ĤHH12(θθθ ,y
(c1)
i1,t

,y
(c2)
i2,t

)

ĤHH12(θθθ ,y
(c1)
i1,t

,y
(c2)
i2,t

)T ĤHH22(θθθ ,y
(c1)
i1,t

,y
(c2)
i2,t

)

]
,

where ĤHH11 and ĤHH22 are the second derivative of cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

) with respect to mean and

correlation parameters respectively, and ĤHH12 is the mixed derivative of cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

with respect to mean and correlation parameters.

2.1 ĤHH22(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

Since only one correlation parameter appear in each component composite likelihood,

∂ 2cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂ρ1∂ρ2
= 0 if ρ1 6= ρ2,

which means ĤHH22 is a n2
C
×n2

C
diagonal matrix. Taking derivative of (3.20) with respect

to ρ , the diagonal entries of ĤHH22 are

∂ 2cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂ρ2
=

∂g(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂ρ
CL(θθθ ; y

(c1)
i1,t

,y
(c2)
i2,t

)−g(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)2

CL(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)2
,
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where

g(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

) = φρ(b1,a2)+φρ(a1,b2)−φρ(a1,a2)−φρ(b2,b1) (3.21)

∂g(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂ρ
=

dφρ(b1,a2)

dρ
+

dφρ(a1,b2)

dρ
− dφρ(a1,a2)

dρ
− dφρ(b1,b2)

dρ

dφρ(x,y)

dρ
= φρ(x,y)

1

(1−ρ2)3/2

[
ρ − ρx2 − (1+ρ2)xy+ρy2

1−ρ2

]
.

2.2 ĤHH12(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

This is a (2nC )× (n2
C
) matrix, the entries are the mixed derivatives of cl(θθθ ; y

(c1)
i1,t

,y
(c2)
i2,t

)

with respect to the mean and correlation parameters. Without loss of generosity, con-

sider only ∂ 2cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)/∂ρ∂α(c1), where c1,c2 ∈ {1, . . . ,nC }. Taking derivative of

(3.20) with respect to α(c1), we have

∂ 2cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂ρ∂α(c1)
=

∂g(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂α(c1)
−

cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂α(c1)
g(θθθ ; y

(c1)
i1,t

,y
(c2)
i2,t

)

CL(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)
,

where g(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

) is defined in (3.21).

• If c1 6= c2, then ∂cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)/∂α(c1) is defined in (3.9) and

∂g(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂α(c1)
=

∂a1

∂α(c1)

(
∂φ(a1,b2)

∂a1
− ∂φ(a1,a2)

∂a1

)
+

∂b1

∂α(c1)

(
∂φ(b1,a2)

∂b1
− ∂φ(b1,b2)

∂b1

)
.

• If c1 = c2, then ∂cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)/∂α(c1) is defined in (3.10) and

∂g(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂α(c1)
=

∂a1

∂α(c1)

(
∂φ(a1,b2)

∂a1
− ∂φ(a1,a2)

∂a1

)
+

∂b1

∂α(c1)

(
∂φ(b1,a2)

∂b1
− ∂φ(b1,b2)

∂b1

)
+

∂a1

∂α(c1)

(
∂φ(b1,a2)

∂a1
− ∂φ(a1,a2)

∂a2

)
+

∂b1

∂α(c1)

(
∂φ(a1,b2)

∂b1
− ∂φ(b1,b2)

∂b2

)
,

where
∂φ(x,y)

∂x
=

ρy− x

1−ρ2
φ(x,y).

2.3 ĤHH11(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

This is a (2nC )× (2nC ) matrix, the entries are the second derivatives of cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

with respect to the mean parameters. Without loss of generosity, consider only the deriva-
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tives with respect to α(c1) and/or α(c2).

It can be seen from (3.9) and (3.10), that

∂cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂α(c1)
=

h(θθθ , ; y
(c1)
i1,t

,y
(c2)
i2,t

)

CL(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)
, (3.22)

where

h(θθθ , ; y
(c1)
i1,t

,y
(c2)
i2,t

) =
∂b1

∂α(c1)
f (a2,b2,b1,ρ)−

∂a1

∂α(c1)
f (a2,b2,a1,ρ) if c1 6= c2,

h(θθθ , ; y
(c1)
i1,t

,y
(c2)
i2,t

) =
∂b1

∂α(c)
f (a2,b2,b1,ρ)−

∂a1

∂α(c)
f (a2,b2,a1,ρ)+

∂b2

∂α(c)
f (a1,b1,b2,ρ)−

∂a2

∂α(c)
f (a1,b1,a2,ρ) if c1 = c2.

Thus, taking a derivative of (3.22) with respect to α(c),c ∈ {c1,c2} gives

∂ 2cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂α(c1)∂α(c)
=

∂h(θθθ , ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂α(c)
−

∂cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)

∂α(c)
h(θθθ , ; y

(c1)
i1,t

,y
(c2)
i2,t

)

CL(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)
,

where ∂cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)/∂α(c1) is given by (3.9), and ∂cl(θθθ ; y
(c1)
i1,t

,y
(c2)
i2,t

)/∂α(c2) can be

derived similarly. Only ∂h(θθθ , ; y
(c1)
i1,t

,y
(c2)
i2,t

)/∂α(c) differs in three case:

• If c1 6= c2, c = c2, i.e.
∂ 2cl(θθθ ; y

(c1)
i1,t

,y
(c2)
i2,t

)

∂α(c1)∂α(c2)
, then

∂h(θθθ , ; y
(c1)
i1,t

,y
(c2)
i2,t

)

α(c2)
=

∂b1

∂α(c1)

[
∂b2

∂α(2)
φρ(b1,b2)−

∂b2

∂α(2)
φρ(b1,a2)

]

− ∂a1

∂α(c1)

[
∂b2

∂α(2)
φρ(a1,b2)−

∂a2

∂α(2)
φρ(a1,a2)

]
,

since
∂ f (a,b,c,ρ)

∂a
= φρ(a,c) and

∂ f (a,b,c,ρ)

∂b
= φρ(b,c).

• If c1 6= c2, c = c1, i.e.
∂ 2cl(θθθ ; y

(c1)
i1,t

,y
(c2)
i2,t

)

∂ 2α(c1)
, then

∂h(θθθ , ; y
(c1)
i1,t

,y
(c2)
i2,t

)

α(c1)
=

∂ 2b1

∂α(c1)
2

f (a2,b2,b1,ρ)+

(
∂b1

∂α(c1)

)2
f (a2,b2,b1,ρ)

∂b1

− ∂ 2a1

∂α(c1)
2

f (a2,b2,a1,ρ)−
(

∂a1

∂α(c1)

)2
f (a2,b2,a1,ρ)

∂a1
,
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where

∂ f (a,b,c,ρ)

∂c
=
∫ b

a

∂φρ(c,z)

∂c
dz

=
∫ b

a

(
− c−ρz

1−ρ2

)
1

2π
√

1−ρ2
exp

(
−1

2

c2 −2ρcz+ z2

1−ρ2

)
dz

=
1

1−ρ2

[
−c f (a,b,c,ρ)+ρ

∫ b

a
zφρ(c,z)dz

]

where

∫ b

a
zφρ(c,z)dz =−(1−ρ2)

[
φρ(b,c)−φρ(a,c)

]
+ρc f (a,b,c,ρ),

=−c f (a,b,c,ρ)+ρ
[
φρ(a,c)−φρ(b,c)

]
. (3.23)

• If c1 = c2 = c, i.e.
∂ 2cl(θθθ ; y

(c1)
i1,t

,y
(c1)
i2,t

)

∂ 2α(c1)
, then

∂h(θθθ , ; y
(c1)
i1,t

,y
(c1)
i2,t

)

α(c1)
=

∂ 2b1

∂α(c1)
2

f (a2,b2,b1,ρ)+

(
∂b1

∂α(c)

)2
f (a2,b2,b1,ρ)

∂b1
+

∂ 2a1

∂α(c1)
2

f (a2,b2,a1,ρ)+

(
∂a1

∂α(c)

)2
f (a2,b2,a1,ρ)

∂a1
+

∂ 2b2

∂α(c1)
2

f (a2,b2,b2,ρ)+

(
∂b2

∂α(c)

)2
f (a2,b2,b2,ρ)

∂b2
+

∂ 2a2

∂α(c1)
2

f (a2,b2,a2,ρ)+

(
∂a2

∂α(c)

)2
f (a2,b2,a2,ρ)

∂a2
,

where the partial derivatives of f (·) is given by (3.23).
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Chapter 4

Model Selection via Gibbs Sampling

4.1 Introduction

Generalized linear models (GLMs) provide flexible framework to describe how a depen-

dent variable can be explained by a range of explanatory variables (covariates) and are

widely used in many fields of science. However, the assumption of independent response

has become a major limit for univariate regression models. Gaussian copula models (Xue-

Kun Song, 2000) are often considered as a multivariate extension of the GLMs. One

principal merit is that the specification of the regression model is separated from the de-

pendence structure. Gaussian copula regression models have been successfully employed

in several complex applications arising, for example, in longitudinal data (Song et al.,

2013) and spatial statistics (Nikoloulopoulos, 2016; Bai et al., 2014). In this chapter,

we consider Gaussian copula log-linear regression models on correlated count data, with

Poisson or Negative binomial marginals.

The maximum likelihood approaches for inference are generally considered the best

options for estimating the model parameters. However, while likelihood computation for

continuous responses are straightforward, the discrete case is considerably more difficult

because the likelihood function involves multidimensional Gaussian integrals. In order to

reduce the integral dimensionality, we use the pairwise composite likelihood (CL) meth-

ods (Varin et al., 2011) as a numerical approximation to the full likelihood function.

Yet fitting a single model is not satisfactory in all circumstances. In many situations,

one wants to decide, among all the parameters in the model, which are important in some

way to describe the response variable, in other words, which one should be retained, and

which one should be dropped. Determining the removal or addition of a given term can

be done in several ways. Hypothesis test tools such as t test or LR test, involve specifying

a significance threshold for the p values. Since the number of tests is typically high,

this poses the problem of choosing a relevant significant level. Alternatively, a more

popular approach is the information criterion (IC) based methods, for example the well
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known AIC (Akaikei, 1973), which selects models with the best prediction power, and

BIC (Schwarz et al., 1978) which is shown to be consistent in many settings. However

a crucial assumption for both AIC and BIC is the measure of goodness-of-fit needs to be

the full likelihood functions, which is not available under the CL framework. Therefore,

we adopt a model selection criterion developed by Gao and Song (2010), the composite

likelihood BIC (CL-BIC), that is shown to be consistent under mild regularity conditions

and produces satisfactory selection results in our numerical experiments.

A full IC-based selection is to compare all candidate models and rank them based on

their IC values. However, because the number of candidate models grows exponentially

with the number of parameters, such exhaustive search can easily become infeasible even

for a moderate number of parameters. For example, if a full model has 20 parameters,

then the number of all candidate models to be evaluated is 220. One common approach

for handling this computational complication is the stepwise selection (see for example

Miller (2002)). Apart from its dependence on the starting point and stopping rules, the

major drawback is that it does not guarantee convergence, and even if it does converge,

the backward and forward approaches are not generally expected to converge to the same

model (Venables and Ripley, 2013). Another solution is through the penalized likelihood

methods like LASSO (Tibshirani, 1996) and SCAD (Fan and Li, 2001), however these

methods rely heavily on the choice of the tuning parameter on penalty strength, besides

we encounter convergence problems when fitting composite likelihood with a LASSO

penalty to our Gaussian copula models.

In this chapter, we focus on a fast and consistent model selection procedure that uses

an MCMC approach, first introduced by Qian and Field (2002) on logistic regression

models. The method can handle large candidate model set and the convergence of the

MCMC method ensures that the selected model has the lowest IC among all candidate

models, provided that the MCMC sample is sufficiently large. Although in this thesis we

only focus on selection of the copula-based model, this selection method is so flexible

that it can be applied to a wide variety of regression based models as an efficient variable

subsetting toolkit, as long as the information criterion is properly chosen.

This chapter is organized as follows. Section 4.2 briefly summarizes the model frame-

work and the estimation of the information criterion, CL-BIC, and describes in detail the

procedure and algorithm of the model selection method. Section 4.3 evaluates the per-

formance of the model selection with simulation experiments. Section 4.4 provides an

illustrative example on real data.
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4.2 Model Selection based on Gibbs sampling

4.2.1 Model framework

Let YYY = (YYY 1, . . .YYY T ) be a grouped count data set, which can be sensibly assumed to have

a Poisson or negative binomial marginal distribution, where YYY t = (Y1,t , . . . ,Yd,t)
′ are d-

dimensional vectors of observations. Let ΣΣΣ denote the d × d correlation matrix of YYY t ,

independent of t. For convenience, we take the same correlation structure as discussed in

Chapter 3, yet the methodology can be easily generalized to handle other types of corre-

lation structures. Recall that we assumed the data set is observed on a spatial lattice, or a

regular nL = n×n grid, observation on each tile is a nC -dimensional vector correspond-

ing to counts of nC groups/clusters. Thus, YYY t is also written as (Y
(1)
1,t , . . . ,Y

(nC )
1,t ,Y

(1)
2,t ,

. . . ,Y
(nC )
2,t , . . . ,Y

(1)
nL ,t , . . . ,Y

(nC )
nL ,t )

′ and d = nC nL . The correlation matrix ΣΣΣ is then parame-

terized in a straightforward manner:

ΣΣΣ =




RRR0 RRR1 000 000 ... RRR1 000 ... ...

RRR1 RRR0 RRR1 000 ... ... RRR1 ... ...

000 RRR1 RRR0 RRR1 ... ... ... ... ...

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... RRR0




nL ×nL

,

where each entry is a nC × nC matrix representing cross group/cluster correlation in the

same tile RRR0 and neighbouring tiles RRR1 parametrized as

RRR0 =




1 ρ
(1,2)
0 ρ

(1,3)
0 ... ρ

(1,nC )
0

ρ
(1,2)
0 1 ρ

(2,3)
0 ... ρ

(2,nC )
0

... ... ... ... ...

ρ
(1,nC )
0 ... ... ... 1



, RRR1 =




ρ
(1)
1 ρ

(1,2)
1 ρ

(1,3)
1 ... ρ

(1,nC )
1

ρ
(1,2)
1 ρ

(2)
1 ρ

(2,3)
1 ... ρ

(2,nC )
1

... ... ... ... ...

ρ
(1,nC )
1 ... ... ... ρ

(nC )
1



.

The correlation parameter vector is denoted as ρρρ = (ρ(1), . . . ,ρ(nC ), ρ
(1,2)
0 , . . . , ρ

(nC−1,nC )
0 ,

ρ
(1,2)
1 , . . . ,ρ

(nC−1,nC )
1 ) with dimension pρ = n2

C
.

The dependence structure is combined with the marginal distribution of Y
(c)
i,t by the

Gaussian copula model (Xue-Kun Song, 2000) that can be specified as the joint data

cumulative distribution function

YYY t |YYY t−1 =

(
F−1

µ
(1)
1,t

[Φ(Z1)] , . . . ,F
−1

µ
(nC )
1,t

[Φ(ZnC
)] ,F−1

µ
(1)
2,t

[
Φ(ZnC+1)

]
, . . . ,F−1

µ
(nC )
nL ,t

[Φ(Zd)]

)
,

(4.1)

where ZZZ = (Z1, . . . ,Zd) has a d-dimensional multivariate standard normal cumulative dis-

tribution with correlation matrix ΣΣΣ, Φ denotes the univariate standard normal cumulative

71



Chapter 4

distribution function and F−1

µ
(c)
i,t

(u) = inf{y : F
µ
(c)
i,t

(y)≤ u} for 0 ≤ u ≤ 1 with µ
(c)
i,t being the

expectation of Y
(c)
i,t .

The expected values of Y
(c)
i,t , µ

(c)
i,t is assumed to depend on a vector of explanatory

variables through the relationship

g(µ
(c)
i,t ) =XXX

(c)
i,t

′
βββ ,

for a suitable link function g(·) and a pβ -dimensional vector of regression coefficients βββ .

This setting encompasses a variety of popular model classes, for example the GLMs. In

this chapter, we focus on the log link function. Recall that in Chapter 3, we consider a

temporal setting where XXX
(c)
i,t depends on the past observations of Yt :

log(µ
(c)
i,t ) = β

(c)
0 +

nC

∑
c′=1

S
(c′)
i,t−1β (c|c′) and S

(c′)
i,t−1 =

1

ni
∑
i∼ j

log
(

1+Y
(c′)
j,t−1

)
, (4.2)

where ∼ denotes neighbouring locations and ni denotes the number of neighbouring tiles

of tile i. In this case, the regression coefficients is specified as βββ = (β
(1)
0 ,β (1|1),β (1|2), . . . ,

β
(2)
0 , β (2|1), . . . , β (nC |nC ))′ and thus pβ = nC (nC + 1). This marginal model falls into a

more general class of observation-driven time series models, the generalised autoregres-

sive moving average model, GARMA(p,q) (Benjamin et al., 2003) with p = 1,q = 0.

In this chapter, we consider model selection for the (temporal) model described above.

Besides, we also discuss a simpler, non-temporal setting considered by Gao and Song

(2010) where covariates are external explanatory variables instead of formed by previous

responses, and the vector responses YYY 1, . . .YYY T are considered independent.

4.2.2 Composite likelihood inference

Denote the full parameter as θθθ = (βββ ,ρρρ)′ with dimension p = pβ + pρ , which is estimated

by maximizing the pairwise log-composite likelihood (CL):

cl(θθθ ; yyy) =
T

∑
t=1

nL

∑
i1,i2=1

nC

∑
c1,c2=1

log

[∫ b
(c1)
i1,t

a
(c1)
i1,t

∫ b
(c2)
i2,t

a
(c2)
i2,t

φρ(z1,z2)dz1dz2

]
,

where φρ(z1,z2) denotes a bivariate standard normal density function with correlation ρ ,

and ρ is the correlation between Y
(c1)
i1,t

and Y
(c2)
i2,t

. For computational concern, we compute

only those component likelihood pairs that involve observations in neighbouring tiles.

Specifically, let Ω be the collection of pairwise index subsets {s = (i1, i2,c1,c2) :

c1,c2 = 1, . . . ,nC , i1, i2 = 1, . . . ,nL , i1 ∼ i2}, and denote ys,t as the pair of observations
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(y
(c1)
i1,t

,y
(c2)
i2,t

), then the CL function can be rewritten as

cl(θθθ ; yyy) =
T

∑
t=1

∑
s∈Ω

cl(θθθ ;ys,t). (4.3)

4.2.3 Estimation of Model Selection Criterion

Following notations by Gao and Song (2010), Bayes information criterion (BIC) in the

CL framework can be specified as

CL-BIC =−2cl(θ̂θθ ;yyy)+(log(T )+2γ log(p))d∗, (4.4)

where γ is a tuning parameter controlling penalty strength/forcing sparsity and d∗ =

trace[HHH−1(θ̂θθ)KKK(θ̂θθ)], HHH(θθθ ; yyy) and KKK(θθθ ; yyy) denote negative Hessian matrix and the vari-

ance of the first derivative of the CL function in (4.3) respectively:

HHH(θθθ ; yyy) =−E

[
∂ 2cl(θθθ ; yyy)

∂θθθ 2

]
, KKK(θθθ ; yyy) = Var

[
∂cl(θθθ ; yyy)

∂θθθ

]
.

Since the second Bartlett identity remains true for each component likelihood, HHH(θ̂θθ yyy)

can be reasonably estimated as

ĤHH(θ̂θθ ; yyy) =
T

∑
t=1

∑
s∈Ω

uuu(θ̂θθ ; ys,t)uuu(θ̂θθ ; ys,t)
′, (4.5)

where uuu(θθθ ; ys,t) = ∂cl(θθθ ; ys,t))/∂θθθ denotes the component pair score function.

The estimation of KKK(θ̂θθ ; yyy) poses more difficulty. For the non-temporal setting where

YYY 1, . . .YYY T are considered independent, we take the sample variance of the composite score

function for each t

K̂KK(θ̂θθ ; yyy) =
1

T −1

T

∑
t=1

(
∑
s

uuu(θ̂θθ ; ys,t)−
1

T
uuu(θ̂θθ ; yyy)

)(
∑
s

uuu(θ̂θθ ; ys,t)−
1

T
uuu(θ̂θθ ; yyy)

)′
, (4.6)

since the naive estimator
(

∑
T
t=1 ∑suuu(θ̂θθ ; ys,t)

)(
∑

T
t=1 ∑suuu(θ̂θθ ; ys,t)

)′
vanishes when evalu-

ated at the maximum CL estimator, as also stated by Gao and Song (2010).

For the temporal setting, we estimate KKK(θθθ ; yyy) via a parametric bootstrap approach.

Specifically, we obtain B independent bootstrap samples yyy∗(1), . . . ,yyy
∗
(B) by generating data

of each t > 1 from a multivariate Poisson distribution via the Gaussian copula specified

in (4.1), where parameters are taken as the maximised CL estimator θ̂θθ and observations

of the first time point is kept the same as the original data set. The bootstrapped estimator
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is obtained as

K̂KK(θθθ ; yyy) =
1

B

B

∑
b=1

uuu(θ̂θθ ; yyy∗(b))uuu(θ̂θθ ; yyy∗(b))
′.

Algorithm 1 describes the estimation of d∗ needed for CL-BIC in (4.4) in details.

Algorithm 1 Function to fit specified model and compute according CL-BIC

(ModelFit)

Input: B: the number of bootstrap sample size,

temporal: logical variable indicating if bootstrap is needed,

γ: tuning parameter for adjusting penalty strength in CL-BIC.

Output: CL-BIC value.

1: Fit the data into a log-linear regression model for initial parameter estimates θ̂θθ

2: While not converged do θ̂θθ += HHH−1(θ̂θθ)uuu(θ̂θθ) ⊲ Estimation on original data

3: Declare HHH and KKK as p× p matrices

4: if temporal then

5: Initialize HHH and KKK zero matrices

6: for b = 1 to B do ⊲ Start bootstrapping

7: Take yyy0 from the original data, θ̂θθ
∗
(b) = θ̂θθ

8: for t = 1 to T do ⊲ Genrate bootstrap samples

9: Generate yyyt using Model described in (4.1) and (4.2) with θ̂θθ substituted

10: end for

11: while not converged do ⊲ Estimation on bootstrapped sample

12: Declare and initialize HHH(θ̂θθ
∗
(b)) and uuu(θ̂θθ

∗
(b)) as zero matrix and vector

13: for t = 1 to T do

14: HHH(θ̂θθ
∗
(b)) += HHHt(θ̂θθ

∗
(b)); uuu(θ̂θθ

∗
(b)) += uuut(θ̂θθ

∗
(b));

15: KKK += uuut(θ̂θθ
∗
(b)) ·uuut(θ̂θθ

∗
(b))

′
;

16: end for

17: θ̂θθ
∗
(b) += HHH−1(θ̂θθ

∗
(b))uuu(θ̂θθ

∗
(b));

18: end while

19: HHH += HHH(θ̂θθ
∗
(b))

20: end for

21: HHH /= B; KKK /= B;

22: else

23: Initialize uuu(θ̂θθ) as a zero vector; Declare tmpKtmpKtmpK as a p×T matrix.

24: for t = 0 to T −1 do

25: HHH(θ̂θθ) += HHHt(θ̂θθ); tmpKtmpKtmpK[, t] = uuut(θ̂θθ); uuu(θ̂θθ) += uuut(θ̂θθ);
26: end for

27: HHH = HHH(θ̂θθ)/T ; tmpKtmpKtmpK.eachcol() -= uuu(θ̂θθ)/T ; KKK = tmpKtmpKtmpK ·tmpKtmpKtmpK′;
28: end if

29: Substitute d∗ = trace(HHH−1KKK) into Equation (4.4) for CL-BIC output.
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4.2.4 Model Selection Procedure

It is natural to search through all possible models and find the one that minimizes the

criterion. However, since the number of candidate models grows exponentially with the

dimension of the parameter, an exhaustive search quickly becomes computationally infea-

sible even for a moderate number of parameters. For example, in the temporal setting (i.e.

the copSTM model proposed in Chapter 3), suppose nC = 3,nL = 10× 10 and T = 10,

parameter estimation takes up to 45s, apart from time consumed in the bootstrapping pro-

cedure. With this model setup, the number of parameters to be selected is 18, thus the

computational time required just to estimate all possible models would be 218×45s (over

30000 hours), which is well beyond manageable.

Therefore, we propose to carry out the model selection via an MCMC approach, which

was originally introduced by Qian and Field (2002) in the context of variable selection of

logistic regression models. The proposed methodology can handle large candidate model

set, in fact, our numerical experiences suggest that it takes less than two hours to find the

best model under the setup mentioned above (with bootstrap sample size B = 100).

The key idea is to convert the models selection into a problem of random sample

generation from a finite population. The finite population is defined as the set of all

candidate models, on which a discrete probability distribution is induced from the CL-

BIC, such that the model with a lower CL-BIC has a higher probability. The induced

distribution does not need to have a closed form in order to carry out the MCMC method.

The convergence of the MCMC method ensures that the selected model has the lowest IC

among all candidate models, provided that the MCMC sample is sufficiently large.

Following notation of Qian and Field (2002), a model α can be denoted as a p-

dimensional binary vector vvvα = (v1, . . . ,vp), where each entry is an indicator of whether

a parameter is included in the model, i.e. v j = I( j ∈ α), j = 1, . . . , p.

The goal is to generate a sample of candidate models (or binary vectors) from a distri-

bution such that the model that minimizes the selection criterion (denoted as α0) has the

highest probability, and therefore appearing most frequently in the sample.

In particular, define a probability distribution as

P(α) =
exp [−S(α;Y )]

∑α ′∈A exp [−S(α ′;Y )]
,

where A is the set of all possible candidate models and S(·) is a model selection criterion,

which in this case is the CL-BIC specified in (4.4). It is easy to see from the expression

that the smaller S(α;Y ) is, the higher P(α) gets, which ensures α0 has the highest proba-

bility.

But direct generation from P(α) is still computationally intractable when p is large,

since the denominator of P(α) has |A | = 2p terms. In this case, the Gibbs sampling is
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adopted to avoid this computational difficulty, since instead of the full probability distri-

bution P(α), all that is needed is conditional distributions

P(v j|v− j) =
P(v j,v− j)

P(v j = 0,v− j)+P(v j = 1,v− j)
,

=
exp
[
−S(v j,v− j;Y )

]

exp
[
−S(v j = 0,v− j;Y )

]
+ exp

[
−S(v j = 1,v− j;Y )

] , (4.7)

which cancels out the denominator of P(α). The conditional distribution is simply a

Bernoulli distribution, where v− j = {vi, i 6= j, i = 1, . . . , p}, j = 1, . . . , p.

A brief sketch of the Gibbs sampling procedure is summarized as follows, with pseu-

docode shown in Algorithm 2:

• Step1: Start with vvv = (v
(0)
1 , . . . ,v

(0)
p ) = (1, . . . ,1) and k = 0;

• Step2: For j = 1, . . . , p, generate v
(k)
j from P(v j|v(k)1 , . . . ,v

(k)
j−1,v

(k−1)
j+1 , . . . ,v

(k−1)
p );

• Step3: Repeat Step2 N times to generate a sequence of models: {vvv(1), . . . ,vvv(N)}.

Apparently, Step2 (same as Line 4 in Algorithm 2) is the crucial step for model generation.

We describe this step in detail by pseudo C++ code in Algorithm 3.

Algorithm 2 Main Model Selection Procedure

#include<map>
#include<vector>

Input: N: the number of models to be generated.

Output: Selected best model

1: Call function ModelFit (Algorithm 1) on the full model, i.e. vvv = (1, . . . ,1).
double OldCrt = obtained CL-BIC

2: Initializations:

Crts: map<vector<int>, double>; Crts.insert(make pair(v, old crt));

⊲ To keep criterion values for all evaluated models

Mods: map<vector<int>, int>;

⊲ To save generated models and their frequencies

3: for count = 1 to N do

4: Call function GenModel(&Crts, &Mods, &vvv, &OldCrt, ...) ⊲ Override inputs.

5: end for

6: Swap the keys and values of Mods, and output the last 5 pairs.

4.2.5 Computational aspects

In particular, we keep record of all models evaluated in history to avoid repetitive compu-

tation. Records are kept in associative containers (i.e. map’s in our case) that are known to
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be more efficient than sequential containers (e.g. vector’s) when performing lookup and

retrieval tasks. The Crts map stores CL-BIC values of every model evaluated in the past,

while the Mods map stores only the generated ones, thus, Mods is updated only N times

but Crts could potentially be updated pN times. The elements of a map are pairs of key

and value, where key plays a role similar to index. A map automatically sorts its pair’s

according to their key’s in an increasing order, and search operations are carried out

through the key’s. To our knowledge, the key’s of a map does not (currently) accept Rcp-

pArmadillo defined data types, therefore, instead of arma::vec, we use std::vector

with binary elements for key’s in both Crts and Mods. The values’s of Crts are the

criterion values and those for Mods are the model frequencies.

The function in Algorithm 3 does not return any value, instead it rewrites vvv, Crts and

Mods every time it is called. By doing this, we avoid copying the maps that might be

large (depending on the situations), thus saving a lot of time. When the model generation

is done, we swap the key’s and value’s in Mods into a multimap (since map requires

unique key’s, but it is very likely that there are models with exactly the same frequen-

cies), so that the frequency of each model is automatically ordered (in increasing order

by default), from which the last k pair’s would correspond to the k models that appeared

most frequently. The small template function for swapping pair’s in a map is not relevant

to the model selection procedure concerned in this chapter, thus not shown here.

4.3 Simulation Studies

To study the performance of the Gibbs sampling methods in selecting significant param-

eters in the setting of high-dimensional count data, we conduct Monte Carlo simulation

experiments under two model setups: the non-temporal setup, where we assume that

YYY 1, . . . ,YYY T are independent and the temporal setup which corresponds to the copSTM

model proposed in Chapter 3.

We set nL = 10×10 for both settings, larger nL is expected to lead to better results

due to larger sample size, while our numerical results show that a 10× 10 grid already

produces satisfactory outcomes. However, it is worth noting that in the temporal setting,

it is not recommended to set n smaller than 6. Because if the number of tiles is too

small, most of the neighbourhood area would be overlapping. Recall that the covariates

are computed out of response of the previous time point in neighbourhood tiles, this will

lead to highly correlated covariates. For example, in an extreme case where n = 2, the

neighbourhoods of all 4 tiles are exactly the same, which means the covariate vectors

would be the same as well.
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Algorithm 3 void Function to generate Model via Gibbs sampling (GenModel)

Input: Crts: A map with evaluated models and according criterion,

Mods: A map with generated models and the times that it has been generated,

vvv: A binary vector specifying model to be evaluated,

OldCrt: CL-BIC value of the last generated model.

(Note: All the inputs above are passed by reference )

for pp = 1 to p−1 do ⊲ Evaluating the ppth parameter (Always skip intercept)

vvv[pp] = 1 - vvv[pp];

auto iterv = Crts.find(vvv); ⊲ look for vvv in the record

if iterv == Crts.end() then ⊲ if vvv is not in the record

Call function ModelFit (Algorithm 1) on model vvv for CL-BIC: NewCrt

Crts.insert(make pair(vvv, NewCrt)); ⊲ Write new record

else

NewCrt = iterv→second; ⊲ Extract CL-BIC from record

end if

if NewCrt is finite then

double s = exp(NewCrt - OldCrt);

double prob = v[pp] ? 1/(1 + s) : s/(1 + s); ⊲ Conditional probability in (4.7)

int vj = R::rbinom(1, prob); ⊲ Generate v j

if vj == v[pp] then OldCrt = NewCrt; else vvv[pp] = 1 - vvv[pp];

else

vvv[pp] = 1 - vvv[pp]; ⊲ Very bad model

end if

end for

++Mods[vvv]; ⊲ Record generated model

78



Chapter 4

4.3.1 Non-temporal setting

In this setting, we assume that YYY 1, . . . ,YYY T are independent with no temporal dependence.

Thus, the model can be seen as a “multivariate” Poisson regression model, where each

YYY t = (Y1, . . . ,Yd)
′ has the correlation structure ΣΣΣ specified in Section 4.2. Due the inde-

pendence assumption, the estimation of d∗ of the penalty term in CL-BIC does not need

bootstrapping. Details are shown in (4.6) and (4.5). We consider cases of nC = 2 and 3

for different parameter dimensions, and T = 100 and 5 for different sample sizes. The

regression coefficients are the same for all settings: βββ = (1,0.8,0,−0.6,0,0.4,0,−0.2)′.

We set the correlation parameters to be:

ρ
(1,2)
0 ρ

(1,3)
0 ρ

(2,3)
0 ρ

(1)
1 ρ

(2)
1 ρ

(3)
1 ρ

(1,2)
1 ρ

(1,3)
1 ρ

(2,3)
1

nC = 2
ρρρa 0 – – -0.3 0.3 – 0 – –

ρρρb -0.3 – – 0 0.3 – 0 – –

nC = 3
ρρρa 0 0 0 -0.6 0.3 -0.2 0 0 0

ρρρb -0.6 0 0.3 -0.2 0 0 -0.1 0 0

For each value of nC , ρρρa naturally produces a positive definite block correlation matrix

ΣΣΣ, while ρρρb does not. The working correlation matrix used in the case of ρρρb is the nearest

positive definite matrix of the original block matrix, calculated by nearPD function in the

R package Matrix. As a result, the zeros in the parameter setup may become non-zeros

but very small numbers, these effects are considered to be not useful and not be used to

compute the positive selection rates. This setup can help us evaluate the performance of

the model selection procedure when parameters have little effect.

For each setting, 100 simulated data sets are generated. Table 4.1 and 4.2 summa-

rize the performance of the model selection method with Poisson and Negative binomial

marginals respectively, where we gradually increase the tuning parameter in the penalty

term γ = 0,0.5,1. We report our results in the same kind of measurements as Gao and

Song (2010): the positive selection rate (PSR) and the false discovery rate (FDR). Specif-

ically, PSR denotes the ratio of identified significant parameters among all significant

parameters, while FDR denotes that of the falsely identified significant parameters among

all significant parameters.

For both marginals, we observe satisfactory selection performance with very little

effects from the “noisy” correlation setup ρρρb in most cases. For the larger sample size

case where T = 100, selection of regression coefficients has very good control of the

FDR rate even for γ = 0. With increasing γ , both regression coefficients and correlation

parameters show a steady decrease in FDR without disturbing the PSR rate, approaching

(almost) perfection when γ = 1. For the smaller sample size case T = 5, the approximation

of penalty in Cl-BIC is expected to be less stable, since T can be seen as the bootstrap

sample size B in the estimation of HHH(θ̂θθ) and KKK(θ̂θθ). In this case, γ = 0 does not adequately

control the FDR rate, yet γ = 1 seems too harsh, especially for correlation parameters
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when nC = 3. It seems that γ = 0.5 results in a relatively good balance of sensitivity and

selectivity in this case.

T = 100

Coefficients Correlations

γ = 0 0.5 1 0 0.5 1

nC = 2

ρρρa
PSR 1.000 1.000 1.000 1.000 1.000 1.000

FDR 0.017 0.000 0.000 0.340 0.115 0.010

ρρρb
PSR 1.000 1.000 1.000 1.000 1.000 1.000

FDR 0.045 0.012 0.000 0.351 0.142 0.015

nC = 3

ρρρa
PSR 1.000 1.000 1.000 1.000 1.000 1.000

FDR 0.022 0.000 0.000 0.057 0.000 0.000

ρρρb
PSR 1.000 1.000 1.000 1.000 1.000 1.000

FDR 0.029 0.007 0.005 0.145 0.000 0.000

T = 5

Coefficients Correlations

γ = 0 0.5 1 0 0.5 1

nC = 2

ρρρa
PSR 1.000 1.000 1.000 1.000 1.000 0.945

FDR 0.170 0.063 0.022 0.310 0.005 0.000

ρρρb
PSR 1.000 1.000 1.000 1.000 1.000 0.935

FDR 0.202 0.072 0.038 0.320 0.010 0.000

nC = 3

ρρρa
PSR 1.000 1.000 1.000 1.000 0.857 0.643

FDR 0.145 0.087 0.038 0.302 0.015 0.000

ρρρb
PSR 1.000 1.000 1.000 0.931 0.523 0.503

FDR 0.170 0.093 0.050 0.417 0.014 0.000

Table 4.1: Positive selection rates (PSR) and false discovery rates (FDR) on correlated

Poisson regression model with different number of groups (nC ), penalty tuning parameter

(γ) and sample size (T ).

Table 4.3 show computational time required for model selection on data sets of vari-

ous sizes. The timings are carried out on an Apple iMac computer with a 2.7 GHz Intel

Core i5 processor and 8 GB 1600 MHz DDR3 memory. Computational effort is required

mainly in the number of candidate models evaluated in the model selection process. As a

result, although sample size T does affect run time, it is not the predominating factor. In

fact, when increase T from 5 to 100, computation time increases much less than 20 times,

in most cases around four to five times. Besides, for the same sample size, increasing γ

from 0 to 0.5 dramatically reduces required time (most obvious for nC = 3). This is all be-

cause larger sample size or heavier penalty makes the CL-BIC values more distinguished,

making the optimal or selected model more “stand out” among other candidate models,
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T = 100

Coefficients Correlations

γ = 0 0.5 1 0 0.5 1

nC = 2

ρρρa
PSR 1.000 1.000 1.000 1.000 1.000 1.000

FDR 0.038 0.005 0.000 0.322 0.142 0.000

ρρρb
PSR 1.000 1.000 1.000 1.000 1.000 1.000

FDR 0.031 0.002 0.000 0.329 0.074 0.000

nC = 3

ρρρa
PSR 1.000 1.000 1.000 1.000 1.000 1.000

FDR 0.024 0.002 0.000 0.091 0.000 0.000

ρρρb
PSR 1.000 1.000 1.000 1.000 1.000 0.995

FDR 0.020 0.002 0.000 0.132 0.000 0.000

T = 5

Coefficients Correlations

γ = 0 0.5 1 0 0.5 1

nC = 2

ρρρa
PSR 1.000 1.000 1.000 1.000 0.995 0.924

FDR 0.190 0.054 0.027 0.278 0.005 0.000

ρρρb
PSR 1.000 1.000 1.000 1.000 0.995 0.895

FDR 0.197 0.076 0.034 0.285 0.010 0.000

nC = 3

ρρρa
PSR 1.000 1.000 1.000 1.000 0.840 0.583

FDR 0.180 0.076 0.022 0.408 0.004 0.000

ρρρb
PSR 1.000 1.000 1.000 0.929 0.518 0.503

FDR 0.208 0.080 0.031 0.346 0.000 0.000

Table 4.2: Positive selection rates (PSR) and false discovery rates (FDR) on correlated

Negative binomial regression model with different number of groups (nC ), penalty tuning

parameter (γ) and sample size (T ).

thus fewer different models are generated or evaluated in the Gibbs sampling process.

4.3.2 Temporal setting

In this setting, model selection is carried out on the copSTM model proposed in Chapter

3. The correlation parameters ρρρ are set the same as Section 4.3.1 shown in Table 4.3.1.

The regression coefficients βββ , which are interpreted as the impacts on growth between

groups, are collected in the nC ×nC matrix

BBB =

(
1 0

0.5 1

)
for nC = 2 and BBB =




0.8 0.3 0

0.5 1 0

0 0 1


 for nC = 3,
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T = 100 T = 5

γ = 0 0.5 1 0 0.5 1

nC = 2
ρρρa 6 min 5 min 4 min 44 s 25 s 22 s

ρρρb 5 min 5 min 5 min 66 s 29 s 23 s

nC = 3
ρρρa 47 min 14 min 14 min 9 min 74 s 76 s

ρρρb 51 min 15 min 15 min 14 min 86 s 66 s

Table 4.3: Computational time to run model selection under the non-temporal setting with

different number of groups (nC ), penalty tuning parameter (γ) and sample size (T ).

in which the entry in the cth row and c′th column corresponds to value of β (c|c′). Recall

from Chapter 2 that this is interpreted as the impact of group c′ to group c. Intercepts are

-1 for all groups in both settings. In this thesis, we always assume the model includes

intercept terms. Thus the number of parameter to be selected (regression coefficients +

correlation parameters) is 4+4 = 8 for nC = 2 and 9+9 = 18 for nC = 3.

The KKK(θθθ) required for CL-BIC is estimated using the parametric bootstrap approach

described in Section 4.2.3. The performance of model selection depends mainly on the

size of the bootstrap samples B, instead of that of the original data set. Thus, in Table 4.4,

we fix T at 10 and show selection results of the Poisson copSTM model with increasing B.

Specifically we show PSR and FDR for βββ and ρρρ separately, as well as computation time.

As expected, selection results are generally better for large B, however, on consideration

of balancing between statistical and computational efficiency, we choose to use B = 500

for the rest of this section.

B = 100 200 500 1000

nC = 2

PSRβ 1.000 1.000 1.000 1.000

FDRβ 0.083 0.077 0.051 0.036

PSRρ 1.000 1.000 1.000 1.000

FDRρ 0.355 0.349 0.373 0.344

Time (min) 18 39 67 138

nC = 3

PSRβ 0.994 0.994 0.992 0.988

FDRβ 0.193 0.168 0.134 0.090

PSRρ 0.997 0.998 1.000 1.000

FDRρ 0.600 0.570 0.545 0.510

Time (min) 58 113 242 500

Table 4.4: Positive selection rates (PSR), false discovery rates (FDR) for βββ and ρρρ sepa-

rately and computational time required for the copSTModel selection with different boot-

strap sample sizes (B). Correlation parameters are the same as ρρρa shown in Table 4.3.1,

n,T = 10.

In Table 4.5 (for Poisson marginal) and 4.6 (for Negative binomial marginal), we show
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PSR and DFR for βββ and ρρρ separately with different nC and γ , while T = 10 and B =

500 are fixed. The selection of regression coefficients seems almost always easier than

correlation parameters, with very low FDR for nC = 2 even when γ = 0, while correlation

parameters require γ to be at least 0.5 for a satisfactory control of FDR. Besides, with

this moderate number of parameters, the selection result is barely affected by the noise

induced in ρρρb. However, for nC = 3, where the number of parameters more than doubled

compared to nC = 2, and with a higher dimension of Yt , such impact becomes more

obvious. While we still observe fairly good result for ρρρa (γ = 0 to 0.5), the noise in ρρρb

seems so strong that it becomes hard to distinguish between a genuine zero correlation

and a small non-zero value, as indicated by the PSR of the correlation parameters.

Coefficients Correlations

γ = 0 0.5 1 0 0.5 1

nC = 2

ρρρa
PSR 1.000 1.000 1.000 1.000 1.000 0.990

FDR 0.051 0.020 0.003 0.373 0.296 0.258

ρρρb
PSR 1.000 1.000 1.000 1.000 1.000 0.995

FDR 0.051 0.013 0.003 0.399 0.283 0.260

nC = 3

ρρρa
PSR 0.992 0.976 0.938 1.000 0.923 0.820

FDR 0.134 0.024 0.006 0.545 0.490 0.479

ρρρb
PSR 0.976 0.945 0.886 0.698 0.542 0.488

FDR 0.159 0.070 0.049 0.499 0.439 0.372

Table 4.5: Positive selection rates (PSR) and false discovery rates (FDR) for βββ and ρρρ
separately under the temporal setting with Poisson marginals, with different number of

groups (nC ), setting of correlation parameters (ρρρa and ρρρb) and penalty tuning parameter

(γ). Data sets are generated on a 10× 10 lattice, with T = 10 time points. Bootstrap

sample size used is 500.

4.4 Real data analysis

To examine the performance of the proposed model selection method, we reanalyze data

of the cancer cell-fibroblast co-culture experiment in Chapter 2 and 3. Recall that in this

data, fibroblasts (F) are non-fluorescent whereas cancer cells fluoresce either in the red

(R) or green (G) channels due to the experimental expression of mCherry or GFP proteins

respectively. Each image was subsequently tiled using a 25×25 regular grid.

The data set include nC = 3 cell populations, thus corresponding to 9 regression co-

efficients βββ and 9 correlation parameters ρρρ , the same as in our simulation studies with

the temporal setting. We carry out the model selection by sampling models from the

distribution specified in (4.7) where the model criterion S(·) being the CL-BIC in (4.4)
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Coefficients Correlations

γ = 0 0.5 1 0 0.5 1

nC = 2

ρρρa
PSR 1.000 1.000 1.000 0.975 0.960 0.980

FDR 0.039 0.008 0.007 0.373 0.306 0.260

ρρρb
PSR 1.000 1.000 1.000 0.950 0.926 0.936

FDR 0.056 0.019 0.000 0.347 0.323 0.293

nC = 3

ρρρa
PSR 1.000 0.975 0.969 0.957 0.867 0.813

FDR 0.114 0.035 0.006 0.560 0.492 0.490

ρρρb
PSR 0.975 0.969 0.857 0.656 0.550 0.407

FDR 0.176 0.035 0.020 0.528 0.471 0.447

Table 4.6: Positive selection rates (PSR) and false discovery rates (FDR) for βββ and ρρρ
separately under the temporal setting with Negative binomial marginals, with different

number of groups (nC ), setting of correlation parameters (ρρρa and ρρρb) and penalty tuning

parameter (γ). Data sets are generated on a 10× 10 lattice, with T = 10 time points.

Bootstrap sample size used is 500.

with tuning parameter γ = 0.5. Penalty terms are estimated based on 500 bootstrap sam-

ples. Table 4.7 shows the frequencies of candidate models generated via Gibbs sam-

pling with runs N = 500 and 200, as well as according CL-BIC values. The relevant

frequencies of sub-models seem quite stable for the two different N’s, with the model

in the first row standing out among all candidate models. The binary model expression

indicates whether or not a parameter is selected in the model. Parameters are in the

order: β (G|G),β (G|R),β (G|F),β (R|G),β (R|R),β (R|F),β (F |G),β (F |R),β (F |F), ρ
(G)
1 ,ρ

(R)
1 ,ρ

(F)
1 ,

ρ
(G,R)
0 ,ρ

(G,F)
0 ,ρ

(R,F)
0 , ρ

(G,R)
1 , ρ

(G,F)
1 , ρ

(R,F)
1 . Table 4.4 shows estimates of parameters in

the selected best model with estimated 95% confidence intervals in the parenthesis. Se-

lection results agree with those in previous chapters. Specifically, positive impacts and

correlation between Green and Red cancer cells (i.e. β (G|R),β (R|G),ρ
(G,R)
1 ), negative

spatial correlation but no significant impact between cancer cells and Fibroblasts (i.e.

ρ
(G,F)
1 ,ρ

(R,F)
1 and β (c|F),β (F |c), c = R,G). Thus confirming the correctness of the model

selection procedure.

4.5 Discussions

Gaussian copula regression models naturally induce more parameters than their GLM

siblings by taking into consideration not only for regression coefficients but also for cor-

relation parameters. Thus in order to avoid an over-parametrized model and retain the

most meaningful parameters, variable selection in applications of Gaussian copula mod-

els is an extremely necessary but relatively new topic.
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model N = 500 N = 200 CL-BIC

110 110 001 000 111 001 362 151 2441

110 110 001 110 111 011 63 25 2458

110 110 001 100 111 001 58 21 2461

110 110 001 000 110 001 11 3 2540

110 110 001 110 110 001 2 – 3083

110 110 001 000 001 001 1 – 4129

110 100 001 100 111 001 1 – 4965

Table 4.7: Frequencies of candidate models generated via Gibbs sampling with runs N =
500 and 200, as well as according CL-BIC value.

c = G R F

β̂0

(c)
-1.00 (-1.08, -0.91) -0.60 (-0.67, -0.52) -0.42 (-0.52, -0.31)

β̂ (G|c) 1.46 (1.33, 1.59) 0.22 (0.12, 0.32) –

β̂ (R|c) 0.32 (0.21, 0.42) 1.26 (1.37, 1.67) –

β̂ (F |c) – – 1.09 (1.18, 1.34)

ρ̂0
(G,c)

1 0.05(0.02, 0.08) -0.03 (-0.04, -0.02)

ρ̂0
(R,c)

– 1 -0.02 (-0.03, -0.01)

ρ̂0
(F,c)

– – 1

ρ̂1
(G,c)

– – –

ρ̂1
(R,c)

– – -0.02(-0.03, -0.01)

ρ̂1
(F,c)

– – –

Table 4.8: Parameter estimates in the selected model via Gibbs sampler using the cancer

cell growth data, with bootstrap 95% confidence intervals based on 500 bootstrap samples

in parenthesis.

Due to the complication that already exists in fitting copula models, an exhaustive

screening of all candidate models is apparently infeasible. Therefore, in this chapter, we

propose to perform the model selection using the Gibbs sampling method. This method is

originally introduced by Qian and Field (2002) in the context of logistic linear regression

model. It provides a very effective and reliable approach that is especially appealing

when dealing with large candidate model set. It guarantees to converge to the best model

with the lowest criterion value without having to exhaustively search through all possible

models. With a well developed information criterion, the CL-BIC (Gao and Song, 2010),

we can obtain very good selection results in both temporal and non-temporal settings, and

for both regression coefficients and correlation parameters within a reasonable amount of

time.

Although in this chapter we only focus on selection of the copula-based model, the
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proposed methodology is extremely flexible and can be applied to a wide variety of re-

gression based models as an efficient variable subsetting toolkit. In the next chapter, we

implement this selection method as an R package function for both the Gaussian copula

models and standard log-linear regression models.
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copSTM: An R package for the analysis

of spatio-temporal count lattice data

with model selection tools

5.1 Introduction

Recently, there has been an increasing interest in models for spatio-temporal count data

and a considerable number of publications on this subject has appeared in the literature,

with different space-time structures depending on the goals of the analysis, see for exam-

ple Rushworth et al. (2014), Bradley et al. (2015) and Quick et al. (2017).

Following Cox et al. (1981), temporal models can be loosely characterised as either

parameter driven or observation driven. In parameter driven models, conditional expecta-

tion is modelled by a latent process, which cannot be observed directly and which evolves

independently of the past and present values of the observed process. On the other hand,

for observation-driven models, conditional expectation of the outcome depends explic-

itly on the past observations. While latent models require a computationally expensive

Markov chain Monte Carlo (MCMC) algorithm, observation-driven models can be eas-

ily fitted with likelihood-based methods and are straightforward to apply to a rich toolkit

available for this class of models, for example, variable selection. In this chapter, we

consider a GARMA (generalised autoregressive moving average) subclass of observation

driven models, first introduced by Benjamin et al. (2003). The CRAN archive contains

several R (R Core Team 2017) packages devoted to univariate observation-driven time se-

ries models that can handle count data, including glarma (Dunsmuir et al., 2015), gamlss

(Rigby and Stasinopoulos, 2005) and tscount (Liboschik et al., 2017).

On top of temporal dependency, we extend the GARMA model to handle multivariate

spatio-temporal data by capturing also the spatial as well as cross variable correlations.

Specifically, we consider a Gaussian copula model (Gao and Song, 2010) to extend the
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univariate temporal regression models, with the merit that the specification of the regres-

sion model is separate from the dependence structure, which is allowed to be very flexible

with both positive and negative correlations. Many recent R packages implement Gaus-

sian copula models on spatially correlated data, although only a few consider copulas for

regression modelling: the gcmr (Masarotto et al., 2017) for general copula regression

models with a few specified correlation structures, gcKrig (Han and De Oliveira, 2018)

for geo-statistical data and copCAR (Goren and Hughes, 2017) for areal data. However,

packages for spatio-temporal modelling is much less well developed and mostly are latent

process models that require MCMC methods, for example spBayes (Finley et al., 2015),

spTimer (Bakar et al., 2015) and CARBayes (Lee et al., 2018).

We review in more detail the relevant package functions and the corresponding model

classes in Section 5.5 and compare them to copSTM. Because all packages have different

focus and specialisations, there is no package fitting exactly the same kind of model as

ours. But it is possible to compare some special cases of our model with those from other

packages. We show that our package functions reach very similar results but within a

shorter running time, thus confirming the reliability and efficiency of our package. For

the same reason, we provide some features that are not offered by other packages and

vice vera, for example, tscount provides moving average parameters while we consider

only autoregressive terms, gcKrig provides spatial prediction that our package does not.

On the other hand, we allow the spatio-temporal data to be multivariate, and we provide

model selection tools, which are not implemented in the above mentioned packages.

In addition, to model fitting, copSTM also provides functions for fast model selection

of the copSTM model as well as standard log-linear regression models. Many R packages

have been created in the past years to carry out automated model selection. The func-

tion step now available in the builtin package stats (Venables and Ripley, 2013) uses a

stepwise selection procedure, which nonetheless suffers from the convergence problem of

stepwise methods. leaps (Lumley and Miller, 2009) uses a branch-and-bound algorithm

for quicker search of the best subsets but can only handle linear regressions. bestglm

(McLeod and Xu, 2010) takes advantage of leaps, however due to its dependence of leaps,

the optimization on search is still limited to the Gaussian case, for non-Gaussian GLM,

a simple exhaustive enumeration approach is used. subselect (Cerdeira et al., 2009) dose

variable selection under the context of principle component and glmulti (Calcagno et al.,

2010) implement genetic algorithms and is built for the purpose of fast computation. In

later sections, we compare one of our model selection functions for log-linear regression

models with the main function in glmulti.

The copSTM package is not currently on the Comprehensive R Archive Network, but

is available for download from Github using the package devtools (Wickham and Chang,

2016) by typing command devtools::install github("pqiao29/copSTM"). It car-

ries out tasks of scientific interest for the analysis of spatio-temporal grouped count data
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on lattice with Gaussian copula models. First, the package computes maximum composite

likelihood estimation and standard error for the model parameters of three model specifi-

cations: (i) a simpler temporal model that does not address spatial correlations (proposed

in Chapter 2); (ii) a spatial Gaussian copula model with external explanatory variables

(discussed in Chapter 4); (iii) a spatio-temporal model combining (i) and (ii) (proposed

in Chapter 3). Second, it provides automated model selection tools for the three models

mentioned above, as well as the general log-linear regression models. Finally, we offer

a Web application for visualization of the data, parameter estimates and selection results

on the temporal model considered in Chapter 2, which is appealing for an exploratory

analysis especially for non-R users.

The models available in copSTM can be fitted to Poisson and Negative binomial data,

Section 5.2 summarises the estimation and selection of models that are implemented.

Section 5.3 provides an overview of the package and its functionality. Section 5.4 illus-

trates the use of the package by reproducing some of the simulation and real data results

presented in Chapter 2, 3 and 4. Section 5.5 reviews other R packages which fit either

temporal or Gaussian copula model and compare them with our package. Finally, Sec-

tion 5.6 discusses the limitations of our package and gives an outlook on possible future

extensions. In the Appendix we give a step by step instruction of the usage of the Web

application.

5.2 Gaussian copula Spatio-temporal model

Let YYY = (YYY 1, . . .YYY T ) be a grouped count data set observed on a regular nL = n×n spatial

lattice at T consecutive time points. Observation in each location/tile is a nC -dimensional

vector corresponding to counts of nC groups/clusters. Denote i, t and c as indices for tile,

time point and group respectively. Thus, YYY t is written as a d-dimensional vector (Y
(1)
1,t ,

. . . , Y
(nC )
1,t , Y

(1)
2,t , . . . , Y

(nC )
2,t , . . . , Y

(1)
nL ,t , . . . , Y

(nC )
nL ,t )

′, where d = nC nL . We assume that

the marginal distribution functions of Y
(c)
i,t is parameterized in terms of its expected value

E(Y
(c)
i,t ) = µ

(c)
i,t which depends on a vector of explanatory variables through the relation-

ship g(µ
(c)
i,t ) = XXX

(c)
i,t

′
βββ , for a suitable link function g(·) and a pβ -dimensional vector of

regression coefficients βββ . This setting encompasses a variety of popular model classes,

for example the GLMs. In this chapter, we focus on Poisson and Negative binomial

marginals with the log link function.

For temporal data, we let XXX
(c)
i,t take the form of an autoregressive term that depends on

the past observations of Yt in neighbouring locations. Specifically,

log(µ
(c)
i,t ) = β

(c)
0 +

nC

∑
c′=1

S
(c′)
i,t−1β (c|c′) and S

(c′)
i,t−1 =

1

ni
∑
i∼ j

log
(

1+Y
(c′)
j,t−1

)
, (5.1)
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where ∼ denotes neighbouring tiles and ni denotes the number of neighbouring tiles of

tile i. In this case, the regression coefficients is specified as βββ = (β
(1)
0 ,β (1|1),β (1|2), . . . ,

β
(2)
0 ,β (2|1), . . . ,β (nC |nC ))′ and thus pβ = nC (nC + 1). This marginal model falls into a

more general class of observation-driven time series models, the generalised autoregres-

sive moving average model, GARMA(p,q) (Benjamin et al., 2003) with p = 1,q = 0.

Let ΣΣΣ denote the d × d correlation matrix of YYY t identical at different time points. We

assume the correlation matrix to be a block adjacency matrix

ΣΣΣ =




RRR0 RRR1 000 000 ... RRR1 000 ... ...

RRR1 RRR0 RRR1 000 ... ... RRR1 ... ...

000 RRR1 RRR0 RRR1 ... ... ... ... ...

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... RRR0




nL ×nL

,

where each entry is a nC × nC matrix representing cross group/cluster correlation in the

same tile RRR0 and neighbouring tiles RRR1 parametrized as

RRR0 =




1 ρ
(1,2)
0 ρ

(1,3)
0 ... ρ

(1,nC )
0

ρ
(1,2)
0 1 ρ

(2,3)
0 ... ρ

(2,nC )
0

... ... ... ... ...

ρ
(1,nC )
0 ... ... ... 1



, RRR1 =




ρ
(1)
1 ρ

(1,2)
1 ρ

(1,3)
1 ... ρ

(1,nC )
1

ρ
(1,2)
1 ρ

(2)
1 ρ

(2,3)
1 ... ρ

(2,nC )
1

... ... ... ... ...

ρ
(1,nC )
1 ... ... ... ρ

(nC )
1



.

Note that it is possible that ΣΣΣ is not positive definite, in this case, the working correlation

matrix is taken as the nearest positive definite matrix of ΣΣΣ, computed with code modified

from function nearPD in R package Matrix (Bates and Maechler, 2019).

Marginal distributions of Y
(c)
i,t and dependence structure ΣΣΣ are combined via a Gaussian

copula (Joe, 2014), and the joint data cumulative distribution function is given by

YYY t |YYY t−1 =

(
F−1

µ
(1)
1,t

[Φ(Z1)] , . . . ,F
−1

µ
(nC )
1,t

[Φ(ZnC
)] ,F−1

µ
(1)
2,t

[
Φ(ZnC+1)

]
, . . . ,F−1

µ
(nC )
nL ,t

[Φ(Zd)]

)
,

(5.2)

where ZZZ = (Z1, . . . ,Zd) has a d-dimensional multivariate standard normal cumulative dis-

tribution with correlation matrix ΣΣΣ, Φ denotes the univariate standard normal cumulative

distribution function and F−1

µ
(c)
i,t

(u) = inf{y : F
µ
(c)
i,t

(y)≤ u} for 0 ≤ u ≤ 1 with µ
(c)
i,t being the

expectation of Y
(c)
i,t .

5.2.1 Parameter estimation and likelihood inference

The copSTM package implements maximum pairwise composite likelihood for the Gaus-

sian copula regression models. Denote θθθ = (βββ ,ρρρ)′ as the p-dimensional vector of all
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model parameters, where ρρρ is the vector of correlation parameters in ΣΣΣ with dimension

pρ and p = pβ + pρ . The pairwise composite likelihood function is

cl(θθθ ; yyy) =
T

∑
t=1

nL

∑
i1,i2=1

nC

∑
c1,c2=1

log

[∫ b
(c1)
i1,t

a
(c1)
i1,t

∫ b
(c2)
i2,t

a
(c2)
i2,t

φρ(z1,z2)dz1dz2

]
,

where φρ(z1,z2) denotes a 2-dimensional multivariate standard normal density function

with correlation ρ , which corresponds to the correlation between Y
(c1)
i1,t

and Y
(c2)
i2,t

. For com-

putational concern, implemented package functions compute only those component like-

lihood pairs that involve observations in neighbouring tiles. Specifically, let Ω be a collec-

tion of pairwise index subsets {s= (i1, i2,c1,c2) : c1,c2 = 1, . . . ,nC , i1, i2 = 1, . . . ,nL , i1 ∼
i2}, and denote ys,t as the pair of observations (y

(c1)
i1,t

,y
(c2)
i2,t

), then the composite log-

likelihood is written as

cl(θθθ ; yyy) =
T

∑
t=1

∑
s∈Ω

cl(θ̂θθ ;ys,t). (5.3)

Optimization of (5.3) is done through the Fish-Scoring algorithm. Source code for the

approximation of the bivariate normal cummulative function required for (5.3) is modified

from the recursive method proposed by Meyer (2010).

5.2.2 Variable selection

The copSTM package also offers information criterion-based model selection tools for

all models implemented. We take the Bayes information criterion (BIC) in the composite

likelihood framework developed by Gao and Song (2010), specified as

CL-BIC(θ̂θθ ; yyy) =−2cl(θ̂θθ ;yyy)+(log(T )+2γ log(p))d∗, (5.4)

where γ is a tuning parameter for enforcing sparsity and d∗ = trace[HHH−1(θ̂θθ ;yyy)KKK(θ̂θθ ;yyy)],

HHH(θθθ ;yyy) and KKK(θθθ ;yyy) denote negative Hessian matrix and the variance of the first derivative

of the composite log-likelihood in (5.3) respectively:

HHH(θθθ ; yyy) =−E

[
∂ 2cl(θθθ ; yyy)

∂θθθ 2

]
, KKK(θθθ ; yyy) = Var

[
∂cl(θθθ ; yyy)

∂θθθ

]
.

Both matrices could be estimated using a parametric bootstrap method, see Chapter 4 for

details.

The search through candidate models is carried out via an MCMC approach originally

introduced by Qian and Field (2002). Following notation of Qian and Field (2002), define
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a probability distribution as

P(α) =
exp [−CL-BIC(α;yyy)]

∑α ′∈A exp [−CL-BIC(α ′;yyy)]
,

where α denote a sub-model of interest or equivalently a sub-vector of θθθ with only se-

lected variables, A is the set of all possible candidate models, and CL-BIC is the model

selection criterion specified in (5.4). It is easy to see from the expression that the model

with the smallest CL-BIC value has the highest probability. Thus, by generating a suffi-

ciently large number of models from this distribution, one can easily identify the model

that appears most frequently as the best model (with the specified criterion). In our imple-

mentations, we always assume intercepts and the overdispersion parameter for negative

binomial response are in the selected model. The procedure for generating candidate

models is through a Gibbs sampler, described in detail in Chapter 4.

5.3 Package functionality

In Table 5.1, the first column shows a list of exported functions in copSTM. The coloured

cells in the table indicate the functionality of each function, in particular, three major

features are covered: (i) Data organization: Organizes raw data into the form required as

input for model fitting and selection functions; (ii) full Model estimation: Fit the Gaussian

copula spatio-temporal model; (iii) Model selection: Select the model with the lowest cri-

terion. The rows with blue/purple cells correspond to functions for the independent mod-

els, while those with pink cells are for the Gaussian copula models. Functions starting

with ”idp” fits a special case of the proposed model, where responses are considered in-

dependent i.e. the correlation matrix ΣΣΣ is an identity matrix. If only regression coefficients

are of interest, these functions are much faster than those starting with ”cop”.

Functions Data Organization full Model Estimation Model Selection

idpSTM()

idpSTMSelect()

logGLMselect()

sim data()

make data()

copSTM()

copSTMSelect()

Table 5.1: List of exported functions in package copSTM, with their functionalities in-

dicated with coloured cells. Blue/purple correspond to functions for independent models

while pink ones are those for Gaussian copula models.

The function make data(data, n) takes an integer n (the number of tiles is n× n)
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and a matrix consisting of four columns in the order of time points, spatial coordinate

(x and y) and group, the first and last column need to be consecutive integers starting

from 0 and 1 respectively, the coordinate columns can take values of any real numbers,

see the illustrative data in the package as an example: data("cell growth data").

The function tiles the data according to the coordinate information and organizes it as a

response vector and a covariate matrix with the temporal relationship specified in (5.1)

that can be passed to the functions for model estimation and selection.

5.3.1 Model fitting

The core function for parameter estimation is copSTM() that provides maximum compos-

ite likelihood estimators of the Gaussian copula models:

copSTM(x, y, K, n, marginal, cor_type = "both", temporal = TRUE,

maxit = 100, eps = 0.1, std_err = FALSE, B = 100, Message_prog = FALSE)

The argument y is a vector containing the response counts, x is a matrix containing co-

variates, K and n represent nC and n =
√

nL respectively. marginal specifies marginal

distribution of the counts: "pois" for Poisson and "nbinom" for negative binomial. Ar-

gument cor type specifies the correlation structure ΣΣΣ. Users may choose to ignore some

correlation parameters for fast computation, if cor type = "sp", only spatial correlation

is taken into account, which means the model only estimates ρ
(1)
1 , . . . ,ρ

(nC )
1 ; if cor type

= "mv", the function consider only the cross group correlation at the same location, i.e.

only parameter in RRR0 are computed while RRR1 is taken as a zero matrix; if cor type =

"both", all correlation parameters are estimated and if cor type = "ind", the model

is treated as independent and obtain the same results with idpSTM() but slightly slower.

The logical argument temporal tells the function whether the input data should be treated

as temporal data or YYY t’s are independent. If temporal = FALSE, the model becomes a

spatial only Gaussian copula regression model where the covariate matrix is allowed to

be anything, however if temporal = TRUE, covariates at time point t are assumed to be

formed by response at time t − 1 specified in (5.1). The required covariates as well as

response can be obtained either by the function make data(), which organizes raw data

into the required form for copSTM, or by function sim data(), which simulate datasets

with given model. Standard errors are not returned by default, because in the temporal

setting, estimation of standard errors requires bootstrapping, which is a very time con-

suming procedure compared to parameter estimation. If standard errors are required, the

argument std err needs to set to be TRUE, and if temporal is also TRUE, the user needs to

choose the bootstrap sample size B (by default 100). In this case, it is recommended to set

Message prog to be TRUE as well, which prints messages informing the progress of the

bootstrap procedure, making the wait less boring. The last two arguments maxit and eps
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are tuning parameters controlling the convergence criterion of the likelihood optimiza-

tion process, of which the default values should be sufficient in most cases. The function

copSTM() returns a list of pairwise composite log-likelihood, parameter estimates and

standard error (if required).

Function idpSTM(data, n, marginal, maxit = 50, fit = FALSE) can be seen

as a glm wrapper, which combines make data() with the fitting of log-linear regres-

sion models for convenient use. Except that idpSTM() uses maximum likelihood es-

timation while the standard glm() in package stats adopts the least square estimation,

coefficient estimates are mostly the same: always TRUE for all.equal(), sometimes for

identical(). This function as well as its model selection tools are implemented as a

more user-friendly online interface, a Shiny application, where users can visualize their

data, estimate model parameters and perform model selection without having R on the

local computer, all that is needed is a browser. See the appendix of this chapter for a

detailed instruction and web link.

5.3.2 Variable selection

The package offers three models selection functions for different model assumptions:

• copSTMSelect(x, y, K, n, temporal, cor_type, marginal = "pois",

ModelCnt = 100, B = 0, maxit1 = 50, maxit2 = 10,

add_penalty = 0, Message_prog = TRUE, Message_res = TRUE,

eps = 0.1)

The copSTMSelect() does model selection on the model fitted by copSTM().

Apart from arguments needed for copSTM(), it also takes arguments: add penalty,

which is γ in (5.4); and ModelCnt, which is the number of models to be generated

via the Gibbs sampling, same as N in Section 5.2.

• logGLMselect(y, x, marginal, maxit = 50, skip = NULL, ModelCnt = 100,

Message = T)

The logGLMselect() does variable selection on log-linear regression models based

on traditional BIC. It allows user to force some parameters in the selected model

by specifying the indices of those parameters in the argument skip. If not speci-

fied, only the intercept and overdispersion parameter (if marginal = nbinom) are

skipped.

• idpSTMSelect(data, n, marginal, ModelCnt = 100, maxit = 50, Message = F)

The idpSTMSelect() does selection on the model fitted by idpSTM(). This func-

tion is also included in the Shiny application for accessibility for non-R users.
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All model selection functions return (composite) log-likelihood, a binary vector indicating

the selected model and estimated parameters and their standard errors in the selected

model. Besides, all selection functions print the top 5 most frequently generated models

with the according frequencies, if the argument Message res is TRUE. This helps users to

decide whether the Gibbs sampling procedure has converged.

5.4 Usage and examples

Most numerical results in this thesis are reproducible with the copSTM package. We

show the usage of the package functions by “reproducing” some of the simulation and

real data results in previous chapters.

5.4.1 Model fitting

The first example show estimation of model parameters on a simulated data set. The

following code simulates and estimates a spatio-temporal data from the Gaussian copula

model, with Poisson marginals (nC = 3, nL = 25×25 and T = 10).

true_beta <- c(-0.8, 1, 0.5, -0.6, -0.5, 0.4, 1, -0.2, -0.3, 0.2, 0.1, 1)

true_rho <- c(0, 0, 0, -0.6, 0.2, -0.3, 0, 0, 0)

sim_dat <- sim_data(n = 25, K = 3, temporal = TRUE, t_size = 10,

marginal = "pois", true_beta, true_rho,

cor_type = "both")

res <- copSTM(sim_dat$covariates, sim_dat$response, K = 3, n = 25,

marginal = "pois", cor_type = "both", temporal = TRUE,

std_err = FALSE)$coefficients

This gives the absolute values of estimated bias (×102) of the composite likelihood esti-

mators for the Gaussian copula model, presented in Table 3.1 in Chapter 3.

est <- c(rbind(res$intercept, res$main_effects), res$correlations)

round(abs(est - c(true_beta, true_rho))*100, 2)

[1] 6.94 4.02 6.72 0.11 5.17 1.38 0.82 2.13 2.74 0.25 0.97 0.62 1.44

[14] 0.07 0.07 1.97 0.10 1.39 0.57 0.22 0.67

If not all correlation parameters are of interest, the running time can be dramatically

reduced by changing the argument cor type:

f <- function(cor_type){

invisible(copSTM(sim_dat$covariates, sim_dat$response, K = 3, n = 10,

marginal = "pois", cor_type = cor_type, temporal = TRUE,
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std_err = FALSE))}

> library(microbenchmark)

> microbenchmark(f("both"), f("sp"), f("mv"), times = 10)

Unit: milliseconds

expr min lq mean median uq max neval

f("both") 5904.1930 5909.0389 6091.6362 6079.720 6128.4491 6487.7348 10

f("sp") 1456.4515 1457.8807 1491.8328 1458.905 1481.4369 1662.0524 10

f("mv") 879.4631 881.0292 886.9255 882.310 887.0951 917.7225 10

Next, we show an example with the real data, the cell growth data analyzed in this

thesis. The code below loads the data and estimate the regression coefficients in the

independent model.

data("cell_growth_data", package = "copSTM")

res <- idpSTM(cell_growth_data, n = 25, marginal = "pois")

This provides parameter estimates and according standard errors used for calculating the

95%confidence intervals shown in Table 2.4.1 (full model) in Chapter 2. Slight variation

with the exact numbers in Table 2.4.1 is expected due to different computational tech-

niques.

> res$coefficients

$intercept

[,1] [,2] [,3]

[1,] -1.066618 -0.6053747 -0.4159173

$main_effects

[,1] [,2] [,3]

[1,] 1.4366726 0.225782854 0.06485456

[2,] 0.3156149 1.258519114 0.02417806

[3,] 0.1024003 0.006440251 1.11977708

> res$standard_error

$intercept

[1] 0.05839237 0.04715967 0.04511669

$main_effects

[,1] [,2] [,3]

[1,] 0.05468199 0.04574958 0.04450948

[2,] 0.04756699 0.03833244 0.03714000

[3,] 0.05180622 0.04251341 0.03951879
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Finally, we fit the cell growth data into the Gaussian copula model to get a full collec-

tion of both regression coefficients and correlation parameters:

dat <- make_data(cell_growth_data, n =25)

K <- dat$K

res <- copSTM(dat$covariates, dat$response, dat$K,

n =25, marginal = "pois", cor_type = "both",

temporal = TRUE, std_err = FALSE)$coefficients

The estimation takes about 40 seconds. If standard errors are required, set std err =

TRUE and argument B (bootstrap sample size). This reproduces results shown in Table 3.6

in Chapter 3.

# Regression coefficients

> res$intercept

[1] -1.0608978 -0.6003824 -0.4209282

> res$main_effects

[,1] [,2] [,3]

[1,] 1.45191195 0.220123781 0.06271111

[2,] 0.31450152 1.257046444 0.05245478

[3,] 0.08080938 0.004787924 1.08122867

# Correlation parameters

R0 <- matrix(NA, K, K)

R1 <- matrix(NA, K, K)

diag(R0) <- 1

diag(R1) <- res$correlations[1:K]

ind_r = K + 1

for(i in 1:(K - 1)){

for(j in (i + 1):K){

R0[i, j] <- res$correlations[ind_r]

ind_r = ind_r + 1

}

}

for(i in 1:(K - 1)){

for(j in (i + 1):K){

R1[i, j] <- res$correlations[ind_r]

ind_r = ind_r + 1

}
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}

## correlation in the same tile:

print(round(R0, 3))

[,1] [,2] [,3]

[1,] 1 0.048 -0.025

[2,] NA 1 -0.016

[3,] NA NA 1

## correlation in neighbouring tiles:

print(round(R1, 3))

[,1] [,2] [,3]

[1,] -0.012 0.007 -0.009

[2,] NA -0.003 -0.017

[3,] NA NA 0.011

5.4.2 Variable selection

In the first example, we reproduce the model selection for the independent model on the

cell growth data with BIC as criterion. This reproduces the result in Table 2.4.1 (BIC

model) in Chapter 2. Without consideration of correlations, the model selection runs very

fast, taking only about 0.2 seconds.

res <- idpSTMSelect(cell_growth_data, n = 25, marginal = "pois",

ModelCnt = 200)

> res$coefficients

$intercept

[1] -0.9811441 -0.6000859 -0.3726855

$main_effects

[,1] [,2] [,3]

[1,] 1.4525131 0.2264492 0.000000

[2,] 0.3157527 1.2588421 0.000000

[3,] 0.0000000 0.0000000 1.133632

Model selection for the Gaussian copula model can be very time consuming, depend-

ing on the choice of n (number of tiles), K (the number of groups) and B (bootstrap sample

size). Thus we show a toy example on simulated data with 2 groups, 10×10 lattice and

B = 20. The following code takes about 1min 34 sec. Selection performance can be

improved by increasing B and maybe adjusting add penalty.

## Simulate data
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set.seed(444)

true_beta <- c(-1, 1, 0.5, -0.5, 0, 1)

true_rho <- c(-0.3, 0, 0.3, 0)

sim_dat <- sim_data(n = 10, K = 2, t_size = 10, true_beta,

marginal = "pois", temporal = TRUE,

rho = true_rho, cor_type = "both")

## Model selection

res <- copSTMSelect(sim_dat$covariates, sim_dat$response, K = 2,

n = 10, marginal = "pois", temporal = TRUE,

cor_type = "both", ModelCnt = 500, B = 20,

add_penalty = 0.5, Message_prog = FALSE,

Message_res = TRUE)

Model 1111011110 appeared 499 times

Model 1111011010 appeared 1 times

> res$selected_model # selected model

[1] 1 1 1 1 0 1 1 1 1 0

> as.numeric(as.logical(c(true_beta, true_rho))) # true model

[1] 1 1 1 1 0 1 1 0 1 0

5.5 Comparison with other packages

In this section, we provide a comparison with other R packages which can be employed

for count spatio-temporal data analysis. We consider a large number of somehow related

packages which makes this comparison quite extensive yet interesting for readers who

want some guidance on choosing the most appropriate package for their data. Since all

packages focus on different aspacts, we are only able to compare some special cases of

our model with each one of them. Apart from packages that focus on modelling, we also

compare separately our model selection function with another model selection package.

In the following subsections, we discuss in detail how these packages differ from our

package copSTM.

5.5.1 For independent data (n = nC = 1)

For the special case where there is only one location and one group, each time point

has only one observation, the copSTM model becomes a simple univariate AR(1) time

series model, or a standard GLM. We compare this special case with the following three

packages:
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• The glm function in package stats and the glm.nb function in MASS (for nega-

tive binomial distribution) (Venables and Ripley, 2013) fit standard GLMs with the

iteratively reweighted least squares algorithm.

• The gamlss package implement the generalised additive models for location, scale

and shape (GAMLSS) introduced by Rigby and Stasinopoulos (2005), as an exten-

sion of the generalised additive model. Apart from other parameters, the overdis-

persion coefficient of the negative binomial distribution changes with time: αt =

exp(β0 +β1 log(Yt−1)+1).

• The tscount package by Liboschik et al. (2017) consider a spacial case of the

GARMA(p, q) (Benjamin et al., 2003) on count time series data, and provide meth-

ods of parameter estimation, model assessment and intervention analysis.

For comparison, we use the campylobacter infection data that contains the number

of campylobacterosis cases (reported every 28 days) in the North of Québec in Canada.

The data is first reported by Ferland et al. (2006) and is available in the tscount package

by command: data("campy", package = "tscount"). The code below fits an AR(1)

model to the data with functions from the three packages mentioned above, as well as the

copSTM. The conditional distribution is negative binomial with a log link.

library(gamlss, tscount, copSTM)

y <- campy[-1]

x <- log(campy[-length(campy)] + 1)

glm_res <- MASS::glm.nb(y~x)

gamlss_res <- gamlss(y ~ x,

family = NBII(mu.link = "log", sigma.link = "log"))

tscount_res <- tsglm(y, model = list(past_obs = 1),

link = "log", distr = "nbinom")

xx <- cbind(rep(1, length(x)), x)

copSTM_res <- copSTM(xx, y, K = 1, n = 1, marginal = "nbinom",

cor_type = "ind", temporal = TRUE)

Table 5.2 collects the results. Both the estimates and their standard errors (in parenthe-

sis) of regression coefficients are quite similar in all packages. For the overdispersion pa-

rameter α , only copSTM and the standard glm.nb from MASS reach similar results. The

running time of tscount is substantially larger than those of the others, because among

the four packages, this is the only one written purely with R, apart from the fact that

estimation is done by substituting the likelihood directly into a numerical optimisation

function. It is not expected though, that the time required for our package is less than

MASS, maybe because glm.nb provides a more complete result that fits into the GLM

class.
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parameters MASS gamlss tscount copSTM

β0 0.723 (0.182) 0.754 (0.181) 0.672 (0.208) 0.723 (0.206)

β1 0.694 (0.072) 0.683 (0.069) 0.713 (0.082) 0.694 (0.080)

α 11.214 (2.566) 18.713 (0.231) 9.100 (NA) 11.207 (2.154)

Time (Milliseconds) 10.931 27.369 222.343 2.522

Table 5.2: Parameter estimates with estimated standard errors in parenthesis using differ-

ent packages, as well as the corresponding computational times.

5.5.2 For spatially correlated data (T = nC = 1)

In the case there is only one time point and one group, the copSTM model becomes a

Gaussian copula model on univariate lattice count data. We compare this special case

with the following two packages using Gaussian copulas:

• The gcKrig package written by Han and De Oliveira (2018) provides model es-

timation and spatial prediction on geostatistical count data, with three families of

popular isotropic correlation functions: the Matérn family, the power exponential

family and the spherical family.

• The gcmr package written by Masarotto et al. (2017) provides tools for fitting a

general Gaussian copula regression model that can by applied to a wide variety of

non-independent data sets. For spatial data, the Matérn family correlation function

is implemented.

Since our package assumes a different correlation structure with the others, we com-

pare the packages by fitting two simulated datasets with different correlation structures.

Both datasets are generated on a 20× 20 grid with Poisson marginals. The first one fol-

lows our correlation structure, that is, only observations in the same neighbourhood are

correlated with specified correlation, which is 0.3 in this case. Note that the correlation

families considered by gcKrig does not handle negative correlation, therefore we have to

choose a positive value for ρ . The other dataset is simulated by the simgc function in the

gcKrig package with the Matérn correlation with range φ = 0.8 and no nugget.

The following code generates the first dataset:

K <- 1 ## The number of groups

n <- 20 ## n*n lattice

t_size <- 1 ## The number of time points

true_beta <- c(2, -1.5, 1)

true_rho <- 0.3

sim_dat1 <- sim_data(n, K, t_size = t_size, beta = true_beta,

marginal = "pois", cor_type = "sp",

rho = true_rho, temporal = FALSE)
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The code below fits the Gaussian copula model to the first simulated data sim dat1

using gcKrig, gcmr and copSTM.

library(gcKrig, gcmr)

copSTM_res <- copSTM(sim_dat1$covariates, sim_dat1$response, K, n,

marginal = "pois", cor_type = "sp",

temporal = FALSE, std_err = FALSE)

xloc <- rep(c(1:n), n)

yloc <- rep(c(1:n), each = n)

gcKrig_res <- mlegc(y = sim_dat1$response, x = sim_dat1$covariates[, -1],

locs = cbind(xloc, yloc), corr = matern.gc(nugget = FALSE),

marginal = poisson.gc(link = "log"))

D <- sp::spDists(cbind(xloc, yloc))

gcmr_res <- gcmr(sim_dat1$response ~ sim_dat1$covariates[, -1],

marginal = poisson.marg, cormat = matern.cormat(D))

The following code generates the second dataset sim dat2:

xloc <- rep(c(1:n), n)

yloc <- rep(c(1:n), each = n)

x1 <- rnorm(n*n)

x2 <- rnorm(n*n)

sim_dat2 <- simgc(locs = cbind(xloc, yloc), sim.n = 1,

marginal = poisson.gc(lambda = exp(2 - 1.5*x1 + x2)),

corr = matern.gc(range = 0.8, nugget = 0))

Code for fitting the Gaussian copula model on the second dataset is similar to that of the

first, we thus omit it to avoid repetition.

Due to the design of the models, our package does not provide correlation parameters

that are directly comparable to those of the other two packages. Therefore, we transfer be-

tween our estimated correlation at distance 1 (ρ) and the Matérn range parameter (φ ) esti-

mated in the other packages by functions in R package fields: The Matern.cor.to.range

calculates the according range parameter with given correlation at distance d, while Matern

does the opposite.

Matern.cor.to.range(d = 1, cor.target = 0.275, nu = .5)

[1] 0.7746029

Matern(d = 1, range = 0.879)

[1] 0.3205694
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Table 5.3 shows results of both datasets using the three packages. The second column

shows true parameter values, where ρ is used only in the first data set while φ only in the

second. For each package, the correlation parameter (either ρ or φ ) that is computed with

the fields functions is shown in Italic font, while the one estimated as model parameters

as in the same font as other numbers. All three packages show satisfactory results in both

data sets, suggesting a stable performance under misspecified correlation structures. On

the other hand, the computational time required for gcmr is more than 1000 times of that

needed for copSTM, for the same reason as tscount.

simData1 simData2

parameters gcKrig gcmr copSTM gcKrig gcmr copSTM

β0 2 2.039 2.039 2.044 1.975 1.974 1.941

β1 -1.5 -1.481 -1.481 -1.488 -1.516 -1.517 -1.526

β2 1 0.990 0.990 0.985 0.996 0.997 1.003

ρ 0.3 0.316 0.321 0.275 0.335 0.331 0.271

φ 0.8 0.868 0.879 0.775 0.915 0.905 0.766

Time (seconds) 86.256 191.711 0.137 96.696 254.114 0.169

Table 5.3: Parameter estimates and corresponding computational times using different

packages on two simulated datasets, where the first is generated with correlation between

neighbouring locations (ρ), and the second is simulated using a Matérn correlation with

range parameter (φ ).

5.5.3 For univariate spatio-temporal data (nC = 1)

Although autoregressive temporal parameters are treated as regression coefficients, it is

not appropriate to include the information of the previous time points directly as regres-

sion covariates in the Gaussian copula models discussed above. A possible reason is that

these models do not distinguish observations at the same location but different time points.

We demonstrate this with the first example on a simulated data with a 20× 20 lattice at

10 time points.

K <- 1 ## The number of groups

n <- 20 ## n*n lattice

t_size <- 10 ## The number of time points

true_beta <- c(1, -0.8)

true_rho <- 0.3

sim_dat <- sim_data(n, K, t_size = t_size, beta = true_beta,

marginal = "pois", cor_type = "sp",

rho = true_rho, temporal = TRUE)

copSTM_res <- copSTM(sim_dat$covariates, sim_dat$response, K, n,

marginal = "pois", cor_type = "sp",
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temporal = TRUE, std_err = TRUE, B = 100,

Message_prog = TRUE)

xloc <- rep(c(1:n), n)

yloc <- rep(c(1:n), each = n)

gcKrig_res <- mlegc(y = sim_dat$response, x = sim_dat$covariates[, -1],

locs = cbind(xloc, yloc),

corr = matern.gc(nugget = FALSE),

marginal = poisson.gc(link = "log"))

### Estimates

> unlist(copSTM_res$coefficients)

intercept main_effects correlations

0.9518744 -0.7577795 0.3201917

> t(summary(gcKrig_res)$coefficients$parest[, 1])

Intercept x range

0.9738393 -0.690831 0.8905873

### Standard errors

> unlist(copSTM_res$standard_error)

intercept main_effects correlations

0.05499572 0.06767610 0.01294451

t(summary(gcKrig_res)$coefficients$parest[, 2])

Intercept x range

0.000000 0.000000 0.140061

In this simulated data, gcKrig does not estimate well the only regression coefficient,

whose true value is -0.8 but estimated as -0.69. Besides, the standard errors look unrea-

sonably small, indicating that the model is not fitted on an appropriate type of data.

In the second example, we consider also another popular package: the CARBayesST

by Lee et al. (2018), that can be applied to (univariate) spatio-temporal data. The model

however, is built under a very different framework, specifically a latent process model ex-

tended from the conditional autoregressive (CAR) model and estimated under a Bayesian

setting using Markov chain Monte Carlo (MCMC) simulation.

In this case, we consider function ST.CARar with Poisson responses in CARBayesST,

which resembles our model the most. Specifically, Yi,t |λi,t ∼ Pois(λi,t), where log(λi,t) =

XXX ′βββ +φi,t , i and t indices for location and time respectively. The vector of random effects

at time point t, φφφ t = (φ1,t , . . . ,φnL ,t) is modelled by φφφ t |φφφ t−1 ∼ N(ρTφφφ t−1,τ
2QQQ(WWW ,ρS)

−1)

(Rushworth et al., 2014), where QQQ(WWW ,ρS) = ρS[diag(W1W1W1)] + (1 − ρS)III (Leroux et al.,

2000),WWW is a symmetric adjacency matrix, ρS and ρT are spatial and temporal dependence

parameter respectively taking values in the unit interval. Thus temporal autocorrelation

is captured by mean ρTφφφ t−1, while spatial autocorrelation is induced by the variance
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τ2QQQ(WWW ,ρS)
−1.

We use data from a cloned cancer cell experiment that is similar to the one analysed in

Chapter 2 and 3, except that there is only a single cell population resulting in a univariate

spatio-temporal data.

parameters β0 β1 φ ρ Time (seconds)

CARBayesST 0.216 (0.030) 0.997 (0.011) – – 85.56

copSTM 0.197 (0.043) 1.001 (0.013) 0.447 0.107 (0.017) 11.63

gcKrig 0.306 (0.221) 0.940 (0.117) 0.540 (0.069) 0.157 21.40

Table 5.4: Parameter estimates with standard error in the parenthesis, as well as compu-

tational times for running three functions from different packages on univariate spatio-

temporal data.

Results, especially standard error estimates from CARBayesST and copSTM are very

similar to each other, while those from gcKrig look quite different. Thus, we tend to

believe results from the first two packages are more reliable in this case, which also con-

firms that a spatial Gaussian copula model should not be used for temporal data by simply

adding some temporal covariates. On the other hand, although both CARBayesST and

copSTM can fit spatio-temporal data and reach similar regression coefficient estimates,

it is not possible to compare results of the correlation parameters, due to the fact that

they are fundamentally different in correlation structure designs. CARBayesST returns

estimates of τ2,ρS,ρT as 0.000 (0.000), 0.980 (0.012), 0.526 (0.240) respectively, where

τ2 seems to suggest little, if any covariance for φφφ t and ρT is not very informative since

the 95% confidence interval is (0.056, 0.996), almost covering (0, 1). It is also hard to

compare the speed of the two packages because they both depend heavily on their tun-

ing parameters: n.sample for CARBayesST (the number of MCMC samples) and B for

copSTM (the number of bootstrap samples). For the results displayed in Table 5.4, these

parameters are n.sample = 50000 and B = 100.

Unfortunately, CARBayesST does not consider multivariate case, while its sister

package, the CARBayes by Lee (2013) concerns multivariate, but only spatial data. The

model considered is also a CAR-based mixed effect model with spatial and cross variable

autocorrelations captured in random effects. However similar to the example with CAR-

BayesST, although we can fit a multivariate data to functions in CARBayes, correlation

parameters can not be interpreted in the straightforward manner like copula-based mod-

els. Besides, the MCMC-based estimation for latent process models almost always takes

longer to run than likelihood-based methods even for very elegantly coded packages like

the ones discussed above.
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5.5.4 Comparing model selection functions

Finally, we compare one of our model selection functions, the logGLMSelect with the

package glmulti (Calcagno et al., 2010) that specialised in model selection on GLM using

generic algorithms. The glmulti package offers flexible model selection tools on GLM

models, allowing not just main effects but also interaction terms, as well as constraints on

model complexities.

Here we compare the two package functions on a simulated dataset, since in this case

we know the what the true models is. The following code generates data from a standard

Poisson regression model.

true_beta <- c(1, 0, 0, 2, 3, 0, 0, 1, 0, 0, 0)

## true model: 110011001000

intercept <- 1

p <- length(true_beta)

nn <- 1000 ## sample size

x <- matrix(rnorm(p*nn), nn, p)

mu <- exp(x %*% true_beta + intercept)

y <- sapply(mu, rpois, n = 1)

We first perform model selection on the generated data on logGLMselect from cop-

STM. Note that every run of logGLMselect may give a different number of frequencies

of generated models, but the best selected model stays the same.

copSTM_res <- logGLMselect(y, x, "pois", ModelCnt = 100, Message = TRUE)

Model 110011001000 appeared 93 times

Model 111011001010 appeared 4 times

Model 111011001000 appeared 2 times

Model 110011001001 appeared 1 times

Already we see that the true model appears the most frequently (93 times), the according

time is 0.18 seconds. Then we feed the same data into the glmulti function in glmulti:

dt <- data.frame(y, x)

ini <- glm(y ~., data = dt, family = poisson)

glmulti_res <- glmulti::glmulti(ini, level = 1, crit = bic, method = "h")

summary(glmulti_res)$bestmodel

[1] "y ~ 1 + X4 + X5"

It is quite surprising that even with the method of exhaustive screening, which runs for

9.33 seconds, glmulti does not pick up the true model (with X8 missing) from which the

data is generated. Finally, we check the BIC value calculated by the standard glm function

in stats with both selected models:
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selected <- which(copSTM_res$selected_model == 1)

glma <- glm(y ~ ., data = dt[, selected], family = poisson)

glmb <- glm(summary(glmulti_res)$bestmodel, data = dt, family = poisson)

> BIC(glma) ## from copSTM

[1] 4039.017

> BIC(glmb) ## from glmulti

[1] 2115970

This confirms that copSTM dose pick up the model with a smaller BIC value than glmulti

and more than 50 times faster.

Admittedly, glmulti provides many functionalities that copSTM does not, for exam-

ple, it can fit all standard response distributions in the exponential family while copSTM

(currently) can handle only Poisson and negative binomial, but can possibly include it in

future versions.

5.6 Discussions

This chapter is a vignette of an R package copSTM for the analysis of spatio-temporal

count data on lattice using Gaussian copula regression models. The package, together

with its supplementary web application (built with R package Shiny (Chang et al., 2018)),

implements most of the main tasks commonly required in the analysis of this kind of data:

simulation, visualization, parameter estimation and model selection. The web application

is built mostly for non-R users, since it does not impose any requirement on the local

computer, all that is needed is a browser. It produces visualized data summary as well as

parameter estimation and variable selection in a straightforward and interpretable manner.

All outputs are available for download as pdf plots or csv tables. But due to computational

restrictions, this application is limited to independent regression models where the cor-

relation matrix ΣΣΣ is an identity matrix. On the other hand, the R package provides the

computational intensive evaluation of the copula models.

All package functions are implemented in C++, linked to R through RcppArmadillo

(Eddelbuettel and Sanderson, 2014). Apart from RcppArmadillo, the copSTM does not

rely on any other R package, thus avoiding the cost of repeatedly calling R functions from

C++. There are, however, functions modified from other R packages and translated to

C++, these functions are not exported. Our numerical examples show that the package

produces similar results in the special cases that are comparable to other existing pack-

ages, confirming the correctness of our calculations. On the other hand, our package

offers very competitive computational speed, almost always several times faster than its

competitors.

The goal of copSTM is not to replace any other R package already available, but rather
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to provide investigators with an alternative option of modelling and fast criterion based

variable selection. In the future, we plan to enhance our package in the following direc-

tions. First, the model functions can be extended to handle not just regular lattice data but

geographical data as well, by allowing a user specified adjacency or distance matrix as

input, and implementing other correlation structures including the Matérn, the power ex-

ponential and the spherical families. Second, the model selection function logGLMselect

can be extended to a more complete variable selection toolkit for generalized linear regres-

sion models. For example, allow other exponential family distributions for the response

variables, apart from the Poisson and Negative binomial distribution that are currently

implemented, or provide options for more complicated formulas such as interaction terms

instead only linear terms in the current version. Finally, it is worthy to write the package

in the S3 object specification scheme with standard methods such as summary and print

and enable functions to pass and return objects following the general framework of the

standard glm that is familiar to most R users.

5.7 Appendix.

An R Shiny application:

Interactive Analysis of Spatio-temporal Cell Growth

Data

5.7.1 Installation

• Option 1: Web page.

The Shiny application is available as a web page with link:

https://pqiao.shinyapps.io/STModelling/.

Pros: Very easy access. Does not impose any requirement on the local computer.

Cons: Slower computation. Computations of this web page version is run on the

server hosted by Shinyapps.io, due to memory limitations and other reasons, it is

expected to be around 10 times slower than a local computer. This drawback is

not obvious for most functions that run relatively fast, typically within seconds.

The only exception is the last part (model selection) where massive computation is

involved. For example, if a typical wait on local computer is 15 seconds, then a

2-minute run time is usually expected on the web page.

• Option2: Download source on local computer.

Download source code from a git repository on GitHub and run on local computer.

This could be done with a single R command:
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shiny::runGitHub(‘STModelling’,‘pqiao29’).

Pros: Fast, therefore better user experience.

Cons: The local computer needs to have the following installed:

– R (>= 2.10.0),

– A few R packages:

i). For launching the application: Shiny, dplyr, ggplot2.

Install by command: install.packages("...") and replace ... with

the

package name, for example install.packages("Shiny").

ii) For installing package copSTM (in iii)): devtools, RcppArmadillo.

Install in the same way as i).

iii) For all computations in this application: copSTM.

Install by command: devtools::install_github("pqiao29/copSTM").

– C++ compiller: Rtools (for Windows), Xcode (for Mac),

sudoapt-getinstallr-base-dev or similar (for Linux).

5.7.2 A Step-by-Step Workflow

All graphs presented in this application are interactive with input tuning parameters and

are available for download as .pdf files, some of the data results can also be dowloaded

as .csv files. The initial interface is the same as shown in Figure 5.1, where we refer the

left half of the page (the grey area) as the side panel for user inputs, and the right half as

the main panel for displaying outputs, which is composed of four tabs: Data, Summary,

Estimation and Selection.

Figure 5.1: Initial interface
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• Step1. Upload Data

Data can be uploaded from a local .txt or .csv file. Select the local file via the

white button “Browse...” (See Figure 5.1). Uploaded data is required to contain

four columns in the following order (separated by space for .txt file):

1. Time: The time point in which the data point is observed. Required to be

continuous integer numbers starting from 0, for example, 0, 1, 2, ...

2. X: Spatial coordinate x, any real number.

3. Y: Spatial coordinate y, any real number.

4. Group: A categorial variable indicating which group or cell population this point

or cell belongs to. Required to be continuous integer numbers starting from 1, for

example, 1, 2, 3...

It is not required that the uploaded data contain headers (column names), but if it

does, the “Header” box needs to be checked.

Alternatively, click the blue button “or use Example Data” to explore the function-

alities with the built-in data for illustrative purpose.

• Step2. View Data

When data is successfully uploaded or the example data is chosen, the “Data” tab

in the main panel will display the number of time points and groups from the input

data, as well as the data itself (See Figure 5.2). This is to confirm that the read-in

file is uploaded as intended.

Figure 5.2: Step2. view data

At the same time, some slide bars for adjusting tuning parameters will appear on
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the side panel, which will be discussed in later steps.

• Step3. Data Summary

To get a visualised data summary, first go to the “Summary” tab in the main panel

and click the blue button “Show Data Summary” in the side panel (See Figure 5.3).

Figure 5.3: Tuning parameters

This part provides two kinds of plots for exploring the temporal and spatial trend of

the data separately:

The Growth Curves show the change of the total cell count of each group in the

whole image across time, where the x-axis is the time points and y-axis shows the

count. Groups are distinguished by colours. The first and last time point can be

specified by the slide bar for time range in order to exclude unwanted images (time

points), the plot changes interactively with the input time range.

For example, in the example data, the growth curves of all time points are shown in

Figure 5.7.2 (left), but because the last time point (i.e. 8) looks like a low quality

image with unreasonably low count of all groups, one can adjust the time range to

exclude this time point and obtain the plot on the right.

The Distribution heatmap summarises the spatial distribution of cell count (re-

gardless of the group) in the tiled image. By selecting through the slide bar “2-2”,

one can specify the number of tiles n, and the image will be tiled into an n× n
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Growth CurvesGrowth Curves
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Figure 5.4: Growth curves of total count of 13 groups across time. Left: plot of all time

points. Right: the last time point is omitted.

lattice. Accordingly, an n×n heat map is plotted, where the numbers shown in the

plot are the cell counts in the tiles, with darker colours indicating higher counts.

Each heat map shows the spatial distribution of only one time point, therefore, one

can change the option on the “Time point for distribution plot” to view the change

at different time points. For example, by sliding this bar, we obtain in Figure 5.5 a

series of heat maps gradually getting darker indicating the growth over time.
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Figure 5.5: Spatial distribution of cell counts in a 15×15 lattice across time.

Finally, note that the choice of the first two tuning parameters also affect later anal-

ysis, the model estimation and selection.

• Step4. Model Estimation

Click the orange button “Model Estimation” in the side penal and go to the “Es-
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timation” tab in the main panel. Two plots are shown in this section: the model

estimation and assessment.

The Model Estimation shows estimated autoregressive parameters representing

the impacts on growth between groups in a nC ×nC table where nC is the number

of groups. The number shown in the ith row and jth column is interpreted as change

in the average cell count of group j per tile, due to interactions with cells of group i

in neighbouring tiles. For “neighbouring” tiles, we take the Moore neighbourhood

that is composed of a central tile and the eight tiles surrounding it.

A positive (or a negative) sign of the number indicates that the presence of cells of

group i in neighbouring tiles promotes (or inhibits) the growth of cells of group j.

Thus, by looking at each row of the table, we see the influence of each group on

other groups while each column represents the sensitivity. The table is coloured as

a heat map to give a convenient overview of the impacts in general, where red for

positive white for zero and steel blue for negative.

After changing the time range and/or the number of tiles n in the side panel, click

the orange button again, the estimations change accordingly. In general, a larger n

leads to finer grided image and therefore smaller tiles and neighbourhoods, resulting

in more local impacts. Estimates are generally stable with mild changes in n. For

example, Figure 5.6 shows the estimates of the example data (the last time point

excluded) with n goes from 10 to 25.
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Figure 5.6: Estimated impacts with n = 10,15,20,25
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The Goodness-of-Fit Curves are produced at the same time of estimation, where

each colour corresponds to one group (same as the growth curves), with the solid

lines being the observed total cell counts in the whole image at different time points,

while the dashed line being the fitted values. Figure 5.7 shows the goodness-of-fit

curves at n = 25 as an example.
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Figure 5.7: Goodness-of-fit curves with n = 15.

• Step5. Model Selection

Model section is activated by clicking the green button in the side panel, and results

are shown in the “Selection” tab in the main panel.

The goal of model selection is to retain only the meaningful spatio-temporal im-

pacts between groups. Selection is based on the traditional Bayesian Information

Criterion (BIC). For a small number of parameters, p, one could do it by brute force,

that is, try all the 2p candidate models and select the one with the lowest criterion

value. However, this is not computationally effective or even feasible when p is

large, for example, in this case 169.

Thus, model selection in this application is carried out in a more elegant way, with

a Gibbs sampling method introduced by Qian and Field (2002). All functions are

implemented in C++, which are 30 to 40 times faster than their R equivalences. The

resulting computational time with this data set for example, is around 15 seconds

for n= 15 if run on a local computer and less than 2 minutes on web page. Note that

the time elapse depends mostly on the value of n, therefore it is recommended to

start with a small n and move to the intended value when ready for the wait. If wish

to change tuning parameter values, need to click the green button again to create an

updated result.

Result of the model selection is shown in the same format as the estimation heat

map, except that only the significant parameters are coloured and numbered. A pair
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of results of the full model (left) and selected model (right) are shown in Figure

5.8 with n = 15. The graph on the right filters out the “noisy” insignificant param-

eters thus empathising more on the selected ones. A mild variation in numbers is

expected when the model is fitted on only a subset of the predictors.
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Figure 5.8: Full model estimation (left) and model selection (right) with n = 15.
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Discussion and future work

6.1 Summary and final remarks

Spatio-temporal data arises from many scientific disciplines such as environmental sci-

ences, ecology and pathology among others. Our work in this thesis is originally mo-

tivated by data obtained from a longitudinal image data collected from live-cell growth

experiment based on flourescent proteins. The RGB marking technique introduces three

lentiviral vectors in individual cells encoding the basic colours red, green and blue. Using

a high-content imaging system (Operetta, Perkin Elmer), characteristics for each individ-

ual cell can be observed at subsequent times, including spatial coordinates, morphological

features and measurements on quantities of three different flourescent proteins: Cerulean

(blue), Venus (green) and mCherry (red). Through data analysis, scientists are interested

in assessing how interactions between cell types may affect their growth.

The first question of interest arises from the identification of cell types. We propose a

semi-supervised regression clustering approach, that takes into consideration not only the

three-dimensional vector response indicating colours, but also other morphology param-

eters such as cell area and roundness. The regression clustering is performed iteratively

starting from the initial partition given by the robust K-means (Kondo et al., 2016). The

prediction strength (Tibshirani and Walther, 2005) obtained via cross validation confirms

that the regression clustering result by taking cell area as an explanatory variable produces

much higher predictive power than a simple robust K-means.

With cells clustered into nC groups, we propose to quantify the spatial distribution for

different cell groups by dividing the images into a number of contiguous regions (tiles) to

form an n× n regular lattice structure and count the frequency of each cell group inside

each tile at subsequent T time points. This yields an array of n× n×T spatial-temporal

observations, in which each entry is a nC dimensional vector of counts. Different strate-

gies have been proposed to model spatio-temporal data, depending on the goals of the

analysis. In this thesis, we are primarily concerned with the impacts between cell groups
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on growth patterns.

In Chapter 2, we propose a conditional temporal model with Poisson responses. The

model falls into a general class of the GARMA model (Benjamin et al., 2003), which can

be classified as observation-driven models in the context of time series analysis, termed by

Cox et al. (1981). Model parameters are directly interpreted as impacts on growth of each

cell group due to interaction with other cell groups from the previous time point within

a spatial neighbourhood. Applications on the illustrative real data examples confirm that

the conclusions drawn by model parameter estimates are biologically meaningful.

Because this model is relatively simple and fast to fit, it allows us to build a web appli-

cation making it accessible to non-R users: https://pqiao.shinyapps.io/STModelling/.

The application is built with the R package shiny (Chang et al., 2018), it is very user

friendly and straighforward to use. It provides tools for model visualization, estimation

and selection carried out interactively with the user’s choice of tuning parameters such as

n. Users may choose to upload and analyze their own data or explore the functionalities

with the built-in data example. All analysis results are available for download as pdf plots

and csv table.

Yet the most challenging aspect for modelling spatio-temporal data is the autocorrela-

tions that occur temporally, spatially and cross-variables (i.e. between groups in our case).

Therefore in Chapter 3, we develop a Gaussian copula regression model for the analysis of

multivariate spatio-temporal data, the copSTM, extending the model proposed in Chapter

2. Gaussian copulas are a powerful and flexible method for modelling multivariate data, it

combines the simplicity of interpretation in marginal modelling with the flexibility in the

specification of the dependence structure. The marginal response is modelled similarly

with the GARMA model structure, while a correlation matrix is designed for capturing

correlations between cell groups and between neighbouring tiles. Since we are primarily

concerned with count data, we only consider Poisson and Negative binomial marginal

distributions, but the model can easily be applied to any distribution in the exponential

family.

However, the likelihood function of the copula model includes high-dimensional in-

tegrals, making approximation and optimization extremely slow, taking up to four to five

hours to our experience. To solve this problem, we adopt the pairwise composite likeli-

hood methods (Varin et al., 2011), which greatly reduces the dimensions of the integrals.

We also derive the closed forms of the first and second derivatives of the composite log-

likelihood function. This makes our computation much faster compared to “dumping” the

approximated likelihood function into a numerical optimization function for general pur-

poses (like optim in package stats) as many other R packages do. Finally, this compu-

tational difficulty also motivates us to rewrite our R code into C++. By carefully avoiding

repetitive computations or copying big matrices (this is possible thanks to the C++ func-

tionality for passing variables by reference), we manage to reduce the time elapse for the
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same estimation task to 45 seconds. This is part of the work presented in the R package

described in Chapter 5.

Another concern of copula models is the risk of over-parametrization, due to the fact

that they naturally induce more parameters (the correlation parameters) than the simpler

generalized linear regression models. Thus, in order to select the sub-model that contains

only the meaningful parameters, we implement an information criterion-based model se-

lection on the proposed copSTM model in Chapter 4. We adopt the CL-BIC developed by

Gao and Song (2010) as selection criterion, which can be seen as a sister of the traditional

BIC but under the composite likelihood framework. The search through the candidate

model set borrows strength from the Gibbs sampling technique. The methodology guar-

antees to converge to the model with the lowest criterion value, but without searching

through all possible models exhaustively. It is originally introduced by Qian and Field

(2002) in the context of logistic linear regression models, but has the potential to be

applied to any regression-based models as long as the information criterion is properly

chosen or designed.

Finally, the estimation and variable selection of the copSTM model proposed in Chap-

ter 2, 3 and 4 are wrapped in an R package with the same name copSTM. Chapter 5 serves

as a vignette of this package, all exported functions are described in details with exam-

ples. This chapter also shows how most of the numerical results on both simulated and

real data in this thesis can be reproduced with this package. This is important because

“Reproducibility is the only thing that an investigator can guarantee about a study.” –

Roger Peng.

Besides, we also show a number of examples comparing with other available R pack-

ages, confirming the correctness and efficiency of our package. Although this package is

currently only available from GitHub, we believe it provides R users a competitive toolkit

for the analysis spatio-temporal count data on lattice, and hope it can eventually make its

way to CRAN in the near future.

6.2 Future Research

In this section, we outline some future research directions that deserve investigation.

• Joint regression models. Several authors exploited Gaussian and t-copulas to

construct joint regression models for responses of mixed types. (Frees and Valdez,

2008; Song et al., 2009; Wu and de Leon, 2014; Jiryaie et al., 2016) Implemen-

tation of methods for handling responses with multiple distributions is a possible

extension for future versions of the package copSTM.

• Copula vines. The use of copulas based on graphical models called vines, along

the lines described by Panagiotelis et al. (2012). Gräler (2014) and Erhardt et al.
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(2015a) and Erhardt et al. (2015b) use this approach for modelling geostatistical

continuous data, which is implemented in the R package spcopula (Gräler, 2017).

The application of copula vines to the modelling of geostatistical count data seems

a promising topic of future research.

• Maximization by parts Maximization by parts is a numerical iterative algorithm

proposed by Song et al. (2005) to optimize complex log-likelihoods that can be

partitioned into a manageable “working log-likelihood” plus a more complex “re-

mainder log-likelihood”. The algorithm aims to enhance numerical stability relative

to the direct numerical optimization of the likelihood function. Among other appli-

cations, maximization by parts has been proposed for fitting continuous Gaussian

copula regression models
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B. Gräler. spcopula: Modelling spatial and spatio-temporal dependence with copulas in r.

2017. URL https://R-forge.R-project.org/projects/spcopula/. R package

version 0.2.4.

Z. Han and V. De Oliveira. gckrig: An r package for the analysis of geostatistical count

data using gaussian copulas. Journal of Statistical Software, 87(1):1–32, 2018.

P. J. Heagerty and S. R. Lele. A composite likelihood approach to binary spatial data.

Journal of the American Statistical Association, 93(443):1099–1111, 1998.
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Ó. Sans, A. M. Schmidt, A. A. Nobre, et al. Bayesian spatio-temporal models based on

discrete convolutions. Canadian Journal of Statistics, 36(2):239–258, 2008.

F. E. Satterthwaite. An approximate distribution of estimates of variance components.

Biometrics bulletin, 2(6):110–114, 1946.

B. Schrödle, L. Held, and H. Rue. Assessing the impact of a movement network on the

spatiotemporal spread of infectious diseases. Biometrics, 68(3):736–744, 2012.

G. Schwarz et al. Estimating the dimension of a model. The annals of statistics, 6(2):

461–464, 1978.

127



Chapter 6

G. Shaddick and J. Wakefield. Modelling daily multivariate pollutant data at multiple

sites. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51(3):

351–372, 2002.

Q. Shao and Y. Wu. A consistent procedure for determining the number of clusters in

regression clustering. Journal of Statistical Planning and Inference, 135(2):461–476,

2005.

M. Sklar. Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ.

Paris, 8:229–231, 1959.

P. X.-K. Song, Y. Fan, and J. D. Kalbfleisch. Maximization by parts in likelihood infer-

ence. Journal of the American Statistical Association, 100(472):1145–1158, 2005.

P. X.-K. Song, M. Li, and Y. Yuan. Joint regression analysis of correlated data using

gaussian copulas. Biometrics, 65(1):60–68, 2009.

P. X.-K. Song, M. Li, and P. Zhang. Vector generalized linear models: A gaussian cop-

ula approach. In Copulae in Mathematical and Quantitative Finance, pages 251–276.

Springer, 2013.

D. P. Tabassum and K. Polyak. Tumorigenesis: it takes a village. Nat Rev Cancer, 15(8):

473–483, 2015.

C. Y. Tang, W. Zhang, and C. Leng. Discrete longitudinal data modeling with a mean-

correlation regression approach. Statistica Sinica, 29(2):853–876, 2019.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

R. Tibshirani and G. Walther. Cluster validation by prediction strength. Journal of Com-

putational and Graphical Statistics, 14(3):511–528, 2005.

C. Varin and P. Vidoni. A note on composite likelihood inference and model selection.

Biometrika, 92(3):519–528, 2005.

C. Varin, N. Reid, and D. Firth. An overview of composite likelihood methods. Statistica

Sinica, pages 5–42, 2011.

W. N. Venables and B. D. Ripley. Modern applied statistics with S-PLUS. Springer

Science & Business Media, 2013.

L. A. Waller, B. P. Carlin, H. Xia, and A. E. Gelfand. Hierarchical spatio-temporal map-

ping of disease rates. Journal of the American Statistical association, 92(438):607–617,

1997.

128



Chapter 6

H. Wickham and W. Chang. devtools: Tools to make developing r packages easier; 2016.

URL https://CRAN. R-project. org/package= devtools. R package version, 1(4):381,

2016.

C. K. Wikle and C. J. Anderson. Climatological analysis of tornado report counts us-

ing a hierarchical bayesian spatiotemporal model. Journal of Geophysical Research:

Atmospheres, 108(D24), 2003.

C. K. Wikle, L. M. Berliner, and N. Cressie. Hierarchical bayesian space-time models.

Environmental and Ecological Statistics, 5(2):117–154, 1998.

B. Wu and A. R. de Leon. Gaussian copula mixed models for clustered mixed outcomes,

with application in developmental toxicology. Journal of agricultural, biological, and

environmental statistics, 19(1):39–56, 2014.

P. Xue-Kun Song. Multivariate dispersion models generated from gaussian copula. Scan-

dinavian Journal of Statistics, 27(2):305–320, 2000.

S. L. Zeger and B. Qaqish. Markov regression models for time series: a quasi-likelihood

approach. Biometrics, pages 1019–1031, 1988.

129



Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Qiao, Pu Xue

Title:
Copula-based spatio-temporal modelling for count data

Date:
2019

Persistent Link:
http://hdl.handle.net/11343/230863

Terms and Conditions:
Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the
copyright owner. The work may not be altered without permission from the copyright owner.
Readers may only download, print and save electronic copies of whole works for their own
personal non-commercial use. Any use that exceeds these limits requires permission from
the copyright owner. Attribution is essential when quoting or paraphrasing from these works.

http://hdl.handle.net/11343/230863

