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Abstract

The bivariate probit model is frequently used for estimating the effect of an endogenous

binary regressor (the “treatment”) on a binary health outcome variable. This paper discusses

simple modifications that maintain the probit assumption for the marginal distributions while

introducing non-normal dependence using copulas. In an application of the copula bivariate

probit model to the effect of insurance status on the absence of ambulatory health care expen-

diture, a model based on the Frank copula outperforms the standard bivariate probit model.
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1 Introduction

The bivariate probit model is frequently used in health economics when one wants to estimate

the effect of a treatment on a binary health outcome. It arises from a 2-equation structural latent

variable framework, where the first equation y1 = 1(β0+β1y2+ε1 > 0) describes the health outcome

variable (y1) as a function of a binary treatment (y2) and latent error ε1, whereas the second equation

y2 = 1(π0+π1z+ ε2 > 0) determines whether or not treatment is received. The model is completed

by assuming that the latent errors ε1 and ε2 have a bivariate standard normal joint distribution with

correlation ρ. If ρ = 0, separate estimation of the first structural equation by a simple probit model

identifies the structural treatment effect β1. If ρ 6= 0, the treatment is said to be “endogenous”,

and joint estimation is required. Recent applications in this journal include Dormont et al. (2009),

French and Maclean (2006), Gitto et al. (2006), Latif (2009), MacDonald and Shields (2004), Smith

Conway and Kutinova (2006). The bivariate probit model is also discussed in popular textbooks

on health econometrics by Jones and O’Donnell (2002) and Jones (2007).

The purpose of this paper is to propose an alternative, general class of structural probit mod-

els that allow for correlation between the two latent errors (and hence endogenously determined

treatment) without imposing joint normality. A key component of this approach is the concept of

a copula (see e.g. Joe, 1997, Nelson, 2007, Trivedi and Zimmer, 2007) which treats the modeling of

marginal distributions and of dependence structure as separate tasks. Copulas thereby provide a

convenient device for generating a flexible non-normal distribution for the errors. The parameters

of the resulting copula bivariate probit model (CBP) can be estimated by maximum likelihood.

The CBP model is related to earlier applications of copula theory to structural limited dependent
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variable models. Lee (1983) uses copulas to generalize the normality assumption that underpins

the selectivity model of Heckman (1976). In his case, the structural two equation system consists

of a continuous outcome equation and a latent selection equation. Continuous copulas are used to

construct the joint distribution of error terms in the two equations. Extensions of this approach

were provided by Prieger (2002) and Smith (2003). Smith (2005) derives a copula-based switching

regression model, again for a continuous dependent variable. A regression model with binary en-

dogenous variable can be obtained as a special case. To the best of my knowledge, the use of copula

theory for structural bivariate binary response models has not been considered so far.

I discuss two specific versions of the CBP model, one based on the Frank copula, and one based

on the Clayton copula. On one hand, these copulas have been chosen because they are simple and

the resulting models require, in contrast to the standard bivariate probit, no numerical integration

in order to compute probabilities. On the other hand, the dependence structure they imply departs

in interesting ways from that of a bivariate normal distribution. While the conditional expectation

function (cef) of the latter is linear, the Frank CBP model has a cef that becomes flat in the tails

(signifying mean independence once the conditioning event is sufficiently rare), whereas the Clayton

CBP model has an asymmetric cef.

The paper includes a formal Monte Carlo analysis showing that it is possible to empirically

discriminate between the different CBP models. Furthermore, using a wrong copula can lead to

substantial bias in the estimation of structural parameters. The proposed approach is illustrated in

an application to the endogeneity of insurance choice in a model for ambulatory health expenditures,

following Deb et al. (2006).
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2 Econometric Methods

2.1 Bivariate probit model

The bivariate probit model provides a convenient setting for estimating the effect of an endogenous

binary regressor y2 on a binary outcome variable y1. The standard model assumes a constant

treatment effect, the presence of exclusion restriction, and the absence of simultaneity. Formally,

the structural model consists of two latent equations

y∗1 = xβ + αy2 + ε1 (1)

y∗2 = zγ + ε2 (2)

where the stochastic errors that are independent of x and z but not necessarily independent of each

other. Moreover, the observed binary outcomes are

y1 = 1(y∗1 > 0) , y2 = 1(y∗2 > 0)

where 1(·) is the indicator function. The main interest is in the structural treatment parameter α,

or the average treatment effect Ex[P (ε1 > −xβ − α)− P (ε1 > −xβ)]. The joint distribution of y1

and y2 (conditional on x and z) has four elements:

P (y1 = 0, y2 = 0|x, z) = P (ε1 ≤ −xβ, ε2 ≤ −zγ) (3)

P (y1 = 1, y2 = 0|x, z) = P (ε1 > −xβ, ε2 ≤ −zγ) (4)

P (y1 = 0, y2 = 1|x, z) = P (ε1 ≤ −xβ − α, ε2 > −zγ) (5)
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P (y1 = 1, y2 = 1|x, z) = P (ε1 > −xβ − α, ε2 > −zγ) (6)

This distribution is fully determined once the joint distribution of ε1 and ε2 is known. In the

bivariate probit model, it is assumed that ε1 and ε2 have joint distribution function F (ε1, ε2) =

Φ2(ε1, ε2, ρ) where Φ2 denotes the cumulative density function of the bivariate standard normal

distribution, and ρ is the coefficient of correlation. In this case, the joint probability function

f(y1, y2|x, z) can be written compactly as

f(y1, y2|x, z) = Φ2[s1 (xβ + αy2), s2 (zγ), s1 s2 ρ] (7)

where sj = 2yj − 1, j = 1, 2.

It is important to understand that the thus defined bivariate probit model introduces two sources

of dependence between y1 and y2, related to the parameters α and ρ, respectively. While the joint

model simplifies to two univariate probit equations under independence of the structural errors

(ρ = 0), this does not mean that y1 and y2 are independent in this case. The reason is that

the first probit equation of the recursive base model gives the probability of y1 conditional on y2.

Therefore, full independence of y1 and y2 requires ρ = 0 and α = 0. The CBP model developed in

this paper uses copulas to model dependence between the structural errors. It does not model the

dependence between the two binary outcomes directly, although dependence between the structural

errors obviously affects that dependence.

2.2 Clayton and Frank copulas and their properties

Any joint distribution function has a copula representation in which dependence and marginals are

separately specified, or “uncoupled”. Copulas are thus building blocks for multivariate distributions
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that preserve the probit assumption for the two equations (1) and (2) but do not impose joint

normality. In particular, one can recur to well known parametric classes of copula functions that

allow for different kinds of dependence and often have quite simple functional forms.

Formally, a copula is a multivariate joint distribution function defined on the n-dimensional

unit cube [0, 1] such that every marginal distribution is uniform on the interval [0, 1] (see, e.g.,

Nelson, 2006). For example, for n = 2, we can write C(u, v) = P (U ≤ u, V ≤ v), with marginal

distributions given by P (U ≤ u, V ≤ 1) = C(u, 1) and P (U ≤ 1, V ≤ v) = C(1, v), respectively.

The normal, or Gaussian, copula, again for n = 2, is

P (U ≤ u, V ≤ v) = C(u, v) = Φ2(Φ
−1(u),Φ−1(v); θ) (8)

where θ is the coefficient of correlation. Apart from the Gaussian copula and the independence

copula C(u, v) = uv, I consider in this paper two further copulas, the Clayton copula

C(u, v) = (u−θ + v−θ − 1)−1/θ (9)

and the Frank copula

C(u, v) = −θ−1 log

{

1 +
(e−θu − 1)(e−θv − 1)

(e−θ − 1)

}

(10)

It is easy to verify that all four copulas (Gaussian, independence, Clayton, Frank) have uniform

marginal distributions, as C(u, 1) = u and C(1, v) = v.

The significance of copulas in the present context lies in the fact that by way of transformation,

they can be used to generate joint distribution functions for the two structural errors in the bivariate

probit model, ε1 and ε2, keeping the normal marginals but without assuming full bivariate normality.
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Let u = Φ(ε1) and v = Φ(ε2). Then F (ε1, ε2) = C(Φ(ε1),Φ(ε2)) is a joint distribution function for

ε1 and ε2 with marginal distributions that are standard normal.

For example, the normal copula recovers the standard bivariate probit model, since

F (ε1, ε2) = Φ2[Φ
−1(Φ(ε1)),Φ

−1(Φ(ε2))] = Φ2(ε1, ε2)

whereas under the Clayton assumption

F (ε1, ε2) = (Φ(ε1)
−θ + Φ(ε2)

−θ − 1)−1/θ

In order to compare the differences in the dependence structure implied by the Frank and Clayton

copulas to that of the bivariate normal distribution, correlation is not a good indicator. First, it

detects only linear dependence, whereas dependence in copulas is non-linear in general. Second,

and relatedly, it is not invariant to transformation of the marginal distributions. As a consequence,

other measures of dependence have been suggested. A common one is Kendall’s τ , a measure of

the degree of concordance. Imagine drawing two random pairs (U1, V1) and (U2, V2) from the joint

distribution of U and V . Then τ is defined as

τ = P [(U1 − U2)(V1 − V2) > 0]− P [(U1 − U2)(V1 − V2) < 0]

τ can vary between -1 and 1. It is zero if U and V are independent. Not all copulas cover

the full spectrum of possible τ ’s. If they do so, they are called comprehensive. The normal and

Frank copulas are comprehensive, whereas the Clayton copula (9) is not, the reason being that it

only captures positive dependence. It is “half comprehensive”, however, since τ can take any value

between 0 and 1. Of course, one can always reflect a Clayton copula, modeling the relationship
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between U and −V instead, in which case the dependence is strictly negative, with τ ’s between -1

and 0.

−−−−−−−−−

Figure 1 about here

−−−−−−−−−

Additional insight into the nature of dependence implied by these copula models can be obtained

from their conditional expectation functions. The cef of the bivariate normal distribution is linear,

with E(ε2|ε1) = ρε1. For the Clayton and Frank copula, simple expressions for the conditional

expectations are not available, but it is straightforward to obtain them by way of simulation.

Figures 1 and 2 show a sample of 500 draws from the Frank and Clayton copulas, with standard

normal marginals, for θ = 3.3 and θ = 1, respectively. Also shown are the cefs (obtained from a

nonparametric regression) as well as the linear regression line.

−−−−−−−−−

Figure 2 about here

−−−−−−−−−

The Frank copula is symmetric. Its cef is near linear in the center but flattens out in the

tails. This is an interesting feature that can be of value in applications to sample selection models

where the linearity of the cef of the bivariate normal distribution lacks plausibility when selection

probabilities are very small. The Clayton copula looks quite different. It is not symmetric, and the

cef shows much stronger dependence in the left tail of the distribution than in the right. Again,

this is a distinctive feature that may be a-priori desirable in some applications.
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2.3 Copula bivariate probit model

The generic probability expressions for the bivariate probit model were given in equations (3) – (6).

Under a copula representation with probit marginals, these expressions can be written as

P (y1 = 0, y2 = 0) = C[Φ(−xβ),Φ(−zγ)] (11)

P (y1 = 1, y2 = 0) = C[1,Φ(−zγ)]− C[Φ(−xβ),Φ(−zγ)] (12)

P (y1 = 0, y2 = 1) = C[Φ(−xβ − α), 1]− C[Φ(−xβ),Φ(−zγ)] (13)

P (y1 = 1, y2 = 1) = 1− C[Φ(−xβ − α), 1]− C[1,Φ(−zγ)] + C[Φ(−xβ − α),Φ(−zγ)] (14)

The joint probabilities of the CBP model depend on the selected copula as well as on four param-

eters, ξ = (β, γ, α, θ), where θ is the dependence parameter of the copula function. If the true

copula is assumed to belong to a parametric family C = {Cξ, ξ ∈ Ξ}, a consistent and asymp-

totically normally distributed estimator of the parameter ξ can be obtained through maximum

likelihood. Assuming an independent sample of n observations (yi1, yi2, xi, zi), the likelihood func-

tion L(ξ; y1, y2, x, z) is proportional to

n
∏

i=1

P (yi1 = 1, yi2 = 1)yi1yi2 × P (yi1 = 1, yi2 = 0)yi1(1−yi2)

×P (yi1 = 0, yi2 = 1)(1−yi1)yi2 × P (yi1 = 0, yi2 = 0)(1−yi1)(1−yi2)

Numerical optimization methods can be used to maximize the log-likelihood function. These can

employ analytical first derivatives that have a relatively tractable form. For example,

∂P (y1 = 0, y2 = 0|ξ)

∂β
= −cu[Φ(−xβ),Φ(−zγ)]φ(−xβ)x
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where cu = ∂C(u, v)/∂u. A formal requirement for identification is that there is at least one

exogenous regressor with a non-zero coefficient, i.e., β 6= 0 or γ 6= 0 (Wilde, 2000). As long as the

model is correctly specified, the maximum likelihood estimator has the usual asymptotic properties.

It is useful to think of these estimators as providing best approximations to an unknown true model,

in a quasi-likelihood sense (White, 1982), and a robust covariance estimator should be used.

3 Results

3.1 Simulation Study

To learn about the behavior and performance of the CBP model under various data generating

processes (DGP), I report results for a simulation experiment carried out in order to evaluate the

bias and accuracy of the estimators as well as model selection. The DGP is a simple recursive model

for two binary dependent variables with probit margins:

y1 = 1(β0 + β1x+ αy2 + ε1 > 0)

y2 = 1(γ0 + γ1z + ε2 > 0)

where (β0, β1, γ0, γ1, α) = (0.5,−0.5, 0, 1, 0.5). In all cases x and z are iid Gaussian with mean zero

and standard deviation 1.

The stochastic errors ε1 and ε2 are generated from three alternative copula models:

• Normal copula with ρ = 0.5

• Frank copula with θ = 3.3
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• Clayton copula with θ = 1

The dependence parameters have been chosen to yield the same value for τ in all three cases,

namely 0.33. The marginal distributions of the stochastic errors ε1 and ε2 are standard normal.

Given the parameter values and the distribution of x and z, the mean of y1 is approximately 73%,

while the mean of y2 is approximately 50%. The simulations are conducted for three sample sizes

n = 500, 1000, 5000, and run for r = 5000 replications each.

−−−−−−−−−

Table I about here

−−−−−−−−−

The results are shown in Table I (Normal DGP), Table II (Frank DGP) and Table III (Clayton

DGP). When looking at the results, there are two key questions of interest. First, what are the

biases that result from estimating the wrong model?; and second, do tests and model selection

criteria reveal the right model? The Gaussian, Clayton and Frank copulas nest the independence

copula, so a test for independence can be based on the likelihood ratio test statistic. In the case

of the Clayton copula, a small adjustment is needed, as θ sits at the boundary of the parameter

space under the null hypothesis. Chernoff (1954) shows for this case, that the distribution of the

likelihood ratio statistic under the null is mixed discrete and continuous, with probability mass

of 0.5 at 0 and half a χ2
(1) distribution for positive values. To select among the three dependence

copulas (which are non-nested), application of information criteria reduce to simple log-likelihood

comparisons, as the number of parameters is the same in the three models.
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From Table I, we see that the parameter of the exogenous regressor β1 (the true value is -0.5)

is estimated well regardless of model and sample size. However, the parameter of the endogenous

regressor α is subject to bias in the misspecified models. The bias is very large for the independence

model, where it amounts to over 100 % but there is also substantial bias for the Clayton copula.

For n = 500, for instance, the Clayton mean is 0.549, compared to the true value of 0.5. The bias

does not vanish as the sample size increases.

The average likelihood ratio test statistic for the independence model against the normal model

is 11.6 for n = 500, increasing to 107.4 for n = 5000. While the simulation results show that the

copula models do well in detecting dependence, they also show that larger samples are needed to

reliably discriminate between the three copulas with dependence. For example, while the correctly

specified normal copula model has the highest average log-likelihood even if n is only 500, the Frank

copula model is picked instead in a substantial proportion of instances (33.6%) when model selection

is based on the highest log-likelihood value. The situation improves considerably when the sample

size is increased to 5000. Now, the correct model is picked in 80% of all simulation runs.

−−−−−−−−−

Table II about here

−−−−−−−−−

These qualitative conclusions are largely confirmed by the other two DGPs in Tables II and III.

In Table II, data are generated from a Frank copula with dependence parameter θ = 3.3. Again,

the correct model estimates the true parameter values accurately on average, even for the smallest

sample size, whereas a misspecified model tends to overestimate the structural parameter α. There
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is one exception, though, since the normal copula appears to provide an unbiased estimator as well,

indicating a certain degree of robustness. Also in terms of log-likelihood value, Frank and normal

copula are closest to each other, which was already true under the normal DGP in Table I. In a

different context, Prokhorov and Schmidt (2009) point to the possibility of robust estimation in the

class of radially symmetric copulas, which includes the Gaussian and the Frank copula.

By contrast, the Clayton copula is not a good substitute for the Frank copula, at least for the

parameters chosen in this simulation experiment, as it overestimates the structural parameter α by

about 10 percent. In the large sample, the Clayton model is almost never picked (only in 0.6% of

all cases).

−−−−−−−−−

Table III about here

−−−−−−−−−

Finally, in Table III, data were generated from the Clayton copula with true dependence pa-

rameter θ = 1, corresponding to a Kendall’s τ of 0.33. The empirical distinctiveness of the Clayton

model is evident from the last column of Table III, where it is seen that even in the small sample,

model selection favors the (true) Clayton model in a vast majority of cases (71.4%), increasing to

near uniform selection (97.9%) in the large sample. The large sample bias in the structural param-

eter is larger for the Frank model than for the normal model (about 10 % as compared to 5%),

whereas the independence model overestimates the true parameter by a factor of almost 1.5.

The simulations document the potential advantages of copula bivariate probit models for ap-

plied work. First, the models are distinguishable through their different dependence patterns even
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in relatively small samples, and log-likelihood based selection criteria work well. Second, the mod-

ified models are relevant, since bias results when the wrong specification is chosen. Moreover, the

simulation results suggest that if the true DGP has dependence, it is better to use any model with

dependence (regardless of whether it is the right or the wrong one) for estimating the structural

parameter α, than it is to erroneously impose independence. Third, and finally, it is encouraging

that these models can in fact disentangle the direct effect of y1 on y2 from the indirect effect exerted

through the dependence between the error terms.

3.2 Application to Medical Expenditures

Deb, Munkin, and Trivedi (2006) (in the following: DMT) analyzed the determinants of medical

expenditure in a two-part framework, i.e., distinguishing between the extensive margin (whether

expenditures are zero or positive) and the intensive margin (positive expenditures). Such two-part

models are frequently employed in studies of health care utilization, as a substantial fraction of

observations is typically zero (see also Manning et al., 1981). In particular, DMT considered a

simultaneous recursive system of equations where insurance plan choice is modeled through the

multinomial probit model and endogeneity of insurance status in the health expenditure equation

arises from correlated unobservables. Results were obtained using Bayesian posterior simulation

via Gibbs Sampler, applied to data from the 1996 – 2001 waves of the Medical Expenditure Panel

Survey.

The application reported here departs from DMT in a number of dimensions. First, I use a

subset of the DMT data, excluding all individuals enrolled in a fee-for-service plans. The remaining
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individuals are either part of an health maintenance organization (HMO), a rather restrictive in-

surance model involving a gatekeeper physician and a preselected network of providers, or they are

enrolled in a preferred provider organization (PPO) plan. The PPO plans also have a gatekeeper

but leave otherwise more provider choice. The restriction to PPO and HMO plans yields a sample of

12,382 persons, 15 percent of which had no ambulatory expenditures. 85% of persons were enrolled

in an HMO plan, with the remaining 15 % in a PPO plan.

Second, I focus on the hurdle decision for ambulatory expenditures (DMT also model the positive

part). This particular sub-model fits into the class of models discussed in this paper. The goal is thus

to estimate the effect of an endogenous binary explanatory variable (whether or not the individual

has an HMO plan (yes=1)) on a binary outcome (whether or not the individual had any ambulatory

health expenditures (no=1)).

Third, I depart from DMT both in terms of estimation technique (maximum likelihood estima-

tion rather than Bayesian posterior estimation) and in terms of the range of dependence models

under consideration. Whereas DMT assume joint normality, I will contrast the results obtained

under this assumption with those obtained from Frank and Clayton dependence.

Otherwise, I follow the specification of DMT. In particular, I use the same regressors in the

outcome equation. They include indicators of self-perceived health status variables (VEGOOD,

GOOD and FAIRPOOR); measures of chronic diseases and physical limitation (TOTCHR, PHYS-

LIM and INJURY); geographical variables (NOREAST,MIDWEST, SOUTH and MSA); and socio-

economic variables (BLACK, HISPANIC, FAMSIZE, FEMALE, MARRIED, EDUC, AGE, AGE2,

AGEXFEM and INCOME); respectively. I also use the same exclusion restrictions for the insurance

14



choice equations. These are the age of the spouse (SPAGE) and whether the spouse was covered

by an HMO in the previous year (LGSPHMO). I refer to DMT for a detailed description of these

variables.

−−−−−−−−−

Table IV about here

−−−−−−−−−

Table IV contains the key results. For each of the four copulas (independence, normal, Frank

and Clayton), it lists the estimated α parameter, the implied average treatment effect of HMO

on no ambulatory expenditure, the estimated dependence parameter, Kendall’s τ as well as the

log-likelihood value. The ATE’s vary quite a bit, from +1.9 percent under independence to -2.6

percent in the Frank CBP model. Although the ATE estimates are consistently negative in CBP

models with dependence, the size is cut by half when moving from the Frank CBP to the normal

CBP model, and cut by half again when moving to the Clayton CBP.

Statistically, the Frank CBP has the largest log-likelihood value, although the differences are not

large. A test of the Frank CBP against the independence CBP formally rejects the independence

assumption. The chi-squared (1) - distributed likelihood ratio test statistic is 4.6, with p-value

of 0.032. Similarly, the Frank dependence parameter is significantly greater than zero. The sign

suggests positive self-selection: those who are more likely to opt for HMO have a higher than

average probability of having no ambulatory expenses. If unaccounted for, the positive dependence

between the unobservables in the two equations is captured by the effect estimate which is indeed

found to be positive and even statistically significant in the independence model. Once endogeneity
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is accounted for, the effect switches its sign but it is not statistically significant.

It is interesting to observe that the conclusion obtained from formal applications of hypothesis

tests based on the normal CBP would be quite different, since the independence CBP cannot be

rejected against the normal CBP model. Likelihood ratio and z-test statistics are both insignificant.

As a consequence, one would be led to interpret the +1.9 percent ATE under independence as causal.

−−−−−−−−−

Table V about here

−−−−−−−−−

The full set of regression coefficients for the independence and Frank copula are displayed in

Table V. Except for the HMO coefficient, there is not much difference between the size and precision

of the estimated effects between the two models.

4 Discussion

The paper considers the problem of modeling and estimating the effect of a binary endogenous

regressor on a binary outcome variable using copulas. The copula bivariate probit (CBP) model is

an alternative to semi-parametric estimation of bivariate probit models (e.g. Murphy, 2007, Chen

and Zhou 2007). It offers a relatively simple and parsimonious compromise between the standard

bivariate probit model and these semi-parametric alternatives. The main benefits of CBP models

are twofold. First, they make it relatively effortless to assess the sensitivity of results within a

broader class of joint distributions for the stochastic errors. Second, by considering a number of
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different copulas one can obtain, in a quasi-likelihood sense, a better approximation to the true

underlying distribution.

The evidence provided in the paper, based on simulations and a real data application, suggests

that CBP models work well in practice and provide a viable and simple alternative to the stan-

dard bivariate probit approach. Of course, the bivariate probit can well be the best model in the

considered class of CBP models. Even then, however, one does not know this before the analysis,

and selecting from a larger menu of models is helpful for assessing the sensitivity of estimates to

distributional assumptions.

The methods and models presented in the paper have at least two immediate extensions. First,

they can be applied to cases where the outcome variable is an ordered response with more than

two outcomes. For example, one can easily construct a model with ordered probit marginals for

the outcome variable and binary probit marginal for the endogenous regressor. The ordered probit

model has a latent variable representation as well. Let

y∗1 = xβ + αy2 + ε1

The observed ordered responses y1 = 1, 2, . . . , J are obtained from a threshold observation mecha-

nism

y1 =
J
∑

j=0

1(y∗1 > κj)

where κs,0 = −∞ < κs,1 < . . . < κs,J = ∞ partition the real line. It follows that

P (y1 = j, y2 = 0) = C(Φ(κj − xβ),Φ(−zγ))− C(Φ(κj−1 − xβ),Φ(−zγ))
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and

P (y1 = j, y2 = 1) = C(Φ(κj − xβ − α), 1)− C(Φ(κj−1 − xβ − α), 1)− P (y1 = j, y2 = 0)

Second, the copula approach can be easily extended to accommodate other marginal models, such

as the logit or any other desired link function (Koenker and Yoon, 2009). A bivariate model with

logit marginals is obtained by letting F (ε1, ε2) = C[Λ(ε1),Λ(ε2)], where Λ(z) = exp(z)/(1+exp(z))

is the cumulative density function of the logistic distribution. Alternatively, one could estimate

the marginals semiparametrically, an approach that has been explored in other copula applications

(e.g., Chen and Fan 2005).

A further potentially fruitful development explores copula mixture models, where the underlying

joint distribution function of the unobservables is approximated by a finite mixture of parametric

distribution functions that can differ both in their copula specification and in their parameters.

Conceptually this is a very elegant approach as it dispenses with the need to select single copulas

and moreover can in principle approximate the true joint distribution function to an arbitrary

degree. The practical implementation may be very difficult, however, and related results from a

study by Trivedi and Zimmer (2009) are not very encouraging.
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Table I
Simulation Results for Normal CBP Data Generating process

(ρ = 0.5, r=5000)

β̂0 β̂1 α̂ θ̂ τ llik % pick

n = 500

Normal 0.499 -0.504 0.512 0.497 0.335 -473.5 40.8
(0.107) (0.072) (0.226) (0.132)

Frank 0.501 -0.507 0.527 3.419 0.333 -473.7 33.6
(0.108) (0.073) (0.233) (1.251)

Clayton 0.467 -0.507 0.554 0.747 0.260 -474.1 25.5
(0.115) (0.074) (0.241) (0.370)

Independence 0.231 -0.527 1.120 n.a. n.a. -479.3 0
(0.086) (0.075) (0.145) n.a.

n = 1000

Normal 0.500 -0.501 0.502 0.502 0.337 -950.7 48.6
(0.076) (0.050) (0.161) (0.093)

Frank 0.503 -0.503 0.515 3.392 0.336 -951.0 31.6
(0.077) (0.051) (0.166) (0.859)

Clayton 0.466 -0.504 0.546 0.721 0.259 -951.9 19.7
(0.082) (0.052) (0.171) (0.245)

Independence 0.228 -0.524 1.116 n.a n.a. -961.9
(0.059) (0.053) (0.101) n.a.

n = 5000

Normal 0.500 -0.501 0.500 0.501 0.334 -4763.6 80.0
(0.034) (0.022) (0.071) (0.041)

Frank 0.503 -0.504 0.514 3.313 0.333 -4765.2 16.4
(0.034) (0.022) (0.072) (0.367)

Clayton 0.465 -0.504 0.546 0.691 0.256 -4769.8 3.6
(0.037) (0.023) (0.075) (0.103)

Independence 0.229 -0.523 1.110 n.a. n.a. -4817.3
(0.027) (0.023) (0.045) n.a.

Notes: The main entries in the table give the mean values of the statistics over repeated samples.
Standard deviations in parentheses. The true parameter values are β0 = 0.5, β1 = −0.5, and
α = 0.5.
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Table II
Simulation Results for Frank CBP Data Generating Process

(θ = 3.3, r=5000)

β̂0 β̂1 α̂ θ̂ τ llik % pick

n = 500

Normal 0.492 -0.498 0.503 0.490 0.330 -475.3 28.8
(0.107) (0.072) (0.221) (0.129)

Frank 0.501 -0.501 0.503 3.465 0.337 -475.1 52.8
(0.106) (0.072) (0.224) (1.225)

Clayton 0.457 -0.500 0.550 0.719 0.252 -476.1 18.4
(0.116) (0.074) (0.240) (0.370)

Independence 0.227 -0.521 1.101 n.a. n.a. -481.0 0
(0.084) (0.075) (0.143) n.a.

n = 1000

Normal 0.489 -0.498 0.506 0.486 0.325 -954.3 28.0
(0.077) (0.051) (0.160) (0.093)

Frank 0.499 -0.502 0.504 3.357 0.333 -954.0 61.4
(0.075) (0.051) (0.160) (0.826)

Clayton 0.452 -0.500 0.557 0.672 0.246 -956.0 10.6
(0.084) (0.052) (0.175) (0.243)

Independence 0.226 -0.520 1.097 n.a n.a. -965.0
(0.060) (0.052) (0.101) n.a.

n = 5000

Normal 0.490 -0.497 0.503 0.487 0.324 -4782.3 18.1
(0.034) (0.022) (0.069) (0.040)

Frank 0.500 -0.501 0.501 3.309 0.333 -4780.6 81.3
(0.033) (0.023) (0.070) (0.351)

Clayton 0.451 -0.499 0.557 0.647 0.243 -4791.0 0.6
(0.037) (0.023) (0.076) (0.100)

Independence 0.225 -0.518 1.095 n.a. n.a. -4833.7
(0.027) (0.023) (0.045) n.a.
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Table III
Simulation Results for Clayton CBP Data Generating Process

(θ = 1, r=5000)

β̂0 β̂1 α̂ θ̂ τ llik % pick

n = 500

Normal 0.513 -0.497 0.521 0.573 0.393 -465.1 19.4
(0.104) (0.072) (0.222) (0.124)

Frank 0.507 -0.498 0.551 4.109 0.384 -465.6 9.2
(0.105) (0.073) (0.235) (1.427)

Clayton 0.505 -0.501 0.501 1.088 0.341 -464.2 71.4
(0.108) (0.073) (0.222) (0.427)

Independence 0.203 -0.527 1.241 n.a. n.a. -473.0 0
(0.086) (0.076) (0.148) n.a.

n = 1000

Normal 0.509 -0.497 0.524 0.570 0.388 -934.0 14.8
(0.073) (0.051) (0.160) (0.089)

Frank 0.505 -0.498 0.554 3.964 0.380 -935.1 4.4
(0.073) (0.052) (0.169) (0.978)

Clayton 0.501 -0.501 0.503 1.040 0.336 -932.3 80.8
(0.076) (0.052) (0.160) (0.290)

Independence 0.201 -0.526 1.238 n.a n.a. -949.1
(0.060) (0.053) (0.103) n.a.

n = 5000

Normal 0.509 -0.496 0.522 0.570 0.386 -4681.0 2.0
(0.033) (0.022) (0.070) (0.038)

Frank 0.505 -0.498 0.553 3.874 0.378 -4686.6 0.1
(0.033) (0.023) (0.074) (0.403)

Clayton 0.500 -0.501 0.501 1.007 0.334 -4672.4 97.9
(0.034) (0.023) (0.070) (0.119)

Independence 0.200 -0.525 1.235 n.a. n.a. -4754.4
(0.027) (0.023) (0.046) n.a.
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Table IV: Results for Absence of Ambulatory Expenditure Example

α̂ Treatment Dependence Kendall’s Log-Likelihood
effect Parameter τ

Independence 0.101* 0.0187 n.a. n.a. -8341.6
(0.044) n.a.

Bivariate probit -0.067 -0.0131 0.112 0.071 -8340.0
(0.106) (0.063)

Frank copula -0.131 -0.0256 0.982* 0.108 -8339.3
(0.117) (0.453)

Clayton copula -0.032 -0.0061 0.124 0.058 -8340.4
(0.105) (0.095)

* indicates statistical significance at the 5% level.
Treatment effect is the effect of HMO on the probability of no ambulatory health expenditures
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Table V: Full Regression Results for Absence of Ambulatory Expenditure

Independent Frank Independent Frank

HMO No AE HMO No AE HMO No AE HMO No AE

FAMSIZE -0.049 0.083 -0.049 0.082 VEGOOD 0.048 -0.145 0.048 -0.142

(0.012) (0.011) (0.012) (0.011) (0.038) (0.036) (0.039) (0.037)

EDUC -0.166 -0.625 -0.168 -0.623 GOOD 0.052 -0.221 0.053 -0.217

(0.070) (0.067) (0.071) (0.067) (0.043) (0.043) (0.044) (0.043)

INCOME -0.011 -0.045 -0.011 -0.045 FAIRPOOR 0.100 -0.466 0.098 -0.463

(0.007) (0.008) (0.007) (0.008) (0.073) (0.095) (0.072) (0.097)

FEMALE 0.008 -0.920 0.010 -0.913 PHYSLIM -0.040 -0.286 -0.040 -0.287

(0.118) (0.121) (0.118) (0.122) (0.050) (0.066) (0.052) (0.065)

BLACK 0.175 0.262 0.172 0.270 TOTCHR -0.004 -0.640 -0.004 -0.638

(0.048) (0.046) (0.049) (0.047) (0.022) (0.036) (0.022) (0.035)

HISPANIC 0.170 0.135 0.169 0.141 INJURY 0.033 -0.657 0.035 -0.655

(0.047) (0.042) (0.047) (0.042) (0.039) (0.048) (0.038) (0.047)

MARRIED -0.316 -0.242 -0.317 -0.244 YEAR98 0.051 -0.090 0.049 -0.088

(0.082) (0.038) (0.081) (0.038) (0.049) (0.048) (0.050) (0.048)

NOREAST -0.027 -0.137 -0.027 -0.137 YEAR99 -0.016 -0.027 -0.019 -0.027

(0.052) (0.048) (0.052) (0.048) (0.049) (0.047) (0.051) (0.047)

MIDWEST -0.346 -0.185 -0.346 -0.201 YEAR00 -0.203 -0.118 -0.205 -0.126

(0.049) (0.050) (0.050) (0.050) (0.044) (0.044) (0.043) (0.044)

SOUTH -0.360 0.029 -0.359 0.010 YEAR01 -0.143 -0.102 -0.145 -0.108

(0.044) (0.041) (0.044) (0.042) (0.048) (0.049) (0.048) (0.050)

MSA -0.114 0.020 -0.111 0.018 SPAGE -0.113 -0.113

(0.046) (0.047) (0.046) (0.048) (0.019) (0.019)

AGE -0.203 0.103 -0.207 0.108 LGSPHMO 1.710 1.710

(0.108) (0.113) (0.106) (0.114) (0.043) (0.042)

AGE2 0.236 -0.263 0.241 -0.268 HMO 0.101 -0.131

(0.129) (0.138) (0.127) (0.137) (0.044) (0.117)

AGEXFEM 0.125 0.783 0.120 0.772 theta 0.982

(0.285) (0.306) (0.286) (0.306) (0.453)

constant 2.087 0.525 2.092 0.724

(0.241) (0.243) (0.235) (0.265)

Standard errors in parentheses; the following variables are scaled by factor 10−1: EDUC, INCOME,

AGEXFEM, AGE2.
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Figure 1: 500 draws from a Frank Copula with Standard Normal Marginals, θ = 3.3. Linear

regression line and locally weighted polynomial regression
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Figure 2: 500 draws from a Clayton Copula with Standard Normal Marginals, θ = 1. Linear

regression line and locally weighted polynomial regression
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