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COPULA GAUSSIAN GRAPHICAL MODELS AND THEIR
APPLICATION TO MODELING FUNCTIONAL DISABILITY DATA1

BY ADRIAN DOBRA AND ALEX LENKOSKI

University of Washington and Heidelberg University

We propose a comprehensive Bayesian approach for graphical model de-
termination in observational studies that can accommodate binary, ordinal
or continuous variables simultaneously. Our new models are called copula
Gaussian graphical models (CGGMs) and embed graphical model selection
inside a semiparametric Gaussian copula. The domain of applicability of our
methods is very broad and encompasses many studies from social science and
economics. We illustrate the use of the copula Gaussian graphical models in
the analysis of a 16-dimensional functional disability contingency table.

1. Introduction. The determination of conditional independence relation-
ships through graphical models is a key component of the statistical analysis of
observational studies. A pertinent example we will focus on in this paper is a func-
tional disability data set extracted from the “analytic” data file for the National
Long Term Care Survey (NLTCS) created by the Center of Demographic Studies
at Duke University. Each observed variable is binary and corresponds to a measure
of disability defined by an activity of daily living. This contingency table cross-
classifies information on elderly aged 65 and above pooled across four survey
waves, 1982, 1984, 1989 and 1994—see Manton, Corder and Stallard (1993) for
more details. The 16 dimensions of this table correspond to six activities of daily
living (ADLs) and ten instrumental activities of daily living (IADLs). Specifically,
the ADLs relate to hygiene and personal care: eating (ADL1), getting in/out of
bed (ADL2), getting around inside (ADL3), dressing (ADL4), bathing (ADL5)
and getting to the bathroom or using a toilet (ADL6). The IADLs relate to ac-
tivities needed to live without dedicated professional care: doing heavy house
work (IADL1), doing light house work (IADL2), doing laundry (IADL3), cooking
(IADL4), grocery shopping (IADL5), getting about outside (IADL6), travelling
(IADL7), managing money (IADL8), taking medicine (IADL9) and telephoning
(IADL10). For each ADL/IADL measure, subjects were classified as being ei-
ther healthy (level 1) or disabled (level 2) on that measure. The methodology we
develop in this paper allows us to determine the complex pattern of conditional
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associations that exist among the 16 daily living activities. This represents a criti-
cal issue that was left unexplored in previous analyses of this data set [Erosheva,
Fienberg and Joutard (2007); Fienberg et al. (2010)].

In fact, the domain of applicability of our methods is not restricted to contin-
gency tables. Since multivariate data sets arising from social science or economics
typically contain variables of many types, our goal is to develop an approach to
graphical model determination that is broad enough to be applicable to any study
that involves a mixture of binary, ordinal and continuous variables.

Most of the research efforts in the graphical models literature have been fo-
cused on multivariate normal models or on log-linear models—see, for example,
the monographs of Lauritzen (1996) and Whittaker (1990). These models relate
to data sets that contain exclusively continuous or categorical variables. CG dis-
tributions [Lauritzen (1996)] constitute the basis of a class of graphical models
for mixed variables, but they impose an overly restrictive assumption: the condi-
tional distribution of the continuous variables given the discrete variables must be
multivariate normal. As such, the three main classes of graphical models are too
restrictive to be widely applicable to social science or economics studies.

Copulas [Nelsen (1999)] provide the theoretical framework in which multivari-
ate associations can be modeled separately from the univariate distributions of
the observed variables. Genest and Neslehová (2007) advocate the use of copu-
las when modeling multivariate distributions involving discrete variables. In this
paper we employ the Gaussian copula and further require conditional indepen-
dence constraints on the inverse of its correlation matrix. The resulting models are
called copula Gaussian graphical models (CGGMs) because they only impose a
multivariate normal assumption for a set of latent variables which are in a one-
to-one correspondence with the set of observed variables. A related approach for
inference in Gaussian copulas has been developed by Pitt, Chan and Kohn (2006).
Their framework involves parametric models for Gaussian copulas and the uni-
variate marginal distributions of the observed variables.We treat these marginal
distributions as nuisance parameters and focus on the determination of graphical
models.

The structure of the paper is as follows. In Section 2 we formally introduce
Gaussian graphical models (GGMs) and describe a Bayesian framework for infer-
ence in this class of models. In Section 3 we discuss modeling aspects related to
binary and ordinal variables. In Section 4 we show how to extend GGMs to rep-
resent conditional independence associations in a latent variables space. We also
present a Bayesian model averaging approach for graph identification and estima-
tion in CGGMs. In Section 5 we analyze the NLTCS functional disability data
together with another six-dimensional contingency table using CGGMs. We dis-
cuss our proposed methodology in Section 6.

2. Gaussian graphical models. We let X = XV , V = {1,2, . . . , p}, be a
random vector with a joint distribution p(XV ). The conditional independence



COPULA GAUSSIAN GRAPHICAL MODELS 971

relationships among {Xv :v ∈ V } under p(XV ) can be summarized in a graph
G = (V ,E), where each vertex v ∈ V corresponds with a random variable Xv and
E ⊂ V × V are undirected edges [Whittaker (1990)]. Here “undirected” means
that (v1, v2) ∈ E is equivalent with (v2, v1) ∈ E.

The absence of an edge between Xv1 and Xv2 corresponds with the conditional
independence of these two random variables given the remaining variables under
p(XV ) and is denoted by

Xv1 ⊥⊥ Xv2 | XV \{v1,v2}.(2.1)

This is called the pairwise Markov property relative to G, which in turn implies
the local as well as the global Markov properties relative to G [Lauritzen (1996)].

We denote by GV the set of all 2p(p−1)/2 undirected graphs with vertices V .
Since GV contains many graphs even for relatively small values of p, it cannot
be enumerated and has to be visited using stochastic search methods [Madigan
and York (1995); Jones et al. (2005); Lenkoski and Dobra (2010)]. Such algo-
rithms move through GV using neighborhood sets nbd(G) ⊂ GV for G ∈ GV . The
neighborhood of a graph G ∈ GV is comprised of all the graphs obtained from G

by adding or deleting one edge. These neighborhood sets are symmetric and link
any two graphs through a path of graphs such that two consecutive graphs on this
path are neighbors of each other. We remark that the neighborhood sets associated
with GV contain the same number of graphs p(p − 1)/2.

Furthermore, we assume that X = XV follows a p-dimensional multivariate
normal distribution Np(0,K−1) with precision matrix K = (Kv1,v2)1≤v1,v2≤p . We
let x(1:n) = (x(1), . . . , x(n))T be the observed data of n independent samples of X.
The likelihood function is proportional to

p
(
x(1:n)|K) ∝ (detK)n/2 exp

{−1
2〈K,U〉},(2.2)

where U = ∑n
j=1 x(j)x(j)T , and 〈A,B〉 = tr(AT B) denotes the trace inner prod-

uct. We assume that the data have been centered and scaled, so that the sample
mean of each Xv is zero and its sample variance is one.

A graphical model G = (V ,E) for Np(0,K−1) is called a Gaussian graphi-
cal model (GGM) and is constructed by constraining some of the off-diagonal
elements of K to zero. For example, the pairwise Markov property (2.1) holds
if and only if Kv1,v2 = 0. This implies that the edges of G correspond with the
off-diagonal nonzero elements of K , that is, E = {(v1, v2) | Kv1,v2 	= 0, v1 	= v2}.
Given G, the precision matrix K is constrained to the cone PG of symmetric posi-
tive definite matrices with entries Kv1,v2 equal to zero for all (v1, v2) /∈ E, v1 	= v2.

We consider a G-Wishart prior WG(δ,D) for K with density

p(K|G) = 1

IG(δ,D)
(detK)(δ−2)/2 exp

{
−1

2
〈K,D〉

}
,(2.3)

with respect to the Lebesgue measure on PG [Roverato (2002); Atay-Kayis and
Massam (2005); Letac and Massam (2007)]. The normalizing constant IG(δ,D)
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is finite provided δ > 2 and D is positive definite [Diaconis and Ylvisaker (1979)].
If G is the complete graph with p vertices (i.e., there are no missing edges),
WG(δ,D) reduces to the Wishart distribution Wp(δ,D), hence, its normalizing
constant is

IG(δ,D) = 2(δ+p−1)p/2�p{(δ + p − 1)/2}(detD)−(δ+p−1)/2,(2.4)

where �p(a) = πp(p−1)/4 ∏p−1
i=0 �(a − i

2) for a > (p − 1)/2 [Muirhead (2005)].
If G is decomposable, IG(δ,D) is explicitly calculated [Roverato (2002)]. For
nondecomposable graphs, the Monte Carlo method of Atay-Kayis and Massam
(2005) can be used to numerically approximate IG(δ,D) in a fast and accurate
manner.

Throughout this paper we set the prior parameters for K to δ = 3 and D = Ip ,
the p-dimensional identity matrix. From equations (2.2) and (2.3) we see that the
interpretation of this prior is that the components of X are independent apriori and
that the “weight” of the prior is equivalent to one observed sample.

The G-Wishart prior is conjugate to the likelihood (2.2), thus, the posterior
distribution of K given G is WG(δ + n,D + U), that is,

p
(
K|x(1:n),G

) = 1

IG(δ + n,D + U)
(detK)(δ+n−2)/2 exp

{
−1

2
〈K,D + U〉

}
.

Given K ∈ PG, the regression of Xv on the remaining elements of X depends only
on the neighbors of v in G:

p
(
Xv|XV \{v} = xV \{v},K

) = N
(
− ∑

v′∈bdG(v)

Kv,v′

Kv,v

xv′,
1

Kv,v

)
,(2.5)

where bdG(v) = {v′ ∈ V : (v, v′) ∈ E}.
The Cholesky decomposition of a matrix K ∈ PG is K = φT φ, where φ is an

upper triangular matrix with φv,v > 0, v ∈ V . Roverato (2002) proved that the set
ν(G) of the free elements of φ consists of the diagonal elements together with the
elements that correspond with the edges of G, that is,

ν(G) = {(v1, v1) :v1 ∈ V } ∪ {(v1, v2) :v1 < v2 and (v1, v2) ∈ E}.
Once the free elements of φ are known, the remaining elements are also known.
More specifically, we have φ1,v2 = 0 if v2 ≥ 2 and (1, v2) /∈ E. We also have

φv1,v2 = − 1

φv1,v1

v1−1∑
v=1

φv,v1φv,v2

for 2 ≤ v1 < v2 and (v1, v2) /∈ E. The determination of the elements of φ that are
not free based on the elements of φ that are free is called the completion of φ with
respect to G [Roverato (2002); Atay-Kayis and Massam (2005)]. It is useful to
remark that the free elements of φ fully determine the matrix K . The development
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of our framework involves the Jacobian of the transformation that maps K ∈ PG

to the free elements of φ [Roverato (2002)]:

J (K → φ) = 2p
p∏

v=1

φ
dG
v +1

v,v ,

where dG
v is the number of elements in bdG(v) ∩ {v + 1, . . . , p}.

3. Incorporating binary and ordinal categorical variables. A variable Xv

that takes a finite number of ordinal values {1,2, . . . , dv}, with dv ≥ 2, is incorpo-
rated in our modeling framework by introducing a continuous latent variable Zv

underlying Xv—see, for example, Muthén (1984). We denote by {x(1)
v , . . . , x

(n)
v }

the observed samples associated with Xv . The samples from Zv are denoted by
{z(1)

v , . . . , z
(n)
v }. Typically the relationship between Xv and its surrogate Zv is ex-

pressed through some thresholds τv = (τv,0, τv,1, . . . , τv,wv ) with −∞ = τv,0 <

τv,1 < · · · < τv,wv = ∞. Formally, we set [Dunson (2006)]

x(j)
v =

wv∑
l=1

l × 1{τv,l−1<z
(j)
v ≤τv,l}, j = 1,2, . . . , n.(3.1)

This model is identifiable if the value of τv,1 is fixed at a certain value. We follow
an idea originally suggested by Hoff (2007) that does not explicitly involve the
thresholds τv . This approach is based on the remark that the relationship between
the observed and latent samples satisfies the constraints

x(j1)
v < x(j2)

v ⇒ z(j1)
v < z(j2)

v , z(j1)
v < z(j2)

v ⇒ x(j1)
v ≤ x(j2)

v(3.2)

for 1 ≤ j1 	= j2 ≤ n. We see that if Xv and Zv are related as in (3.1), then (3.2)
holds. If (3.2) holds, then (3.1) also holds by choosing τv,l = max{z(j)

v :x(j)
v = l}

for l = 1, . . . ,wv − 1. It follows that, given the observed data x(1:n), the latent
samples z(1:n) = (z(1), z(2), . . . , z(n)) are constrained to belong to the set

A
(
x(1:n)) = {

z(1:n) ∈ Rn×p :Lj
v

(
z(1:n)) < z(j)

v < Uj
v

(
z(1:n))},

where

Lj
v

(
z(1:n)) = max

{
z(k)
v :x(k)

v < x(j)
v

}
,

(3.3)
Uj

v

(
z(1:n)) = min

{
z(k)
v :x(j)

v < x(k)
v

}
.

If the value x
(j)
v is missing from the observed data, we define L

j
v(z

(1:n)) = −∞
and U

j
v (z(1:n)) = ∞.
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4. Copula Gaussian graphical models. We assume that an observed vari-
able Xv can be binary, categorical with ordered categories, count or continuous.
We denote by Fv the univariate distribution of Xv and by F−1

v the pseudo-inverse
of Fv . Given a precision matrix K , we model the joint distribution of X = XV as
follows [see also Hoff (2007)]:

ZV ∼ Np(0,K−1),

Z̃v = Zv/(K
−1)1/2

v,v , v ∈ V,(4.1)

Xv = F−1
v (�(Z̃v)), v ∈ V.

In (4.1) the joint distribution of the latent variables is multivariate normal Z̃ =
Z̃V ∼ Np(0,ϒ(K)), where ϒ(K) is a correlation matrix with entries

ϒv1,v2(K) = (K−1)v1,v2√
(K−1)v1,v1(K

−1)v2,v2

.(4.2)

The joint distribution F of X = XV is subsequently a function of the correlation
matrix ϒ(K) and the univariate distributions Fv of Xv :

p(X1 ≤ x1, . . . ,Xp ≤ xp) = F(x1, . . . , xp|ϒ(K),F1, . . . ,Fp),

= C(F1(x1), . . . ,Fp(xp)|ϒ(K)),

where

C(u1, . . . , up|ϒ ′) = �p(�−1(u1), . . . ,�
−1(up)|ϒ ′) : [0,1]p → [0,1](4.3)

is the Gaussian copula with p × p correlation matrix ϒ ′ [Nelsen (1999)].
Here �(·) represents the CDF of the standard normal distribution and �p(·|ϒ)

is the CDF of Np(0,ϒ).
We avoid the need to formally make assumptions regarding the parametric rep-

resentation of {Fv :v ∈ V }, which could be a daunting task for most real world
data sets, by treating their marginal distributions as nuisance parameters. More-
over, we reduce our model parameters to the correlation matrix of the Gaussian
copula (4.3). This means that we focus on the joint distribution of the latent vari-
ables Z̃V whose relationships with the observed variables XV are given by (4.1).
Since F−1

v (·) and �(·) are nondecreasing, (4.1) implies (3.2) which does not de-
pend on the marginal distributions {Fv :v ∈ V }. The converse is also true: if the
relationship (3.2) between the observed and latent samples holds, then (4.1) also
holds by replacing Fv with the empirical distribution of Xv .

As suggested by Hoff (2007), inference in the latent variables space can be
performed by substituting the observed data x(1:n) with the event D = {z(1:n) ∈
A(x(1:n))}. We write the likelihood function as

p
(
x(1:n)|K, {Fv :v ∈ V }) = p(D|K)p

(
x(1:n)|D,ϒ(K), {Fv :v ∈ V }).
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In this decomposition p(D|K) is the only part of the observed data likelihood
that is relevant for making inference on K . Furthermore, p(D|K) does not de-
pend on {Fv :v ∈ V }. Hoff (2007) calls p(D|K) the extended rank likelihood and
constructs a Gibbs sampler with stationary distribution

p(K|D) ∝ p(D|K)p(K),(4.4)

where K follows a Wishart prior distribution Wp(δ,D).
We are interested in modeling the conditional independence relationships

among the latent variables Z = ZV using Gaussian graphical models. We go one
step further compared to Hoff (2007) and impose zero constraints in the precision
matrix K according to a graph G. We refer to the graphical models constructed
in the latent space as copula Gaussian graphical models (CGGMs). The inference
approach described in Hoff (2007) is equivalent to reducing the set of candidate
graphs to only one graph. This graph is the full graph in which all the edges are
present and none of the off-diagonal elements of K are constrained to zero.

The Markov properties associated with a CGGM are guaranteed to translate
into Markov properties for the observed variables if all the marginals {Fv :v ∈ V }
are continuous [Liu, Lafferty and Wasserman (2009)]. The presence of some dis-
crete observed variables might induce additional dependencies among the X’s that
are not modeled in a CGGM, but such dependencies can be regarded as having a
secondary relevance since they emerge from the marginals {Fv :v ∈ V }. The con-
ditional independence graphs for the latent variables could contain edges then that
do not necessarily correspond with conditional independence relationships in the
observed variables space. Conversely, there might exist conditional independence
relationships among the observed variables that are not represented in conditional
independence graphs that involve latent variables.

4.1. Bayesian inference in copula Gaussian graphical models. Let G ∈ GV

be a graph defining a CGGM. The joint posterior distribution of K ∈ PG and the
graph G is given by

p(K,G|D) ∝ p(D|K)p(K|G)p(G).(4.5)

The prior distribution of K conditional on G is G-Wishart WG(δ,D) and the prior
distribution over GV is uniform, that is, p(G) ∝ 1. Other choices of priors on the
graphs space GV take into consideration the implied distribution on the number of
edges [Wong, Carter and Kohn (2003)], encourage sparsity [Jones et al. (2005)] or
have multiple testing correction properties [Scott and Berger (2006)].

We describe a Markov chain Monte Carlo sampler for the joint distribu-
tion (4.5). We consider two strictly positive precision parameters σp and σg that
remain fixed throughout at some small values, for example, σp = σg = 0.1. Given
the current state of the chain (Ks,Gs), its next state (Ks+1,Gs+1) is generated by
sequentially performing the following updates.
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Step 1: Resample the latent data. For each v ∈ V and j ∈ {1,2, . . . , n}, we
update the latent value z

(j)
v by sampling from its full conditional distribution. The

distribution of Zv conditional on ZV \{v} = z
(j)
V \{v} is N(μv,σ

2
v ) truncated to the

interval [Lj
v,U

j
v ], where μv = −∑

v′∈bdG(v)

Ks
v,v′

Ks
v,v

z
(j)

v′ and σ 2
v = 1

Ks
v,v

—see (2.5).

The bounds L
j
v and U

j
v are given in (3.3). The new value of z

(j)
v is obtained by

sampling from this truncated normal distribution.
Step 2: Resample the precision matrix. We sequentially perturb the free elements

{φs
v1,v2

: (v1, v2) ∈ ν(Gs)} in the Cholesky decomposition Ks = (φs)T φs around
their current value. Here φs is upper triangular. We perform a Metropolis–Hastings
update of Ks associated with a diagonal element φs

v1,v1
> 0 by sampling a value γ

from a N(φs
v1,v1

, σ 2
p) distribution truncated below at 0, that is,

γ ∼ q(u|φs
v1,v1

) ∝ 1

σp�(φs
v1,v1

/σp)
exp

(
−(u − φs

v1,v1
)2

2σ 2
p

)
.

We take K ′ = (φ′)T φ′, where φ′ is such that its free elements coincide with the free
elements of φs , with the exception of the (v1, v1) element which is set to γ . The
elements of φ′ that are not free are obtained by the completion operation described
in Section 2. The acceptance probability of the update of Ks to K ′ is min{Rp,1},
where

Rp = p(K ′|z(1:n),Gs)

p(Ks |z(1:n),Gs)

J (K ′ → φ′)
J (Ks → φs)

q(φs
v1,v1

|γ )

q(γ |φs
v1,v1

)
,

= �(φs
v1,v1

/σp)

�(γ /σp)

(
γ

φs
v1,v1

)δ+n+dGs

v1
−1

R′
p.

Here we denote

R′
p = exp

{
−1

2

〈
K ′ − Ks,D +

n∑
j=1

z(j)z(j)T

〉}
.

Next we consider a free off-diagonal element φs
v1,v2

, where v1 < v2 and
(v1, v2) ∈ ν(Gs). We sample a candidate value γ ′ from a N(φs

v1,v2
, σ 2

p) distrib-
ution. As before, we take K ′ = (φ′)T φ′, where φ′ and φs have the same free ele-
ments with the exception of the (v1, v2) element that has φ′

v1v2
= γ ′. The remaining

nonfree elements of φ′ are obtained through completion. Due to the symmetry of
the proposal distribution and the fact that detKs = ∏p

v=1(φ
s
v,v)

2 = ∏p
v=1(φ

′
v,v)

2 =
detK ′, the candidate matrix K ′ is accepted with probability min{R′

p,1}.
Since Ks ∈ PGs , the candidate matrix K ′ associated with each free element in

ν(Gs) must also belong to PGs . The precision matrix that is obtained after per-
forming all the Metropolis–Hastings updates is Ks+1/2 ∈ PGs .
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Step 3: Resample the graph. We consider the Cholesky decomposition Ks+1/2 =
(φs+1/2)T φs+1/2 where φs+1/2 is upper triangular. We randomly choose a pair
(v1, v2), v1 < v2. If there is no edge between v1 and v2 in Gs , that is, (v1, v2) /∈
ν(Gs), we add this edge to Gs to obtain a candidate graph G′. This implies
bdG′(v1) = bdGs (v1) ∪ {v2}, hence, dG′

v1
= dGs

v1
+ 1. Moreover, ν(G′) = ν(Gs) ∪

{(v1, v2)}. We define an upper diagonal matrix φ′ such that φ′
v′

1,v
′
2
= φ

s+1/2
v′

1,v
′
2

for

all (v′
1, v

′
2) ∈ ν(Gs). The value of φ′

v1,v2
is set by sampling from a N(φ

s+1/2
v1,v2 , σ 2

g )

distribution. The remaining elements of φ′ are determined through completion
with respect to the graph G′. We see that φ′ has one additional free element with
respect to φs+1/2 whose value was randomly chosen by perturbing the nonfree
(v1, v2) element of φs+1/2.

We take the candidate precision matrix K ′ = (φ′)T φ′ ∈ PG′ . Since the dimen-
sionality of the parameter space increases by one, we must make use of the re-
versible jump Markov chains methodology proposed by Green (1995). We accept
the update of (Ks+1/2,Gs) to (K ′,G′) with probability min{Rg,1}, where Rg is
given by

p(z(1:n)|K ′)p(K ′|G′)
p(z(1:n)|Ks+1/2)p(Ks+1/2|Gs)

|nbd(Gs)|
|nbd(G′)|

× J (K ′ → φ′)
J (Ks+1/2 → φs+1/2)

J (φs+1/2 → φ′)
(1/(σg

√
2π)) exp(−(φ′

v1,v2
− φ

s+1/2
v1,v2 )2/(2σ 2

g ))
.

We denote by |B| the number of elements of a set B . All the graphs in GV have the
same number of neighbors, hence, |nbd(Gs)| = |nbd(G′)| = p(p − 1)/2. Since
the free elements of φ′ are the free elements of φs+1/2 and φ′

v1,v2
, the Jacobian of

the transformation from φs+1/2 to φ′ is equal to 1, that is, J (φs+1/2 → φ′) = 1.
Moreover, φs+1/2 and φ′ have the same elements on the main diagonal and are
upper triangular, therefore, detKs+1/2 = detK ′. We also have

J (K ′ → φ′)
J (Ks+1/2 → φs+1/2)

= (φ′
v1,v1

)
dG′
v1

+1

(φ
s+1/2
v1,v1 )

dGs
v1

+1
= φs+1/2

v1,v1
.

It follows that Rg is equal to

σg

√
2πφs+1/2

v1,v1

IGs (δ,D)

IG′(δ,D)

× exp

{
−1

2

〈
K ′ − Ks+1/2,D +

n∑
j=1

z(j)z(j)T

〉
+ (φ′

v1,v2
− φ

s+1/2
v1,v2 )2

2σ 2
g

}
.

Now we examine the case when there is an edge between v1 and v2 in Gs . We
delete this edge from Gs to obtain a candidate graph G′. We have bdG′(v1) =
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bdGs (v1) \ {v2}, hence, dG′
v1

= dGs

v1
− 1 and ν(G′) = ν(Gs) \ {(v1, v2)}. We define

an upper diagonal matrix φ′ such that φ′
v′

1,v
′
2

= φ
s+1/2
v′

1,v
′
2

for all (v′
1, v

′
2) ∈ ν(G′).

The (v1, v2) element is free in φs+1/2, but it is no longer free in φ′. The nonfree
elements of φ′ are obtained by completion with respect to the graph G′. As before,
we take K ′ = (φ′)T φ′ ∈ PG′ . The dimensionality of the parameter space decreases
by 1 as we move from φs+1/2 to φ′. We obtain that the acceptance probability of
the update from (Ks+1/2,Gs) to (K ′,G′) is min{R′

g,1}, where R′
g is equal to

(
σg

√
2πφs+1/2

v1,v1

)−1 IGs (δ,D)

IG′(δ,D)

× exp

{
−1

2

〈
K ′ − Ks+1/2,D +

n∑
j=1

z(j)z(j)T

〉
− (φ′

v1,v2
− φ

s+1/2
v1,v2 )2

2σ 2
g

}
.

The updated graph and the corresponding precision matrix that are obtained at the
end of this step are Gs+1 and Ks+1, respectively.

We note that our strategy for updating the precision matrix and the graph has
some similarities with the work of Giudici and Green (1999). However, they fo-
cused exclusively on decomposable graphs and perturbed elements of the covari-
ance matrix K−1 that are either on its main diagonal or correspond to an edge in
the graph.

4.2. Estimation and testing in copula Gaussian graphical models. In high-
dimensional data sets with a small number of observed samples it is likely that the
highest posterior probability graph receives only a small (almost zero) posterior
probability. Furthermore, changing a few edges in this graph could lead to graphs
with comparable posterior probabilities. When model uncertainty is high, Bayesian
model averaging becomes key because it avoids the need to perform inference by
making an explicit choice about which edges are present or absent in the graphs
that underlie the CGGMs. This choice is not desirable since a small sample size
means lack of sufficient information. As such, averaging over a large number of
graphs is preferable even if prediction is not the final goal.

We let {(Gs,Ks,ϒs) : s = 1,2, . . . , S} be samples from the joint distribu-
tion (4.5), where ϒs is the correlation matrix corresponding with Ks—see (4.2).
These samples can be used to produce Monte Carlo estimates of functions involv-
ing the latent variables Z or the observed variables X. The posterior probabil-
ity that two latent variables Zv1 and Zv2 are not conditionally independent given
ZV \{v1,v2} is the posterior inclusion probability of the edge (v1,v2) which is esti-
mated as the proportion of graphs Gs that contain the edge (v1, v2).

The posterior expectation of the correlation matrix ϒ is estimated by the mean
ϒ̃ = 1

S

∑S
s=1 ϒs . A zero element of the correlation matrix ϒ implies the indepen-

dence of Zv1 and Zv2 , which in turn implies the independence of Xv1 and Xv2 . We
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can conduct a Bayesian test of independence of Xv1 and Xv2 by considering the in-
terval null hypothesis H

v1,v2
0,ϒ : |ϒv1,v2 | < ε with the alternative H

v1,v2
1,ϒ : |ϒv1,v2 | ≥ ε,

where ε > 0. Given equal apriori probabilities of the null and alternative hypothe-
ses, the Bayes factor

B
v1,v2
ϒ = p

(
H

v1,v2
1,ϒ |x(1:n))/p

(
H

v1,v2
0,ϒ |x(1:n))

is estimated as the number of ϒs
v1,v2

whose absolute value is above ε divided by
the number of ϒs

v1,v2
whose absolute value is below ε.

The CDF of X = XV is estimated as

1

S

S∑
s=1

C(F̂1(x1), . . . , F̂p(xp)|ϒs),

where F̂v is the empirical univariate distribution of Xv . If each observed variable
is discrete and takes values {0,1,2, . . .}, their joint probability given ϒ is [Song
(2000)]

p(XV = xV |ϒ) =
1∑

j1=0

· · ·
1∑

jp=0

(−1)j1+···+jpC(u
j1
1 (x1), . . . , u

jp

p (xp)|ϒ),(4.6)

where u0
v(xv) = F̂v(xv) and u1

v(xv) = F̂v(xv − 1). We define u1
v(0) = 0. For

example, if Xv ∈ {0,1} is a binary random variable, we have u0
v(1) = 1 and

u0
v(0) = u1

v(1) = 1
n

∑n
i=1 δ{x(i)

v =0}. Here δB is 1 if B is true and is 0 otherwise.
Thus, the posterior expectation of the joint probability of XV is estimated as

p̃(XV = vv) = 1

S

S∑
s=1

p(XV = xV |ϒs).

Cramér’s V [Cramér (1946)] is a measure of association between two categori-
cal variables Xv1 and Xv2 that take values in the finite sets Iv1 and Iv2 , respectively,

ρv1,v2 = 1

min{|Iv1 |, |Iv2 |} − 1
(4.7)

× ∑
xv1∈Iv1

∑
xv2∈Iv2

p2(Xv1 = xv1,Xv2 = xv2)

p(Xv1 = xv1)p(Xv2 = xv2)
− 1.

Cramér’s V always takes values between 0 and 1, but we have ρv1,v2 = 0 if
and only if Xv1 and Xv2 are independent. The posterior expectation of ρv1,v2

is estimated by calculating the marginal cell value p(Xv1 = xv1,Xv2 = xv2 |ϒs)

of p(XV = xV |ϒs) for s = 1,2, . . . , S, calculating ρs
v1,v2

from (4.7) with re-
spect to p(Xv1 = xv1,Xv2 = xv2 |ϒs) for s = 1,2, . . . , S, then taking the average
ρ̃v1,v2 = 1

S

∑S
s=1 ρs

v1,v2
.
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We can test the independence of Xv1 and Xv2 based on Cramér’s V as fol-
lows. We consider the null hypothesis H

v1,v2
0,ρ :ρv1,v2 < ε against the alternative

H
v1,v2
1,ρ :ρv1,v2 ≥ ε. The corresponding Bayes factor in favor of the alternative hy-

pothesis is

Bv1,v2
ρ = p

(
H

v1,v2
1,ρ |x(1:n))/p

(
H

v1,v2
0,ρ |x(1:n)),

where we assumed equal apriori probabilities of H
v1,v2
0,ρ and H

v1,v2
1,ρ . We estimate

Bv1,v2
ρ as the number of ρs

v1,v2
above ε divided by the number of ρs

v1,v2
below ε. We

note that Dunson and Xing (2009) have also used Cramér’s V to perform Bayesian
testing for multivariate categorical data in a nonparametric framework.

In the two examples discussed in Section 5 we chose to test independence of
each pair of variables based on Cramér’s V since this measure takes into account
the univariate distributions of the observed variables.

5. Examples. In this section we apply copula GGMs to analyze two multi-
variate data sets with high relevance in the social science literature. In the supple-
mentary material [Dobra and Lenkoski (2010)] we provide C++ code and the data
sets that are needed to replicate the numerical results that follow.

5.1. The Rochdale data. We consider a social survey data set previously ana-
lyzed in Whittaker (1990)—see Table 1. This observational study was conducted
in Rochdale and attempted to assess the relationships among factors affecting

TABLE 1
Rochdale data from Whittaker (1990). The cells counts appear row by row in lexicographical order
with variable h varying fastest and variable a varying slowest. The grand total of this table is 665

5 0 2 1 5 1 0 0 4 1 0 0 6 0 2 0
8 0 11 0 13 0 1 0 3 0 1 0 26 0 1 0
5 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0
4 0 8 2 6 0 1 0 1 0 1 0 0 0 1 0

17 10 1 1 16 7 0 0 0 2 0 0 10 6 0 0
1 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0
4 7 3 1 1 1 2 0 1 0 0 0 1 0 0 0
0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

18 3 2 0 23 4 0 0 22 2 0 0 57 3 0 0
5 1 0 0 11 0 1 0 11 0 0 0 29 2 1 1
3 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

41 25 0 1 37 26 0 0 15 10 0 0 43 22 0 0
0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0
2 4 0 0 2 1 0 0 0 1 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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women’s economic activity. The eight variables are as follows: a, wife econom-
ically active (no, yes); b, age of wife > 38 (no, yes); c, husband unemployed
(no, yes); d , child ≤ 4 (no, yes); e, wife’s education, high-school+ (no, yes); f ,
husband’s education, high-school+ (no, yes); g, Asian origin (no, yes); h, other
household member working (no, yes). The resulting 28 cross-classification has 165
counts of zero, while 217 cells contain small positive counts smaller than 3. There
are quite a few counts larger than 30 or even 50.

Since the sample size is only 665, this table is sparse. Whittaker (1990) argues
that higher-order interactions involving more than two variables should not be in-
cluded in any log-linear model that is fit to this data set. He subsequently studies
two log-linear models: the all two-way interaction model whose minimal sufficient
statistics are all the 28 two-way marginals and the model whose minimal sufficient
statistics are the two-way marginals corresponding with the pairs of variables

{fg, ef, dh, dg, cg, cf, ce, bh, be, bd, ag, ae, ad, ac}.(5.1)

We ran the Markov chain Monte Carlo sampler from Section 4.1 for 250,000
iterations from 100 random starting graphs. The burn-in time was 25,000 itera-
tions. Convergence to the stationary distribution (4.5) is illustrated in Figure 1 that
gives the posterior expected number of edges in the CGGM graphs across itera-
tions for each chain. The sampled graphs have on average 16.5 edges which rep-

FIG. 1. Estimates of the posterior expected number of edges in the CGGMs for the Rochdale data.
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TABLE 2
Expected cell counts for the top 20 largest counts cells associated with the all two-way interaction

log-linear model, Whittaker’s log-linear model (5.1), the Copula-Full model and the CGGMs in the
Rochdale data. Here 1 stands for no and 2 stands for yes

Cell Observed All two-way Whittaker Copula-Full CGGMs

2 1 1 1 2 2 1 1 57 56.78 52.08 39.43 56.80
2 2 1 1 2 2 1 1 43 44.61 40.97 36.58 47.55
2 2 1 1 1 1 1 1 41 36.40 36.32 30.48 36.12
2 2 1 1 1 2 1 1 37 38.77 36.92 35.33 36.61
2 1 1 2 2 2 1 1 29 33.29 39.06 17.85 32.40
1 1 1 2 2 2 1 1 26 20.36 9.63 9.53 18.03
2 2 1 1 1 2 1 2 26 23.68 22.89 15.67 24.54
2 2 1 1 1 1 1 2 25 28.12 22.52 15.11 27.63
2 1 1 1 1 2 1 1 23 22.73 20.06 26.51 22.76
2 1 1 1 2 1 1 1 22 19.22 16.54 17.15 16.75
2 2 1 1 2 2 1 2 22 22.85 25.41 13.96 24.63
2 1 1 1 1 1 1 1 18 21.54 19.74 21.02 20.85
1 2 1 1 1 1 1 1 17 15.06 16.02 15.13 15.71
1 2 1 1 1 2 1 1 16 14.65 16.28 14.3 12.18
2 2 1 1 2 1 1 1 15 14.96 13.01 17.36 15.07
1 1 1 2 1 2 1 1 13 12.06 6.63 8.46 10.92
2 1 1 2 2 1 1 1 11 7.70 12.40 7.36 8.52
2 1 1 2 1 2 1 1 11 10.50 15.05 11 10.48
1 1 1 2 1 1 2 1 11 8.08 6.72 1.53 6.31

resent approximately 59% of the total number of possible edges. By comparison,
the log-linear model (5.1) has 14 minimal sufficient statistics.

In order to show the importance of modeling the conditional independence re-
lationships among the latent variables using graphs, we have also employed the
copula estimation approach proposed by Hoff (2007)—see equation (4.4). Hoff’s
method is equivalent to starting the Markov chain from Section 4.1 at the full graph
and never updating this graph by skipping step 3 of the algorithm. Moreover, up-
dating the precision matrix from step 2 is performed by direct sampling from the
Wishart posterior Wp(δ + n,D + ∑n

j=1 z(j)z(j)T ). This simplified Markov chain
was run for 25 million iterations and henceforth is called the Copula-Full model.

We compare the expected cell counts of the all two-way interaction log-linear
model, the log-linear model (5.1), the Copula-Full model and the CGGMs. Table 2
shows the cells containing the 20 largest observed counts together with their cor-
responding estimates. It is remarkable that the CGGMs perform as well as the all
two-way interaction model for the largest cell count 57. The squared errors be-
tween the observed counts and the expected cell counts for all the 256 cells in the
table are the following: 284.79 for the all two-way interaction model, 407.04 for
the CGGMs, 905.78 for the model (5.1) and 1919.15 for the Copula-Full model.
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TABLE 3
Estimated correlations (elements under the main diagonal) and posterior inclusion probabilities of

edges (elements above the main diagonal) associated with the CGGMs in the Rochdale data

a b c d e f g h

a — 0.93 0.67 0.92 0.32 0.42 1 0.26
b 0.15 — 0.27 1 0.88 0.29 0.70 0.96
c −0.52 −0.02 — 0.29 0.91 0.35 0.85 0.25
d −0.46 −0.79 0.19 — 0.37 0.59 0.66 0.50
e 0.30 −0.28 −0.48 0.12 — 0.98 0.58 0.17
f 0.22 −0.11 −0.35 0.04 0.46 — 0.82 0.22
g −0.71 −0.31 0.57 0.51 −0.34 −0.37 — 0.32
h 0.12 0.63 0.01 −0.54 −0.19 −0.10 −0.18 —

In Table 3 we show the pairwise correlations ϒv1,v2 and the posterior inclusion
probabilities of edges (v1, v2) for any two latent variables Zv1 and Zv2 as estimated
using the CGGMs. In Table 4 we give the estimates of the pairwise correlations
ϒv1,v2 obtained using the Copula-Full model. We see that the absolute values of
these estimates are significantly smaller than corresponding absolute values of the
CGGMs estimates. We show the dependence structure of the observed variables in
Tables 5 and 6. We give the posterior means of Cramér’s V ρv1,v2 and estimates of
the posterior probabilities p(H

v1,v2
1,ρ |x(1:n)) with H

v1,v2
1,ρ :ρv1,v2 > 0.1. By contrast-

ing the estimates obtained using CGGMs and the Copula-Full model, we clearly
see that conditioning on the full graph is quite disadvantageous: the Cramér’s V
associations are severely underestimated and, subsequently, all the posterior prob-
abilities p(H

v1,v2
1,ρ |x(1:n)) are almost zero under the full graph. The CGGMs take

every possible graph into account and the corresponding estimates are produced by
Bayesian model averaging across all graphs. This leads to more appropriate results
as evidenced in Tables 3–6.

TABLE 4
Estimated correlations (elements under the main diagonal) associated with the Copula-Full model

in the Rochdale data

a b c d e f g h

a —
b 0.08 —
c −0.17 −0.02 —
d −0.20 −0.35 0.06 —
e 0.15 −0.15 −0.15 0.05 —
f 0.10 −0.06 −0.13 0.02 0.24 —
g −0.18 −0.08 0.13 0.13 −0.09 −0.11 —
h 0.05 0.27 0.01 −0.18 −0.08 −0.06 −0.04 —
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TABLE 5
Estimated Cramér’s V associations (elements under the main diagonal) and posterior probabilities
p(H1,ρ |x(1:n)) (elements above the main diagonal) associated with the CGGMs in the Rochdale

data

a b c d e f g h

a — 0 0.19 0.22 0 0 0.83 0
b 0.01 — 0 1 0 0 0 0.94
c 0.08 0 — 0 0 0 0.42 0
d 0.08 0.24 0.01 — 0 0 0.07 0
e 0.04 0.03 0.05 0.01 — 0.35 0 0
f 0.02 0.01 0.03 0 0.09 — 0 0
g 0.12 0.02 0.09 0.07 0.02 0.03 — 0
h 0.01 0.14 0 0.06 0.01 0 0 —

Whittaker (1990), page 282, argues that the strongest pairwise interaction in the
Rochdale data is (b, d), followed by (b,h), (e, f ) and (a, g). In Table 3 we see that
the top four posterior inclusion probabilities in the CGGMs are as follows: 1 for
(b, d), 0.96 for (b,h), 0.98 for (e, f ) and 1 for (a, g). The strongest associations in
the observed variables space as measured by Cramér’s V are the following: (b, d),
(b,h), (a, g), (e, f ) and (c, g). The interaction between c and g is also present in
the log-linear model (5.1).

Of particular interest is the determination of the factors that influence variable
a—the wife’s economic activity. From Table 5 we see that variables c, d and g are
the only variables with a strictly positive posterior probability that their Cramér’s
V association with variable a is greater than 0.1. The largest Cramér’s V associa-
tion is ρ̃a,g = 0.12, followed by ρ̃a,c = 0.08 and ρ̃a,d = 0.08. The corresponding
estimated correlations from Table 3 show a negative relationship between a and

TABLE 6
Estimated Cramér’s V associations (elements under the main diagonal) and posterior probabilities
p(H1,ρ |x(1:n)) (elements above the main diagonal) associated with the Copula-Full model in the

Rochdale data

a b c d e f g h

a — 0 0 0 0 0 0 0
b 0 — 0 0 0 0 0 0
c 0.01 0 — 0 0 0 0 0
d 0.02 0.04 0 — 0 0 0 0
e 0.01 0.01 0.01 0 — 0 0 0
f 0.01 0 0.01 0 0.03 — 0 0
g 0.01 0 0 0 0 0 — 0
h 0 0.03 0 0 0 0 0 —
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each of these three variables. Whittaker (1990) determines which variables influ-
ence a by considering the log-linear model ac|ad|ae|ag induced by the generators
of model (5.1) that involve a. Using maximum likelihood estimation of log-linear
parameters, Whittaker obtains the following estimates of the logistic regression of
a on c, d , e and g:

log
p(a = 1|c, d, e, g)

p(a = 0|c, d, e, g)
= const. − 1.33c − 1.32d + 0.69e − 2.17g.(5.2)

Equation (5.2) seems to support our findings based on CGGMs, as it indicates a
negative association between (a, c), (a, d), (a, g), and a positive association be-
tween (a, e). Moreover, the association between a and e is the weakest of the four.
The CGGMs estimate ρ̃a,e = 0.04 which is about half of ρ̃a,c or ρ̃a,d . The absolute
values of the regression coefficients in (5.2) share the same pattern.

We remark that Table 3 reports a posterior inclusion probability equal to 0.93
for the edge (a, b). However, the CGGMs estimate the pairwise correlation �a,b

to be 0.15 and the Cramér’s V association ρa,b to be 0.01. Therefore, the CGGMs
do not seem to indicate a relevant interaction between variables a and b which
is in line with Whittaker’s findings who did not include an interaction term ab in
model (5.1). This represents an example where an edge vanishes as we move from
the latent variables space to the observed variables space. We would expect the
opposite to happen in most applications, that is, edges or associations could be lost
when moving from the observed to the latent variables.

5.2. The NLTCS functional disability data. We come back to the 216 func-
tional disability table introduced in Section 1. Dobra, Erosheva and Fienberg
(2003) analyze these data from a disclosure limitation perspective, while Fienberg
et al. (2010) develop latent class (LC) models that are very similar to the Grade of
Membership (GoM) models of Erosheva, Fienberg and Joutard (2007). The need
to consider alternatives to log-linear models for the NLTCS data comes from the
severe imbalance that exists among the cell counts in this table. The largest cell
count is 3853, but most of the cells (62,384 or 95.19%) contain counts of zero,
while 1729 (2.64%) contain counts of 1 and 1499 (0.76%) contain counts of 2.
There are 24 cells with counts larger than 100, which accounts for 42% of the ob-
served sample size 21,574. This gives a very small mean number of observations
per cell of 0.33, which is indicative of an extremely high degree of sparsity that is
characteristic of high-dimensional categorical data.

We ran 100 replicates of the Markov chain Monte Carlo sampler from Sec-
tion 4.1 for 500,000 iterations with a burn-in time of 50,000 iterations. Figure 2
shows the convergence of these Markov chains to the joint distribution (4.5). The
mean number of edges of the sampled graphs is 72 or 60% of the total number
of edges. Table 7 compares the expected cell values of the six largest counts as
estimated with the Grade of Membership (GoM) model of Erosheva, Fienberg
and Joutard (2007), the latent class (LC) model of Fienberg et al. (2010) and the
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FIG. 2. Estimates of the posterior expected number of edges in the CGGMs for the NLTCS func-
tional disability data.

CGGMs. All three models seem to perform comparably well in terms of capturing
the underlying dependency patterns that lead to the largest counts in this 216 table.

In Table 8 we show the association structure of the latent variables Z. We give
posterior estimates of the pairwise correlations ϒv1,v2 and posterior inclusion prob-
abilities for each edge (v1, v2). All the estimates of the pairwise correlations are
quite large and strictly positive, which is intuitively correct: the ability to perform
any activity of daily living is positively correlated with the ability to perform any
other activity. In Table 9 we show the association structure of the observed vari-

TABLE 7
Expected cell counts for the top six largest counts cells in the NLTCS data. We report the results
obtained from the GoM model [Erosheva, Fienberg and Joutard (2007)], the LC model [Fienberg

et al. (2010)] and the CGGMs. Here 1 stands for healthy and 2 stands for disabled

Cell Observed GoM LC CGGMs

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3853 3269 3836.01 3767.76
1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1107 1010 1111.51 1145.86
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 660 612 646.39 574.76
1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 351 331 360.52 452.75
1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 303 273 285.27 350.24
1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 216 202 220.47 202.12
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TABLE 8
Estimated correlations (elements under the main diagonal) and posterior inclusion probabilities of edges (elements above the main diagonal) in the

NLTCS data

ADL IADL

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10

ADL
1 — 1 1 0.24 0.46 0.42 1 0.68 0.87 0.98 0.33 1 0.23 0.46 0.15 1
2 0.72 — 1 0.19 0.42 0.94 1 0.10 0.18 0.09 0.10 0.76 1 0.23 0.21 0.17
3 0.78 0.74 — 1 0.36 1 1 0.13 0.50 0.77 0.10 0.74 0.13 0.78 0.24 0.16
4 0.51 0.54 0.64 — 1 1 0.28 0.16 1 1 0.12 0.20 0.36 1 0.14 0.77
5 0.33 0.43 0.41 0.66 — 0.44 0.15 0.54 0.30 0.95 0.18 1 0.81 1 0.96 1
6 0.62 0.65 0.73 0.82 0.66 — 1 1 0.34 0.82 0.10 0.63 0.93 0.81 0.16 0.27

IADL
1 0.74 0.77 0.76 0.68 0.58 0.83 — 1 1 0.67 0.19 0.20 0.19 0.21 0.95 1
2 0.64 0.69 0.68 0.68 0.62 0.82 0.88 — 1 1 0.30 0.13 0.19 0.27 0.55 0.72
3 0.65 0.71 0.66 0.62 0.61 0.79 0.90 0.90 — 1 0.16 0.23 1 0.31 0.92 0.27
4 0.49 0.58 0.55 0.66 0.64 0.76 0.78 0.83 0.87 — 0.12 1 0.42 0.74 0.23 0.44
5 0.45 0.56 0.48 0.52 0.65 0.60 0.65 0.63 0.67 0.61 — 1 1 1 0.97 0.65
6 0.45 0.59 0.52 0.56 0.64 0.64 0.68 0.66 0.70 0.66 0.79 — 1 0.16 0.11 1
7 0.60 0.70 0.60 0.54 0.57 0.65 0.76 0.71 0.77 0.66 0.79 0.79 — 0.33 1 1
8 0.39 0.50 0.43 0.56 0.87 0.63 0.62 0.64 0.66 0.64 0.77 0.72 0.71 — 1 0.84
9 0.48 0.57 0.49 0.55 0.74 0.64 0.67 0.68 0.71 0.65 0.79 0.75 0.80 0.89 — 1

10 0.65 0.69 0.63 0.54 0.52 0.65 0.77 0.70 0.75 0.63 0.74 0.75 0.87 0.68 0.77 —
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TABLE 9
Estimated Cramér’s V associations (elements under the main diagonal) and posterior probabilities p(H1,ρ |x(1:n)) (elements above the main diagonal)

in the NLTCS data

ADL IADL

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10

ADL
1 — 1 1 0 0 0.61 1 1 1 0 0 0 0.99 0 0 1
2 0.21 — 1 0.43 0 1 1 1 1 0 0.99 1 1 0.08 1 1
3 0.26 0.25 — 1 0 1 1 1 1 0 0.05 0.45 1 0 0.14 0.99
4 0.07 0.10 0.15 — 1 1 1 1 1 1 0.38 1 0.32 1 0.98 0
5 0.03 0.06 0.05 0.21 — 1 0.99 1 0.98 1 1 1 0.32 1 1 0
6 0.10 0.14 0.20 0.38 0.21 — 1 1 1 1 1 1 1 1 1 0.03

IADL
1 0.21 0.28 0.28 0.18 0.11 0.28 — 1 1 1 1 1 1 1 1 1
2 0.14 0.19 0.19 0.21 0.16 0.34 0.43 — 1 1 1 1 1 1 1 1
3 0.16 0.22 0.18 0.13 0.11 0.22 0.48 0.40 — 1 1 1 1 1 1 1
4 0.04 0.08 0.08 0.19 0.18 0.25 0.15 0.23 0.13 — 0.33 1 0.13 1 1 0
5 0.06 0.12 0.09 0.10 0.14 0.14 0.18 0.17 0.19 0.10 — 1 1 1 1 1
6 0.06 0.12 0.10 0.14 0.19 0.20 0.19 0.21 0.18 0.17 0.27 — 1 1 1 1
7 0.13 0.21 0.14 0.10 0.10 0.14 0.27 0.21 0.28 0.09 0.30 0.23 — 1 1 1
8 0.05 0.09 0.07 0.14 0.39 0.19 0.16 0.19 0.17 0.15 0.26 0.26 0.20 — 1 0.95
9 0.07 0.13 0.09 0.11 0.20 0.16 0.20 0.21 0.23 0.12 0.31 0.25 0.30 0.42 — 1

10 0.14 0.16 0.13 0.06 0.05 0.09 0.20 0.13 0.20 0.05 0.19 0.12 0.32 0.11 0.20 —
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ables X. For every pair Xv1 and Xv2 , we give the posterior means of ρv1,v2 and
estimates of the posterior probabilities p(H

v1,v2
1,ρ |x(1:n)) with H

v1,v2
1,ρ :ρv1,v2 > 0.1.

The Cramér’s V values indicate that independence is unlikely to hold for any pair
of observed variables, which is consistent with the large positive correlations we
estimated in the latent space. In fact, 88 pairs of observed variables have a Bayes
factor Bv1,v2

ρ greater than 100, which constitutes strong evidence in favor of the
hypothesis H

v1,v2
1,ρ [Kass and Raftery (1995)]. Thus, the NLTCS data shows that

approximately 73% pairs of ADLs and IADLs are certainly not independent of
each other.

The topology of the sampled graphs is indicative of the relative importance of
each disability measure with respect to the others in the latent variables space. The
structure of a graph can be summarized by the number of neighbors of each vertex,
that is, the number of edges that involve each variable. This is usually called the
degree of a vertex. A larger degree indicates an increased number of interactions
in which a latent variable participates. Since in the NLTCS data all the latent vari-
ables are positively associated with each other, having one disability increases the
likelihood of having other disabilities. The degree of a variable reflects the num-
ber of disabilities that are not conditionally independent of this variable given the
others.

In the observed variables space we quantify the relative importance of a variable
Xv1 as the sum of the Cramér’s V associations ρv1,v2 between Xv1 and some other
variable Xv2 . When computing these cumulative Cramér’s V associations we as-
sume that the 120 − 88 = 32 pairwise associations with a Bayes factor below 100
are set to zero. Figure 3 shows the posterior expected degrees of the 16 disability

FIG. 3. Cumulative Cramér’s V associations (x-axis) and posterior expected degrees (y-axis) of the
16 disability measures from the NLTCS functional disability data.
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measures plotted against the corresponding cumulative Cramér’s V associations.
We see that IADL4 (cooking) and IADL10 (telephoning) stand out in the latent
space. Most individuals included in the survey (67.6%) are unable to cook, hence,
there is no surprise that IADL4 is the second most connected variable. However,
only a relatively small number of people (10.6%) cannot use the telephone on their
own. In fact, more people are disabled with respect to any of the other 15 measures.
As such, it might be counterintuitive to see that IADL10 has the highest degree of
connectivity. In the observed variables space the top three cumulative Cramér’s
V associations are obtained for IADL1, IADL2 and IADL3. We note that IADL1
(doing heavy house work) and IADL2 (doing light house work) are nested, hence,
we would expect their association scores to be related. This indicates a good de-
gree of consistency of the dependency structure identified by the CGGMs. Since
IADL1 is also highly connected in the latent space, Figure 3 suggests that IADL1
is key to a principled assessment of the disability level of a person.

The CGGMs clearly show that the 16 disability measures recorded in the
NLTCS data should not be treated on an equal footing. Some measures such as
IADL1 or IADL10 indicate more serious disabilities than others, which is not nec-
essarily reflected in the number of people reporting that particular disability. Sim-
ply counting the number of disabilities a person has can be very misleading when
evaluating the overall disability level of an individual. This remark could shed a
new light on the findings reported in Manton and Gu (2001) who only make the
distinction between ADLs and IADLs.

6. Discussion. The inference approach we presented in this paper extends
Gaussian graphical models to data sets in which the multivariate normal assump-
tion for the observed variables is unlikely to hold. The CGGMs capture conditional
independence relationships among a set of latent variables that are in a one-to-one
relationship with the set of observed variables. The fact that the number of latent
variables coincides with the number of observed variables avoids the difficult sta-
tistical issue of having to select the number of latent classes—see the excellent
discussions in Erosheva, Fienberg and Joutard (2007) and Fienberg et al. (2010).

Our goal was to model dependencies separately from the univariate marginal
distribution of each variable. As such, we did not include a parametric repre-
sentation of the marginal distributions in our framework. Pitt, Chan and Kohn
(2006) give a Bayesian approach to model conditional independence relationships
in Gaussian copulas in which the univariate marginal distributions are allowed to
depend on a set of parameters and on certain sets of explanatory variables. There
is a definite possibility to combine our prior specification for the precision matrix
for the latent variables with the methods of Pitt, Chan and Kohn (2006) into a pro-
cedure that takes into account the uncertainty in the specification of the univariate
distributions.

The CGGMs are applicable to any observational study for the purpose of iden-
tifying conditional independence relationships. The only requirement is that the
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observed variables are binary, ordinal or continuous. The extended rank likelihood
[Hoff (2007)] is a key component of our framework. A necessary condition for
its correct application is that there exists an ordering of the possible values of any
observed variable—see Section 3. Our framework does not allow the presence of
discrete variables that are not binary or ordinal.

Although the interactions among the latent variables do not go beyond second-
order moments, CGGMs give sensible results in the analysis of sparse contingency
tables because they allow inference through Bayesian model averaging. By con-
trast, log-linear models contain higher-order interaction terms but model averaging
is no longer an option: the same interaction term has a different interpretation in
various log-linear models. As such, one has to choose one log-linear model and
perform inference given this single model. When the sample size is small with re-
spect to the total number of possible models, such a determination might not be
appropriate. The data might not contain enough information to distinguish between
log-linear models that are very close to each other and have almost the same pos-
terior probability—see, for example, the analysis of the Rochdale data from Dobra
and Massam (2010). Our use of CGGMs does not involve choosing one particular
model, but averaging with respect to many models on the latent space. We hope
that CGGMs will play a significant role in many quantitative fields of research.
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thors thank the Editor and anonymous reviewers for their comments that improved
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SUPPLEMENTARY MATERIAL

Supplement: C++ implementation of copula Gaussian graphical models
(DOI: 10.1214/10-AOAS397SUPP; .zip). We provide source code for the method-
ology described in this paper. Our program takes advantage of cluster computing
to run several Markov chains in parallel. By using this code, one can replicate the
analyses of the Rochdale data and the NLTCS functional disability data for which
we give sample input files.

REFERENCES

ATAY-KAYIS, A. and MASSAM, H. (2005). A Monte Carlo method for computing the marginal
likelihood in nondecomposable Gaussian graphical models. Biometrika 92 317–335. MR2201362

CRAMÉR, H. (1946). Mathematical Methods of Statistics. Princeton Univ. Press, Princeton, NJ.
MR0016588

DIACONIS, P. and YLVISAKER, D. (1979). Conjugate priors for exponential families. Ann. Statist.
7 269–281. MR0520238

DOBRA, A., EROSHEVA, E. A. and FIENBERG, S. E. (2003). Disclosure limitation methods based
on bounds for large contingency tables with application to disability data. In Proceedings of Con-
ference on the New Frontiers of Statistical Data Mining (E. H. Bozdogan, ed.) 93–116. CRC
Press, New York. MR2048950

http://dx.doi.org/10.1214/10-AOAS397SUPP
http://www.ams.org/mathscinet-getitem?mr=2201362
http://www.ams.org/mathscinet-getitem?mr=0016588
http://www.ams.org/mathscinet-getitem?mr=0520238
http://www.ams.org/mathscinet-getitem?mr=2048950


992 A. DOBRA AND A. LENKOSKI

DOBRA, A. and LENKOSKI, A. (2010). Supplement to “Copula Gaussian graphical models and their
application to modeling functional disability data.” DOI: 10.1214/10-AOAS397SUPP.

DOBRA, A. and MASSAM, H. (2010). The mode oriented stochastic search algorithm (MOSS) for
log-linear models with conjugate priors. Statist. Methodol. 7 240–253.

DUNSON, D. B. (2006). Bayesian dynamic modeling of latent trait distributions. Biostatistics 7 551–
568.

DUNSON, D. B. and XING, C. (2009). Nonparametric Bayes modeling of multivariate categorical
data. J. Amer. Statist. Assoc. 104 1042–1051. MR2562004

EROSHEVA, E. A., FIENBERG, S. E. and JOUTARD, C. (2007). Describing disability through
individual-level mixture models for multivariate binary data. Ann. Appl. Statist. 1 502–537.
MR2415745

FIENBERG, S. E., HERSH, P., RINALDO, A. and ZHOU, Y. (2010). Maximum likelihood estimation
in latent class models for contingency table data. In Algebraic and Geometric Methods in Sta-
tistics (P. Gibilisco, E. Riccomagno, M. P. Rogantin and E. H. P. Wynn, eds.) 27–62. Cambridge
Univ. Press, Cambridge. MR2642657

GENEST, C. and NESLEHOVÁ (2007). A primer on copulas for count data. Astin Bulletin 37 475–515.
MR2422797

GIUDICI, P. and GREEN, P. J. (1999). Decomposable graphical Gaussian model determination. Bio-
metrika 86 785–801. MR1741977

GREEN, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika 82 711–732. MR1380810

HOFF, P. D. (2007). Extending the rank likelihood for semiparametric copula estimation. Ann. Appl.
Statist. 1 265–283. MR2393851

JONES, B., CARVALHO, C., DOBRA, A., HANS, C., CARTER, C. and WEST, M. (2005). Experi-
ments in stochastic computation for high-dimensional graphical models. Statist. Sci. 20 388–400.
MR2210226

KASS, R. and RAFTERY, A. E. (1995). Bayes factors. J. Amer. Statist. Assoc. 90 773–795.
LAURITZEN, S. L. (1996). Graphical Models. Oxford Univ. Press, Oxford. MR1419991
LENKOSKI, A. and DOBRA, A. (2010). Computational aspects related to inference in

Gaussian graphical models with the G-Wishart prior. J. Comput. Graph. Statist. DOI:
10.1198/jcgs.2010.08181.

LETAC, G. and MASSAM, H. (2007). Wishart distributions for decomposable graphs. Ann. Statist.
35 1278–1323. MR2341706

LIU, H., LAFFERTY, J. and WASSERMAN, L. (2009). The nonparanormal: Semiparametric estima-
tion of high dimensional undirected graphs. J. Mach. Learn. Res. 10 2295–2328. MR2563983

MADIGAN, D. and YORK, J. (1995). Bayesian graphical models for discrete data. Int. Statist. Rev.
63 215–232.

MANTON, K. G., CORDER, L. and STALLARD, E. (1993). Estimates of change in chronic disability
and institutional incidence and prevalence rate in the US elderly populations from 1982 to 1989.
J. Gerontol. Soc. Sci. 48 S153–S166.

MANTON, K. G. and GU, X. (2001). Changes in prevalence of chronic disability in the United States
black and nonblack population above age 65 from 1982 to 1999. Proc. Natl. Acad. Sci. USA 98
6354–6359.

MUIRHEAD, R. J. (2005). Aspects of Multivariate Statistical Theory. Wiley, New York. MR0652932
MUTHÉN, B. (1984). A general structural equation model with dichotomous, ordered categorical,

and continuous latent variables indicators. Psychometrika 49 115–132.
NELSEN, R. B. (1999). An Introduction to Copulas. Springer, New York. MR1653203
PITT, M., CHAN, D. and KOHN, R. (2006). Efficient Bayesian inference for Gaussian copula regres-

sion models. Biometrika 93 537–554. MR2261441

http://dx.doi.org/10.1214/10-AOAS397SUPP
http://www.ams.org/mathscinet-getitem?mr=2562004
http://www.ams.org/mathscinet-getitem?mr=2415745
http://www.ams.org/mathscinet-getitem?mr=2642657
http://www.ams.org/mathscinet-getitem?mr=2422797
http://www.ams.org/mathscinet-getitem?mr=1741977
http://www.ams.org/mathscinet-getitem?mr=1380810
http://www.ams.org/mathscinet-getitem?mr=2393851
http://www.ams.org/mathscinet-getitem?mr=2210226
http://www.ams.org/mathscinet-getitem?mr=1419991
http://dx.doi.org/10.1198/jcgs.2010.08181
http://www.ams.org/mathscinet-getitem?mr=2341706
http://www.ams.org/mathscinet-getitem?mr=2563983
http://www.ams.org/mathscinet-getitem?mr=0652932
http://www.ams.org/mathscinet-getitem?mr=1653203
http://www.ams.org/mathscinet-getitem?mr=2261441


COPULA GAUSSIAN GRAPHICAL MODELS 993

ROVERATO, A. (2002). Hyper inverse Wishart distribution for non-decomposable graphs and its
application to Bayesian inference for Gaussian graphical models. Scand. J. Statist. 29 391–411.
MR1925566

SCOTT, J. G. and BERGER, J. O. (2006). An exploration of aspects of Bayesian multiple testing.
J. Statist. Plann. Inference 136 2144–2162. MR2235051

SONG, P. X. K. (2000). Multivariate dispersion models generated from Gaussian copula. Scand. J.
Statist. 27 305–320. MR1777506

WHITTAKER, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley, New York.
MR1112133

WONG, F., CARTER, C. K. and KOHN, R. (2003). Efficient estimation of covariance selection mod-
els. Biometrika 90 809–830. MR2024759

DEPARTMENT OF STATISTICS

DEPARTMENT OF BIOBEHAVIORAL NURSING

AND HEALTH SYSTEMS

AND

CENTER FOR STATISTICS

AND THE SOCIAL SCIENCES

UNIVERSITY OF WASHINGTON

BOX 354322
C-14B PADELFORD HALL

SEATTLE, WASHINGTON 98195-4322
USA
E-MAIL: adobra@uw.edu
URL: http://www.stat.washington.edu/adobra

DEPARTMENT OF APPLIED MATHEMATICS

HEIDELBERG UNIVERSITY

IM NEUENHEIMER FELD 294
69120 HEIDELBERG

GERMANY

E-MAIL: lenkoski@stat.washington.edu

http://www.ams.org/mathscinet-getitem?mr=1925566
http://www.ams.org/mathscinet-getitem?mr=2235051
http://www.ams.org/mathscinet-getitem?mr=1777506
http://www.ams.org/mathscinet-getitem?mr=1112133
http://www.ams.org/mathscinet-getitem?mr=2024759
mailto:adobra@uw.edu
http://www.stat.washington.edu/adobra
mailto:lenkoski@stat.washington.edu

	Introduction
	Gaussian graphical models
	Incorporating binary and ordinal categorical variables
	Copula Gaussian graphical models
	Bayesian inference in copula Gaussian graphical models
	Estimation and testing in copula Gaussian graphical models

	Examples
	The Rochdale data
	The NLTCS functional disability data

	Discussion
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

