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Figure: Two simulated data sets - both with standard normal margins
and correlation coefficient 0.7.
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Figure: Nonzero precipitation values in two Norwegian cities and its
copula.

Daniel Berg Copula goodness-of-fit testing



Introduction

Introduction
Definition & Theorem

Definition (Copula)
A d-dimensional copula is a multivariate distribution function C
with standard uniform marginal distributions.

Theorem (Sklar, 1959)

Let H be a joint distribution function with margins Fy, ..., Fy.
Then there exists a copula C : [0,1]¢ — [0, 1] such that

H(Xl, e ,Xd) = C(Fl(Xl), ey Fd(Xd)).
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Useful results

> A general d-dimensional density h can be expressed, for some
copula density ¢, as

h(Xl, e 7Xd) = C{Fl(Xl), ooy Fd(Xd)}ﬂ(Xl) cee fd(Xd)-

> Non-parametric estimate for F;(x;) commonly used to
transform original margins into standard uniform:

- Ri:
g
uj = Fi(xi) = =
where Rj; is the rank of xj; amongst xy;, ..., Xni.

> uji commonly referred to as pseudo-observations and models
based on non-parametric margins and parametric copulas are
referred to as semi-parametric copulas
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Copula GoF testing

Introduction

> Ho:CeC={Cp;0 €O} vs. H1:C¢C={Cy;0 €O}
> Univariate = Anderson-Darling or QQ-plot,
Multivariate = fewer alternatives

> Pseudo-observations no longer independent. In addition,
limiting distribution of many copula GoF test depends on null
hypothesis copula and parameter value

p-value estimation via parametric bootstrap procedures
Focus in literature almost exclusively bivariate
NOT model selection!

v Vv VvV V

Several techniques proposed: binning, multivariate smoothing,
dimension reduction
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Copula GoF testing
Preliminaries
Rosenblatt's transform:

> Dependent variables = independent U|0, 1] variables, given
multivariate distribution

> v = R(Z) = (Rl(zl), RN ,Rd(zd)):
vi = Ri(z1) = Fi(z1) = 21,

v2 = Ra(z) = Fi(z2]21),

Vg = Rd(z4) = Fap...d(2dl21, - - - 5 24)-

> Inverse of simulation (conditional inversion)
> GoF: v =R(z) = test v for independence
> d! different permutation orders
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Copula GoF testing
Proposed approaches: A; (1/9)

> v ="PR(2)
Wi =30, Hyial, j=1....n
Special case (a): 30, &71(v;)2
Special case (b): Z,‘-I:l lvji — 0.5
Si(t) = P{R (W) <t}, te]0,1]
CvM statistic:

v Vv VvV Vv V

T, = n/ol {§1(t) - 51(t)}2d51(t)

> References: Breymann et al. (2003); Malevergne and Sornette
(2003); Berg and Bakken (2005)
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Copula GoF testing
Proposed approaches: A, (2/9)

> Empirical copula:

> CvM statistic:
~ ~ 2
To=n / [C@) - G} @)
0.1)¢

> References: Fermanian (2005); Genest and Rémillard (2008);
Genest et al. (2008)
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Copula GoF testing
Proposed approaches: As (3/9)

> Approach A on v = R(z)
> CvM statistic:

Ts = n/[o,l]d {E(v) - CL(V)}%E(V)

> References: Genest et al. (2008)
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Copula GoF testing
Proposed approaches: A4 (4/9)

> Cdf of empirical copula (Kendall's dependence function):
S4(t) = P{C(z) < t}
> CvM statistic:
~ Lo 2
7 / [5u() ~ 5,5(0)} " ds, 5(0)
0

> References: Genest and Rivest (1993); Wang and Wells
(2000); Savu and Trede (2004); Genest et al. (2006)
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Copula GoF testing
Proposed approaches: As (5/9)

> Spearman’s dependence function:
Ss(t) = P{C.(2) <t}

> CvM statistic:
R 1, 2
Ts = n/o {Ss(t) - 55’§(t)} d55,§(t)

> References: Quessy et al. (2007)
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Copula GoF testing
Proposed approaches: A (6/9)

> Shih's test for bivariate gamma frailty model (Clayton):
Tshin = ﬁ{é\r - §W}

> Extension to arbitrary dimension:

o d-1 d L
Te = Z Z {er,lj —GW,U}

i=1 j=i+1

> References: Shih (1998); Berg (2007)
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Copula GoF testing
Proposed approaches: A7 (7/9)

> Inner product of two vectors = 0 iff from the same family
Q(z) = (z — z5|k4l 2 — z5)
> k a symmetric kernel, e.g. the gaussian kernel:
kd(z,25) = exp {—|z — z; || /( 2dh2)}
> Statistic becomes:

_ walznz) - 530 e
HQZZ d iy j n2 d\<i, 9d

i=1 j=1 i=1 j=1
n n
1
+—5 D> rdlzg,025,)
i=1 j=1
> References: Panchenko (2005)
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Copula GoF testing
Proposed approaches: Asg (8/9)

> Approach A7 on v = R(z)

> Statistic:
D) TR 3 A"
i=1 j=1 i=1 j=1
1 n n
+ 50> mdlvgvg,)
i=1 j=1

> References: Berg (2007)
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Copula GoF testing
Proposed approaches: Ag (9/9)

> Each approach may detect deviations from Hy differently

> Average approaches:

> References: Berg (2007)
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MC simulations

Power comparison

Monte Carlso simulations

Test procedure

1) x ~ n samples from the d-dimensional H; copula with 6(7).
2) z ~ pseudo-observations (normalized ranks)

3) 0 ~ estimated parameter of the Hg copula

4) T ~ test statistic i computed under the Hy copula using 0.
5) Repeat steps 1-4 M times with H; = Hp and 6 = 6= ?Bm
6) p= MZM (T2, > Th)

7) p < 5% = reject Ho
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Test procedure
Experimental setup

MC simulations A
Power comparison

Monte Carlso simulations

Experimental setup

> Hp copula (5 choices: Gaussian, Student, Clayton, Gumbel,
Frank),

> H1 copula (5 choices: Gaussian, Student (v = 6), Clayton,
Gumbel, Frank),

> Kendall's tau (2 choices: 7 = {0.2,0.4}),

> Dimension (3 choices: d = {2,4,8}),

> Sample size (2 choices: n = {100,500})

> Student only considered as null in bivariate case.

> For each of these 240 cases, 10,000 repetitions = size/power
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Test procedure
Experimental setup

MC simulations 5
Power comparison

Monte Carlso simulations

Testing the Gaussian copula
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Test procedure
Experimental setup

MC simulations

Power comparison

Monte Carlso simulations
Testing the Student copula
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Test procedure
Experimental setup

MC simulations 5
Power comparison

Monte Carlso simulations
Testing the Clayton copula
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Test procedure
Experimental setup

MC simulations 5
Power comparison

Monte Carlso simulations
Testing the Gumbel copula
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Test procedure
Experimental setup

MC simulations 5
Power comparison

Monte Carlso simulations
Testing the Frank copula
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Conclusions and recommendations

> Nominal levels all match prescribed size of 5%

> Power generally increases with dimension, sample size and
dependence

> Clayton > Gumbel > Frank > Gaussian > Student

(>: easier to test)

> No universally most powerful approach, but A, A4 and Agb)

perform very well in most cases

> .A(gb) is recommended in general, with special case exceptions:
o For testing the Gaussian copula, if trying to detect heavy tails
for d > 2 and large n then A; very powerful
o For testing the Clayton copula the generalized Shih's test is
most powerful
> Permutational variation of little concern for approaches based
on Rosenblatt’s transform (see Berg (2007))
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