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Abstract Copula functions and marginal distributions are
combined to produce multivariate distributions. We show
advantages of estimating all parameters of these models us-
ing the Bayesian approach, which can be done with standard
Markov chain Monte Carlo algorithms. Deviance-based
model selection criteria are also discussed when applied to
copula models since they are invariant under monotone in-
creasing transformations of the marginals. We focus on the
deviance information criterion. The joint estimation takes
into account all dependence structure of the parameters’
posterior distributions in our chosen model selection cri-
teria. Two Monte Carlo studies are conducted to show that
model identification improves when the model parameters
are jointly estimated. We study the Bayesian estimation of
all unknown quantities at once considering bivariate copula
functions and three known marginal distributions.

Keywords Copula · Deviance information criterion ·
Marginal distribution · Measure of dependence ·
Monte Carlo study · Skewness

1 Introduction

There has been a surge of interest in applications where
multivariate distributions are determined by combining uni-
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variate marginal distributions with copula functions (Gen-
est et al. 2006; Huard et al. 2006; Pitt et al. 2006). Copula
functions are multivariate distributions defined on the unit
hypercube [0,1]d while all univariate marginal distributions
are uniform on the interval (0,1). More precisely,

C(u1, . . . , ud) = Pr(U1 � u1, . . . ,Ud � ud), (1.1)

where Ui ∼ Uniform(0,1) for i = 1,2, . . . , d . Moreover, if
(X1, . . . ,Xd) ∈ R

d has a continuous multivariate distribu-
tion with F(x1, . . . , xd) = Pr(X1 � x1, . . . ,Xd � xd), then
by Sklar’s theorem (Sklar 1959) there is a unique copula
function C : [0,1]d → [0,1] of F such that

F(x1, . . . , xd) = C(F1(x1), . . . ,Fd(xd)) (1.2)

for all (x1, . . . , xd) ∈ R
d and continuous marginal distri-

butions Fi(xi) = Pr(Xi � xi), xi ∈ R for i = 1,2, . . . , d .
In addition, if C is a copula on [0,1]d and F1(x1), . . . ,

Fd(xd) are cumulative distribution functions on R, then
F(x1, . . . , xd) = C(F1(x1), . . . ,Fd(xd)) is a cumulative dis-
tribution function on R

d with univariate marginal distrib-
utions F1(x1), . . . ,Fd(xd). Extensive theoretical discussion
on copulas can be found in Joe (1997) and Nelsen (2006).

Therefore, flexible multivariate distributions can be con-
structed with pre-specified, discrete and/or continuous mar-
ginal distributions and copula function that represents the
desired dependence structure. The joint is usually estimated
by a standard two-step procedure where (i) the marginal dis-
tributions are approximated by empirical distribution, while
(ii) the parameters in the copula function are estimated by
maximum likelihood (Genest et al. 1995). A full two-step
maximum likelihood approach is used, for instance, in Hür-
liman (2004) and Roch and Alegre (2006), where the para-
meters of the marginal distributions are estimated in the first
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step and, conditional on those estimates, copula parameters
are estimated.

In this paper we discuss how to conduct inference on
all unknown parameters in the copulas and marginal dis-
tributions using a Bayesian approach. Such a joint esti-
mation procedure takes into account all dependence struc-
ture of the parameters’ posterior distributions in our chosen
model selection criteria. Huard et al. (2006), for instance,
only considered copulas selection without counting for mar-
ginal modeling. Pitt et al. (2006) proposed a Gaussian cop-
ula based regression model in a Bayesian framework with an
efficient sampling scheme. We do not usually have such an
efficient sampling scheme for our copula-based multivari-
ate distributions but we can easily extend the Gaussian cop-
ula regression modeling accounting for joint estimation and
model selection.

We use the deviance information criterion (DIC) (Spie-
gelhalter et al. 2002), and other related criteria, in order to
select the copula-based model. It is easy to show that these
criteria are invariant to monotone increasing transforma-
tions of the marginal distributions (Sect. 3.1), making them

thereby particularly suitable for copula modeling and selec-
tion. We perform several Monte Carlo studies to examine the
Bayesian copula selection. We consider a variety of copula
functions and marginal distributions to cover a broad spec-
trum of joint specifications. We compare our findings with
those based on the two-step procedures.

The rest of the paper is organized as follows. In Sect. 2
we outline the copula models, then we address the Bayesian
estimation approach as well as the model selection criteria.
Section 3 exhibits a series of Monte Carlo studies with con-
cluding remarks given in Sect. 4.

2 Copulas and marginals

In this section we introduced several copula functions, den-
sities and dependence measures, such as the Kendall mea-
sures, and outline the Bayesian inferential scheme and sev-
eral model selection criteria with emphasis on the deviance
information criterion. The most commonly used copula
functions (see (1.1)) are

Clayton: C(u, v|θ) = (u−θ + v−θ − 1)−1/θ for θ ∈ (0,∞),

Frank: C(u, v|θ) = −1

θ
log

(
1 + (exp(−θu) − 1)(exp(−θv) − 1)

exp(−θ) − 1

)
for θ ∈ R\{0},

Gaussian: C(u, v|θ) =
∫ �−1(u)

−∞

∫ �−1(v)

−∞
1

2π
√

1 − θ2
exp

{
2θst − s2 − t2

2(1 − θ2)

}
dsdt,

Gumbel: C(u, v|θ) = exp
{
−[(− logu)θ + (− logv)θ ]1/θ

}
, θ ∈ [1,∞),

Heavy tail: C(u, v|θ) = u + v − 1 + [(1 − u)−1/θ + (1 − v)−1/θ − 1]−θ for θ ∈ (0,∞),

Student-t : C(u, v|θ) =
∫ T −1

ν (u)

−∞

∫ T −1
ν (v)

−∞
�(ν+2

2 )

�(ν
2 )νπ

√
1 − θ2

(
1 + s2 + t2 − 2θst

ν(1 − θ2)

)
dsdt

with θ ∈ [−1,1] for the Gaussian and Student-t copula func-
tions. More discussion and properties of these copula func-
tions can be found in Clayton (1978), Frank (1979), Gumbel
(1960) and Hougaard (1986) (Gumbel and Gaussian) and
Demarta and McNeil (2005) (Student-t).

The Monte Carlo study is based on single parameter cop-
ula functions and fixed number of degrees of freedom for
the Student-t copula, i.e. ν = 4. By doing that, we force
the Gaussian and the Student-t copulas to have different
properties. Additionally, the heavy tail copula is the sur-
vival Clayton copula with a simple change of parameter.
More precisely, survival copulas come from the definition
of the joint survival function, which in the bivariate case
is F̄ (x1, x2) = Pr(X1 > x1,X2 > x2), and are given by
C̄(u, v) = u + v − 1 + C(1 − u,1 − v). Clayton, Gumbel

and heavy tail copulas can model independence and pos-
itive dependence. However, the Clayton copula has lower
tail dependence while the Gumbel and the heavy tail copu-
las have upper tail dependence. Also, Frank, Gaussian and
Student-t copulas can model negative dependence, indepen-
dence and positive dependence, but none has tail depen-
dence. The bivariate tail dependence indexes are defined
through conditional probabilities in the lower-quadrant and
upper-quadrant tails, respectively. They capture the amount
of dependence in the tails which are related to extreme val-
ues. The lower tail index is given by λL = limu→0 Pr(U <

u | V < u) = limu→0 C(u,u)/u and the upper tail index
by λU = limu→0 Pr(U > u | V > u) = limu→0(1 − 2u −
C(u,u))/(1 − u).
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When modeling joints through copula, correlation coef-
ficient looses its meaning and a commonly used alternative
for measuring dependence is the Kendall’s τ (Kruskal 1958;
Nelsen 2006). Kendall’s τ is written in terms of the copula
function as

τ = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v) − 1, (2.1)

which is not analytically available for most copula functions.
A few exceptions are, for instance, the Clayton, the Gumbel
and the Gaussian copulas where it equals τ = θ/(θ + 2),
τ = 1 − θ−1 and τ = (2/π) arcsin θ , respectively. Since
Kendall’s τ measures the dependence structure of the copula
function, it can subsequently be used to elicit or tuning the
copula parameter θ . Another important measure of depen-
dence used in copula model is Spearman’s ρ (Kruskal 1958;
Nelsen 2006). However, for most copula function, Spear-
man’s ρ does not have an analytical tractable form and
are not entertained in this paper for simplicity. Other mea-
sures of dependence and association can be found in Nelsen
(2006).

For the Monte Carlo study that follows, the exponen-
tial, the normal, and the skewed normal (Fernández and
Steel 1998) were selected as marginal distributions. Such a
choice is just to cover a broad spectrum of behavior and it
is not planned to be exhaustive. Other choices like gamma,
Weibull and log-normal distributions are more appropriate
in certain fields of applications and we discuss this point in
Sect. 6. The probability density function of the skewed nor-
mal is given by 2γ

(γ 2+1)σ
φ(γ (x − μ)/σ), for x < 0 and by

2γ

(γ 2+1)σ
φ(γ −1(x − μ)/σ), for x ≥ 0. Here, φ is the proba-

bility density function of a standard normal distribution and
γ > 0.

3 Bayesian inference

Let (X1,X2) be a bivariate random variable with joint prob-
ability function given by

f (x1, x2 | 
)

= c(F1(x1 | 
),F2(x2 | 
) | 
)f1(x1 | 
)f2(x2 | 
),

(3.1)

where 
 is the parameter vector comprising copula and mar-
ginal distribution parameters, and fi and Fj , j = 1,2, rep-
resent the probability and cumulative marginal distribution
functions, respectively. C is a cumulative distribution func-
tion and c is a copula density, i.e. the probability density
function calculated as the mixed derivative in x1 and x2.

Now, let x = ((x11, x21), . . . , (x1n, x2n)) be a sample of
size n from independent and identically distributed data

from the probability function in (3.1), then the likelihood
function is given by L(x|
) = ∏n

i=1 c(F1(x1i | 
),F2(x2i |

) | 
)f1(x1i | 
)f2(x2i | 
), leading to the posterior dis-
tribution g(
|x) ∝ L(x|
)g(
) for prior distribution g(
).

Model specification is completed by assigning (indepen-
dent) prior distributions for the components of the parameter
vector with known distributions and large enough variances
such that we have diffuse prior distributions for all mod-
els. By doing that, we do not add much prior information in
our copula-based models used in our Monte Carlo study and
hence our chosen model selection criteria rely almost en-
tirely on the data. For instance, Gaussian and Student-t cop-
ula parameters have uniform distributions while, the Clay-
ton copula parameter has a gamma distribution with mean
one and variance 106. For the marginal distributions we use
standard proper priors such as normal prior for locations pa-
rameters, inverted gamma priors for scale parameters, and
gamma priors for skewness parameters. These choices do
not necessarily suggest any specific agenda, are used for
their computational tractability and do not affect our overall
conclusions. It is worth mentioning that prior information
can also be placed on copula models themselves, but this is
not pursued in this paper.

As copula functions and densities have usually non-
standard forms, copula-based bivariate distributions lead
in most cases to analytically intractable posterior distribu-
tions and customized Markov chain Monte Carlo (MCMC)
scheme are necessary (Gamerman and Lopes 2006) in order
for posterior inference and copula selection be performed. In
other words, most full conditionals draws are obtained from
slice sampling (Neal 2003) yielding an MCMC algorithm
with good sampling properties, which means good mixing,
low autocorrelations and fast convergence rate. We verify
these properties empirically by graphical analysis and do not
show them here for conciseness.

4 Copula-based model selection

Most of the current literature focuses on the estimation and
selection of copula functions conditionally on the first step
estimation, i.e. conditionally on the estimated marginal dis-
tributions. In this section we summarize alternative mea-
sures of model adequacy, determination and/or selection that
can be used in copula-based distributions. To begin with,
let L(x|
k,Mk) be the likelihood function for model Mk ,
comprising the univariate marginal distributions and the
copula function or density and define the deviance function,
D(
k) = −2 logL(x|
k,Mk). The Akaike information
criterion (AIC), the Bayesian information criterion (BIC),
their expected versions, EAIC and EBIC, and the deviance
information criterion (DIC) are defined as AIC(Mk) =
D(E[
k|x,Mk]) + 2dk , BIC(Mk) = D(E[
k|x,Mk]) +
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log(n)dk , EAIC(Mk) = E[D(
k)|x,Mk] + 2dk ,
EBIC(Mk) = E[D(
k)|x,Mk] + log(n)dk and

DIC(Mk) = 2E[D(
k)|x,Mk] − D(E[
k|x,Mk]),
(4.1)

respectively, with dk representing the number of parame-
ters of the Mk model. Further details on all these mea-
sures can be found in Spiegelhalter et al. (2002). Suppose
that {
(1)

k , . . . ,

(L)
k } corresponds to a sample from the pos-

terior distribution g(
k|x,Mk). Then, L−1 ∑L
�=1 D(
�

k )

and L−1 ∑L
�=1 
�

k , are Monte Carlo approximations to
E[D(
k)|x,Mk] and E[
k|x,Mk]; and approximations
to DIC, AIC, BIC, EAIC and EBIC can be straightforwardly
derived.

An important characteristic shared by these measures is
invariance under monotone increasing transformations of
the marginal distributions; a desirable feature when deal-
ing in copula modeling. For instance, if the DIC selects a
particular copula function with, say, normal marginal dis-
tributions, it will also select the same copula function with
log-normal marginal distributions for exponentiated obser-
vations. For the Monte Carlo study discussed below, re-
ported values of AIC are close to EAIC (the same is true
for BIC and EBIC). Also, graphical inspections showed that
most of the posterior distributions can be considered close
to the multivariate normal distribution, assuring reasonable
properties to the DIC. Besides being easily to numerically
implement, the above criteria provide interesting advantages
over commonly used statistical tests since they take into ac-
count parameter dependence. Furthermore, they can be ap-
plied to any copula family as long as the copula density can
be computed. For sake of space, solely results based on DIC
are reported (Spiegelhalter et al. 2002).

5 Monte Carlo study

This section illustrates the Bayesian approach when jointly
estimating and selecting marginal distributions and copula
functions as copula-based distributions. Should the copula-
based distributions select similar marginal distributions (e.g.
normals), then joint estimation can be regarded as a pure
copula selection procedure. The studied copula functions
and marginal distributions were introduced in Sect. 2, such
that all bivariate distributions exhibit the same marginal dis-
tributions, i.e. both marginal distributions are normally, ex-
ponentially or skewed normally distributed. We entertain
several sample sizes as well as several degrees of depen-
dence along with copula functions that have been widely
used. The copula functions are chosen to have similar prop-
erties, such as the pairs (Gumbel, heavy tail) and (Gaussian,
Student-t). Others are chosen to stand out, such as the

Clayton copula. One thousand replications of three differ-
ent artificial data sizes, namely n = {100,200,500}, were
performed for two Kendall’s τ dependence measure with,
τ = {1/3,2/3}.

We use the Kendall τ values to define the respective cop-
ula parameter values, e.g. for τ = 2/3, θ = 4 for the Clayton
copula, θ = 10 for the Frank copula and θ = 0.865 for the
Gaussian copula. For the marginals, we chose standard nor-
mal distributions, exponential distributions with mean one,
and skew-normal distributions with location parameter zero,
scale parameter one and shape parameter equal 3/2.

For the Gaussian copula with normal marginals, draws
are directly obtained from the bivariate normal distribu-
tion, while an inverse method was used to draw from the
Frank copula (Nelsen 2006). Sampling importance resam-
pling techniques (Gamerman and Lopes 2006), were used
for all other cases and the resampling rate was kept around
five per cent. Posterior inference and model selection are
based on a MCMC algorithm that presented fast conver-
gence rate and low autocorrelation for all cases. Only fif-
teen hundred draws were simulated and inference/selection
based on the last thousand draws.

Table 1 summarizes the results of the simulation by pre-
senting the percentage of true copula-based distributions
correctly identified by the deviance information criterion.

For τ = 1/3 and n = 100, for instance, the Clayton cop-
ula and exponential marginals combination is correctly iden-
tified 894 times out of the 1 000 replications. Results based
on AIC, EAIC, BIC and EBIC lead to the roughly simi-
lar conclusions and are omitted for conciseness. The cor-
rect models are correctly selected for larger sample size
or Kendall’s τ . Moreover, copulas with similar behavior
and small dependence measure τ may lead to poor selec-
tion of the respective copula-based distributions, mainly for
small and moderate sample sizes. As expected the Clay-
ton copula-based distributions correctly selected most of the
time since it induces rather unique bivariate distributions.
For instance, the Clayton copula has lower tail dependence
while the Gumbel and heavy-tail copulas have upper tail de-
pendence. Finally, regarding model selection as copula se-
lection, results remain quite similar across the three mar-
ginal distributions, which corroborates with findings from
Huard et al. (2006). Figure 1 complements Table 1 by dis-
criminating amongst alternative fitted copula-based distri-
butions. Even for a sample size of n = 500 the Gaussian
and Student-t copula-based distributions misclassify one an-
other. Even though the Student-t copula-based distribution
with four degrees of freedom is rather different from the
Gaussian one, this result shows that it can be difficult to se-
lect the best copula-based model when copulas have similar
properties, e.g. tail dependence and Kendall’s τ .
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Table 1 Percentage of correct
copula-based model choice
based on DIC over one thousand
replications, three sample
sizes (n), six copulas
functions C (Clayton, Frank,
Gaussian, Gumbel, heavy-tail
and Student-t ), three marginal
densities f (exponential (E),
normal (N) and
skewed-normal (SN)) and two
degrees of dependence (τ )

C f τ = 1/3 τ = 2/3

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

Clayton E 89.4 98.1 99.8 99.9 100.0 100.0

N 91.4 97.3 99.5 100.0 100.0 100.0

SN 76.6 91.4 96.1 99.8 100.0 100.0

Frank E 64.2 80.0 94.1 95.8 99.4 100.0

N 64.8 79.2 94.1 94.5 99.2 100.0

SN 59.5 80.5 87.2 94.6 98.6 100.0

Gaussian E 59.3 75.3 84.4 93.0 93.2 99.6

N 55.7 75.1 83.9 93.6 94.3 99.6

SN 47.9 69.5 73.2 93.6 96.1 98.7

Gumbel E 39.2 63.2 84.2 88.8 97.0 100.0

N 40.0 63.1 84.3 88.3 96.6 100.0

SN 34.1 59.0 62.1 87.1 90.2 99.5

Heavy tail E 78.5 85.5 96.9 93.6 99.8 100.0

N 77.7 82.3 94.1 94.4 99.5 100.0

SN 73.9 83.0 94.8 92.3 97.8 100.0

Student-t E 63.6 73.8 84.1 89.7 98.2 99.4

N 62.6 76.1 83.1 91.0 98.3 99.4

SN 56.8 65.4 83.2 88.1 97.5 98.9

5.1 One or two-step?

In a second simulation study we compared the fully Bayesi-
an and the two-step estimation approaches. We argue that
posterior dependence between marginal parameters is essen-
tially controlled by the copula parameters.

Let us consider a bivariate distribution given by the Gum-
bel copula with parameter θ and xj = (xj1, . . . , xjn) (j =
1,2) random samples from exponential marginal distribu-
tions with parameters λ1 and λ2, respectively. The prior
distribution of (θ, λ1, λ2) is g(θ,λ1, λ2) = g(θ)g(λ1, λ2),
where θ ∼ Gamma(ε, ε) and g(λ1, λ2) ∝ 1, with ε = 10−10,
for example. In this case the posterior distribution is given
by

g(θ,λ1, λ2|x)

∝ (λ1λ2)
(n+1)−1 exp{−λ1nx̄1 − λ2nx̄2}

×
n∏

i=1

cθ (1 − exp{−λ1nx1i},1 − exp{−λ2nx2i}),
(5.1)

where cθ is the Gumbel copula density (Sect. 2). Under a
two-step estimation procedure, the posterior distributions of
λj is Gamma(n + 1, nx̄j ) with mode λ̃j = 1/x̄j , for nx̄j =∑n

i=1 xji and j = 1,2.
Another Monte Carlo study is presented in Table 2 to

show the parameter dependence in the posterior distribu-

tion when two- and one-step point estimation approaches are
employed. Once more, one thousand replications of three
different artificial and relatively small data sizes, namely
n = {20,30,50}, were performed for three Kendall’s τ de-
pendence measure with, τ = {1/3,2/3,0.9}. Table 2 shows
the mean, Kendall’s τ and the square root of the mean
square error (in parentheses) of the parameters’ posterior
modes for the Gumbel copula and exponential marginals
with different two- and one-step estimations. The two-step
estimation is based on the posterior mode of the exponen-
tial marginal models in the first step, and then on the poste-
rior mode of the copula parameter conditionally on the first
step. We also estimate the copula parameter in another two-
step procedure by fitting empirical distribution functions to
the marginals and maximum likelihood to the copula model,
and the copula parameter is also estimated using the sam-
ple version of Kendall’s τ . Finally, the one-step estimation
is based on numerical methods to find the joint posterior
mode.

The results shown in Table 2 indicate that two-step and
one-step point estimations lead to the same results on aver-
age. However, the measure Kendall’s τ̃ over all 1 000 repli-
cation estimations of λ1 and λ2 shows the existence of the
parameter dependence, as it is the case of the posterior dis-
tribution of a given data set. Such dependence is determined
mainly by the copula parameter. Values of Kendall’s τ̃ are
bigger than those used in the data generating process. More-
over, the results based on posterior modes in two-step are
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Fig. 1 Percentage of correctly identified copula-based distributions
based on the DIC criterion, over 1000 replications, six copula func-
tions, two degrees of dependence, τ , and two sample sizes, n. Both

marginal distributions are standard normals. The abscissaes correspond
to the data sets and the legends correspond to the best-fitting copula-
based distribution

better than those using the empirical distribution function or
the sample version of Kendall’s τ . This result is expected
since both are non parametric approaches and convergence
to the true model is slower than the parametric approach. We
stress here that the marginal distributions in the joint model-
ing given by (5.1) are no longer exponential even though nu-
merical and graphical analysis indicates that they are close
to exponential distributions. Moreover, these results are sim-
ilar on those based on maximum likelihood estimation due
to our prior distribution choice.

In Table 3 we present some results based on a two-step
estimation procedure for the same data sets of the six cop-
ulas and standard normal marginals presented in Table 1.
First, the empirical distribution functions are fitted to all
marginals, then the copula parameters are estimated by the
posterior mean with the same vague prior distributions as be-

fore. Once again, DIC and all related criteria are calculated
and comparisons of successful copula-based model identifi-
cations are performed. Conditioning on the first step of the
two-step estimation procedure, then model selection is pri-
marily copula selection. It can be seen that in most cases
the percentages of this two-step estimation procedure are
smaller when compared with the joint one showed in Ta-
ble 1, which in turn has the advantage of parameter de-
pendencies and covariance estimations. However, in some
cases identification rates are bigger for this two-step pro-
cedure than the one step when τ = 1/3. This fact is due
to the non parametric estimation, low dependence structure
and probably on the behavior of some copula functions. But
the results on the previous example indicates to use at least
two-step estimation procedure based on the posterior dis-
tributions or equivalently on two-step maximum likelihood
estimation.
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Table 2 Mean, Kendall’s τ and square root of the mean square error
(in parentheses) of the parameters’ posterior modes for Gumbel copula
and exponential marginals over 1 000 replications. Values in the row
ϒ are those used in the data generating processes. Three degrees of

dependence were chosen by τ = {1/3,2/3,0.9}. Here, PM stands for
posterior mode, EDF for empirical distribution function and KD for
Kendall’s rank correlation

n Two-step One-step

λ̃PM
1 λ̃PM

2 τ̃ θ̃PM θ̃EDF θ̃KD λ̃PM
1 λ̃PM

2 τ̃ θ̃PM

ϒ 0.5 2.0 1/3 1.5 1.5 1.5 0.5 2.0 1/3 1.5

20 0.525 2.103 0.410 1.573 1.684 1.582 0.526 2.112 0.412 1.579

(0.127) (0.509) – (0.333) (0.415) (0.400) (0.126) (0.513) – (0.334)

30 0.518 2.083 0.366 1.548 1.622 1.542 0.519 2.089 0.386 1.552

(0.098) (0.380) – (0.246) 0.288 (0.279) (0.097) (0.381) – 0.247

50 0.504 2.026 0.435 1.536 1.584 1.534 0.504 2.027 0.422 1.539

(0.075) (0.292) – (0.197) (0.219) (0.217) (0.073) (0.286) – (0.197)

ϒ 0.5 2.0 2/3 3.0 3.0 3.0 0.5 2.0 2/3 3.0

20 0.522 2.101 0.723 3.207 3.386 3.349 0.525 2.114 0.737 3.225

(0.123) (0.499) – (0.734) (1.040) (1.215) (0.121) (0.492) – (0.733)

30 0.522 2.101 0.719 3.207 3.386 3.349 0.525 2.114 0.726 3.225

(0.123) (0.499) – (0.734) (1.040) (1.215) (0.121) (0.492) – (0.733)

50 0.507 2.032 0.712 3.102 3.142 3.131 0.507 2.033 0.731 3.112

(0.073) (0.300) – (0.440) (0.518) (0.572) (0.073) (0.296) – (0.443)

ϒ 0.5 2.0 0.9 10.0 10.0 10.0 0.5 2.0 0.9 10.0

20 0.529 2.113 0.921 10.538 9.760 12.221 0.531 2.122 0.927 10.611

(0.130) (0.519) – (2.565) (5.372) (8.408) (0.129) (0.514) – (2.556)

30 0.517 2.067 0.920 10.339 9.345 11.044 0.517 2.070 0.922 10.394

(0.096) (0.388) – (1.950) (2.809) (4.013) (0.095) (0.383) – (1.931)

50 0.511 2.044 0.917 10.238 9.331 10.485 0.512 2.048 0.924 10.271

(0.075) (0.299) – (1.516) (1.903) (2.299) (0.073) (0.292) – (1.511)

Table 3 Percentage of correctly identified copula-based distributions
based on the DIC criterion for the two-step estimation, over 1 000 repli-
cations, six copula functions, two degrees of dependence, τ , and two

sample sizes, n. In the two-step estimation procedure, both marginal
distributions were empirically estimated, followed by Bayesian copula
function parameters estimation

Copula τ = 1/3 τ = 2/3

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

Clayton 92.2 97.8 100.0 98.4 100.0 100.0

Frank 70.0 81.3 94.4 92.7 98.2 100.0

Gaussian 51.1 69.8 93.0 63.4 86.3 99.2

Gumbel 30.9 55.4 85.5 52.3 76.7 97.4

Heavy tail 59.1 71.6 89.0 70.6 90.6 99.7

Student-t 54.0 80.0 97.9 62.5 86.5 99.0

6 Concluding remarks

Copula functions are powerful tools for constructing mul-
tivariate distributions and studying dependency in general.
Two-step point estimation procedures are widely used in the
literature, leading to the same results as a one-step proce-

dures based on posterior mode or maximum likelihood esti-
mation. However, from a Bayesian perspective it is desirable
to jointly estimate all parameters so that a complete charac-
terization of the posterior distribution and hence the depen-
dence among the parameters can be constructed. Moreover,
this dependence structure should be taken into account when
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model selection criteria are employed. We conjecture that
copulas will be widely used in a few years in more structured
models like hierarchical ones, where dependence among pa-
rameters can give different results in two- or one-step esti-
mations. The results of our analysis show that the DIC is a
good model selection criterion. We also point out that such
results are corroborated by AIC, EAIC, BIC and EBIC, but
not presented here for conciseness. These criteria are invari-
ant to monotone increasing transformations of the marginal
distributions and easy to include in MCMC routines.

Our results are limited as we only use a small set of one-
parameter bivariate copula functions, a selection of sample
sizes and degrees of dependence. But our results indicate
that model selection based on the deviance function are well
suited for a range applications in copula modeling. Our ex-
perience shows that for low degrees of dependence copula-
based distributions can be hard to identify even from rel-
atively big samples. Moreover, estimation methods based
on the likelihood function give better results than some non
parametric ones. The latter has the advantage of being para-
meter free but has a low convergence rate to the true model
when compared to the former. Moreover, model choices
would not change as long as the same prior information is
introduced in all models, for instance using the same mea-
sure of dependence for copula parameters. However, prior
distribution plays an important role in small sample sizes
and in this case a careful study in necessary. Our experience
also shows that model choice does not change as long as
the same marginal distributions are specified for all copula-
based distributions even if these marginals are misspecified.

Finally, if the reader is only interested in point estima-
tion of simple copula models like those shown in this pa-
per, we would recommend a two-step estimation approach
such as a Bayesian one or maximum likelihood estimation.
This is especially useful for high dimensions since a com-
plete search over the parameter space can be time consum-
ing. On the other hand, from a Bayesian point of view, we
would recommend to jointly estimate all unknown para-
meters, thereby taking into account parameter dependence.
Such an approach is also beneficial in the model selection
stage.
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