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Abstract

This article explores the copula approach for econometric modeling of
joint parametric distributions. Although theoretical foundations of cop-
ulas are complex, this text demonstrates that practical implementation
and estimation are relatively straightforward. An attractive feature of
parametrically specified copulas is that estimation and inference are
based on standard maximum likelihood procedures, and thus copulas
can be estimated using desktop econometric software. This represents
a substantial advantage of copulas over recently proposed simulation-
based approaches to joint modeling.
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1

Introduction

This article explores the copula approach for econometric modeling of
joint parametric distributions. Econometric estimation and inference
for data that are assumed to be multivariate normal distributed are
highly developed, but general approaches for joint nonlinear model-
ing of nonnormal data are not well developed, and there is a frequent
tendency to consider modeling issues on a case-by-case basis. In econo-
metrics, nonnormal and nonlinear models arise frequently in models
of discrete choice, models of event counts, models based on truncated
and/or censored data, and joint models with both continuous and dis-
crete outcomes.

Existing techniques for estimating joint distributions of nonlinear
outcomes often require computationally demanding simulation-based
estimation procedures. Although theoretical foundations of copulas are
complex, this text demonstrates that practical implementation and esti-
mation is relatively straightforward. An attractive feature of paramet-
rically specified copulas is that estimation and inference are based on
standard maximum likelihood procedures, and thus copulas can be esti-
mated using desktop econometric software such as Stata, Limdep, or

1
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2 Introduction

SAS. This represents a substantial advantage of copulas over recently
proposed simulation-based approaches to joint modeling.

Interest in copulas arises from several perspectives. First, econome-
tricians often possess more information about marginal distributions
of related variables than their joint distribution. The copula approach
is a useful method for deriving joint distributions given the marginal
distributions, especially when the variables are nonnormal. Second, in
a bivariate context, copulas can be used to define nonparametric mea-
sures of dependence for pairs of random variables. When fairly general
and/or asymmetric modes of dependence are relevant, such as those
that go beyond correlation or linear association, then copulas play a
special role in developing additional concepts and measures. Finally,
copulas are useful extensions and generalizations of approaches for
modeling joint distributions and dependence that have appeared in
the literature.

According to Schweizer (1991), the theorem underlying copulas was
introduced in a 1959 article by Sklar written in French; a similar arti-
cle written in English followed in 1973 (Sklar, 1973). Succinctly stated,
copulas are functions that connect multivariate distributions to their
one-dimensional margins. If F is an m-dimensional cumulative distri-
bution function (cdf) with one-dimensional margins F1, . . . , Fm, then
there exists an m-dimensional copula C such that F (y1, . . . ,ym) =
C(F1(y1), . . . ,Fm(ym)). The case m = 2 has attracted special attention.

The term copula was introduced by Sklar (1959). However, the idea
of copula had previously appeared in a number of texts, most notably in
Hoeffding (1940, 1941) who established best possible bounds for these
functions and studied measures of dependence that are invariant under
strictly increasing transformations. Relationships of copulas to other
work is described in Nelsen (2006).

Copulas have proved useful in a variety of modeling situations. Sev-
eral of the most commonly used applications are briefly mentioned:

• Financial institutions are often concerned with whether
prices of different assets exhibit dependence, particularly
in the tails of the joint distributions. These models typi-
cally assume that asset prices have a multivariate normal

Full text available at: http://dx.doi.org/10.1561/0800000005
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distribution, but Ané and Kharoubi (2003) and Embrechts
et al. (2002) argue that this assumption is frequently unsat-
isfactory because large changes are observed more frequently
than predicted under the normality assumption. Value at
Risk (VaR) estimated under multivariate normality may lead
to underestimation of the portfolio VaR. Since deviations
from normality, e.g., tail dependence in the distribution of
asset prices, greatly increase computational difficulties of
joint asset models, modeling based on a copula parameter-
ized by nonnormal marginals is an attractive alternative; see
Bouyé et al. (2000), Klugman and Parsa (2000).
• Actuaries are interested in annuity pricing models in which

the relationship between two individuals’ incidence of dis-
ease or death is jointly related (Clayton, 1978). For example,
actuaries have noted the existence of a “broken heart” syn-
drome in which an individual’s death substantially increases
the probability that the person’s spouse will also experi-
ence death within a fixed period of time. Joint survivals of
husband/wife pairs tend to exhibit nonlinear behavior with
strong tail dependence and are poorly suited for models based
on normality. These models are prime candidates for copula
modeling.
• Many microeconometric modeling situations have marginal

distributions that cannot be easily combined into joint distri-
butions. This frequently arises in models of discrete or lim-
ited dependent variables. For example, Munkin and Trivedi
(1999) explain that bivariate distributions of discrete event
counts are often restrictive and difficult to estimate. Fur-
thermore, joint modeling is especially difficult when two
related variables come from different parametric families. For
example, one variable might characterize a multinomial dis-
crete choice and another might measure an event count. As
there are few, if any, parametric joint distributions based on
marginals from different families, the copula approach pro-
vides a general and straightforward approach for construct-
ing joint distributions in these situations.

Full text available at: http://dx.doi.org/10.1561/0800000005



4 Introduction

• In some applications, a flexible joint distribution is part of
a larger modeling problem. For example, in the linear self-
selection model, an outcome variable, say income, is only
observed if another event occurs, say labor force participa-
tion. The likelihood function for this model includes a joint
distribution for the outcome variable and the probability that
the event is observed. Usually, this distribution is assumed
to be multivariate normal, but Smith (2003) demonstrates
that for some applications, a flexible copula representation is
more appropriate.

Several excellent monographs and surveys are already available, par-
ticularly those by Joe (1997) and Nelsen (2006). Schweizer and Sklar
1983, ch. 6, provide a mathematical account of developments on copu-
las over three decades. Nelsen (1991) focuses on copulas and measures
of association. Other surveys take a contextual approach. Frees and
Valdez (1998) provide an introduction for actuaries that summarizes
statistical properties and applications and is especially helpful to new
entrants to the field. Georges et al. (2001) provide a review of copula
applications to multivariate survival analysis. Cherubini et al. (2004)
focus on financial applications, but they also provide an excellent cover-
age of copula foundations for the benefit of a reader who may be new to
the area. For those whose main concern is with modeling dependence
using copulas, Embrechts et al. (2002) provide a lucid and thorough
coverage.

In econometrics there is a relatively small literature that uses cop-
ulas in an explicit manner. Miller and Liu (2002) mention the copula
method in their survey of methods of recovering joint distributions
from limited information. Several texts have modeled sample selection
using bivariate latent variable distributions that can be interpreted as
specific examples of copula functions even though the term copula or
copula properties are not explicitly used; see Lee (1983), Prieger (2002)
and van Ophem (1999, 2000). However, Smith (2003) explicitly uses the
(Archimedean) copula framework to analyze the self-selection problem.
Similarly for the case of joint discrete distributions, a number of stud-
ies that explore models of correlated count variables, without explicitly
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using copulas, are developed in Cameron et al. (1988), Munkin and
Trivedi (1999), and Chib and Winkelmann (2001). Cameron et al.
(2004), use the copula framework to analyze the empirical distribu-
tion of two counted measures of the same event. Zimmer and Trivedi
(2006) use a trivariate copula framework to analyze a selection model
with counted outcomes. In financial econometrics and time series anal-
ysis, the copula approach has attracted considerable attention recently.
Bouyé et al. (2000) and Cherubini et al. (2004) cover many issues and
financial applications. A central issue is on the nature of dependence
and hence the interpretation of a copula as a dependence function dom-
inates. See Patton (forthcoming) for further discussion of copulas in
time series settings.

The purpose of this article is to provide practitioners with a use-
ful guide to copula modeling. Special attention is dedicated to issues
related to estimation and misspecification. Although our main focus is
using copulas in an applied setting, particularly cross sectional microe-
conometric applications, it is necessary to cover important theoretical
foundations related to joint distributions, dependence, and copula gen-
eration. Sections 2 and 3 primarily deal with these theoretical issues.
The reader who is already familiar with the basics of copulas and depen-
dence may wish to skip directly to Section 4, which highlights issues of
estimation and presents several empirical applications. Section 5 offers
concluding remarks as well as suggestions for future research. Through-
out the text, various Monte Carlo experiments and simulations are used
to demonstrate copula properties. Methods for generating random num-
bers from copulas are presented in the Appendix.
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A

Copulas and Random Number Generation

Simulation is a useful tool for understanding and exhibiting depen-
dence structures of joint distributions. According to Nelsen (2006:
40), “one of the primary applications of copulas is in simulation
and Monte Carlo studies.” Draws of pseudo-random variates from
particular copulas can be displayed graphically, which allows one
to visualize dependence properties such as tail dependence. Meth-
ods of drawing from copulas are also needed when conducting Monte
Carlo experiments. This chapter presents selected techniques for draw-
ing random variates from bivariate distributions and illustrates them
with a few examples. In our experience, the appropriate method
for drawing random variables depends upon which distribution is
being considered; some methods are best suited for drawing vari-
ables from particular distributions. We do not claim that the meth-
ods outlined below are necessarily the “best” approaches for any given
application. Rather, in our experience, the following approaches are
straightforward to implement and provide accurate draws of random
variates.

Random variates can be plotted to show dependence between
variables. Many copula researchers rely on scatter plots to visualize
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differences between various copulas (Embrechts et al., 2002). Other
researchers report pdf contour plots (Smith, 2003), which are pre-
sumably easier to interpret than three-dimensional pdf graphs. Nev-
ertheless, some researchers report combinations of pdf contour plots
and three-dimensional graphs (Ané and Kharoubi, 2003), while others
report all three: scatter plots, contour graphs, and three-dimensional
figures (Bouyé et al., 2000). All three techniques convey the same
information, so whichever presentation one chooses is essentially
a matter of preference. We use scatter plots for several reasons.
First, scatter plots are easier to generate than pdf contour plots
or three-dimensional figures and do not require complicated graph-
ing software. Second, random draws used to create scatter plots
are also useful for generating simulated data in Monte Carlo exper-
iments. Third, scatter plots can be easily compared to plots of
real life data to assist in choosing appropriate copula functions.
Finally, we feel that interpretations are more straightforward for scat-
ter plots than they are for pdf contour plots or three-dimensional
figures.

A.1 Selected Illustrations

In this section, we sketch some algorithms for making pseudo-random
draws from copulas. These algorithms can be viewed as adaptations
of various general methods for simulating draws from multivariate
distributions.

A.1.1 Conditional sampling

For many copulas, conditional sampling is a simple method of simulat-
ing random variates. The steps for drawing from a copula are:

• Draw u from standard uniform distribution.
• Set y = F (−1)(u) where F (−1) is any quasi-inverse of F .
• Use the copula to transform uniform variates. One such

transformation method uses the conditional distribution of
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U2, given u1.

cu1(u2) = Pr[U2 ≤ u2|U1 ≤ u1]

= lim
∆u1→0

C(u1 + ∆u1,u2) − C(u1,u2)
∆u1

=
∂

∂u1
C(u1,u2).

By Theorem 2.2.7 in Nelsen (2006), a nondecreasing function
cu1(u2) exists almost everywhere in the unit interval.1

In practice, conditional sampling is performed through the following
steps:

• Draw two independent random variables (v1,v2) from U(0,1).
• Set u1 = v1.
• Set u2 = C2(u2|u1 = v1) = ∂C(u1,u2)/∂u1.

Then the pair (u1,u2) are uniformly distributed variables drawn from
the respective copula C(u1,u2;θ). This technique is best suited for
drawing variates from the Clayton, Frank, and FGM copulas; see
Armstrong and Galli (2002). The following equations show how this
third step is implemented for these three different copulas (Table A.1).

A.1.2 Elliptical sampling

Methods for drawing from elliptical distributions, such as the bivariate
normal and bivariate t-distribution, are well-established in statistics.

Table A.1 Selected conditional transforms for copula generation.

Copula Conditional copula

Clayton u2 =
�
v−θ
1

�
v
−θ/(θ+1)
2 − 1

�
+ 1

�−1/θ

Frank u2 = −
1

θ
log

�
1 +

v2(1 − e−θ)

v2(e−θv1 − 1) − e−θv1

�
FGM u2 = 2v2/

�√
B − A

�
A = θ(2u1 − 1);B = [1 − θ(2u1 − 1)]2 + 4θv2 (2u1 − 1)

1 See Example 2.20 in Nelsen (2006: 41–42) which gives the algorithm for drawing from
C(u1,u2) = u1u2/(u1 + u2 − u1u2).
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These same methods are used to draw values from the Gaussian copula.
The following algorithm generates random variables u1 and u2 from the
Gaussian copula C(u1,u2;θ):

• Generate two independently distributed N(0,1) variables v1
and v2.
• Set y1 = v1.
• Set y2 = v1 · θ + v2

√
1 − θ2.

• Set ui = Φ(yi) for i = 1,2 where Φ is the cumulative distri-
bution function of the standard normal distribution.

Then the pair (u1,u2) are uniformly distributed variables drawn from
the Gaussian copula C(u1,u2;θ).

A.1.3 Mixtures of powers simulation

To make draws from the Gumbel copula using conditional sampling,
we need to calculate C2(u2|v1) which requires an iterative solution,
which is computationally expensive for applications with many simu-
lated draws. Marshall and Olkin (1988) suggest an alternative algo-
rithm based on mixtures of powers. The following algorithm shows
how the technique is used to generate draws from the Gumbel copula:

• Draw a random variable γ having Laplace transformation
τ(t) = exp(−t1/θ). See below for additional detail.
• Draw two independent random variables (v1,v2) from U(0,1).
• Set ui = τ

(
−γ−1 lnvi

)
for i = 1,2.

Then (u1,u2) are uniformly distributed variables drawn from the Gum-
bel copula.

However, to implement the first step we have to draw a random
variable γ from a positive stable distribution PS(α,1). This is accom-
plished using the following algorithm by Chambers et al. (1976).

• Draw a random variable η from U(0,π).
• Draw a random variable w from the exponential distribution

with mean equal to 1.
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• Setting α = 1/θ, generate

z =
sin((1 − α)η)(sin(αη))

α
1−α

sin(η)
1

1−α

.

• Set γ = (z/w)(1−α)/α.

Then γ is a randomly draw variable from a PS(α,1) distribution.

A.1.4 Simulating discrete variables

Methods for drawing discrete variables depend upon which type of dis-
crete variate is desired. We focus on simulating discrete Poisson vari-
ables using a method based on Devroye’s technique of sequential search
(Devroye, 1986). The algorithm is as follows:

• Draw correlated uniform random variables (u1,u2) from a
particular copula using any of the methods discussed above.
• Set the Poisson mean = µ1 such that Pr(Y1 = 0) = e−µ1 .
• Set Y1 = 0, P0 = e−µ1 , S = P0.
• If u1 < S, then Y1 remains equal to 0.
• If u1 > S, then proceed sequentially as follows. While u1 > S,

replace (i) Y1← Y1 + 1, (ii) P0← µ1P0/Y1, (iii) S ← S + P0.
This process continues until u1 < S.

These steps produce a simulated variable Y1 with Poisson distribu-
tion with mean λ1. To obtain draws of the second Poisson variable Y2,
replace u1 and µ1 with u2 and µ2 and repeat the steps above. Then
the pair (Y1,Y2) are jointly distributed Poisson variables with means
µ1 and µ2.
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