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Copulas: A New Insight Into Positive
Time-Frequency Distributions

Manuel Davy and Arnaud Doucet

Abstract—In this letter, we establish connections between
Cohen–Posch theory of positive time-frequency distributions
(TFDs) and copula theory. Both are aimed at designing joint prob-
ability distributions with fixed marginals, and we demonstrate
that they are formally equivalent. Moreover, we show that copula
theory leads to a noniterative method for constructing positive
TFDs. Simulations show typical results.

Index Terms—Copulas, imposed marginals, joint distribution,
positive time-frequency.

I. INTRODUCTION

POSITIVE Time-Frequency Distributions (TFDs) [1], [2]
have the nice property of being positive and having cor-

rect marginals. More precisely, let denote the time-domain
signal, and its positive TFD. Then we have

for all

for all

for all (1)

where is the time marginal, and
is the frequency marginal (

denotes the Fourier transform of
). For the sake of simplicity, we assume here that is

normalized such that . Whenever ,
the results remain true up to the multiplicative factor. In [1]
and [2], it is shown that all distributions such as in (1) can be
written as

(2)

where (respectively, ) denotes1 the cumulative distribution
related to (respectively, ) by [respec-
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1Here, distributions are denoted with calligraphic letters (e.g.,X ), whereas
cumulative distributions are denoted with boldface capital letters (e.g.,X).

tively, ], and is a positive function such
that

(3)

Positive TFDs are used in a variety of applications such as
the analysis and synthesis of multicomponent signals [3],
biomedical engineering [4], and speech processing [5]. More-
over, efficient recursive implementations have been proposed
[6]–[10], most of which provide minimum cross-entropy
(MCE) TFDs, which requires the definition of a prior es-
timate such as the spectrogram. Aside the work of Cohen
and Posch [1], [2], statisticians [11], [12] have addressed the
same problem, namelyhow to construct a joint probability
distribution with imposed marginals?These researches have
led to the concept ofcopula, and we show in this letter that the
main result in copula theory, Sklar’s theorem, is equivalent to
the formulation given in [2]. Each TFD admits a copula that
contains all the information about the signal time-frequency
dependence and that can be used to measure it. In addition to
providing a new insight into time-frequency theory, copulas
provide a simple noniterative way to construct positive TFDs
with correct marginals. These TFDs are proved to be different
from MCE TFDs and are easy to compute in practice.

This letter is organized as follows. In Section II, we recall
some basic definitions and properties related to copulas. In
Section III, we show that copulas and Cohen–Posch’s group of
positive TFDs are actually two versions of the same theory. A
direct consequence of this connection is presented in Section IV
where we compute the copula of a Gaussian chirp, and we
propose a new method aimed at computing positive TFDs for
any signal. In Section V, we illustrate the interest of copulas in
time-frequency analysis by simulations. We give finally some
conclusions and research directions in Section VI.

II. COPULAS

In this section, we considercumulativedistributions rather
than noncumulative probability distributions. The elements pre-
sented here are taken from [13].

Definition 1: A copula is a function from to [0,1]
such that

1) for all ;
2) and for all ;
3) for all such that and

(4)
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Fig. 1. Three important copulas displayed as contour plots.

Fig. 1 displays the contour plots of three important copulas:
the product copula and theFréchet–Hoeffding
bounds and , whose existence is justified by the following
theorem:

Theorem 2: Let be a copula. Let
and . Then, for all ,

.
We now expose the theorem that justifies the use of copulas

in the study of joint distributions with imposed marginals.
Theorem 3 (Sklar’s Theorem [11]):Let be a cumu-

lative distribution with marginals and . Then there
exists a copula such that

(5)

If and are continuous, then is unique; otherwise
is uniquely defined on Range Range . Con-

versely, if and are distributions and is a copula,
then defined as in (5) is a distribution function with
marginals and .

In practice, this theorem means that, whenever the marginals
are fixed, a given probability distribution is uniquely related to
a copula and conversely. It also provides a way to construct the
copula from a given distribution (see Corollary 5). This requires,
however, to define thequasi inverseof a marginal distribution

(or equivalently, ).
Definition 4: Let be a univariate distribution function. A

quasi-inverse is such that

if Range (6)

otherwise (7)

Corollary 5: Let be a cumulative distribution with
marginals and , and the corresponding copula.
Then

(8)

These results are useful in practice. On the one hand, given
two marginals and , one can construct a family of
distributions whose marginals are and . On the other
hand, given a distribution , one
can use its copula to characterize the dependence of the random
variables and . This can be done by using the following
measure of dependence:

(9)

where is the copula related to . This mea-
sure is maximum whenever is one of the
Fréchet–Hoeffding bounds. In this case, each ofand is
almost surely a strictly monotone function of the other [13, p.
170]. Another classical characterization of random variables
dependence is mutual information . Let be such
that . Then, studying the
dependence of using the mutual information
is equivalent to studying the copula entropy , since

(10)

where the copula entropy is defined by
.

III. REDEFINING POSITIVE TIME-FREQUENCY

DISTRIBUTIONS VIA COPULAS

In order to use copula theory in the context of positive TFDs,
we notice that the cumulative distribution related to the
distribution of (2) is

(11)

where

(12)

It is easy to verity that is actually a copula, and from Sklar’s
theorem, the copula defining a given positive TFD is unique.
This result yields a new insight into Cohen–Posch’s positive
TFDs, by providing a new way of constructing such TFDs: the
set of all possible positive TFDs with correct marginals is the
set of functions such that

(13)

where is any copula. All results from copula theory can then
be applied to time-frequency analysis. For a given signal,
however, most , or equivalently, most copulas
are useless, as they do not incorporate information about the ac-
tual time-frequency energy location of . In order for
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to represent effectively the time-frequency contents of, it is
necessary to elaborate signal-dependent copulas.

IV. TIME-FREQUENCYCOPULAS

In this section, we apply Sklar’s theorem and its corollary to
construct copulas for time-frequency distributions, called time-
frequency copulas (TFCs).

A. TFC of a Simple Signal

In order to obtain a better comprehension of copulas, we com-
pute the TFC for an important class of signals. Consider a chirp
with Gaussian envelope [6]

(14)

Its cumulative marginal distributions are

(15)

(16)

where . The Wigner–Ville distribu-
tion of [denoted ] is positive,2 and it has the cor-
rect marginals. is also the MCE TFD of [6] with
the uniform distribution as prior. The cumulative distribution is

(17)
We can then compute the corresponding TFC in some special
cases

if (18)

if (19)

if (20)

Equations (19) and (20) are obtained using
, , as tends

to zero (where is the unit step), i.e., as the time support of
tends to be infinite.

The interpretation of this result is the following: there is no
time-frequency dependence when the signal is stationary

; the dependence is “maximum” whenever the chirp is not
stationary ( or ). Depending on the sign of the
chirp slope, the copula reaches one or the other Fréchet–Ho-
effding bounds. However, recall that in such cases, one of the
variables (e.g., ) is almost surely a strictly monotone function
of the other (e.g.,). This explains our result and extends it other
strictly monotonic time-frequency functions than chirps.

B. Construction of TFCs

In the general case, the above computation is generally not
feasible. Moreover, the Wigner–Ville distribution is often non-
positive; thus there is no underlying copula. It is, however, nec-
essary to find a TFC that captures most time-frequency depen-
dences of the signal at hand.

2This signal is the only one for which the Wigner–Ville distribution is positive
[6].

Let be a “satisfactory” TFR of (i.e., a positive
TFD that represents correctly the time-frequency contents of

) that however does not satisfy the marginal requirement.
Its cumulative marginals are denoted and . Then, con-
struct the copula of (using Corollary 5) such that

(21)

A still more satisfactory cumulative positive TFD (satisfying the
marginals) of is then

(22)

where and are the correct marginals. Typically,
can be the spectrogram of computed with the

windowing function .

C. Discussion

This technique has many advantages. First, it is noniterative
as opposed to the optimization techniques in [6], [8], and [9].
Second, the information about the time-frequency dependence
is made free from “marginal effects”; in other words, the copula
itself can be used to analyze the signal, measure its time-fre-
quency dependence, or characterize a class of signals. Third, in
the case of spectrogram-based TFCs, the choice of the window

has little influence on the shape of the copula (provided the
window length is reasonable), as will be shown in Section V.
However, similar to [6] where the choice of the prior distribu-
tion had an influence on the resulting TFD, different choices of

lead to slightly different positive TFDs.
An important question is that of comparison with MCE TFDs.

For a given spectrogram, the TFD computed with our method
is visually very close to the MCE TFD obtained by choosing
as prior the same spectrogram (see the simulations displayed
in Section V). However, the closed-form calculations in Sec-
tion IV-A show that the MCE TFD copula of a chirp (namely
or ) is not the same as the copula of the distribution chosen as
prior (namely for the uniform prior), which shows that MCE
TFDs are different from our TFDs.

Note finally that the theory can be extended to discrete TFDs,
since copulas are defined for any cumulative distribution (con-
tinuous or discrete). Given a discrete starting TFD, one can con-
struct a discrete positive TFD with correct marginals using the
technique presented above.

Remark: In a recent publication [10], a class of isentropic
positive TFDs is presented. The entropy of a given positive TFD

is ; thus, the choice of
a class of isentropic copulas leads to isentropic TFDs (for given
marginals). The copula corresponding to the parameterization
function proposed in [10] is

(23)

where , and . For the
special case , is symmetric, i.e.,

. Note that symmetric copulas are not adapted to most
signals, as shown in the following simulations.
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Fig. 2. (Top) Spectrograms of the data computed with three different windows.
(Middle) Copulas computed from the above spectrograms. (Bottom) Positive
TFDs with correct marginals computed with the copulas above.

Fig. 3. Spectrogram, copula, and positive TFD with correct marginals of
another signal (Gaussian window, 111 points).

V. SIMULATIONS

In this section, we display simulation results. The 1024-sam-
ples discrete signal processed is composed of a chirp and a
stationary tone. Its spectrogram is displayed Fig. 2. Three cop-
ulas are computed from three different spectrograms of(see
Fig. 2, top row). The shape of the copula is not much affected by
the choice of the window. The copulas of Fig. 2, top row, are
used to compute the positive TFDs as explained in the previous
section. The bottom row of Fig. 2 displays the results. As can
be seen, the choice of the spectrogram window used to compute
the copula influences the positive TFD in the same way as it in-
fluences the spectrogram in terms of time-frequency resolution.
The positive TFD resolution is, however, better than the spec-
trogram resolution.

Whatever , the copula shape is in some way a mixture be-
tween the product copula (related to the tone) and (related
to the increasing chirp). On Fig. 3, the spectrogram, copula, and
positive TFD of another signal are displayed. The copula shape
is different compared to the previous case: the “weights” of
and in the mixture characterize the relative location of the
spectral components.

Fig. 4 displays the MCE TFD and the copula-based TFD com-
puted from the same spectrogram for a 2048-sample real loud-
speaker test signal [14]. As can be seen, the two images are very
similar. The computational complexity is flops with
our method, and flops per iteration with the iterative
MCE TFD computation. In other words, the computational cost

Fig. 4. Spectrogram, copula-based positive TFD, and minimum cross entropy
TFD computed for the same signal. Both the MCE TFD and the copula-based
TFD were computed from the same spectrogram (left image), with Gaussian
window (111 points).

of the copula-based technique is lower as far as more than four
iterations are necessary for the MCE TFD, which is often true
in practice for a similar accuracy.

VI. CONCLUSION

In this letter, we have established connections between
Cohen–Posch’s positive TFDs and copulas. As a direct appli-
cation, we have introduced a new noniterative technique aimed
at computing positive TFDs with correct marginals. Other
possible applications including signal classification/detection
using copulas, and time-frequency dependence analysis will be
investigated soon.
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