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a b s t r a c t

Understanding if a digital image is authentic or not, is a key purpose of image forensics.

There are several different tampering attacks but, surely, one of the most common and

immediate one is copy-move. A recent and effective approach for detecting copy-move

forgeries is to use local visual features such as SIFT. In this kind of methods, SIFT matching

is often followed by a clustering procedure to group keypoints that are spatially close.

Often, this procedure could be unsatisfactory, in particular in those cases in which the

copied patch contains pixels that are spatially very distant among them, and when the

pasted area is near to the original source. In such cases, a better estimation of the cloned

area is necessary in order to obtain an accurate forgery localization. In this paper a novel

approach is presented for copy-move forgery detection and localization based on the J-

Linkage algorithm, which performs a robust clustering in the space of the geometric

transformation. Experimental results, carried out on different datasets, show that the

proposed method outperforms other similar state-of-the-art techniques both in terms of

copy-move forgery detection reliability and of precision in the manipulated patch

localization.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, digital crime is growing at a rate that far

surpasses defensive measures. Sometimes a digital media

content such as an image or a video, may be found to be

incontrovertible evidence of a crime or of a malevolent

action. By looking at a digital data as a digital clue,

multimedia forensics technologies are introducing a novel

methodology for supporting clue analysis and providing

an aid for making a decision on a crime [1,2]. Multimedia

forensics deals with developing technological instruments

which generally allow to determine, without any addi-

tional information inside the image (e.g. a watermark), if

that asset has been tampered with or which has been the

adopted acquisition device. In particular, tampering detec-

tion refers to the problem of assessing the authenticity of

digital images [3], and this is the topic of this paper.

Information integrity is fundamental in a trial, but it is

clear that the advent of digital pictures and relative ease of

digital image processing makes today this authenticity

uncertain. An example of this problem, that recently

appeared in a Tunisian newspaper, is given in Fig. 1; here

the photo has been tampered with in order to make the

crowd appear larger. It demonstrates that this kind of

manipulation is used more and more often in news and

advertising campaigns. Modifying an image to change the

meaning of what is represented in it could be crucial when

this digital data is used in a court of law, where it can be

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/image

Signal Processing: Image Communication

0923-5965/$ - see front matter & 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.image.2013.03.006

n Corresponding author. Tel.: +39 055 4237409.

E-mail addresses: irene.amerini@unifi.it (I. Amerini), lamberto.

ballan@unifi.it (L. Ballan), roberto.caldelli@unifi.it (R. Caldelli), alberto.

delbimbo@unifi.it (A. Del Bimbo), lukadt@gmail.com (L. Del Tongo),

giuseppe.serra@unimore.it (G. Serra).

I. Amerini et al. / Signal Processing: Image Communication 28 (2013) 659–669 659

www.elsevier.com/locate/image
www.elsevier.com/locate/image
http://dx.doi.org/10.1016/j.image.2013.03.006
http://dx.doi.org/10.1016/j.image.2013.03.006
http://dx.doi.org/10.1016/j.image.2013.03.006
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.image.2013.03.006&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.image.2013.03.006&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.image.2013.03.006&domain=pdf
mailto:irene.amerini@unifi.it
mailto:lamberto.ballan@unifi.it
mailto:lamberto.ballan@unifi.it
mailto:roberto.caldelli@unifi.it
mailto:alberto.delbimbo@unifi.it
mailto:alberto.delbimbo@unifi.it
mailto:lukadt@gmail.com
mailto:giuseppe.serra@unimore.it


presented as basic evidence to influence the judgment.

Furthermore, in case of tampering, it would be interesting

to understand what kind of manipulation has been

applied: for example if an object or a person has been

covered, if a part of the image has been cloned, if some-

thing has been copied from another image, and so on.

In this paper we address this issue, in particular by

detecting if a copy-move attack has taken place (i.e. when

the attacker creates his feigned image by cloning an area of

the image onto another zone) and by localizing the tampered

area in the image. The proposed method relies on scale

invariant features transform (SIFT) [4] and features matching,

and improves our previous work [5,6] by introducing a new

robust clustering phase based on the J-Linkage algorithm [7],

and an accurate forgery localization procedure. The localiza-

tion of the duplicated region has been set up on the basis of

the clusters obtained in the previous phase. This is done

using ZNCC (zero mean normalized cross-correlation)

between the original image and the warped image obtained

from the estimated geometric transformation occurred in the

tampering attack. In order to obtain an accurate localization,

it is necessary to have an effective clustering procedure (like

the one presented in this paper) that is able to guarantee a

good estimate of the geometric transformation.

The rest of this paper is organized as follows. In Section

2, we discuss the existing works concerning the detection

of copy-move forgeries. Section 3 presents the proposed

copy-move forgery detection and localization method,

while Section 4 contains experimental results. Conclusions

are finally drawn in Section 5.

2. Related works

As discussed earlier, copy-move manipulations involve

concealing or duplicating one region in an image by

overlaying portions of the same image on it. In order to

address the problem, researchers have developed various

techniques which can be classified into two main cate-

gories: block-based and visual feature-based methods.

2.1. Block-based methods

These methods seek a dependence between the image

original area and the pasted one, by dividing the image into

overlapping blocks and then applying a feature extraction

process in order to represent the image blocks through a

low-dimensional representation. Different block-based

representations have been previously proposed in the litera-

ture such as principal component analysis (PCA) [8,9], dis-

crete cosine transform (DCT) [10] and discrete wavelet

transform (DWT) [11,12], for both tasks of copy-move detec-

tion [10,11,13,9] and image splicing [14]. Recently, in the

study of Bashar et al. [15], the authors proposed a duplication

detection approach that can adopt two robust features based

on DWT and kernel principal component analysis (kPCA). A

different kind of features are used in [16], in fact the authors

choose the averages of red, green and blue components with

other four features, computed on overlapping blocks,

obtained by calculating the energy distribution of luminance

along four different directions. To improve the computational

complexity of these methods, in [17] the authors proposed to

use the radix sort for sorting the feature vectors of the

divided sub-blocks, as an alternative to lexicographic sorting,

which is commonly adopted. However, all these methods

assume that the copied region has not undergone any post-

processing such as scaling, rotation and JPEG compression.

To deal with this issue, a preliminary work by Mahdian

et al. has been presented in [18] where the authors

proposed a block-based representation calculated using

blur invariants. They used PCA to reduce the number of

features and a k-tree to identify the interested regions.

Authors in [19] proposed a different kind of feature that is

based on the Fourier–Mellin transform that is invariant to

small rotation and resizing of the copied regions. However,

the technique fails when the rotation and the resizing are

significant. This method was improved in [20] in which

better rotation invariance was achieved by taking projec-

tions along angular directions instead of radius direction.

However, also in this case the scale invariance seems to be

valid only over a small range, and the number of false

positives yielded is quite high.

Recently, methods more robust to reflection, rotation and

scaling have been proposed in the literature. In [21] over-

lapping blocks of pixels are mapped into log-polar coordi-

nates, and then summed along the angle axis, to obtain a one-

dimensional descriptor invariant to reflection and rotation.

Wang et al. [22] proposed the use of circle region instead of

square block and adopt as feature the mean of the intensities

of the circle region with different radii to overcome the effect

of rotation. Ryu et al. [23] exploited the Zernike moments as

features since their magnitude is algebraically invariant to

rotation transformation. To this end, a more general approach

is presented in [24], in which is reported a technique to better

detect variations in rotation and scaling in the copied part by

introducing a post-processing phase for the block selection,

instead of the widely used shift vectors. The authors called

this stage same affine transformation selection (SATS) and it is

collocated after the feature extraction and block matching

phases. In particular, they show that any set of rotation-

invariant features like [21–23] can benefit from the inclusion

of this processing step in the pipeline.

2.2. Visual feature-based methods

It has been demonstrated that block based methods often

result in significant false positives. Moreover, invariance to

Fig. 1. The figure reports the photo published on the front page of Le

Maghreb, a Tunisian newspaper, on January 2012. The photo was digitally

altered duplicating the crowd to appear larger.

I. Amerini et al. / Signal Processing: Image Communication 28 (2013) 659–669660



geometrical transformations and to other manipulations like

flipping, brightness changes and blurring is hard to establish

[24]. Feature-based techniques try to avoid these problems

by choosing to match features in the image, instead of blocks,

using local visual features like scale invariant feature trans-

form (SIFT) or speed up robust features (SURF). In particular,

these features have been widely used for image retrieval

and object recognition due to their robustness to several

geometrical transformations (e.g. rotation, scaling and affine

transformation).

Some works have recently appeared on copy-move for-

gery detection based on SIFT [25,6] or SURF features [26]. In

the work of Pan and Lyu [25], SIFT features are chosen in

order to localize the copied region through the use of a

correlation map. However, quantitative results on a realistic

dataset are not given and the method does not consider the

case of multiple forgeries accurately. Multiple copy-move

forgeries are instead managed in [6] by performing a robust

SIFT feature matching procedure and then a clustering of the

keypoints coordinates in order to separate the different

cloned areas. Anyway, the method is used only for copy-

move detection and not for accurate tampering localization.

Kakar and Sudha [27] proposed to use MPEG-7 features in

order to detect and localize copy-move forgeries, by following

a very similar framework to [6].

Although methods such as [6,27] have demonstrated

good performance in copy-move detection, sometimes clus-

tering and localization could be unsatisfactory. In particular

in those cases in which the copied patch contains pixels that

are spatially very distant among them, and when the pasted

area is near to the source. In such cases, a better estimation of

the cloned area is necessary in order to obtain an accurate

forgery localization. In this paper we address this problem

and we present a novel approach based on an adaptation of

the J-Linkage algorithm.

3. The proposed method

We present a novel approach for detecting copy-move

forgeries based on SIFT features and J-Linkage clustering. A

schema of the whole system is shown in Fig. 2. The first

step consists of SIFT feature extraction and keypoint

matching, the second step is devoted to the clustering

and forgery detection, while the third one localizes the

copied region, if a tampering has been detected. We

summarize the whole procedure for tampering detection

and localization in Algorithm 1.

3.1. Feature extraction and keypoint matching

The first step in our approach is based on SIFT features

since they are robust to scaling, rotation and affine transfor-

mations that are well-suited for the detection of copy-move

forgeries as has been recently demonstrated in [25,6]. We

detect keypoints that are stable local extrema in the scale

space and, for each of them, a feature vector is computed

from a local pixel area around the detected point. Given a test

image I, let S≔fs1;…; sng be the list of n interest points taken

from this image, where si ¼ fxi; f ig is a vector containing the

keypoint coordinates xi ¼ ðx; yÞ and f i is the feature descrip-

tor of the local patch around the keypoint (i.e. an histogram

of gradient orientations of 128 elements).

In the presence of a copy-move manipulation the

extracted SIFT keypoints from the copied and the original

regions have similar descriptor vectors. Therefore, match-

ing among SIFT features is adopted to detect if an image

has been tampered with and, subsequently, localize such

forgery. The simplest approach to match keypoints is to fix

a global threshold on the Euclidean distance between

descriptors but, due to the high-dimensionality of the

feature space, this approach obtains a low accuracy

because some descriptors are much more discriminative

than others. For this reason Lowe [4] considers, given a

keypoint, not only the distance with the first most similar

keypoint but also with the second one; in particular, he

uses the ratio between the distance to the candidate match

and the distance to the second similar feature point (i.e.

the so-called 2NN test). To declare a match, this ratio must

be lower than a fixed threshold τ (often equal to 0.6). This

technique works well when a region is copied one time,

but not if it is copied several times. To deal with this case,

we use a generalization of Lowe's matching technique

(g2NN test) recently proposed by Amerini et al. [6].

The g2NN starts from the observation that in a high-

dimensional feature space such as that of SIFT features,

keypoints that are different from the one considered share

very high and very similar values (in terms of Euclidean

distances) among them. Instead, similar features show low

Euclidean distances respect to the others. The idea of the

2NN test is that the ratio between the distance of the

Test (tampered) image

Duplicated regions localization

Localization Result

b)a)

d)c)

SIFT feature extraction

and matching
Clustering and forgery

detection

Fig. 2. An outline of the proposed framework. The framework is composed by three steps: the first step consists of SIFT feature extraction and keypoint

matching, the second step performs clustering and forgery detection, the third step localizes the forgery. (a) Test (tampered) image. (b) SIFT feature

extraction matching. (c) Clustering and forgery detection. (d) Localization result.
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candidate match and the distance of the 2nd nearest

neighbor is low in the case of a match (e.g. lower than 0.6)

and very high in case of two “random features” (e.g. greater

than 0.6). Our generalization consists in iterating the 2NN

test between di=diþ1 until this ratio is greater than τ (in our

experiments we set this value to 0.5). If k is the value in

which the procedure stops, each keypoint in correspondence

to a distance in fd1;…; dkg ðwhere 1≤konÞ is considered as

a match for the inspected keypoint. Using this g2NN strategy

on all the keypoints S, we obtain a set of q matched pairs

P≔fp1;…;pqg, where pi ¼ ðs; s′Þ. It allows, in the following

steps, to identify the duplicated regions and therefore detect

if the image has been tampered with.

3.2. The J-Linkage clustering and our copy-move detection

strategy

A way to detect possible duplicated regions is to use a

clustering algorithm on the coordinates of the keypoints

such as a hierarchical agglomerative clustering (HAC)

procedure as in [6]. Following this approach, the clustering

is performed by taking into account only the coordinates

of the matched pairs and not the matching constraint

between points. This method, like all the others clustering

on spatial location, has two main drawbacks: (i) the

inability to separate duplicated regions that are close to

each other and (ii) the difficulty to identify a patch as

single, when it contains keypoints with a non-uniform

spatial distribution (see Fig. 3c). For these reasons, we

proposed to design a clustering technique that does not

work in the spatial domain of matched points but in the

transformation domain. In particular, we introduce an

adaptation of the J-Linkage algorithm [7] that is able to

solve the aforementioned main drawbacks of a spatial

clustering procedure (see Fig. 3d).

The clustering starts with a random sampling on

matched pairs, in order to generate m affine transforma-

tion hypotheses. For each pair, a preference set vector (PS)

is defined indicating which transformations the pair pre-

fers. Formally, given a matched pair p and m transforma-

tions T ≔fT1;…; Tmg, the preference set vector PSðpÞ is

defined as fPS1ðpÞ;…; PSmðpÞg, in which PSiðpÞ is defined

as following:

PSiðpÞ ¼
1 if p is an inlier of T i;

0 otherwise:

(

ð1Þ

It means that the distance between the model Ti and the

matched pair p is less than a fixed threshold. In this way

each pair is represented in a conceptual space f0;1gm. Since

the matched pairs between the original and the duplicated

regions share similar transformations, they will have

similar conceptual representations.

The preference set vectors are then used in a hierarch-

ical agglomerative clustering in order to find the transfor-

mations between the original and the cloned areas. This

clustering algorithm starts by assigning each preference

set vector to a cluster; then, for each step of the algorithm,

the two clusters with smallest distance in the conceptual

space are merged. The preference set vector of a cluster is

computed as the intersection of the preference sets of

matched pairs, and the distance between two clusters is

computed as the Jaccard distance (J
δ
) between the respec-

tive preference sets. Given two sets A and B, the Jaccard

distance is defined as

J
δ
ðA;BÞ ¼

jA∪Bj−jA∩Bj

jA∪Bj
; ð2Þ

this distance measures the overlapping degree of two sets.

Identical sets have distance equal to 0, while disjoint sets

have distance 1. According to this distance, the cut-off

value of the clustering is set to 1, which means that

elements are merged until their preference sets overlap

(or more intuitively until matched pairs share the same

transformation). As a result of this procedure, each cluster

will have at least one transformation shared by all its

matched pairs. If more transformations fit with all the

elements contained in the cluster, they should be very

similar; therefore the final transformation is estimated by

least squares fitting. In our algorithm, all the transforma-

tions that fit with a number of elements less than a fixed

I. Amerini et al. / Signal Processing: Image Communication 28 (2013) 659–669662



threshold N are discarded in order to remove possible

outliers; this aspect has been further investigated in the

experimental section in which different detection results

are given changing this N value. Finally, if one transforma-

tion (or more) is detected, our system declares that the

image has been altered by a copy-move attack.

Two aspects need to be clarified: how to sample the

matched pairs for the transformation estimation and how

to compute a geometric transformation hypothesis.

3.2.1. Sampling strategy

The strategy used to select a minimal sample set of

matched points in [7], i.e. the original J-Linkage imple-

mentation, is based on the method of Kanazawa et al. [28].

It randomly selects an initial pair p¼ ðs; s′Þ, from all the

pairs P, and it chooses from the remaining correspon-

dences by fixing a high probability in the proximity of the

first point s. More precisely, let xi be the coordinate of the

keypoint s, a new point xj is selected with the following

probability:

PðxjjxiÞ ¼

0 if xj ¼ xi

1

Z
exp−∥xj−xi∥

2

s
2

if xj≠xi

8

>

<

>

:

ð3Þ

where Z is a normalization constant and s is chosen

heuristically (in [7] this parameter is set to 0.2). Following

this procedure, the final set of points depends significantly

on the parameter s. This fact may result to a choice of the

points that are too close or too far among them, leading to

a rough estimation of the transformation. Moreover, this

strategy is not able to deal with multiple cloned regions.

For these reasons, we have introduced a novel selection

strategy (an example of this method is shown in Fig. 4).

Firstly, as in the previous method, we randomly select a

matched pair p¼ ðs; s′Þ from the set P. Then, we define

two sets O and D of w nearest neighbors to the keypoint

coordinates of s and s′, respectively. In our experiments we

fixed the parameter w to 12. The other k pairs that are

necessary to find a minimal sample set for the transforma-

tion estimation (k¼2 in the case of an affine homography),

are obtained randomly by selecting pairs from

P≔fðs; s′Þ1;…; ðs; s′Þqg, such that s∈O and s′∈D.

As previously mentioned, the proposed strategy is able to

handle multiple cloned regions. For example, if an original

area is copied two times (e.g. D and D1 in Fig. 4) a SIFT point

in O would match, respectively, with a SIFT point in D and in

D1. On the other hand in such a case, the strategy proposed by

Kanazawa et al. should choose points by only considering the

spatial proximity to the first point s. In this way, it would

happen that a pair r1 is formed by a point z close to s inO, but

its corresponding point z1 is far from s′. This may lead to an

inaccurate estimation of the homography between the regions

O and D. Instead our method is able to choose a pair by

considering the proximity both to s and s′, for example the

pair r′. Following the same procedure, the method is able to

accurately estimate also the homography between the regions

O and D1.

3.2.2. Computing a geometric transformation hypothesis

The coordinates of the matched pairs previously

selected, fðx; x′Þ1;…; ðx; x′Þkþ1g, are used to estimate the

geometric transformation hypothesis. In particular, we use

affine transformations in order to model the geometric

O

D

D1

Image

s'

s

p

z

z'

r

Fig. 4. Representation of our sampling strategy.

Fig. 3. (a) Original images. (b) Tampered images: purple lines depict the cloned regions. (c) Clustering results with HAC. (d) Clustering results obtained

with the proposed method.
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distortions between the original and the copied regions

(such as scaling, rotation, and shearing).

Formally, this kind of transformation can be expressed

in matrix form as

x′

y′

1

0

B

@

1

C

A
¼

a11 a12 tx

a21 a22 ty

0 0 1

2

6

4

3

7

5

x

y

1

0

B

@

1

C

A
¼H

x

y

1

0

B

@

1

C

A

where a11; a12; a21 and a22 encode the rotation and scaling

directions deformation, while tx and ty are the translation

factors. An affine transformation has six degrees of free-

dom, corresponding to the six matrix elements, then the

transformation can be computed from three matched pairs

that are not collinear. In particular, to compute this

estimation, we use the normalized direct linear transfor-

mation (DLT) algorithm for affine homography (see Hartley

and Zisserman [29]). So, given a set of correspondences

(x1; x2;…; xðkþ1Þ) and (x′1; x′2;…;x′ðkþ1Þ), the algorithm

minimizes the following objective function:

∑
kþ1

i ¼ 1

∥x′i−Hxi∥
2: ð4Þ

This linear method allows to quickly determine the m

affine transformation hypotheses instead of a non-linear

algorithm. In fact, in order to generate a good transforma-

tion hypothesis, m should be high due to the random

sampling of the pairs (in our experiments m¼500).

3.3. Localizing duplicated regions

If an image is detected as a forgery, our system allows

to obtain an accurate localization of the duplicated regions.

This is another improvement with respect to our previous

method [6]. The basic idea of our localization approach is

that, given the estimated transformation between two sets

of matched pairs, we can extend this transformation to the

underlying dense regions in which it was really done. In

fact, all pixels of the original region RO are related to the

pixels of a duplicated region RD, through the same trans-

formation T (expressed in matrix form as HÞ

RD ¼HRO; RO ¼H−1RD: ð5Þ

Applying the estimated transformation on the entire

image, we will obtain a warped image in which the region

RO will overlap the region RD (see Fig. 2). In the same way,

applying the inverse transformation H−1, the region RD

will overlap the region RO.

In order to localize the duplicated regions, we use a

block-wise correlation measure based on zero mean nor-

malized cross-correlation (ZNCC) between the gray-scale

of the original image I (Fig. 2a) and the warped image W

(Fig. 2b). It is computed as

ZNCCðxÞ ¼
∑v∈ΩðxÞðIðvÞ−IÞðWðvÞ−W Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑v∈ΩðxÞðIðvÞ−IÞ
2ðWðvÞ−W Þ2

q ; ð6Þ

where ΩðxÞ is a 7 pixels neighboring area centered at every

pixel x of I; IðvÞ andWðvÞ denote the pixel intensities at the

location v; I and W are the average pixel intensities of I

and W, respectively, computed on ΩðxÞ. Once the correla-

tion map is obtained, we apply a Gaussian filter of size 7

pixels with standard deviation 0.5 in order to reduce the

noise (Fig. 2c). Next a binary image is created by thresh-

olding the correlation map (th¼0.55). We discard all the

small isolated regions that have an area less than 0.05%.

Finally, mathematical morphological operations are used

to fill eventually holes in the binary image (Fig. 2d).

4. Experiments

We have evaluated the performance of the proposed

method both from the point of view of forgery detection

capability (authenticity detection) and also for what concerns

the ability to recover copied areas (patch localization). Firstly,

the proposed method is set up and improved by means of the

design of a novel sample set selection strategy (Section 4.3).

Here we provide also evidence about the effectiveness of our

approach, both in terms of detection and localization, on a

novel realistic dataset called MICC-F600. Successively, we

present a comparison with our previous work [6] to evaluate

the improvement in terms of reliability in image forgery

detection (Section 4.4). Finally, a comparison regarding the

capacity to localize manipulated patches is carried out

towards other state-of-the-art techniques (Section 4.5).

It has to be noticed that our method is also very

competitive in terms of computational time. In contrast to

other popular methods, our approach is able to effectively

detect and localize copy-move forgery in a full-resolution

image (e.g. 800�600 pixels) in around 8 s on an Intel Q6600

with 4-GB RAM. This is a key aspect since several techniques

are not used in real applications because of their computa-

tional complexity. For instance, block-based methods are

very expensive since features need to be extracted from

millions of blocks and they need to be sorted out. As an

example, two of the most popular approaches of this kind of

techniques [10,8] are able to process the same images in

around 295 s and 71 s, respectively, according to our pre-

vious experiments on processing time requirements [6].

4.1. Data collections

Experimental results are reported on three different

datasets: MICC-F2000 [6], SATS-130 [24], MICC-F600. For

each of these, an example image is shown in Fig. 5.

The MICC-F2000 dataset, introduced in [6], is composed of

images with disparate contents coming from the Columbia

photography image repository [30] and from a personal

collection. Such a dataset consists of 2000 photos of

2048�1536 pixels: 1300 are original while 700 are tampered.

The tampered images are obtained by applying 14 attacks

such as translation, rotation, scaling, or a combination of

them. The duplicated patches (corresponding to an average

size of 1.12% of the whole image) are rectangular and they

have not been accurately segmented and spatially well

separated from the original areas (see for example Fig. 5, on

the top).

The second dataset is the SATS-130, adopted in [24] and

made available by the authors. It is composed of 130

tampered images of different resolutions (from 420�300

to 3888�2592 pixels) and it does not contain not-tampered

photos, so it cannot be used for image authenticity detection

tests. Forged images are obtained starting from 10 original
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images in which the copied regions are rotated by an angle

which ranges from 01 (pure translation) to 1801, with steps of

151. An example for this dataset is reported in Fig. 5 (center).

The patch localization binary masks are available and we

have used this dataset as a benchmark for the evaluation of

the proposed method in patch localization with respect to

other state-of-the-art methodologies.

Finally, we have introduced a novel dataset named

MICC-F600, containing realistic and challenging tampering

attacks (Fig. 5, bottom). It has been derived from the first

two datasets, from other images provided by the authors

of SATS-130 (Riess et al. [24]), and other images with

multiple copied regions produced by ourselves. The

images have different resolutions ranging from 800�533

to 3888�2592 pixels. MICC-F600 has been constructed

with the aim to generalize, as much as possible, the kind of

images under analysis. It consists of 600 images: 448

original, taken randomly within the 1300 original of

MICC-F2000, and 152 forged, created starting from 38

non-tampered images (10 taken from SATS-130 and 28

new ones) in the following manner:

� 38 images in which a region is duplicated once through

a translation;
� 38 images in which a region is duplicated twice or

three times through a translation;

� 38 images in which the copied region is rotated by 301;
� 38 images in which the copied region is rotated by 301

and scaled by 120%.

The MICC-F600 dataset is very challenging, it does not

contain only forged images and, furthermore, the fake

ones have not been created automatically and the tamper-

ing regions have different sizes and shapes. The manipu-

lated patches have been cut out and post-processed to fit

well in a realistic fashion within the area in which they

have been pasted. Duplicated regions are not always

spatially well separated (e.g. Fig. 8d), their shapes can be

quite challenging such as a fountain or a tree (e.g. Fig. 8b

and f). Moreover, several images contain multiple copy-

move cloning (e.g. Fig. 8a, e, h).

4.2. Evaluation criteria

To carry out performance evaluations, two set of

metrics have been considered. In the case of authenticity

detection, true positive rate (TPR) and false positive rate

(FPR) have been computed; TPR is the fraction of tampered

images correctly identified as such, while FPR is the

Fig. 5. Example images of the adopted datasets: MICC-F2000 (top), SATS-130 (center), and MICC-F600 (bottom). The second column reports the ground-

truth masks.
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fraction of original images that are not correctly identified

TPR¼
images detected as forged being forged

forged images
;

FPR¼
images detected as forged being original

original images
:

It is worth to state that authenticity detection is here

intended by referring to the whole image, not only to the

tampered patches. Thus, an image is labeled as forged if at

least an affine transformation is estimated between a

couple of image regions.

On the other side, the performance on patch localization

is computed as the percentage of erroneously matched

pixels FP (i.e. false positives) and erroneously missed pixels

FN (i.e. false negatives). Formally, let R1 be the copied

region, Ri (i41) be the i-th duplicated region, and B the

unchanged background; then FP and FN are defined as

FP ¼
jmatches in Bj

jBj
ð7Þ

and

FN ¼
jmissed matches inð⋃iRiÞj

jð⋃iRiÞj
ð8Þ

where low values of FP and FN indicate high localization

accuracy.

4.3. Results on MICC-F600 dataset

As previously introduced, our method detects an image

as forged if there is at least one affine transformation that

fits at least between a number N of points of an image area

and other N points of another image zone. The choice of

the value N is crucial because it obviously impacts on TPR

and FPR. In this section, we set up the value of N by means

of ROC curves through the analysis of the performance, in

terms of TPR and FPR, on the MICC-F600 dataset.

In Fig. 6 we report the authenticity detection results,

obtained by varying the parameter N within the interval

½3;…;16� (N¼3 is the minimal number of points required

for the estimate of an affine transformation). The best

possible detection method would yield a point in the

upper left corner, corresponding to FPR ¼ 0% (no false

positives) and TPR¼ 100% (no false negatives). It is to be

noted that if we consider as valid, for instance, a set of

points N¼4, the system achieves a good TPR (89.47%), but

it shows a high FPR (38.4%). However, this effect is

drastically reduced when we consider transformations

that have a greater consensus (i.e. N≥7), where we achieve

good performance with a still high TPR, around 80%, and a

low FPR, around 6%. By using a criterion of minimum

Euclidean distance from the ideal point located in the

upper left corner, we can select N¼9 as the best value that

will be used for the rest of the experiments. In fact, with

this setting our algorithm gives a TPR equal to 81.6% and a

FPR of 7.27%.

To support such a choice, we have also analyzed the

localization performance in terms of FP and FN by varying

the parameter N as before (see Fig. 7). It can be noticed

that, differently from what happened to TPR and FPR, the

variability interval of FP and FN is quite small. In fact, FP
remains almost constant (from 0.4% to 0.24%) while FN
slightly increases (from 5.58% to 7.83%). The increment of

FN is mainly caused by the fact that with a high N some

forged images are not correctly detected, so in these cases

FN is equal to 1. Based on this analysis, we can see that the

previous choice to assume N¼9 is plausible (i.e. it returns

a FP of 0.31% and a FN of 6.59%).

4.3.1. A new strategy for the selection of the sample set

To further augment the performance of the proposed

method, we have designed, as already assessed in Section 3,

an improved selection strategy to collect the minimal

sample set necessary to estimate the geometric transforma-

tion between the original and the copied area. Such a new

strategy is compared with that one described in Kanazawa

et al. [28], which is used by default in the original J-Linkage

algorithm. Table 1 presents the performance of our method

in terms of both authenticity detection (TPR vs FPR) and

patch localization (FP vs FN), obtained by applying the two

different strategies. Results are reported for three values of

the parameter N (8, 9 and 10). It is possible to point out that

the new strategy basically improves the performance for all
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Table 1

Comparison of different sample-set sampling strategies: our method vs

Kanazawa et al. [28].

(%) N¼8 N¼9 N¼10

Ours [28] Ours [28] Ours [28]

TPR 82.11 79.60 81.60 76.61 80.79 78.81

FPR 9.54 12.20 7.27 8.68 6.59 7.27

FP 0.30 0.24 0.31 0.24 0.31 0.41

FN 6.34 8.59 6.59 8.47 6.62 12.27
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the values of N. In particular, if we consider the results

obtained with N¼9 (the “set up value”), we can observe a

growth in terms of TPR from 76.61% to 81.60%. This is due to

the fact that the estimate of the geometric transformation

between the original and the copied area, is more accurate

and stable than in [28].

4.3.2. A qualitative analysis

Hereafter, we show in Fig. 8 some examples to qualita-

tively evaluate the results achieved by the proposed

method. It can be appreciated how the technique is able

to accurately segment source and destination patches, also

in very challenging cases. The shapes of the copied areas

are not usually regular (see for example Fig. 8e–g). Often,

the original and the cloned area are very close to each

other (Fig. 8b, d and e). Furthermore, images contain

multiple copy-pasted couples (e.g. Fig. 8a and e) and also

cases with multiple cloning (e.g. Fig. 8h). Finally, it is

interesting to notice that a specific situation like patch

flipping (Fig. 8c, in which the two horses have been

flipped) is managed properly too.

4.4. Comparison with our previous method (Amerini et al.

[6])

After having adequately designed and set-up the pro-

posed method, we have performed a comparison with our

previous work (Amerini et al. [6]), both on the basis of

MICC-F600 and MICC-F2000 datasets. In fact, the two

methods share the same SIFT extraction and matching

procedure, but differs substantially in the clustering phase:

the proposed method, based on an improved variant of J-

Linkage, carries out clustering in the domain of the

transformation parameters, while the second one [6]

implements a classical spatial clustering in the image

domain (agglomerative hierarchical clustering). Table 2

shows the results of the comparison in terms of TPR and

FPR (a comparison on patch localization is not feasible

because the method in [6] does not deal with that).

The proposed technique achieves superior perfor-

mances: 12% of improvement for TPR and 5.2% of reduc-

tion for FPR. Such a gain is mainly due to the capacity to

handle forged images containing pasted areas partially

overlapped or very close to the original regions. This issue

is well evidenced in Fig. 9. The situation in Fig. 9 (top),

though clustering is not correct, does not affect detection

performances because the image is rightly labeled as

forged anyway; but in the case in Fig. 9 (bottom), the

image is wrongly assigned as authentic, being the source

and destination areas too close to be distinguished as

separated. It is interesting to evidence that in the case of

MICC-F2000 dataset (see Table 2), the performance is high

for both techniques; this confirms that such a dataset is

less challenging and that the proposed method still out-

performs the previous one, though with a reduced gap

both in TPR and FPR.

4.5. Comparisons on patch localization with other relevant

methods

To make a comparison on the issue of patch localiza-

tion, we have used the SATS-130 dataset [24]. In fact, such

a dataset allows a complete benchmarking with several

algorithms, since the authors of this dataset have reported

in their paper [24] about the performance in terms of

patch localization (FP and FN) of the most relevant

methods.

In Table 3, we report the results of three of these

methods, with and without the usage of the SATS (same

affine transformation selection) approach, as proposed by

the authors in [24]. SATS is a post-processing method that

can smoothly replace the widely used shift-vectors. In

particular it can detect arbitrary variations in rotation and

scaling in the duplicated region. These methods are

claimed to be scale and rotation invariant, so they are

comparable with the proposed approach; for sake of

Fig. 8. Examples of patch localization on the MICC-F600 dataset.

Table 2

Comparison between our proposed method and [6].

(%) Dataset Ours Amerini et al. [6]

TPR MICC-F600 81.6 69.0

FPR 7.27 12.5

TPR MICC-F2000 94.86 93.42

FPR 9.15 11.61
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conciseness only the best performing three have been

taken into account and hereafter briefly explained. The

first technique (i.e. INT2 [21]) proposed a method to detect

duplicated regions even when the copied portion have

experienced reflection, rotation or scaling. To achieve this,

overlapping blocks of pixels are re-sampled into log-polar

coordinates, and then summed along the angle axis, to

obtain a one-dimensional descriptor invariant to reflection

and rotation; moreover, scaling in rectangular coordinates

results in a simple translation of the descriptor. The

method named INT4 [22], achieves robustness to copied

region rotation by firstly reducing the image dimension

through a Gaussian pyramid and then extracting four

features for each circle block. The feature vectors are then

lexicographically sorted and similar vectors will be

matched according to a certain threshold value. Finally,

the technique denominated MOM3 [23] uses the Zernike

moments feature vectors to grant copy-move localization

in the presence of copied patch rotation.

It is immediate to observe that the proposed method

outperforms all the others, in both fashions (with and

without SATS approach), by obtaining a FP around zero and

a FN of 16.34%.

5. Conclusion

In this paper a new technique based on SIFT features to

detect and localize copy-move forgeries has been pre-

sented. The main novelty of the work consists in introdu-

cing a clustering procedure which operates in the domain

of the geometric transformation; such a procedure has

been properly improved to deal with multiple cloning too.

Experimental tests have been carried out on different

datasets containing various typologies of fake images and

also original ones. Results confirm that the proposed

method outperforms other similar state-of-the-art techni-

ques both in terms of copy-move forgery detection relia-

bility and of precision in the localization of the

manipulated patches.
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