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Abstract

The increasing popularity of the internet suggests that digital multimedia has become easier to transmit and

acquire more rapidly. This also means that this multimedia has become more susceptible to tampering through

forgery. One type of forgery, known as copy-move duplication, is a specified type that usually involves image

tampering. In this study, a keypoint-based image forensics approach based on a superpixel segmentation algorithm

and Helmert transformation has been proposed. The purpose of this approach is to detect copy-move forgery

images and to obtain forensic information. The procedure of the proposed approach consists of the following

phases. First, we extract the keypoints and their descriptors by using a scale-invariant feature transform (SIFT)

algorithm. Then, based on the descriptor, matching pairs will be obtained by calculating the similarity between

keypoints. Next, we will group these matching pairs based on spatial distance and geometric constraints via

Helmert transformation to obtain the coarse forgery regions. Then, we refine these coarse forgery regions and

remove mistakes or isolated areas. Finally, the forgery regions can be localized more precisely. Our proposed

approach is a more robust solution for scaling, rotation, and compression forgeries. The experimental results

obtained from testing different datasets demonstrate that the proposed method can obtain impressive precision/

recall rates in comparison to state-of-the-art methods.
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1 Introduction

As a result of technological advances and the conveni-

ence of the internet, human beings are now able to eas-

ily access interesting multimedia from the internet and

remake or tamper with it as they see fit. Copy-move

forgery imaging is a special type of forgery that involves

copying parts of an image and then pasting the copied

parts into the same image. Hence, image forensics asso-

ciated with copy-move forgery detection have become

increasingly important in our networked society. The

technology used in image forensics can be categorized

into passive detection or active detection [1]. The active

detection method requires prior information derived

from an image to identify the image authenticity, such

as watermarking. Contrary to active detection methods,

passive detection methods are not required to obtain

previous information on an image. Passive detection

methods can utilize the advantages of the detective

strategy to find the tampering regions. Hence, a large

majority of image forgery detection methods adopt a

passive-based strategy to perform the type of tampering

identification discussed in the present study. Passive

detection technology can be categorized into block-

based methods [2–10] and keypoint-based methods

[11–21]. In the present study, we focus on the keypoint-

based approach.

Block-based methods segment an image into overlap-

ping blocks and then extract features from those blocks.

The forgery regions are determined by computing the

similarity between block features. Wang et al. [2] pro-

posed block-based forensics to detect region duplication
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for an image. The method mainly used the mean inten-

sities of a circle with different radii around the center of

the block to represent the features of the block. Ryu et

al. [3, 4] used Zernike moments as block features. The

method can identify the forged region by copy-rotate-

move forgery. Huang et al. [5] proposed a discrete cosine

transform (DCT)-based forgery detection method. The

image is first divided into overlapping blocks and the

DCT is applied, thus the DCT coefficients for each block

are quantized by fixed stepsize q and then rounded to the

nearest integer. A row vector as block feature can then be

obtained by using a zigzag scan. The duplicated image

blocks are compared in the matching step. This method

can detect JPEG compression, but the DCT-based feature

vector cannot resist geometrical tampering.

Wang et al. [6] proposed a forgery method that com-

bines the discrete wavelet transform (DWT) and the

DCT. The DWTand DCTare applied to each image block

to extract features. The coefficients obtained by the DWT

and DCT are multiplied to form the eigenvectors. Then,

the similarity of two blocks is estimated, along with the

mean and variance distances between the eigenvalues in

their corresponding eigenvectors. This method can resist

JPEG compression but not image processing operations.

Bravo-Solorio and Nandi [7] proposed a polar-based

forgery detection method to detect copy-move attacks

for an image. This method subdivided an image into

overlapping blocks of pixels. The pixels within the block

are first transformed into log-polar maps (LPM), and

then summed along the angle axis, to generate one-

dimensional descriptors. Subsequently, they will com-

pute the Fourier coefficient magnitude after Fourier

transformation. The descriptors are invariant to reflec-

tion and rotation. The descriptor of each block is used

to compute the information entropy as block features.

By computing the entropy difference between blocks,

the similar regions are found. However, a significant

amount of smooth duplication regions may arise during

mistake detection.

Davarazni et al. [8] used multiresolution local binary

patterns (MLBP) for forgery detection. This method

used LBP operations to extract feature vectors for each

block, and then sorted these vectors based on lexico-

graphical order. The duplicated image blocks are de-

tected in the block matching step using a k-tree. This

method is time consuming and does not detect any ro-

tation angles for duplication regions. Lee et al. [9] used

a histogram of oriented gradients (HOG) of each block

as features; these features are ordered by using lexico-

graphical sorting. The duplicated image blocks are de-

tected by measuring similar block pairs. Li et al. [10]

used a polar harmonic transform to extract the rotation

and scaling invariant features as block features (similar

to the method of Lee et al. [9]). These feature vectors

are lexicographically sorted, and the forged regions are

detected by finding similar block pairs.

In keypoint-based methods, image features are ex-

tracted and matched with the entire image to identify

the regions that were tampered with. Common and well-

known feature points have scale-invariant feature trans-

form (SIFT) [22] features and speedup robust features

(SURF) [23]. These feature points have been widely used

for image retrieval and object recognition because of

their robustness in geometrical transformations (e.g.,

scaling and rotation). Based on these advantages, these

features have been applied to digital forensics. In [11,

12], these methods applied a SIFT to the host image to

extract keypoints, which were then matched to one an-

other. When the value of the displacement vector

exceeded the threshold, the sets of corresponding SIFT

keypoints are labeled as the tampered regions. The

method used for combining the SIFT keypoints and J-

linkage algorithm to localize the forgery regions has

been reported [13].

In [14, 15], the SURFs were applied to extract the key-

point features, which makes it possible to detect dupli-

cated regions of various sizes. Additionally, Mishra et al.

[15] also used hierarchical agglomerative clustering

(HAC) to group the matched keypoints from these sets of

keypoints. Several different technologies based on SURF

and SIFT and Harris were applied in [16, 17]. Pun et al.

[18] integrated both the block-based and keypoint-based

methods to detect the forged regions. Several keypoint-

based methods involved with segmentation methods have

been reported in the following references: [19–21, 24–27].

Christlein et al. [28] evaluated the performance of feature

sets in existing copy-move forgery detection algorithms.

Many methods from the literature deal only with simple

copy-move forgery scenarios, while other approaches

present relevant contributions toward the detection of so-

phisticated tampering. However, these approaches still

have major limitations. Most of the current block-based

methods use a similar framework; the main differences be-

tween frameworks are that they use different feature ex-

traction methods to extract the block features. The block-

based detection of forgery regions can be time-consuming

because the host image is divided into overlapping blocks,

and they cannot detect geometrical transformations of the

forgery regions. In contrast, the keypoint-based forgery

detection methods can detect geometrical transformations

and require less computational resources; however, they

do not have good localization power. Thus, there is room

for improving true positive rate (TPR) results. Based on

the above reasons, we propose conducting image forensics

based on an simple linear iterative clustering (SLIC) algo-

rithm [29] and Helmert transformation [30] to achieve

copy-move forgeries with rotations, resizings, and combi-

nations of the two. This proposed scheme uses the SIFT
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algorithm to extract the keypoints from an image and then

designs our algorithm. Our approach can efficiently resist

geometrical transformations and JPEG compressions, and

localize the forgery regions more precisely at a reasonable

computational cost.

The rest of this study is organized as follows. Section 2

presents the related techniques. The proposed method is

described in Section 3. In Section 4, we present the ex-

perimental results to verify the robustness of the pro-

posed algorithm. Finally, Section 5 concludes this study.

2 Related techniques

In this section, we briefly describe the related methods

that apply to our proposed approach.

2.1 Superpixel segmentation

One type of image segmentation method is called the

superpixel segmentation method. It groups the pixels of

an image into perceptually meaningful atomic regions

that can be used to replace the rigid structure of the

pixel grid. A simple linear iterative clustering (SLIC)-

based superpixel algorithm is proposed by Achanta et al.

[29]. It uses a k-means clustering approach to efficiently

generate superpixels, and it can adhere to the boundar-

ies very well. The only parameter (k) in the SLIC algo-

rithm is to assign the desired number of approximately

equally sized superpixels. The algorithm is briefly de-

scribed in the following paragraph. Details of the proce-

dures have been reported in [29].

This SLIC algorithm is adopted in CIELAB color

space. The SLIC algorithm adapts a k-means cluster-

ing approach to efficiently generate the superpixels,

and it adheres to the boundaries very well. First, the

clustering procedure begins with an initialization step

where the k initial cluster centers, where (l, a, b) are

the three color components of a pixel, and (x, y) are

its two spatial coordinates, are sampled on a regular

grid (called a superpixel), spaced S pixels apart. The S

interval is

ffiffiffiffiffiffiffiffiffiffiffi

N
.

k

r

, in which N represents the number

of pixels for an image. In order to avoid centering a

superpixel on an edge or on a noisy pixel, the centers

are moved to seed locations corresponding to the

lowest gradient position in a n × n neighbCi = [li, ai, bi,

xi, yi]
T, i = 1, 2, ⋯, k,orhood. As is known to us, the

edge or noisy pixel is often positioned on a pixel

point that has the largest gradient variation. There-

fore, selecting the lowest gradient pixel point to pos-

ition the center for a superpixel can efficiently reduce

the chance of seeding a superpixel with an edge or a

noisy pixel.

Additionally, in order to speed up the SLIC algorithm,

the search area is reduced to the size of 2S × 2S around

the superpixel center, in contrast to the traditional K-

means clustering method. Then, by computing the dis-

tance between the center point and other pixel points

within the cluster, an update step adjusts the cluster cen-

ters to be the mean vector of all the pixels belonging to

the cluster, once each pixel has been associated to the

nearest cluster center. The residual error is computed by

means of the L2 norm between the new cluster center

locations and previous cluster center locations. Finally,

the assignment and updated steps can be repeated itera-

tively until the error converges. As [29] discussed, after

Fig. 1 An example of SLIC segmentation. Every superpixel is

approximately the size of 300 pixels

Fig. 2 The flowchart of the proposed system
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iterating ten times, most images can achieve the conver-

gence. Figure 1 shows an example of SLIC segmentation

for a superpixel that is roughly the size of 300 pixels.

2.2 Helmert transformation

In our work, since all points lie in a plane, the Helmert

transform becomes transformations from one rectangular

coordinate system to another rectangular system. These

transformations include rotation, scaling, and translations

for all points. The transformation equations can be formed

in matrix notation using mathematical operations [30].

Xp

Y p

� �

¼
A B

−B A

� �

xp
yp

� �

þ
tx
ty

� �

; ð1Þ

where (xp, yp) coordinates are transformed into (Xp,Yp)

coordinates by the addition of translations tx and ty. A

and B are the transformation parameters. This trans-

formation is called the Helmert transformation [30], also

known as similarity transformation. Helmert transforma-

tions have a lower degree of freedom, therefore they have

lower computational complexity available to transform the

coordinates of points in one point (x, y) into coordinates in

another point (X,Y). As shown in Eq. (1), only four parame-

ters are needed to compute the coordinate transformations,

such as rotation, scaling, and translations. In addition, a

well-known transformation known as the affine transform-

ation usually uses map coordinate transformations. How-

ever, affine transformations require six parameters to

achieve transformations. The advantages of the Helmert

transformation include not only resistance to rotation, scal-

ing, and translations, but also reduced computational com-

plexity. For instance, given the coordinates of two pairs, we

can obtain four parameters of Helmet transformation by

Eq. (1). Hence, in our experiments, we adopt the Helmert

transformation instead of affine transformation to acquire

the coordinates after transformation.

3 Proposed method

In this study, we propose keypoint-based image forensics

based on the Helmert transformation and SLIC algo-

rithm. The main procedures include keypoint extraction

and matching, clustering and group merging, and for-

gery region localization and refining. Figure 2 illustrates

the flowchart of the proposed system. Details of proce-

dures are described in the following subsections.

3.1 Keypoint extraction and matching

Based on the SIFT algorithm [22], we can obtain all

candidates of keypoints and the corresponding de-

scriptors for an image. Using these candidates, we will

search for the best matching pairs to perform add-

itional grouping.

First, each keypoint within all candidates will compute

the Euclidean distance between other keypoints via corre-

sponding descriptors, and will also perform the matching

operation. The nearest neighbor distance ratio (NNDR)

[31], which is the ratio of the smallest distance to the

second-smallest distance, is used to perform the matching.

This ratio is depicted as

Fig. 3 Clustering result based on [16]. The matching pairs belonging

to the same group are segmented into different groups, such as red

subgroups or blue subgroups

(a) (b)

Fig. 4 An example for clustering profile. a The matching pairs stay in the opposite subgroup corresponding to group C and group C′ in the

same region. b Clustering objective
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D A;Bð Þ

D A;Cð Þ
≤TNNDR; ð2Þ

where D is the Euclidean distance between the descriptors

of two keypoints, keypoints A and B are the nearest neigh-

bors, and keypoint A and keypoint C are the second-

nearest neighbor. TNNDR is a constant value. If Eq. (2) is

satisfied, keypoints A and B are regarded as a matching

pair. Generally, keypoint A is the source point and key-

point B is the target point. Our approach uses the

Euclidean distance between descriptors to estimate the

similarities.

After computing the distances for all keypoints, we

can obtain all matching pairs in an image. In order to

avoid incorrect matching pairs, if the distance between

matched pairs is less than TNNDR, they will be ignored

and deleted.

3.2 Clustering and group merging

Our clustering strategy includes clustering and group

combining. We improve the clustering method proposed

in [16] to perform the coarse clustering process. A clus-

tering yields two match groups: source and destination.

They are considered as correspondent regions inside the

image and are good cloning. In [16], the clustering strat-

egies only used spatial distance and correspondence

angle between matched pairs to perform the clustering.

However, when the forgery region is too large, it could

result in the matching pairs belonging to the same group

that are assigned to the different groups, as shown in

Fig. 3. That is, a group may be segmented into many

subgroups. In Fig. 3, the red subgroups could not be

merged together into a group, and the blue subgroups

could not be merged together either.

Hence, in order to solve this problem, we improve the

clustering strategies proposed by [16] to achieve the

Fig. 5 Clustering and merging results based on our

proposed method

Fig. 6 A profile of transformation from image I to image W by using (1) and ZNCC value labeled as correlation map. (x, y) is one of pixels in

image I. m and n are set to 3
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coarse clustering. The modified clustering schemes are

described by the following. Given any two matching

pairs belonging to corresponding subgroups (source and

target subgroups), they are considered as correspondent

regions in an image and are tampering candidates.

� Spatial adjacency: consider that we have a match

pair between keypoints A and B belonging to group

G. Keypoint A might belong to the Gsource

subgroup, and keypoint B might belong to the

Gtarget subgroup, or vice versa. For a subgroup to

admit a paired keypoint as a new member, the

spatial distance between the keypoint and its

nearest keypoint in such a subgroup needs to be

smaller than a predefined threshold, Tc. Moreover,

it is necessary to analyze both matched keypoints,

Fig. 7 An example of the binary correlation map and extension. The red color indicates “true” in the correlation map. a The red region is the

largest region after performing the connected-component operation. This region touched the top border and right border. b The result after

extending the direction of the top and right borders

(a)

(c) (d)

(b)

Fig. 8 The profile of the detection map. a ZNCC map. b SLIC segmentation. c Combined ZNCC map with SLIC segmentation. d Detection map
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since they have to be in the same group, but in

different subgroups.

� The angle consistency: the angle in the range of [0 ,

360 ] with a 15 step is used to determine the

angle consistence. It can obtain 24 range partitions.

As described above, a new keypoint A candidate to

be included into Gsource will be included in Gsource,

only if the angle of the line that connects the

candidate point A and its matching point B stays in

the same range of the other points in Gsource.

After performing coarse clustering, we will further

merge these clusters based on the Helmert transform-

ation and spatial adjacent relationship between clusters.

Therefore, the transformation can efficiently merge

some clusters with a high correlation into a compact

cluster. A Helmert transformation is used to describe

the relationships between two different coordinate sys-

tems without distortion. In 2D space, the Helmert trans-

formation is defined as Eq. (1). We use the Helmet

transformation to analyze the geometric relationships

between matching pairs. Assuming that the number of

keypoints in a cluster is greater than one, we will com-

pute the Helmert parameters of the cluster (source and

Table 1 Setup for the parameters

Parameter Value

TNNDR [31]: a threshold for nearest neighbor
distance

0.6

Tc [16]: a threshold for making a subgroup 50

Th: a threshold for making a group 10n,
n: number of keypoints
in group.

Ne: the number of the extension 5

Re: the range of each extension 0.25

Sr: the rectangle search region 0.125

Tk: a threshold for the number of keypoints
in a group

5

m, n: the size of computing ZNCC value 7

Tb: a threshold 0.55

Er: the expanded range 0.25

S: a superpixel size 300

Nd: the number of pixels with true in the
ZNCC binary map

0.5

Table 2 Detected results for CMH1 dataset under simple copies

Method Recall (%) Precision (%) FPR (%) F1 (%)

Proposed 96.50 97.66 2.31 97.08

Amerini et al. [13] 93.57 94.52 5.41 94.04

Silva et al. [16] 92.34 97.88 2.0 95.03

Pun et al. [18] 92.00 92.93 6.99 92.46

Li et al. [19] 98.17 57.64 72.14 72.63

Table 3 Detected results for D0 dataset under simple copies

Method Recall (%) Precision (%) FPR (%) F1 (%)

Proposed 84.88 92.81 3.39 88.67

Amerini et al. [13] 73.41 89.38 2.42 80.61

Silva et al. [16] 64.14 82.02 1.89 71.99

Pun et al. [18] 62.08 82.32 1.72 70.78

Li et al. [19] 77.09 64.19 49.42 70.05

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Fig. 9 Detection results under simply copy-move. a Forgery images.

b Ground truth. c Our proposed. d Amerini et al. [13]. e Silva et al.

[16]. f Pun et al. [18]. g Li et al. [19]
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target subgroup); otherwise, this cluster will be dis-

carded. For instance, given any two matching pairs, by

assuming that (Xp,Yp) are target coordinates and (xp, yp)

are source coordinates, the transformation can easily

compute and obtain four Helmert parameters by Eq. (1).

Assuming that there is a keypoint from another

group, C′, within the search range we specified, this

keypoint will be checked whether it belongs to source

or target subgroup. It is because we do not constrain

which keypoint stays in source or target subgroup for

a matching pair in the previous matching process.

During the matching process, the same region may be

clustered into different groups, and the matching

pairs may stay in the subgroup opposite to the other,

as shown in Fig. 4a. Assuming that this keypoint be-

longs to the target subgroup in group C′, we will ex-

change all members in the target subgroup with those

of the source subgroup in group C′, as shown in

Fig. 4b. Afterwards, we transform all members in the

source subgroup for group C′ to new members in target

subgroup by means of the Helmert parameters derived

from group C. Then, we will compute the difference in

the spatial coordinates between target keypoints in group

C and new target keypoints in group C′. When this differ-

ence is smaller than a threshold, Th, two groups are

merged and then Helmert parameters derived from group

C are updated. Based on our experimental test, we

assigned the threshold value, Th = 10n, where n denotes

the number of keypoints in the group.

Next, we use a rectangular search range, which is de-

fined as (xmax, ymax, xmin, ymin) belonging to the lower

right and upper left coordinates of keypoints in source

subgroup, to perform group merging. The target sub-

group also creates a rectangular search range. If there is

no keypoint presented in the rectangular search range,

this rectangular range will expand the search range to

find other clusters until one of the terminal conditions is

satisfied. The terminal conditions are defined as follows.

1. The number of the extension (Ne) has reached a

value of five, and there is no cluster that can be

combined. Here, the range of each extension (Re) is

multiplied the rectangle searching region by a factor

of 1.25.

2. The rectangle search region (Sr) is greater than 0.125

times of size of a host image.

Table 4 Detected results for CMHD2 dataset under rotation

Method Recall (%) Precision (%) FPR (%) F1 (%)

Proposed 97.06 98.81 1.17 97.93

Amerini et al. [13] 79.89 96.58 2.83 87.45

Silva et al. [16] 66.59 98.89 0.75 79.59

Pun et al. [18] 86.04 97.84 1.90 91.56

Li et al. [19] 63.89 57.58 47.06 60.57

Table 5 Detected results for D1 dataset under rotation

Method Recall (%) Precision (%) FPR (%) F1 (%)

Proposed 92.19 97.36 1.12 94.70

Amerini et al. [13] 79.20 91.11 0.47 84.74

Silva et al. [16] 55.47 79.34 0.71 65.29

Pun et al. [18] 53.84 86.17 0.57 66.27

Li et al. [19] 24.08 25.08 52.23 24.57

Fig. 10 The precision and recall values under the different rotation angles compared to our proposed method, Amerini et al.’s method, Silva et

al.’s method, Pun et al.’s method, and Li et al. method
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Repeat the above steps until no clusters can be com-

bined. Finally, we remove the invalid clusters that in-

volve less than five keypoints.

After performing the merging process, some clusters

can be integrated into a larger cluster, as shown in Fig. 5.

3.3 Forgery regions localization and refining

We use zero mean normalized cross-correlation (ZNCC)

[32] to measure the similarity between source regions and

target regions. Assuming that a Helmert transform matrix,

H, exists, the relationships between source group and target

group are expressed as [13]. Let a = [x1 y1]
T be a point in

the source cluster and b ¼ x2 y2½ �T be a point in the tar-

get cluster, then a =H × b, and since H is invertible, b =

H−1× a. Combining these relationships and the ZNCC

measurement, the forgery region can be further localized.

First, if the number of keypoints in a group is less than a

threshold (Tk), we will regard this group as unimportant

and it will be discarded. The source subgroup with the

matching points for each cluster is labeled as image I, and

all the pixel points (x, y) in image I are converted to the

new locations (x', y') in image W by using the Helmert pa-

rameters defined as Eq. (1). Therefore, a new image W of

the same size is produced. Then, we create a ZNCC binary

map using Eq. (3).

In order to obtain the similarity and distance between

image I and imageW, we compute the ZNCC. In addition,

we also define a correlation map to record the similarity

between image I and image W. The ZNCC is defined as

ZNCC x; yð Þ ¼

X

n

j¼−n

X

m

i¼−m

I xþ i; yþ jð Þ−I
� �

W x þ i; yþ jð Þ−W
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

j¼−n

X

m

i¼−m

I xþ i; yþ jð Þ−I
� �2

X

n−1

j¼0

X

m−1

i¼0

W xþ i; yþ jð Þ−W
� �2

v

u

u

t

;

ð3Þ

where I(x, y) and W(x, y) are the gray-level values at pixel

(x, y) in I and W respectively, I and W are the mean

gray-level values around pixel (x, y) in the I and W, re-

spectively, and m and n are the size of neighboring area

centered at pixel (x, y). This distance range is the interval

[− 1, 1] (1 indicates a perfect match, and 0 for “no correl-

ation”). Figure 6 shows a profile for the transformation

from image I to image W by using (1) and the ZNCC

value (correlation map) by using (3). (x,y) is one of pixels

in Image I, and m and n are set to 3.

Then, we apply a Gaussian filter to the correlation map

in order to reduce the noisy pixels, and a binary correlation

map is given by means of a threshold (Tb). If the ZNCC

value for point (x, y) is greater than a threshold, this point

(x, y) is assigned as true; otherwise, this point is assigned as

false. Next, we will perform connected-component labeling

on this binary map. This threshold, Tb, is set to 0.55, which

is a value obtained through experimentation.

If the largest region involved in connected-component

labeling touches the border of the binary map, it means

that the range of this region is bigger than the range of the

binary map, as shown in Fig. 7a. The top and right sec-

tions of this region touch the borders. Therefore, this re-

gion will be expanded in a rectangular interval along the

touched border. The steps described above are repeated

until the largest region does not touch the border, as

shown in Fig. 7b. Based on an empirical value obtained in

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Fig. 11 Detection results under rotation. a Forgery images. b

Ground truth. c Our proposed. d Amerini et al. [13]. e Silva et al. [16].

f Pun et al. [18]. g Li et al. [19]
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our experiments, the expanded range (Er) is multiplied the

width or height of this sub-image by a factor of 1.25 de-

pending on the direction of touching border. All points in

image I are finished, the content of the binary correlation

map is filled to the ZNCC binary map corresponding to

the location. For instance, Fig. 8a shows the ZNCC binary

map. Next, we combine the SLIC superpixel segmentation

described in Section 2.1 to achieve the forgery region

localization.

The host image is segmented into many sub-regions by

the SLIC algorithm. In the SLIC algorithm, the smaller the

size of a superpixel (S), the greater the number of superpix-

els present. Moreover, very few true edges are missed. In

contrast to increasing size, the number of superpixels is re-

duced, and many true edges will be missed. Therefore, in

our approach, the size of a superpixel (S) is assigned to 300

pixels by experiments. For each sub-region, we will count

the number of pixels that are considered true in the ZNCC

binary map. If this number (Nd) is greater than a threshold

in the relative sub-region, all the pixels in this sub-region

are labeled as a detection map that serves as a part of for-

gery regions, as shown in green color areas of Fig. 8d. After-

wards, we label the connected components as the detection

map, and delete the regions that have an area less than

0.1%. Finally, each of the remaining regions will use the

convex-hull morphologic method to connect together in

the binary detection map. Figure 8 illustrates the profile of

the detection map. After performing our proposed method,

we can efficiently detect and localize the forgery regions

more precisely.

4 Experimental results and discussion

To verify the performance of the proposed image foren-

sics, the experimental results are compared to Amerini et

al. [13], Silva et al. [16], Pun et al. [18], and Li et al. [19] to

Table 8 Detected results for CMH4 dataset under resizing and

rotation

Method Recall (%) Precision (%) FPR (%) F1 (%)

Proposed 87.08 97.10 2.26 91.82

Amerini et al. [13] 76.80 93.55 5.30 84.35

Silva et al. [16] 63.72 97.64 1.54 77.11

Pun et al. [18] 71.56 97.96 1.49 82.7

Li et al. [19] 63.33 56.89 47.98 59.94

 (a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Fig. 12 Detection results under resizing. a Forgery images. b

Ground truth. c Our proposed. d Amerini et al. [13]. e Silva et al. [16].

f Pun et al. [18]. g Li et al. [19]

Table 7 Detected results for D2 dataset under resizing

Method Recall (%) Precision (%) FPR (%) F1 (%)

Proposed 79.09 86.76 0.99 82.75

Amerini et al. [13] 61.58 72.27 0.47 66.50

Silva et al. [16] 37.31 60.89 0.52 46.27

Pun et al. [18] 38.93 72.10 0.40 50.56

Li et al. [19] 26.82 28.17 52.25 27.48

Table 6 Detected results for CMH3 dataset under resizing

Method Recall (%) Precision (%) FPR (%) F1 (%)

Proposed 86.21 97.53 2.18 91.52

Amerini et al. [13] 77.61 96.89 2.49 86.18

Silva et al. [16] 62.30 97.04 1.90 75.88

Pun et al. [18] 75.14 96.70 2.56 84.57

Li et al. [19] 67.07 70.71 27.78 68.84
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perform the forgeries, including copying and translations,

scaling, rotation, and compression.

4.1 Experimental setup and datasets

Table 1 illustrates the parameters presented in the ex-

periments. According to our experiments, we system-

atically vary the related thresholds within 50% to

200% and observe performance changes; afterwards,

they are given, and some thresholds are derived from

the literature [16, 31]. However, the assignment of

these parameter values can be modified by the user

based on the data. The experiments were imple-

mented in Microsoft Visual Studio C#, on an Intel®

core i5–4570@ 3.2 GHz computer with 4 GB of

RAM running a Windows 7 64 bits platform.

We used nine public datasets for our demonstra-

tion. CMH1–4 datasets and a compressed dataset

(CMH5) constructed by [16] contain sizes varying

from 845 × 634 pixels (the smallest) to 1296 × 975

pixels (the biggest) and are stored in the PNG format.

The D0–3 datasets constructed by [17] contain sizes of

1000 × 700 pixels or 700 × 1000 pixels and stored in the

BMP format. The CMH series datasets depict as follows.

� CMH1: 23 images that were only copied and then

translated.

� CMH2: 25 images with a rotation of the duplicated

region, the orientations are in the range of [−90 ,

180 ].

� CHM3: 26 images with resizing of the duplicated

region; the scaling range is between 80 and 154%.

� CHM4: 34 images with rotation and resizing entirely.

� CMH5: 108 images that are derived from 36

randomly selected images from the CMH1–4

datasets and compressed with a quality factor of

70%, 80%, 90%.

The D0–3 datasets depict as follows.

� D0 dataset: 50 images that are copied and

translated.

� D1 dataset: 600 images with a rotation of the

duplicated region. This dataset is further subdivided

into subsets. The first subset, D1.1, is created by

rotating the copies with 11 different types of

rotation around the angle zero in the range of

[−25 , 25 ] with a step of 5 . The second subset,

D1.2, is created by rotating the copies with 12

different types in the range of [0 , 360 ] with a

step of 30 . The third subset, D1.3, is created by

rotating the copies with 11 different types in the

range of [−5 , 5 ] with a step of 1

� D2 dataset: 320 images with resizing of the

copied region. This dataset is subdivided into two

subsets. The D2.1 subset is obtained by scaling

the copies with 8 different scaling factors in the

range of [0.25, 2] with a step of 0.25. The D2.2

subset is scaled by 11 scaling factors in the range

of [0.75, 1.25] with a step of 0.05.

� D3 dataset: 50 original images without tampering to

verify the forensic ability between tampered and

untampered images.

Every image in every dataset has its own binary ground

truth displaying the original and duplicated regions in white

Fig. 13 The precision and recall values under the different resizing ranges compared to our proposed method, and the methods of Amerini et

al., Silva et al., Pun et al., and Li et al.
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color. And the tampered region within the datasets is of a

single region copied one time and stayed in the same image.

4.2 Performance evaluation

For performance evaluation, we used the precision,

recall, F1 [8, 18], and the false positive rate (FPR)

[16] to demonstrate our proposed method. These

evaluation criteria are expressed as:

� Precision: represents the probability that the

detected regions are truly the forgery regions, as

expressed in (4).

precision ¼
TPj j

Ωretrievedj j
ð4Þ

where |Ωretrieved| denotes the number of the detected

forgery pixels by our proposed method from the data-

sets, |TP| (true positive) represents the number of cor-

rectly detected forged pixels labeled as forged regions in

the ground truth.

� Recall: represents the probability that the forgery

regions are detected, as expressed in (5).

recall ¼
TPj j

Ωrelevantj j
: ð5Þ

where |Ωrelevant| represents the ground truth forgery re-

gions of the datasets.

� F1: this score combines both the precision and recall

into a signal value. It is calculated by (6).

F1 ¼ 2 �
precision � recall

precision þ recall
: ð6Þ

� FPR: indicates the percentage of incorrectly located

tampering regions. It is defined as

FPR ¼
FPj j

Ωnormalj j
; ð7Þ

where |Ωnormal| represents the number of pixels that do

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Fig. 14 Detection results under resizing and rotation. a Forgery

images. b Ground truth. c Our proposed. d Amerini et al. [13]. e Silva

et al. [16]. f Pun et al. [18]. g Li et al. [19]

Table 9 Detected results for JPEG compression

Method Recall (%) Precision (%) FPR (%) F1 (%)

Proposed 68.51 78.45 1.22 73.14

Amerini et al. [13] 45.59 61.70 3.65 52.44

Silva et al. [16] 31.19 64.54 0.65 42.06

Pun et al. [18] 45.76 69.69 2.00 55.24

Li et al. [19] 31.35 31.16 48.80 31.25
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not belong to the tampering regions in the ground truth,

|FP| (false positive) denotes the number of wrongly de-

tected as tampering pixels by our proposed method.

Because the datasets have been tampered with in differ-

ent ways, they are not consistent in our experiments, and

therefore we compute the average values for these evalu-

ation criteria in the dataset to verify the performance. As

indicated above, the precision is the probability that a de-

tected forgery is truly a forgery, and the recall is the prob-

ability that a forgery image is detected. Generally, a higher

precision and a higher recall represent better performance.

5 Results

Regarding the different forgery images created by copy-

ing and translation, scaling, rotation, and compression,

the experimental results are presented and discussed in

the following section.

5.1 Detection results for copying and translation

The forgery images are simply copied and moved opera-

tions, such as the CMH1 and D0 datasets. Tables 2 and 3

illustrate the detected results compared to our proposed

method and the methods of Amerini et al., Silva et al.,

Pun et al., and Li et al.. Figure 9 presents several detection

results for simple copying.

5.2 Detection results for rotation

Tables 4 and 5 illustrate the detection results under rota-

tion forgery for the CMH2 and D1 datasets. Figure 10

presents the precision/recall results under rotation with

the different angles.

As shown in Table 4, it is evident that our proposed

method can achieve a higher precision (98.81%), and at

the same time, can gain a much better recall (97.06%)

and F1 (97.73%). From Table 5, it is obvious that our ap-

proach can achieve precision (97.36%), recall (92.18%),

and F1 (94.70%). The results obtained by our proposed

method are much better comparative methods. Figure 11

shows some detection results for rotation tampering.

As presented above, our proposed method can achieve

much better detection results under rotation forgery.

5.3 Detection results for resizing/scaling and rotation

Tables 6 and 7 present a comparison of results under resiz-

ing forgery for the CMH3 and D2 datasets. Table 8 illus-

trates the detection results under resizing and rotation

operations using the CMH4 dataset. Figure 12 presents sev-

eral detection results for resizing forgeries.

Regarding the detection results under resizing forgery,

as shown in Tables 6 and 7, it is obvious that the preci-

sion and recall of our proposed method are superior to

comparable methods. The precision value can maintain

86.76% and the recall value can maintain 79.09%. Fig-

ure 13 illustrates the precision/recall results under the

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Fig. 15 Detection results under compression (CMH5 dataset). a

Forgery images. b Ground truth. c Our proposed. d Amerini et al.

[13]. e Silva et al. [16]. f Pun et al. [18]. g Li et al. [19]

Table 10 Detected results for D3 dataset

Method Proposed Amerini et al.
[13]

Silva et al.
[16]

Pun et al.
[18]

Li et al.
[19]

FPR (%) 0.05 0.12 0.39 2.34 48.97
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different scaling ranges. In addition, for resizing and ro-

tation forgeries, we can still keep a higher precision and

the best recall, compared to the methods used by Amer-

ini et al., Silva et al., Pun et al., and Li et al., as shown in

Table 8. Figure 14 shows the detection results under re-

sizing and rotation forgeries.

5.4 Detection results for compression

We used a CMH5 [16] to perform the forgery detection.

A comparison of the results is shown in Table 9 and

Fig. 15.

From Table 9, it is obvious that our proposed results

can achieve the best precision and recall results, and are

superior than that of the methods of Amerini et al., Silva

et al., Pun et al., and Li et al.

In order to estimate the robustness of our approach

against false positive detection, we used an untampered

dataset (D3 dataset) to verify our approach. Table 10 il-

lustrates the FPR result. From Table 10, the FPR value of

our proposed method is the lowest compared to other

methods. Figure 16 shows some detection results under

un-tampering images. From these results, it is obvious

that our proposed method can efficiently decide whether

the host image has been tampered with or not.

5.5 Comparison of execution time

In this section, execution times are illustrated for both

datasets. The average execution times are illustrated in

Table 11. Generally, all methods need more time on

both datasets due to the high resolution of images, ex-

cept Silva et al. [16]. This is because the method used by

Silva et al. utilized the V channel of the HSV color space

to extract a low number of SURF keypoints. Owing to

the ZNCC used in our proposed method, the execution

time of our proposed method is slightly slower than that

of the method used by Pun et al.

In summary, the proposed method can achieve impres-

sive accuracy in a reasonable time.

6 Discussions

The experimental results have been presented above. In

summary, for CMH1–4 datasets including copying and

translations, rotation, resizing/scaling, resizing, and rota-

tion, the precision values are greater than 97.1%, and the

recall values achieved at least 86.21%. The global perform-

ance of the precision/recall values is superior to the

methods used by Amerini et al., Silva et al., Pun et al., and

Li et al., as shown in Tables 2, 4, 6, and 8. For the D0–2

datasets, the precision values can achieve 97.36% (the

highest) and 86.76% (the lowest) and the recall values can

achieve 92.18% (the highest) and 79.09% (the lowest), as

shown in Tables 3, 5, and 7. It is clear that the detection

results for the D0–2 datasets obtained by our approach

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Fig. 16 Detection results under untampered. a Forgery images. b

Our proposed. c Amerini et al. [13]. d Silva et al. [16]. e Pun et al.

[18]. f Li et al. [19]

Table 11 Average execution time per image in second

CMH series D series

Our proposed 261.29 263.75

Amerini et al. [13] 257.95 277.72

Silva et al. [16] 63.53 58.43

Pun et al. [18] 204.84 199.18

Li et al. [19] 428.99 381.77
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are superior to that obtained by the methods of Amerini

et al., Silva et al., Pun et al., and Li et al. At the same time,

for compression forgery, Fig. 15 and Table 9 show the re-

sults compared to the other methods. For robustness of

false positive detection, our approach has sufficient ro-

bustness to resist the false detection, and Fig. 16 and

Table 10 present the results. For execution time, although

our approach is not the fastest, it is acceptable. For rota-

tion tampering, our proposed method can detect copy-

move forgery regions with a large rotation. Evidently, our

proposed system works well for image forensics under ro-

tation, scaling, and compression forgery attacks, compared

to other methods.

7 Conclusions

In this study, the major strategy of our proposed algo-

rithm focuses on a single tampered region detection.

And we have proposed keypoint-based image forensics

for copy-move forgery images based on a Helmert trans-

formation and SLIC superpixel segmentation. Compared

to the sliding window approach, the keypoint-based

technique can be applied at a lower computational cost

because of the significantly reduced number of points

required. In addition, we use the Helmert transformation

to estimate the geometric relationships between match-

ing pairs and to work the merging clusters. On the other

hand, we use an SLIC algorithm to localize the tamper-

ing regions more precisely. Based on these strategies, we

can keep much more important information to conduct

image forensics.

As previously presented in the experiments, it is clear

that the proposed method is highly robust against many

kinds of forged images, such as geometric transformations

(scaling, rotation) and JPEG compression. However, the

current method is not robust against symmetric, recur-

ring, and smooth patterns for tampering region. Progress

in detecting symmetric, recurring, smooth forgery images,

and tampering region copied multiple times will be a

major focus in the future.
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