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probes in the CNV and the size of the CNV, with the highest 
positive predicted rates in CNVs of at least 500 kb and at least 
100 probes. Our analysis also indicates that identifying CNVs 
reported by multiple programs can greatly improve the re-
producibility rate and the positive predicted rate.  Conclu-
sion:  Our methods can be used by investigators to identify 
CNVs in genome-wide data with greater reliability. 

 Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 Copy number variations (CNVs) are duplications or 
deletions of a particular segment of an individual’s ge-
nome. Over the past 10 years, evidence has accumulated 
that CNVs play an important role in disease  [1–7] . It is 
hypothesized that a CNV changes the expression level of 
genes in or near those regions, leading to various pheno-
types as well as diseases  [8] . Therefore, CNVs constitute 
a major source of interindividual variation that could 
contribute to common disorders and complex traits  [9] . 
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 Abstract 
  Background/Aim:  Copy number variations (CNVs) are a ma-
jor source of alterations among individuals and are a poten-
tial risk factor in many diseases. Numerous diseases have 
been linked to deletions and duplications of these chromo-
somal segments. Data from genome-wide association stud-
ies and other microarrays may be used to identify CNVs by 
several different computer programs, but the reliability of 
the results has been questioned.  Methods:  To help research-
ers reduce the number of false-positive CNVs that need to be 
followed up with laboratory testing, we evaluated the rela-
tive performance of CNVPartition, PennCNV and QuantiSNP, 
and developed a statistical method for estimating sensitivity 
and positive predictive values of CNV calls and tested it on 
96 duplicate samples in our dataset.  Results:  We found that 
the positive predictive rate increases with the number of 
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The advent of genome-wide association studies (GWASs) 
has led to the possibility of discovering CNVs across the 
genome. So far, many CNV detection programs have 
been developed for this purpose, including CNVParti-
tion, PennCNV, and QuantiSNP.

  However, despite the obvious scientific importance of 
understanding the role that CNVs play in human disease, 
there is some controversy regarding the use of GWAS 
data to detect CNVs. First, a recent study suggested that 
disease-related CNVs detected from GWAS data are well 
tagged by SNPs, and, therefore, CNVs do not add further 
information  [10] . Second, there is evidence that different 
methods for identifying CNVs from GWAS data report 
different results, even when applied to the same array 
data  [11] .

  To address the first controversy, although many com-
mon CNVs that are well typed in a microarray can be 
tagged by SNPs  [10] , there are at least three reasons why 
testing the association between a trait and CNVs remains 
important. First, CNVs may be the true causative variant 
of the trait, and will therefore show a stronger association 
than a SNP tag. For example, the copy number of the sal-
ivary amylase gene ( AMY1 ) is positively correlated with 
the salivary amylase protein level  [8] . Second, the number 
of common CNV loci is limited, and therefore, the typical 
GWAS significance level of p  !  5  !  10 –8  is overly conser-
vative  [12] . After adjusting for multiple tests in GWAS, 
SNP-tagging-associated CNVs are unlikely to be statisti-
cally significant at this stringent threshold, although they 
would be significant in a setting where only CNVs were 
tested. Third, de novo CNVs are not well tagged by SNPs. 
In addition, tagging a recurrent CNV by multiple SNPs 
demands heavy computation. Thus, despite the potential 
for some CNVs to be tagged by SNPs, many researchers 
continue to look for CNVs in GWAS data  [13] .

  The second controversy with localizing CNVs is the 
imprecision of estimation. Methodologies for measure-
ment of CNVs in GWAS microarrays continue to evolve, 
leading to the varied results mentioned above. Currently, 
most methods that make use of SNP microarray data to 
detect CNVs depend on log R ratio and B-allele frequen-
cy from microarray data. One simple and straightfor-
ward method draws log R ratio and B-allele frequency as 
the y-axis and chromosome position as the x-axis. When 
a deletion or duplication occurs, the pattern of  log R ratio 
and B-allele frequency will change accordingly  [14] . How-
ever, this method requires extremely high data quality 
and necessitates that investigators spot pattern changes. 
Subsequently, more sophisticated methods of identifying 
CNVs have attempted to adjust undesirable microarray 

artifacts, such as genomic waves  [15] , and build a math-
ematical model to detect CNVs from those data. Numer-
ous programs have been written for this purpose. The 
most widely used are CNVPartition (http://www.illu-
mina.com/software/illumina_connect.ilmn), PennCNV 
 [16]  and QuantiSNP  [17] . Although all 3 programs use 
standard statistics from the observed data to estimate the 
location of CNVs, they use different iterative mathemati-
cal methods. CNVPartition uses a likelihood-based algo-
rithm, PennCNV implements a hidden Markov model, 
and QuantiSNP uses an objective Bayes hidden-Markov 
model. A detailed comparison of these different algo-
rithms can be found in the study by Dellinger et al.  [11] . 
These 3 programs have often helped to find putative
disease-related CNVs  [18–22] . Moreover, several recent 
studies have used SNP microarray data to study the char-
acteristics of CNVs  [14, 23] . However, there is evidence 
that the varied algorithms identify different CNVs even 
with the same data, questioning the reliability of using 
these programs to detect CNVs  [11] .

  Although laboratory confirmation is necessary to val-
idate CNVs derived from SNP array platforms  [2, 12, 19–
22] , it is not economically feasible to validate all CNVs in 
a genome-wide scale, especially for the purpose of esti-
mating measurement accuracy. Here, using duplicates in 
a GWAS sample, we develop an algorithm to better eval-
uate the accuracy of CNVs predicted by several CNV 
calling algorithms for GWAS data. Whether a CNV that 
is called the first time can be confirmed the second time 
is restricted by sensitivity and specificity. This gives some 
insight about CNV calling accuracy to investigators 
wishing to evaluate CNVs found in SNP microarray data 
that might be associated with disease.

  Methods 

 Data and Quality Control 
 The dataset was collected as part of the Study of Addiction: 

Genetics and Environment (SAGE)  [24] . SAGE is part of the Gene 
Environment Association Studies (GENEVA) project (http://ge-
nevastudy.org/)  [13] . All participants in SAGE provided written 
informed consent for genetic studies and agreed to share their 
DNA and phenotypic information for research purposes. The in-
stitutional review boards at all data collection sites granted ap-
proval for the use of the data. In this study, all samples were de-
identified and only subjects who consented to health research 
were included.

  Samples were genotyped on the Illumina Human 1M array at 
the Center for Inherited Disease Research at the Johns Hopkins 
University. The Illumina 1M array has a total of 1,072,820 probes, 
of which 23,812 are ‘intensity-only’ probes. Data cleaning proce-
dures included using HapMap controls, detection of gender mis-
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annotation and chromosomal anomalies, cryptic relatedness, 
population structure, batch effects, and Mendelian and duplica-
tion error detection  [24, 25]  .  In this study, 107 study subjects were 
genotyped in duplicate on the Illumina 1M array. These subjects 
were selected randomly from the study sample for the purpose of 
assessing genotyping accuracy. The mean of the SNP calling dis-
cordance rate between the duplicates was 0.02%. These duplicates 
were further compared against each other to determine the accu-
racy of CNV calling.

  CNV Calling 
 We used 3 common programs to call CNVs: CNVPartition, 

PennCNV, and QuantiSNP. We also implemented a procedure to 
adjust genomic waves when we called CNVs by PennCNV and 
QuantiSNP  [15] . Both PennCNV and QuantiSNP report data 
quality control measures. In order to pass the quality control, sub-
jects and their replication need to be considered as good quality 
by both PennCNV and QuantiSNP. After quality control, 96 sub-
jects and their replications passed these filters. CNVPartition 
does not provide any quality control information for individual 
subjects. We also removed all CNV calls with log Bayes factor  ! 10, 
which is recommended by QuantiSNP (see online suppl. materi-
als for more details, www.karger.com/doi/10.1159/000324683).

  Each program also reports a confidence score based on differ-
ent mathematical models. The confidence score is a positive num-
ber representing the likelihood that there is a CNV at that region, 
with a higher number representing a greater probability of a CNV 
in that region. The confidence scores for the 3 programs are cal-
culated differently and are on different scales. CNVPartition uses 
a likelihood-based method to compute the confidence score 
(http://www.illumina.com/software/illumina_connect.ilmn). 
QuantiSNP computes a Bayes factor by comparing the evidence 
of the region containing deletions or duplications to that having 
2 copies, and reports the log Bayes factor as the confidence  [17] . 
PennCNV reports an experimental confidence score that is not 
well documented  [16] . These confidence scores allow users to fil-
ter out CNV regions that are likely to be false positives. Due to 
variability in the confidence score distributed among the 3 pro-
grams, we converted the confidence scores within each program 
into percentiles and used them as covariates for modeling.

  Comparative Statistics 
 These CNV calls are then compared against each other among 

duplicate samples. Concordance is defined as the percentage of 
regions that have been consistent in the existence or absence of 
CNVs between duplicate samples. However, this measure is mis-
leading, because a large percentage agreement is the chance agree-
ment of negatives.

  In addition to the concordance rate, we present the reproduc-
ibility rate. We define a CNV as being reproduced when the per-
centage of overlap of these 2 CNVs is  1 30% of the region which 
the 2 CNVs cover. The reproducibility rate is defined as the per-
centage of CNVs that can be reproduced at time point 2 among 
CNVs that are discovered at time point 1.

  Statistical Modeling 
 Whether a CNV discovered at the 1st time point can be con-

firmed at the 2nd time point is restricted by sensitivity and spec-
ificity. In turn, this information can be used to estimate sensitiv-
ity and specificity. Using a model derived in previous work  [26–

28] , we calculated CNV sensitivity and a positive predicted rate 
with logistic regression parameters derived from CNV character-
istics. All CNVs called by any program or  1 1 program were used 
to fit the model. We also added the consistency rate – the number 
of programs reporting a CNV at a particular locus – as a covari-
ate. The mathematical model allows us to estimate the cumulative 
probability of being true for a set of CNVs with similar character-
istics, and thus avoids the issue of testing whether a particular 
CNV is true or not.

  Based on this model, we estimated the probability that an ob-
served CNV is a true positive, and further the sensitivity for dif-
ferent methods. Duplications and deletions were modeled sepa-
rately. The percentile of confidence scores from CNVPartition, 
PennCNV and QuantiSNP, as well as the consistency rate, were 
all significant for duplications or deletions, and thus were includ-
ed in our model (see online suppl. materials for more details).

  Model Validation 
 Based on our model, we were able to calculate the positive pre-

dicted rate for each CNV. We grouped CNVs with similar positive 
predicted rates together and compared the positive predicted rate 
of each group against the proportion of CNVs from that group 
that can be reproduced. We reported a CNV as reproduced in du-
plicate if the CNV detected by the 2 independent genotyping 
methods shares  1 30% of the total coverage. We were able to obtain 
agreement between theoretical positive predicted rate and exper-
imental reproducibility in duplicates (online suppl. fig. S1).

  We also randomly selected 90% of replicate pairs, and ran-
domly assigned status as discovery or replication, and then we 
calculated the positive predicted rate for ‘any of 3 programs’. We 
repeated the process 100 times. The positive predicted rate was 
stable across many repeats (online suppl. fig. S2), indicating that 
our result is not subject to serious random fluctuations.

  Results 

 We tested the concordance rate of CNV calls from 
each program in duplicate samples. The concordance 
rates for the 3 programs range from 98.0 to 99.3% ( ta-
ble 1 ). However, concordance rate is not a good indicator 
of CNV calling reliability, because the concordance rate 
also includes the agreement of the absence of CNVs. 
Similar to SNPs with very low minor allele frequencies 
 [29] , a large portion of agreement is due to the chance 
agreement of negatives. Because of this, we believe that 
the reproducibility rate is a more appropriate measure for 
CNV calling reliability. We reported a CNV as repro-
duced in the duplicate if the CNV detected by the 2 in-
dependent genotyping methods shares  1 30% of the total 
coverage. The reproducibility among deletions ranged 
from 59 to 62%, and the reproducibility among duplica-
tions ranged from 43 to 57% ( table 1 ). This highlights the 
variation between methods and the low reliability of all 
3 methods.
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  We then estimated the reproducibility rate, the posi-
tive predicted rate and the sensitivity for each CNV call-
ing method ( table 2 ). As expected, deletions have higher 
reproducibility rates, higher positive predictive rates and 
better sensitivity. For both duplications and deletions, the 
method that requires CNVs to be reported by all 3 pro-
grams has the highest reproducibility rate and the highest 
positive predicted rate.

  False CNV calling may be caused by intensity varia-
tion (noise) from the microarray. A short CNV segment 
with few probes is particularly vulnerable to noise. Be-
cause of this, we estimated both the reproducibility rate 
and the positive predicted rate  R  +  within four subcatego-
ries for each method based upon the number of probes 
contained within the CNV ( table 3 ). Some of these sub-
categories are often used in the literature as thresholds for 
quality controls  [16] . Not surprisingly, a higher positive 
predicted rate  R  +    was seen when there were more probes 
in a single CNV. We also tested the relationship between 
the size of CNV segments and positive predicted rate  R  +  
(online suppl. table S1). As expected, the result was simi-
lar to  table  3 , because a larger CNV segment typically 
contains more probes.

  The primary purpose of this study was to determine 
the reliability of CNVs found in microarrays, such as in 
GWAS. We found that if a CNV is reported by all 3  pro-
grams, it has the highest positive predicted rate. More-
over, in a microarray, probes are not always evenly spaced. 
We hypothesized that the combination of the number of 
probes and the size would boost the positive predicted 
rate. We tested this hypothesis using both the number of 
probes and the size as filters. The results suggest that a 
minimum of 10 probes and 10-kb pairs are necessary to 
reach a positive predicted rate  1 80% ( table 4 ).

  Discussion 

 Data from GWASs can be used to estimate locations of 
CNVs and their potential effects on disease. There is dis-
turbing evidence that calling CNVs from SNP microar-
ray data is not reliable  [11] . For this reason, investigators 
are interested in quantifying the reliability. To our knowl-
edge, this is the first study that compares CNV calls from 
a considerable number of duplicate samples.

Table 1.  Concordance and reproducibility rates for CNVPartition, PennCNV and QuantiSNP

CNVPartition PennCNV Q uantiSNP

concordance reproducibilitya concordance reproducibilityb concor dance reproducibilityc

Duplication 99.2% 54% 98.0% 41% 98.9% 48%
Deletion 99.3% 61% 98.6% 62% 98.9% 63%

a R eproduced by CNVPartition. b Reproduced by PennCNV. c Reproduced by QuantiSNP.

Table 2.  Positive predicted rate R+, sensitivity p’ and total number of CNVs for different CNV calling methods

Method Duplication D eletion

p’ R+ reproduci-
bility ratea

total 
CNVs, n

p’ R+ reproduci-
bility ratea

total 
CNVs, n

CNVPartition 0.77 0.69 0.63 849 0.75 0.78 0.77 2,227
PennCNV 0.92 0.46 0.41 2,001 0.94 0.65 0.64 2,348
QuantiSNP 0.83 0.58 0.55 1,177 0.91 0.69 0.68 4,171
Any of 3 programs 0.94 0.43 0.40 2,199 0.96 0.59 0.59 5,767
Any 2 of 3 programs 0.82 0.61 0.56 1,169 0.88 0.76 0.75 3,565
All 3 programs 0.75 0.79 0.73 642 0.72 0.89 0.85 1,816

a  Reproduced by any one of the 3 programs (CNVPartition, PennCNV, or QuantiSNP).
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  Although experimental validation is necessary for 
CNV association studies, it is both demanding and cost-
ly and should be limited to regions most likely to contain 
true CNVs associated with disease. In this study, we in-
troduced a convenient way to identify potential false-pos-
itive CNVs on a genome-wide scale, using an estimated 
positive predicted rate for CNV callings. Our results con-
firmed that combining CNVs from different programs is 
one way to improve the positive predicted rate.

  In this study, we found that 10 probes and 10 kb in size 
maximize CNV calling quality. We also discovered that 
deletions are much easier to detect than duplications. The 
reason is that when calling genotypes from the microar-
ray, 1 deletion represents a 50% decrease in signal inten-
sity, rather than the 33% increase caused by 1 duplication. 
In addition, B-allele frequencies – a reported measure 
from microarrays – of those SNPs at a particular deletion 
region usually take the value of 0 or 100%, leading to a 
distinctive pattern that is relatively easy to spot.

  Different methods for estimating the locations of 
CNVs use different mathematical models. Both PennC-
NV and QuantiSNP use hidden Markov models  [16, 17] , 
while CNVPartition estimates model parameters using 

bivariate Gaussian distributions. Each method has its 
own strengths, but all also have relatively high frequen-
cies of false-positive CNVs. The ‘3 of 3’ method, however, 
minimizes false positives.

  When 3 different programs call the same CNV, differ-
ent boundaries may be reported, leading to a quandary 
on how to categorize this particular CNV. To resolve this, 
we included all CNVs for one category if a CNV reported 
by any program satisfies the category. Therefore, the total 
number of CNVs for ‘3 of 3 programs’ may be higher than 
the total number of CNVs reported by each program 
alone.

  Moreover, the reproducibility in our paper is defined 
either as being reproduced by itself or being reproduced 
by any of the 3 algorithms. The exact definition is indi-
cated in  tables 1  and  2 . The reason for this is to address 
both self-reproducibility and across-the-spectrum repro-
ducibility. In  table  1 , we adopted ‘being reproduced by 
itself ’ as the criterion in order to show self-reproducibil-
ity. That is because self-reproducibility is a good indicator 
of reliability when the truth is not known, and also a good 
point to start with. The fact that a program cannot even 
reproduce its result is surely a good sign of poor reliabil-

Table 3.  The positive predicted rate R+ within subcategories defined by the number of probes (from <10 to ≥100)

Duplication D eletion

<10 10–50 50–100 6100 <1 0 10–50 50–100 6100

CNVPartition 0.54 (150) 0.69 (486) 0.77 (143) 0.88 (84) 0.70 (1,176) 0.85 (974) 0.87 (82) 0.88 (54)
PennCNV 0.29 (1,009) 0.56 (930) 0.88 (117) 0.95 (39) 0.58 (3,433) 0.81 (1,334) 0.95 (74) 0.99 (45)
QuantiSNP 0.42 (228) 0.57 (757) 0.70 (163) 0.84 (77) 0.63 (2,411) 0.74 (1,644) 0.74 (178) 0.89 (81)
All 3 programs 0.65 (122) 0.77 (461) 0.87 (157) 0.91 (83) 0.84 (993) 0.92 (1,013) 0.96 (101) 0.98 (67)

The  total number of CNVs is indicated in parentheses. In calculating the total number of CNVs, we included a CNV for a certain 
category if the report from any one of the specified programs satisfied this category.

Table 4.  The positive predicted rate R+ for the ‘3 of 3 method’

Probes Duplication size D eletion size

<1 kb 1–10 kb 10–100 kb 100–500 kb 6500 kb <1 k b 1–10 kb 10–100 kb 100–500 kb 6500 kb

<10 0.58 (3) 0.68 (39) 0.64 (81) 0.62 (6) – 0.80 (47) 0.83 (595) 0.84 (426) 0.76 (9) –
10–50 – 0.72 (20) 0.79 (250) 0.74 (239) 0.72 (20) – 0.91 (144) 0.93 (731) 0.91 (247) 0.86 (24)
50–100 – – 0.89 (19) 0.91 (73) 0.82 (74) – – 0.95 (39) 0.98 (45) 0.96 (24)

>100 – – 0.79 (2) 0.96 (29) 0.90 (56) – – 0.99 (3) 0.99 (32) 0.97 (37)

The  total number of CNVs is indicated in parentheses. In calculating the total number of CNVs, we included a CNV for a certain 
category if the report from any one of the specified programs satisfied this category.
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ity. In  table  2 , we want to compare the reproducibility 
among the 3 algorithms and the 3 combinational meth-
ods, therefore, a consistent criterion, which is across-the-
spectrum reproducibility for this table, is needed in order 
to make the comparison fair and meaningful.

  The sensitivity here is restricted to CNVs that can be 
detected by a microarray. In our data from 96 subjects 
and their replications, we identified 2,348 potential re-
gions across the genome for deletions and 851 potential 
regions for duplications. For any particular potential re-
gion, at least 1 of these 96 subjects had a duplication or 
deletion in this region. Among these regions, the true 
base rate  k  is 0.016 for deletions and 0.012 for duplications 
(see online suppl. materials). We restricted our study only 
to these potential regions. Some CNVs in the genome 
may be located at particular regions where no probes or 
very few probes exist. Those CNVs can never be detected 
by microarray technology, and therefore are excluded 
from the estimation of sensitivity. The sensitivity here 
may be better understood as the sensitivity adjusted by 
the total number of those potential CNV regions. There-
fore, the sensitivity reported by our study should not be 
directly compared to other studies  [11, 30] .

  Based on our model parameters, investigators can es-
timate the probability that an estimated CNV is true. In-
terested researchers can estimate the positive predicted 
rate for their own data if confidence scores and some oth-
er information can be provided. Finally, it is important to 
emphasize that there are benefits to be gained from utiliz-
ing multiple CNV calling approaches and then compar-

ing the results between them. This can maximize the sen-
sitivity for discovery, maximize the positive predicted 
rate for verification, or balance the sensitivity and the 
positive predicted rate to a desired point. As GWASs 
move forward from SNPs to CNVs, investigators can bet-
ter identify CNVs associated with human disease using 
multiple estimation programs and calculating the posi-
tive predictive rates of observed CNVs.
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