

∂ Open access • Posted Content • DOI:10.1101/2021.06.22.449512

Copy-out-paste-in transposition of a Tn6283-like integrative element assists interspecies antimicrobial resistance gene transfer from Vibrio alfacsensis — Source link

Nonaka L, Michiaki Masuda, Hirokazu Yano

Institutions: Dokkyo Medical University, University of Tokyo

Published on: 23 Jun 2021 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Amp resistance, Plasmid, Mobile genetic elements, Multiple drug resistance and Gene

Related papers:

- Chromosomal integration of plasmid DNA by homologous recombination in Enterococcus faecalis and Lactococcus lactis subsp. lactis hosts harboring Tn919.
- Intramolecular amplification of the tetracycline resistance determinant of transposon Tn1771 in Escherichia coli.
- Characterization of the stability and dynamics of Tn6330 in an Escherichia coli strain by nanopore long reads.
- Homologous Recombination within Large Chromosomal Regions Facilitates Acquisition of β-Lactam and Vancomycin Resistance in Enterococcus faecium.
- Generation of Tn5 insertions in streptococcal conjugative transposon Tn916.

1	Copy-out-paste-in transposition of a Tn6283-like integrative element assists interspecies
2	antimicrobial resistance gene transfer from Vibrio alfacsensis
3	
4	Lisa Nonaka, ^{1,2*} Michiaki Masuda, ¹ Hirokazu Yano ^{3*}
5	
6	¹ Department of Microbiology, Dokkyo Medical University School of Medicine, Mibu,
7	Tochigi, Japan
8	² Faculty of Human Life Sciences, Shokei University, Kumamoto, Japan
9	³ Graduate School of Life Sciences, Tohoku University, Sendai, Japan
10	
11	Short title: Copy-out integrative element carrying a beta-lactamase gene
12	
13	*Corresponding authors
14	Email: nonaka20@shokei-gakuen.ac.jp (LN); yano.hirokazu@ige.tohoku.ac.jp (HY)
15	

16 Abstract

17	The exchange of antimicrobial resistance (AMR) genes between aquaculture and terrestrial
18	microbial populations has emerged as a serious public health concern. However, the nature
19	of the mobile genetic elements in marine bacteria is poorly documented. To gain insight into
20	the genetic mechanisms underlying AMR gene transfer from marine bacteria, we mated a
21	multi-drug resistant Vibrio alfacsensis strain with an Escherichia coli strain, and then
22	determined the complete genome sequences of the donor strain and multidrug-resistant
23	transconjugants. Sequence analysis revealed a conjugative plasmid of the MOB_{H} family in
24	the donor strain, which was integrated into the chromosome of the recipient. The plasmid
25	backbone in the transconjugant chromosome was flanked by two copies of a 7.1 kb
26	integrative element, designated Tn6945, harboring a beta-lactamase gene that conferred
27	ampicillin resistance to the host cell. Use of a <i>recA</i> mutant <i>E. coli</i> strain as the recipient
28	yielded a transconjugant showing ampicillin resistance but not multidrug resistance,
29	suggesting the involvement of homologous recombination in plasmid integration into the
30	chromosome. Polymerase chain reaction experiments revealed that Tn6945 generates a
31	circular copy without generating an empty donor site, suggesting that it moves via a copy-
32	out-paste-in mode, as previously reported for Tn6283. Transposition of the integrative
33	element into multiple loci in the recipient chromosome increased the resistance level of the
34	transconjugants. Overall, these results suggest that Tn6283-like copy-out integrative
35	elements and conjugative plasmids additively spread AMR genes among marine bacteria
36	and contribute to the emergence of isolates with high-level resistance through amplification
37	of AMR genes.

38 Introduction

39	Antimicrobials have been used globally in aquaculture to control fish diseases. Although this
40	approach helps to maintain a stable supply of aquacultural products, misuse of
41	antimicrobials has led to the emergence of antimicrobial-resistant microbes and the
42	accumulation of resistance genes at aquaculture sites [1, 2]. As the spread of multidrug-
43	resistant (MDR) bacteria and pan-drug-resistant bacteria is threating human life [3, 4], it is
44	important to obtain clues about whether and how aquatic and terrestrial microbial
45	populations exchange genetic materials.
46	Plasmids [5] and integrative conjugative elements [6] are DNA units that can move from one
47	cell to another through conjugation machinery, including direct movement between species
48	[7, 8] and indirectly mobilize genes on specific mobile elements [9–11]. Plasmids can be
49	classified into families according to replicon type or mobilization machinery type for
50	epidemiological purpose [12, 13]. Transposons are DNA units that move from one locus to
51	another in a genome. They can move via cut-and-paste or copy-and-paste mode [14, 15]
52	from one replicon to another replicon, such as conjugative plasmid co-occurring in the cell.
53	Genes embedded in these mobile genetic elements are thus readily shared among bacteria
54	and provide genetic resources for microbial adaptation in changing environments.
55	To increase knowledge of the genetic mechanisms underlying the spread of
56	antibiotic resistance genes at aquaculture sites, we previously collected resistant bacteria
57	from sediments at an aquaculture site in Kagawa, Japan [16–18]. We identified a self-
58	transmissible MDR plasmid of the MOB_{H} family, named pAQU1, that can replicate in both
59	the original host Photobacterium damselae subsp. damselae and in Escherichia coli [17].
60	Subsequently, another MOB _H -family MDR plasmid, named pSEA1, was identified in a Vibrio

61	alfacsensis isolate (previously identified as V. ponticus) [19]. The pSEA1 carries a 12 kb
62	nonconjugative integrative element Tn6283 in addition to antimicrobial resistance (AMR)
63	genes. Although pSEA1 could not replicate in <i>E. coli</i> at 42°C, it could integrate in the <i>E. coli</i>
64	chromosome upon conjugation via homologous recombination between two Tn6283 copies:
65	one on pSEA1 and another that moved from pSEA1 into the chromosome [19]. Further,
66	Tn6283 was identified as a new type of transposon moving via a copy-out-paste-in mode
67	without generating an empty donor site, presumably using tyrosine site-specific
68	recombinases. However, it is not known whether interspecies gene transfer assisted by
69	Tn <i>6283</i> -like integrative elements is common in nature.
70	To obtain further insights into the mechanisms behind genetic exchange among
71	aquaculture-associated bacteria, in this study, we mated another MDR Vibrio isolate, V.
72	alfacsensis 04Ya249, with E. coli strains in the laboratory and then determined the genome
73	sequences of both the donor and transconjugants. We identified a new Tn6283-like
74	integrative element and showed that transposition of this element not only assisted the
75	horizontal transfer of an AMR gene embedded on the plasmid but also affected the
76	resistance levels of the recipient cell depending on the copy number integrated in the
77	genome.

78 **Results**

79 Identification of a Tn6283-like integrative element carrying a beta-

80 lactamase gene

V. alfacsensis strain 04Ya249 was previously isolated from sea sediment at an aquaculture
site [16] and shows resistance to erythromycin, tetracycline, and ampicillin [20]. To identify
active mobile elements in this strain that are relevant to its AMR, the strain was mated with

84	macrolide-sensitive <i>E. coli</i> JW0452, and the first transconjugant was selected in the
85	presence of erythromycin at 42°C (Fig 1A) in a non-quantitative manner. One transconjugant
86	was named strain TJ249. Quantitative mating assays were then performed using a
87	rifampicin-resistant recipient strain, JW0452rif, under selection with tetracycline, ampicillin,
88	and rifampicin, but not erythromycin, at 42°C. The transfer frequency of tetracycline
89	resistance from V. alfacsensis 04Ya249 to E. coli JW0452rif was determined to be
90	approximately 10^{-9} per donor, indicating a very rare event, generating 0–3 transconjugant
91	colonies per mating.
92	
93	Fig 1. Identification of the integrative element Tn6945. (A) Capture of pSEA2 and Tn6945 in
94	<i>E. coli</i> by mating assays. (B)(i) Tn <i>6945</i> insertion sites in pSEA1 and chromosome 1 of <i>V</i> .
95	alfacsensis 04Ya249. (ii) Schematic representation of Tn6945 and pSEA2 insertion sites in E.
96	coli TJ249. (C) Genetic organization of Tn6283 and Tn6945. The nicking sites used for
97	circularization were six bases upstream of the 5 $\ensuremath{\mathbb{D}}$ -end of motif C and the 3'-end of motif C'
98	(black arrowheads). No strand exchange was detected on the bottom strand (white
99	arrowheads). (D) Nucleotide sequences of Tn6945 terminal regions (attL and attR), target
100	site (<i>attB</i>), and joint region (<i>attTn</i>) on the circular form. Sequences shown in orange are
101	parts of a mobile unit. PCR products of <i>attTn</i> from strains 04Ya249 and LN95 were cloned
102	into T-vector and sequenced. The observed frequency is shown on the right side of each
103	sequence type.
104	
105	The genome sequences of strains 04Ya249 and TJ249 were determined using the
106	PacBio RS II platform. The genome of strain 04Ya249 consists of four replicons: two

107 chromosomes, one putative conjugative plasmid pSEA2, and a smaller plasmid pVA249 (Fig

108	1A). Strain 04Ya249 has a very similar genome architecture to the database strain V.
109	alfacsensis CAIM 1831 based on the average nucleotide identity and gene synteny (S1 Fig).
110	Seven AMR genes were identified on plasmid pSEA2 (S2 Fig). One beta-lactamase gene
111	(CARB-19 allele in the CARD database [21]) was located within the 7.1-kb repeat region
112	found in both chromosome 1 and plasmid pSEA2 (Fig 1B(i)), which contained four protein-
113	coding sequences in addition to the beta-lactamase gene (Fig 1C). Each of these four coding
114	sequences showed homology, albeit with very low gene product identity, to the four coding
115	sequences clustered at one end of Tn6283 from strain 04Ya108 (Fig 1C). This repeat region
116	was confirmed to be an active integrative element and was designated Tn6945 in the
117	transposon registry [22].
118	The chromosome of <i>E. coli</i> TJ249 contained two notable insertions (Fig 1B(ii)), a
119	smaller insertion of Tn6945 alone and a larger insertion containing a complete copy of
120	pSEA2 and an additional copy of Tn6945 (Fig 1B(ii)). This indicated that Tn6945 has at least
121	two target sites in the <i>E. coli</i> chromosome. Sequence comparison of the Tn6945 insertion
122	sites in the <i>E. coli</i> genome (Fig 1D) indicated that Tn6945 inserts its terminal inverted
123	repeats, ending with 5'-GTA-3' (termed C and C') along with an additional 6 bp from the
124	donor molecule into the target site (Fig 1D).
125	As plasmid pSEA2 was very similar to the previously reported plasmid pSEA1
126	(accession no. LC081338.1) from strain 04Ya108 [19], we also determined the complete
127	genome of strain 04Ya108 for comparison with that of strain 04Ya249. As predicted from
128	the Southern hybridization experiment in a previously study, strain 04Ya108 possessed two
129	copies of Tn6283, one in chromosome 1 and the other in plasmid pSEA1. pSEA1 also carried
130	the Tn6945 insertion in the same locus as in pSEA2 (S2 Fig). Therefore, pSEA2 may be a

131 precursor of pSEA1.

132

133 Transposition of Tn6945 and plasmid integration in mating

134	The direct repeats of Tn6945 in the TJ249 chromosome suggested that the plasmid was
135	integrated into the recipient chromosome through transposition of Tn6945, with
136	subsequent integration of pSEA2 into the chromosome facilitated by the homology of the
137	Tn6945 copy on the chromosome (referred to as a two-step gene transfer mechanism in the
138	previous study [19]). If this scenario holds, transposition of Tn6945 alone should occur more
139	frequently than pSEA2 integration upon mating, and pSEA2 integration would be reduced in
140	frequency or abolished altogether in the chromosome of a <i>recA</i> -null mutant recipient. To
141	test these possibilities, we conducted additional mating assays.
142	Transposition of Tn6945 in the recipient cell upon mating was detected based on the
143	transfer frequency of ampicillin resistance alone, and plasmid integration was detected by
144	the transfer of both ampicillin and tetracycline resistance (Fig 1A). Tetracycline-resistant
145	JW0452rif transconjugants were detected only in 2 out of 4 replicated mating experiments
146	(Fig 2). Ampicillin-resistant transconjugants were obtained at a 295-fold higher frequency
147	than tetracycline and ampicillin-resistant transconjugants (Fig 2). Moreover, when E. coli
148	LN52rif (which already carries one copy of Tn6945) was used as the recipient, tetracycline-
149	resistant transconjugants were obtained at a 160-fold higher frequency than that observed
150	when using strain JW0452rif as the recipient (Fig 2).

151

Fig 2. Resistance gene transfer from *V. alfacsensis*. Transfer frequency (Y axis) is the log₁₀transformed value of the transconjugant colony-forming units (CFU) divided by the donor
CFU and recipient CFU. Four replicate mating experiments were performed. No

155	transconjugant was detected in any of the four replicate experiments using JW0452 Δ recArif
156	with tetracycline selection, or in the two replicate experiments using JW0452rif with
157	tetracycline selection. In one experiment on LN52rif, the donor CFU was not evaluated but
158	the transconjugant CFU was obtained at a comparable frequency to that observed in the
159	other three replicate experiments. The detection limit was 10^{-19} .
160	
161	When the <i>recA</i> -null mutant strain JW0452 Δ <i>recA</i> rif was used as the recipient, transfer of
162	tetracycline resistance was not observed in any experiment, but ampicillin-resistant
163	transconjugants were obtained (Fig 2). Collectively, these results suggested that pSEA2
164	integration, but not transposition of Tn6945, depends on the homologous recombination
165	system in the recipient cell. Therefore, MDR transconjugants likely emerge through two
166	distinct intracellular processes: transposition and homologous recombination.
167	

168 Copy-out of Tn6945

169 The previous study [19] revealed the following unique features of Tn6283: (i) it does not 170 generate an unoccupied donor site upon its circularization *in vivo*, and (ii) the circular form 171 of the integrative element is generated using only one strand as a template, at least in E. coli. 172 Although Tn6283 encodes tyrosine recombinases but not a single transposase with a D-D-E 173 motif [23], this behavior is analogous to the copy-out-paste-in transposition mechanism of 174 insertion sequence elements [24]. To test whether Tn6945 also moves through a copy-out-175 paste-in mode, we created a pSEA2-free 04Ya249 derivative strain LN95 carrying only a 176 single copy of Tn6945 in the chromosome and analyzed production of the Tn6945 circular 177 molecule in this strain.

178	Two pairs of primers were designed such that one primer anneals to the inside of the
179	integrative element and the other anneals to the outside of the element, amplifying <i>attL</i>
180	(<i>intA</i> side, product 1 in Fig 3A) or <i>attR</i> (<i>bla</i> side, product 2). By changing the combination of
181	primers, the joint region (<i>attTn</i>) in the circular form of the integrative element (product 3 in
182	Fig 3A), empty donor site (<i>attB</i>), or occupied donor site (product 4) could be amplified by
183	PCR. The circular form of Tn6945 was detected in both 04Ya249 and LN95 (Fig 3B). This
184	suggested that the chromosomal copy of Tn6945 is functional in V. alfacsensis. The empty
185	donor site (<i>attB</i>) could not be detected.
186	
187	Fig 3. Detection of a copy-out event of Tn6945. (A) Replicon organization of strain 04Ya249
188	and PCR assay design. Thick black lines with numbers indicate the expected PCR products.
189	The hypothetical site <i>attB</i> was not detected by PCR. The primers used are listed in Table 1.
190	(B) PCR detection of <i>attL, attR, attTn,</i> and <i>attB</i> . The PCR cycle was repeated 35 times for all
191	targets. (C) Quantitation of <i>attTn</i> in the pSEA2-free strain LN95 by quantitative PCR.
192	
193	We next cloned the PCR products of <i>attTn</i> , and then sequenced 10 cloned molecules
194	to investigate the sequence variation in the spacer region between the inverted repeat
195	motifs C and C'. Only one sequence type (5'-TTTTTT-3') was detected in the pSEA2-free
196	strain LN95 (Fig 1D). Thus, the majority of the circular form is a copy of the ligated product
197	between the 5'-end of the 6 bp upstream of the motif C terminus and the 3'-end of the
198	motif C' terminus (the top strand in the gene map of Fig 1C). Two sequence types, 5'-
199	TTTTTT-3' and 5'-TTTTCT-3', were detected in strain 04Ya249 at a 1:9 ratio (examples of the
200	Sanger sequencing trace files have been posted in figshare [25]). These findings agree with
201	the top strand exchange product of chromosome 1 and pSEA2, respectively (Fig 1D).

202	Collectively, these observations suggest that Tn6945 moves via copy-out-paste-in
203	transposition without undergoing strand exchange of the bottom strand in V. alfacsensis.
204	To estimate the copy number of the circular form of Tn6945 in the cell population,
205	we first searched for Illumina reads of strain LN95 that spanned <i>attTn</i> or the "hypothetical"
206	attB. Although next-generation sequencing reads were obtained at 229× chromosome
207	coverage, no reads spanning attTn or attB were detected [25]. Quantitative PCR further
208	revealed that the mean <i>attTn</i> to <i>gyrB</i> ratio was 0.0012 (Fig 3C). This relative copy number
209	was consistent with the result from a previous study detecting the circular form of Tn6283
210	in <i>E. coli</i> , which showed an <i>attTn</i> to chromosome ratio of 0.001 [19].
211	

212 The insertion copy number of Tn6945 affects beta-lactam

213 resistance

214 The naturally occurring strains 04Ya249 and 04Ya108 carry two copies of Tn6945 and

215 Tn6283 in their respective genomes. However, it remains unclear whether multiple copies

of integrative elements confer an advantage to the host cell. Three copies of Tn6945 in the

- 217 transconjugant TJ249 were initially detected by genome sequencing. Southern hybridization
- analysis of other JW0452 transconjugants, which were maintained in the lab without
- tetracycline selection, revealed one to two copies of Tn6945 in their respective genomes (S3
- 220 Fig). Therefore, we used these transconjugant strains to test whether multiple insertions of
- 221 Tn6945 can increase the resistance levels of the transconjugants.
- Sixteen *E. coli* strains with or without Tn6945 insertion were grown in Luria-Bertani
- broth with ampicillin, and then the minimum inhibitory concentrations (MICs) of ampicillin
- were determined using the broth dilution method following the Clinical Laboratory

225	Standards Institute (CLSI) guidelines. The MIC was the highest in the clone carrying three
226	copies of Tn6945, followed by the group of transconjugants carrying two copies and the
227	group carrying one copy, and the MIC was the lowest in JW0452 (Fig 4). Although within-
228	group variation was also observed, these results clearly showed that the copy number of
229	Tn6945 in the genome positively affects the level of beta-lactam resistance of the host cell.
230	
231	Fig 4. The copy number of Tn6945 affects the resistance level. Sixteen transconjugants and
232	a control strain (JW0452) were divided into four groups based on the Tn6945 copy number

in the genome. MIC of ampicillin is shown according to copy number.

234

235 **Discussion**

236 Vibrio is one of the major bacterial genera found in marine sediments [26], and is among the 237 most common microbiota of wild and farmed shrimp [27] and fish [28, 29]. Several of the 238 genus Vibrio are pathogens of fishes reared in aquaculture [30], while other subsets of 239 Vibrio species, including V. cholerae, V. parahaemolyticus, and V. vulnificus, which are 240 ubiquitous in relatively low-salinity sea water, are seafood-borne human pathogens [30, 31]. 241 Thus, Vibrio can be considered as a key genus linking AMR genes between aquatic 242 environments and human-associated environments. Indeed, the accumulation of AMR 243 genes in this genus has attracted increased research attention, particularly in V. cholerae [32, 244 33]. However, direct experimental evidence for AMR gene transfer from Vibrio species to 245 other human-relevant bacteria is limited. 246 Known genetic mechanisms of AMR gene transfer from Vibrio include integrative 247 conjugative elements [34], A/C plasmids [35, 36], unclassified conjugative plasmids [37],

248	mobilizable genomic islands [38], pAQU1-type MOB _H family conjugative plasmids [39],
249	pSEA1-type MOB _H family conjugative plasmids [19], and a combination of a chromosomal
250	super-integron and a conjugative plasmid carrying an integron [40]. The host range of
251	pSEA1-type MOB _H plasmids, discovered in <i>V. alfacsensis</i> (for which only one complete
252	genome was available until the present study), is unknown. In this study, we investigated
253	how a pSEA1-like plasmid can contribute to AMR gene transfer in a laboratory setting.
254	In contrast to A/C plasmids, autonomous replication of pSEA2 and pSEA1 was
255	difficult to achieve in <i>E. coli,</i> since transconjugant selection yielded <i>E. coli</i> clones carrying
256	plasmid DNA integrated into the chromosome. We consistently observed a two-step gene
257	transfer mechanism that involves the transposition of a Tn6283-like integrative element and
258	homologous recombination, which enabled AMR gene transfer beyond the plasmid's
259	replication host range. This mode of horizontal gene transfer may be important among
260	marine bacteria, since the plasmid conjugation host range is expected to be wider than the
261	replication host range [41, 42].
262	Plasmid pSEA1 was found to carry both Tn6283 and Tn6945. However, in the
263	previous study, only transposition of Tn6283 was observed, likely because we did not
264	recognize Tn6945 on pSEA1 and did not intend to detect its transposition [19]. The newly
265	identified Tn6945 is the smallest Tn6283-like "active" integrative element, and it is the only
266	known element harboring an AMR gene. The beta-lactamase gene identified in this study
267	was embedded within the mobile DNA unit without an accompanying insertion sequence
268	element, like the case for Tn3 [43]. This pattern is atypical for recent widespread AMR genes
269	[44, 45], suggesting an ancient origin for the Tn6283-like element with the beta-lactamase
270	gene. As Tn <i>6945</i> can have multiple target sites in a single genome, a Tn <i>6283</i> -like element
271	may contribute to microbial adaptation to the antimicrobials used at aquaculture sites, with

diverse mechanisms beyond mediating the horizontal transmission of AMR genes, such as
increasing the resistance level or gene redundancy preceding evolutionary innovation of an
AMR gene [46].

275	The discovery of Tn6945 highlights four potential core genes (intA, CDS2, intB, and
276	CDS4) of unknown function present in Tn6283-like integrative elements. However, the
277	specific roles of these gene products in copy-out-paste-in transposition remain to be
278	determined. A notable difference between an insertion sequence and the Tn6283-like
279	element is the strong strand bias unique to the latter upon strand exchange, which
280	generates a figure-eight structure that serves as a template for the circular form [23, 24].
281	Unlike transposase, tyrosine recombinases usually do not generate a free 3' OH end [47].
282	Host factor-mediated replication on the top strand exchange product should therefore be a
283	complex process. We propose that Tn6283-like elements contribute to AMR gene
284	transmission in marine bacteria. However, we also speculate that the host range of Tn6283
285	may be limited due to this unusual transpositional process. Further biochemical and
286	bioinformatic studies on Tn6283-like integrative elements is needed to reveal the
287	mechanisms of gene transfer among the genus Vibrio and other aquaculture-associated
288	bacteria.

289

290 Materials and methods

291 Strains and culture media

We used the Vibrio strains 04Ya249 [18], LN95, and 04Ya108 [19] in this study. Strain

293 04Ya108 was previously identified as Vibrio ponticus based on 16S rRNA gene sequence

similarity. However, determination of the complete sequence in this study revealed that

295	strain 04Ya108 shows >96% average nucleotide identity to <i>V. alfacsensis</i> strain CAIM 1831
296	(DSM 24595) (S1 Fig) [48]. Therefore, strain 04Ya108 was newly classified as V. alfacsensis.
297	Strain LN95 is a pSEA2-free tetracycline-susceptible derivative of strain 04Ya249. This strain
298	was generated through repeated batch culture of 04Ya249, and subsequent single-colony
299	isolation. The absence of pSEA2 in LN95 was confirmed by next-generation sequencing.
300	We used the <i>E. coli</i> strains DH5 α [F ⁻ , Φ 80d <i>lacZ</i> Δ M15, Δ (<i>lacZYA-argF</i>)U169, <i>deoR</i> ,
301	recA1, endA1, hsdR17(r_{K} , m_{K}^{+}), phoA, supE44, λ , thi-1, gyrA96, relA1], BW25113 [F, Δ (araD-
302	araB)567, ΔlacZ4787(::rrnB-3), λ ⁻ , rph-1, Δ(rhaD-rhaB)568, hsdR514], JW2669 [BW25113
303	ΔrecA774::kan], JW0452 [BW25113 ΔacrA748::kan] [49] and its rifampicin-resistant variant
304	JW0452rif, LN52, TJ249, and JW0452 Δ recA and its rifampicin-resistant variant
305	JW0452 Δ recArif. Strain LN52, which carries a single copy of Tn6945, is a JW0452
306	transconjugant obtained by ampicillin selection at 42°C. TJ249 is also a JW0452
307	transconjugant obtained by erythromycin selection at 42°C. The presence of a single Tn6945
308	copy in the LN52 genome was confirmed by Southern hybridization (S3 Fig).
309	The <i>recA</i> -null mutant of JW0452, JW0452 Δ <i>recA</i> , was constructed using the lambda-
310	Red method [50]. A DNA fragment containing the 5' and 3' sequences of the <i>recA</i> gene and
311	a chloramphenicol resistance gene was amplified by PCR using primers YO-175 and
312	RecA_stop_primingsite_2 and plasmid pKD3 [50] as a template (Table 1). The PCR products
313	(700 ng) were introduced into electrocompetent cells of JW0452 carrying pKD46 by
314	electroporation using a Gene Pulser Xcell $^{ extsf{TM}}$ (BioRad, Hercules, CA, USA). The occurrence of
315	recombination at the expected site was confirmed by PCR using primers CAT-584 and
316	BW25113_2815723f (Table 1). The absence of the <i>recA</i> gene was also confirmed by PCR
317	using primers LN192_recA1 and LN193_recA2.

318	<i>Vibrio alfacsensis</i> strains were cultured in BD Bacto™ brain heart infusion medium
319	(BD237500; Becton, Dickinson, and Company, Franklin Lakes, NJ, USA) supplemented with
320	up to 2% NaCl. <i>E. coli</i> strains were cultured in BD Difco™ LB Broth, Miller (BD244520; Becton,
321	Dickinson, and Company). BD Difco™ Mueller Hinton Broth (BD 275730; Becton, Dickinson,
322	and Company) was used for antibiotic susceptibility testing of <i>E. coli</i> . BD Difco™ Marine
323	Broth 2216 (BD279110; Becton, Dickinson, and Company) was used for filter mating. Solid
324	media were prepared by adding 1.5% agar to the broth. Antibiotics were added to the
325	medium at the following concentrations when required: erythromycin (Nacalai Tesque,
326	Kyoto, Japan), 100 μg/ml; tetracycline (Nacalai Tesque), 10 μg/ml; rifampicin (Sigma-Aldrich,
327	St. Louis, MO, USA), 50 μg/ml; ampicillin (Nacalai Tesque), 100 μg/ml.

329	Table 1.	Oligonucleotide	s used.

Name	Sequence (5' to 3')	Purpose
		Southern hybridization
LN112	GGGTTACCTTCCCAATGCGT	probe for Tn <i>6945 intA</i>
		Southern hybridization
LN113	CGACTGTTGGTAGCGACTGT	probe for Tn <i>6945 intA</i>
LN_142_junction2	AAGATGGTAAAAGTGTTCCA	Detection of <i>attTn</i> by qPCR
LN_143_junction2	TTTGTGTGTAGCCCTTGTG	Detection of <i>attTn</i> by qPCR
LN_150_intA2	GGTTATGTGGAGAAGTTGCC	Detection of <i>intA</i> by qPCR
LN_151_intA2	TGAGTTCGGTTTCTTGCTTC	Detection of <i>intA</i> by qPCR
LN 181 Valc chr1 attB L	CGAGGGTAAAGTGCCAACAT	Detection of chromosomal
		attB and attL by standard PCR
LN183_Valc_chr1_attB_R2	ACATCAGCAGGAGTTAGTTG	Detection of chromosomal

		<i>attB</i> and <i>attL</i> by standard PCR
LN184_04Ya249_gyrBf1	AACAGAATTGCACCCAGAAG	Detection of <i>gyrB</i> by qPCR
LN185_04Ya249_gyrBr1	GAAGACCGCCTGATACTTTG	Detection of <i>gyrB</i> by qPCR
		Detection of 1 kb attTn and
		attL detection by standard
LN127_cds303_r137-156	CTCTGGCTCACCGTTAGAGG	PCR
		Detection of 1 kb <i>attTn</i> and
LN128_bla_r16-36	GCATTTTTGCACATGCTAATG	<i>attR</i> by standard PCR
	CAGAACATATTGACTATCCGGTATT	
	ACCCGGCATGACAGGAGTAAAAAT	Lambda Red
YO-175	GTGTAGGCTGGAGCTGCTTCG	
	ATGCGACCCTTGTGTATCAAACAA	
	GACGATTAAAAATCTTCGTTAGTTT	Lambda Red
RecA_stop_primingsite_2	ССАТАТGAATATCCTCCTTA	
CAT-584	AAGCCATCACAAACGGCATG	Lambda Red
BW25113_2815723f	AATACGCGCAGGTCCATAAC	Lambda Red
LN192_recA1	GTTCCATGGATGTGGAAACC	Lambda Red
LN193_recA2	ATATCGACGCCCAGTTTACG	Lambda Red

330

331

332 Standard molecular biology methods

333 LA Taq polymerase (TaKaRa Bio Inc., Kusatsu, Japan) was used for conventional PCR to

detect transposon termini and their recombination products and for TA cloning of PCR

products. To generate quantity standards for quantitative PCR, *att*_{Tn6945} and other fragments

336 (gyrB, intA) were PCR amplified from the genomic DNA of strain 04Ya249 and then cloned

337	into the pGEM-T vector using the pGEM-T easy vector system (Promega, Madison, WI, USA)
338	and transformed into DH5 $lpha$ competent cells. Quantitative PCR was performed using
339	THUNDERBIRD [®] SYBR qPCR Mix (Toyobo, Osaka, Japan) and a CFX connect Real-Time system
340	(BioRad, Hercules, CA, USA) and a two-step PCR protocol consisting of denaturation for 5 s
341	at 95°C and annealing/extension for 30 s at 60°C. Target quantity was estimated based on a
342	standard curve of the control plasmid DNA (pGEM- <i>gyrB</i> , pGEM- <i>intA</i> , pGEM- att_{Tn6945}).
343	Primers used for conventional PCR and quantitative PCR were designed based on the target;
344	the oligonucleotides used and their specific purposes are shown in Table 1.

346 **Conjugation**

347 The donor Vibrio strain and E. coli recipient strains (JW0452, JW0452rif, and

JW0452 Δ recArif) were grown overnight at 25°C and 37°C, respectively. A 500 μ l aliquot of

each culture was mixed, centrifuged, and resuspended in 50 μ l of Luria-Bertani broth. The

cell mixture was spotted on a 0.45 μm pore-size nitrocellulose filter (Merck, Millipore Ltd.,

351 Tullagreen, Ireland) placed on marine broth agar, and allowed to mate for 24 h at 25°C.

352 After incubation, the cell mixture on the filter was serially diluted in 1× phosphate-buffered

saline, and then 100 μ l of the mixture was plated on appropriate agar medium to measure

354 the CFU. *E. coli* transconjugants were selected after 24 h of incubation at 42°C in the

355 presence of erythromycin, tetracycline, ampicillin, or both ampicillin and tetracycline,

depending on the purpose of the assay. The Vibrio donor strain was selected on brain heart

- infusion agar with 2% NaCl supplemented with tetracycline at 25°C. The transconjugant
- strain TJ249 was obtained by mating strain 04Ya249 with *E. coli* strain JW0452 as the donor
- and recipient, respectively, followed by erythromycin selection at 42°C (Fig 1A).

360

361 Southern hybridization

- 362 The insertion copy number of Tn6945 in strain LN52 and 17 ampicillin-resistant
- transconjugants (JW0452 derivatives) was analyzed by Southern hybridization using the 5'-
- end of Tn6945 intA as a probe. The probe was generated using the PCR DIG Synthesis Kit
- 365 (Roche, Basel, Switzerland), and inserts were detected by the standard method using CDT-
- 366 star[®] (Roche). PCR products were obtained using primers LN112 and LN113 (Table 1).
- 367 Genomic DNA (2.5 µg) was double digested with either *Nde*I and *Sph*I or *Nde*I and *Hin*dIII
- 368 (New England Biolabs, Ipswich, MA, USA) prior to electrophoresis.

369

370 Antimicrobial susceptibility testing

- To examine the antimicrobial susceptibility of transconjugants harboring 1-3 beta-
- 372 lactamase genes, the MIC of ampicillin was determined using the broth dilution method in
- 373 96 well microtiter plate format according to standard M07 of the CLSI [51]. The antibiotic
- 374 concentrations tested were 1000, 500, 250, 125, 62.5, 31.25, 16, 8, 4, and 2 µg/ml. The test
- 375 plates were incubated at 35°C for 24 h.

376

377 Genome sequencing

- 378 Genomic DNA was extracted from 250–500 μl of *V. alfacsensis* strains 04Ya249, 04Ya108, or
- 379 E. coli strain TJ249 culture using the QIAGEN DNeasy blood & tissue kit (QIAGEN GmbH,
- Hilden, Germany). The extracted genomic DNA was sequenced on the Pacbio RS II platform
- 381 at Macrogen (Tokyo, Japan). Genome assembly was conducted using HGAP v.3 [52] for
- 382 Vibrio strains and Flye v 2.8.3-b1695 for E. coli TJ249 [53]. Reads were obtained at >120×

383	coverage for the chromosomes of each strain. Reads and the genome sequence of TJ249 has
384	been posted to figshare [54]. Illumina reads of the pSEA2-free strain LN95 were also
385	obtained using TruSeq PCR-free library and NovaSeq 6000 platform at NovogeneAIT
386	Genomics Singapore Pte., Ltd. (Singapore) to confirm the loss of pSEA2 and to identify the
387	circular form of Tn6945. The mapping results have been posted to figshare [25]. Genomes
388	were compared using MUMmer3.23 [55] and GenomeMatcher [56]. AMR genes in the
389	assembly were searched using AMRFinderPlus [57]. The average nucleotide identity was
390	determined using fastANI [58].
391	

392 Accession numbers

- 393 The complete genome sequences of strains 04Ya108 and 04Ya249 were submitted to
- 394 DDBJ/NCBI/EMBL under accession numbers AP024165 (chr1 of 04Ya108), AP024166 (chr2 of
- 395 04Ya108), AP024167 (pSEA1 of 04Ya108), AP024168 (pYa108 of 04Ya108), AP019849
- 396 (chr1 of 04Ya249), AP019850 (chr2 of 04Ya249), AP019851 (pSEA2 of 04Ya249), and
- AP019852 (pVA249 of 04Ya249). The raw reads for strains 04Ya108, 04Ya249, and LN95 are
- 398 available from Sequence Read Archive under accession numbers DRA011098, DRA008632,
- 399 and DRA011762, respectively.

400

401 Acknowledgments

We thank the National Bioresource Project of the National Institute of Genetics, Japan for
providing the *E. coli* strains BW25113, JW2669, and JW0452. We thank and Atsushi Ota and
Fumito Maruyama at Hiroshima University for support of annotation on the TJ249 assembly.

- 405 We thank Yuichi Otsuka at Saitama University for helpful discussions and Yuta Sugimoto at
- 406 Ehime University for experimental support.
- 407

408 **References**

- 409 1. Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, et al. Antimicrobial
- 410 use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal
- 411 and human health. Environ Microbiol. 2013;15: 1917–1942.
- 412 2. Cabello FC, Godfrey HP, Buschmann AH, Dölz HJ. Aquaculture as yet another
- 413 environmental gateway to the development and globalisation of antimicrobial
- 414 resistance. Lancet Infect Dis. 2016;16: e127–e133.
- 415 3. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al.
- 416 Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an
- 417 international expert proposal for interim standard definitions for acquired resistance.
- 418 Clin Microbiol Infect. 2012;18: 268–281.
- 419 4. Karakonstantis S, Kritsotakis EI, Gikas A. Pandrug-resistant Gram-negative bacteria: a
- 420 systematic review of current epidemiology, prognosis and treatment options. J
- 421 Antimicrob Chemother. 2020;75: 271–282.
- 422 5. Rodríguez-Beltrán J, DelaFuente J, León-Sampedro R, MacLean RC, San Millán Á.
- Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat Rev
- 424 Microbiol. 2021
- 425 6. Johnson CM, Grossman AD. Integrative and Conjugative Elements (ICEs): What They
 426 Do and How They Work. Annu Rev Genet. 2015;49: 577–601.

127	7	Vana H. Bagars I.M. Knay MG. Hayar H. Smalla K. Brown Cl. at al. Hast range
427	7.	fallo fi, Rogers Livi, Rhox Md, Heder fi, Shlalla R, Brown CJ, et al. Host fallge

- 428 diversification within the IncP-1 plasmid group. Microbiology (Reading). 2013;159:
- 429 2303–2315.
- 430 8. Dahmane N, Libante V, Charron-Bourgoin F, Guédon E, Guédon G, Leblond-Bourget N,
- 431 et al. Diversity of Integrative and Conjugative Elements of *Streptococcus salivarius* and
- 432 Their Intra- and Interspecies Transfer. Appl Environ Microbiol. 2017;83:
- 433 9. Cabezón E, Lanka E, de la Cruz F. Requirements for mobilization of plasmids RSF1010
- 434 and ColE1 by the IncW plasmid R388: *trwB* and RP4 *traG* are interchangeable. J
- 435 Bacteriol. 1994;176: 4455–4458.
- 436 10. Carraro N, Matteau D, Luo P, Rodrigue S, Burrus V. The master activator of IncA/C
- 437 conjugative plasmids stimulates genomic islands and multidrug resistance
- dissemination. PLoS Genet. 2014;10: e1004714.
- 439 11. Daccord A, Ceccarelli D, Burrus V. Integrating conjugative elements of the SXT/R391
- family trigger the excision and drive the mobilization of a new class of Vibrio genomic
- 441 islands. Mol Microbiol. 2010;78: 576–588.
- 442 12. Garcillán-Barcia MP, Francia MV, de la Cruz F. The diversity of conjugative relaxases
- and its application in plasmid classification. FEMS Microbiol Rev. 2009;33: 657–687.
- 444 13. Villa L, Carattoli A. Plasmid Typing and Classification. Methods Mol Biol. 2020;2075:
 445 309–321.
- 446 14. Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic
- 447 impact and diversity. FEMS Microbiol Rev. 2014;38: 865–891.
- 448 15. Nicolas E, Lambin M, Dandoy D, Galloy C, Nguyen N, Oger CA, et al. The Tn3-family of
- 449 Replicative Transposons. Microbiol Spectr. 2015;3:

450	16.	Nonaka L, Ikeno K, Suzuki S. Distribution of Tetracycline Resistance Gene, tet(M), in
451		Gram-Positive and Gram-Negative Bacteria Isolated from Sediment and Seawater at a
452		Coastal Aquaculture Site in Japan. Microbes Environ. 2007;22: 355–364.
453	17.	Nonaka L, Maruyama F, Miyamoto M, Miyakoshi M, Kurokawa K, Masuda M. Novel
454		conjugative transferable multiple drug resistance plasmid pAQU1 from
455		Photobacterium damselae subsp. damselae isolated from marine aquaculture
456		environment. Microbes Environ. 2012;27: 263–272.
457	18.	Nonaka L, Maruyama F, Suzuki S, Masuda M. Novel macrolide-resistance genes, <i>mef</i> (C)
458		and mph(G), carried by plasmids from Vibrio and Photobacterium isolated from
459		sediment and seawater of a coastal aquaculture site. Lett Appl Microbiol. 2015;61: 1–6.
460	19.	Nonaka L, Yamamoto T, Maruyama F, Hirose Y, Onishi Y, Kobayashi T, et al. Interplay of
461		a non-conjugative integrative element and a conjugative plasmid in the spread of
462		antibiotic resistance via suicidal plasmid transfer from an aquaculture Vibrio isolate.
463		PLoS One. 2018;13: e0198613.
464	20.	Neela FA, Nonaka L, Suzuki S. The diversity of multi-drug resistance profiles in
465		tetracycline-resistant Vibrio species isolated from coastal sediments and seawater. J
466		Microbiol. 2007;45: 64–68.
467	21.	Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD
468		2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance
469		database. Nucleic Acids Res. 2020;48: D517–D525.
470	22.	Tansirichaiya S, Rahman MA, Roberts AP. The Transposon Registry. Mob DNA.
471		2019;10: 40.

	472	23.	Kosek D, Hickman	AB,	Ghirlando R	, He S,	Dyda	аF.	Structures of	of ISCth4 t	iranspososome
--	-----	-----	------------------	-----	-------------	---------	------	-----	---------------	-------------	---------------

- 473 reveal the role of asymmetry in copy-out/paste-in DNA transposition. EMBO J.
- 474 2021;40: e105666.
- 475 24. Chandler M, Fayet O, Rousseau P, Ton Hoang B, Duval-Valentin G. Copy-out-Paste-in
- 476 Transposition of IS911: A Major Transposition Pathway. Microbiol Spectr. 2015;3:
- 477 25. Yano H, Nonaka L. Illumina reads analysis of *Vibrio alfacsensis* pSEA2-free strain LN95.
- 478 URL: https://doi.org/10.6084/m9.figshare.14338883.
- 479 26. Chen J, McIlroy SE, Archana A, Baker DM, Panagiotou G. A pollution gradient
- 480 contributes to the taxonomic, functional, and resistome diversity of microbial
- 481 communities in marine sediments. Microbiome. 2019;7: 104.
- 482 27. Cornejo-Granados F, Lopez-Zavala AA, Gallardo-Becerra L, Mendoza-Vargas A, Sánchez
- 483 F, Vichido R, et al. Microbiome of Pacific Whiteleg shrimp reveals differential bacterial
- 484 community composition between Wild, Aquacultured and AHPND/EMS outbreak
- 485 conditions. Sci Rep. 2017;7: 11783.
- 486 28. Llewellyn MS, McGinnity P, Dionne M, Letourneau J, Thonier F, Carvalho GR, et al. The
- 487 biogeography of the atlantic salmon (Salmo salar) gut microbiome. ISME J. 2016;10:
- 488 1280–1284.
- 489 29. Egerton S, Culloty S, Whooley J, Stanton C, Ross RP. The Gut Microbiota of Marine Fish.
 490 Front Microbiol. 2018;9: 873.
- 491 30. Thompson FL, lida T, Swings J. Biodiversity of vibrios. Microbiol Mol Biol Rev. 2004;68:
 403–431.
- 493 31. Takemura AF, Chien DM, Polz MF. Associations and dynamics of *Vibrionaceae* in the
 494 environment, from the genus to the population level. Front Microbiol. 2014;5: 38.

495	32.	Verma J	. Bag S	. Saha B	. Kumar P	. Ghosh TS	. Daval M	. et al.	Genomic p	lasticitv
			/	,	,		, ,	,		

- 496 associated with antimicrobial resistance in *Vibrio cholerae*. Proc Natl Acad Sci U S A.
- 497 2019;116: 6226–6231.
- 498 33. Osei Sekyere J, Reta MA. Genomic and Resistance Epidemiology of Gram-Negative
- 499 Bacteria in Africa: a Systematic Review and Phylogenomic Analyses from a One Health
- 500 Perspective. mSystems. 2020;5: e00897–20.
- 501 34. Beaber JW, Burrus V, Hochhut B, Waldor MK. Comparison of SXT and R391, two
- 502 conjugative integrating elements: definition of a genetic backbone for the mobilization
- of resistance determinants. Cell Mol Life Sci. 2002;59: 2065–2070.
- 504 35. Carraro N, Sauvé M, Matteau D, Lauzon G, Rodrigue S, Burrus V. Development of
- 505 pVCR94ΔX from *Vibrio cholerae*, a prototype for studying multidrug resistant IncA/C
- 506 conjugative plasmids. Front Microbiol. 2014;5: 44.
- 507 36. Folster JP, Katz L, McCullough A, Parsons MB, Knipe K, Sammons SA, et al. Multidrug-
- resistant IncA/C plasmid in *Vibrio cholerae* from Haiti. Emerg Infect Dis. 2014;20:
- 509 1951–1953.
- 510 37. Liu M, Wong MH, Chen S. Molecular characterisation of a multidrug resistance
- 511 conjugative plasmid from *Vibrio parahaemolyticus*. Int J Antimicrob Agents. 2013;42:
- 512 575–579.
- 513 38. Carraro N, Rivard N, Ceccarelli D, Colwell RR, Burrus V. IncA/C Conjugative Plasmids
- 514 Mobilize a New Family of Multidrug Resistance Islands in Clinical Vibrio cholerae Non-
- 515 O1/Non-O139 Isolates from Haiti. mBio. 2016;7:
- 516 39. Nonaka L, Maruyama F, Onishi Y, Kobayashi T, Ogura Y, Hayashi T, et al. Various pAQU
- 517 plasmids possibly contribute to disseminate tetracycline resistance gene *tet*(M) among
- 518 marine bacterial community. Front Microbiol. 2014;5: 152.

519	40.	Rowe-Magnus DA, Guerout AM, Mazel D. Bacterial resistance evolution by recruitment
520		of super-integron gene cassettes. Mol Microbiol. 2002;43: 1657–1669.
521	41.	Encinas D, Garcillán-Barcia MP, Santos-Merino M, Delaye L, Moya A, de la Cruz F.
522		Plasmid conjugation from proteobacteria as evidence for the origin of xenologous
523		genes in cyanobacteria. J Bacteriol. 2014;196: 1551–1559.
524	42.	Kishida K, Inoue K, Ohtsubo Y, Nagata Y, Tsuda M. Host Range of the Conjugative
525		Transfer System of IncP-9 Naphthalene-Catabolic Plasmid NAH7 and Characterization
526		of Its oriT Region and Relaxase. Appl Environ Microbiol. 2017;83:
527	43.	Heffron F, McCarthy BJ, Ohtsubo H, Ohtsubo E. DNA sequence analysis of the
528		transposon Tn3: three genes and three sites involved in transposition of Tn3. Cell.
529		1979;18: 1153–1163.
530	44.	Wang R, van Dorp L, Shaw LP, Bradley P, Wang Q, Wang X, et al. The global distribution
531		and spread of the mobilized colistin resistance gene <i>mcr-1</i> . Nat Commun. 2018;9: 1179.
532	45.	Che Y, Yang Y, Xu X, Břinda K, Polz MF, Hanage WP, et al. Conjugative plasmids interact
533		with insertion sequences to shape the horizontal transfer of antimicrobial resistance
534		genes. Proc Natl Acad Sci U S A. 2021;118:
535	46.	Elliott KT, Cuff LE, Neidle EL. Copy number change: evolving views on gene
536		amplification. Future Microbiol. 2013;8: 887–899.
537	47.	Jayaram M, Ma CH, Kachroo AH, Rowley PA, Guga P, Fan HF, et al. An Overview of
538		Tyrosine Site-specific Recombination: From an Flp Perspective. Microbiol Spectr.
539		2015;3:
540	48.	Gomez-Gil B, Roque A, Chimetto L, Moreira APB, Lang E, Thompson FL. Vibrio
541		alfacsensis sp. nov., isolated from marine organisms. Int J Syst Evol Microbiol. 2012;62:
542		2955–2961.

543	49.	Baba T	. Ara T	. Hasegawa M	. Takai Y	. Okumura Y	. Baba M	. et al. Construction of
					,		,	

- 544 Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol
- 545 Syst Biol. 2006;2: 2006.0008.
- 546 50. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in *Escherichia*
- 547 *coli* K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97: 6640–6645.
- 548 51. Wayne PA. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That
- 549 Grow Aerobically. 11th ed. CLSI standard M07. Clinical and Laboratory Standards
 550 Institute; 2018.
- 551 52. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid,
- 552 finished microbial genome assemblies from long-read SMRT sequencing data. Nat
- 553 Methods. 2013;10: 563–569.
- 554 53. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using
 555 repeat graphs. Nat Biotechnol. 2019;37: 540–546.
- 556 54. Yano H, Nonaka L. Complete genome of transconjugant TJ249. URL:
- 557 https://doi.org/10.6084/m9.figshare.13332467.
- 558 55. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile
- and open software for comparing large genomes. Genome Biol. 2004;5: R12.
- 56. Ohtsubo Y, Ikeda-Ohtsubo W, Nagata Y, Tsuda M. GenomeMatcher: a graphical user
 interface for DNA sequence comparison. BMC Bioinformatics. 2008;9: 376.
- 562 57. Feldgarden M, Brover V, Haft DH, Prasad AB, Slotta DJ, Tolstoy I, et al. Validating the
- 563 AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance
- 564 Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob Agents
- 565 Chemother. 2019;63: e00483–19.

566 58. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI
567 analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun.

568 2018;9: 5114.

569

570 Supporting information

- 571 S1 Fig. Analysis of Tn6945 insertion number by Southern hybridization. (A) pSEA2-free
- 572 Vibrio strain LN95 and parental strain 04Ya249. (B) Nineteen E. coli transconjugants and
- 573 controls. Upper panel: digestion with *Nde*I and *Sph*I. Lower panel: digestion with *Nde*I and
- 574 *Hin*dIII. The color of the strain name indicates the Tn6945 copy number: blue, three copies;
- 575 light blue, one copy; red, two copies.
- 576
- 577 S2 Fig. Genetic map of pSEA2. Locations of antimicrobial resistance (AMR) genes and
- 578 Tn6945 in pSEA2. AMR genes were inferred using AMRFinderPlus [57]. Genes are visualized
- using CLC Sequence Viewer (Qiagen, Hilden Germany). Green arch denotes the region
- 580 detected as a circular contig (contig1) in Pacbio RSII reads assembly of transconjugant strain
- 581 TJ249. (B) Location of Tn6945 and Tn6283 insertion positions in pSEA1.
- 582

583 S3 Fig. Comparison of the genome structure between strain 04Ya249 with 04Ya108, CAIM

- **1831 or TJ249.** Structure comparison was performed using nucmer in MUMmer3 [55].
- 585 Purple dots indicate a match on the Watson strand, and light blue indicates a match on the
- 586 Crick strand. (B) Average nucleotide identity (ANI) between two strains as determined by
- 587 fastANI [58]. The commands used were as follows: (A) \$nucmer -minmatch
- 588 60 ../../data/04Ya249_submission.fas ../../data/reference.fas

- 589 \$mummerplot -x "[0,6000000]" -y "[0,22000000]" -postscript -p test out.delta; (B) \$fastANI -
- 590 q ../../data/04Ya249_submission.fas -r ../../data/CAIM1831_Refseq.fas -o
- 591 04Ya249vsCAIM1831.txt
- 592 \$fastANI -q ../../data/04Ya249 submission.fas -r ../../data/04Ya108 submission.fas -o
- 593 04Ya249vs04Ya108.txt
- 594 \$fastANI -q ../../data/04Ya249_submission.fas -r ../../data/04Ya108_submission.fas -o
- 595 04Ya249vs04Ya108.txt

V. alfancensis LN95

V. alfancensis 04Ya249

