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Abstract

Background: Culture-independent molecular surveys targeting conserved marker genes, most notably 16S rRNA,

to assess microbial diversity remain semi-quantitative due to variations in the number of gene copies between

species.

Results: Based on 2,900 sequenced reference genomes, we show that 16S rRNA gene copy number (GCN) is

strongly linked to microbial phylogenetic taxonomy, potentially under-representing Archaea in amplicon microbial

profiles. Using this relationship, we inferred the GCN of all bacterial and archaeal lineages in the Greengenes

database within a phylogenetic framework. We created CopyRighter, new software which uses these estimates to

correct 16S rRNA amplicon microbial profiles and associated quantitative (q)PCR total abundance. CopyRighter

parses microbial profiles and, because GCN estimates are pre-computed for all taxa in the reference taxonomy,

rapidly corrects GCN bias. Software validation with in silico and in vitro mock communities indicated that GCN correction

results in more accurate estimates of microbial relative abundance and improves the agreement between metagenomic

and amplicon profiles. Analyses of human-associated and anaerobic digester microbiomes illustrate that correction

makes tangible changes to estimates of qPCR total abundance, α and β diversity, and can significantly change

biological interpretation. For example, human gut microbiomes from twins were reclassified into three rather than two

enterotypes after GCN correction.

Conclusions: The CopyRighter bioinformatic tools permits rapid correction of GCN in microbial surveys, resulting in

improved estimates of microbial abundance, α and β diversity.

Background

The advent of high-throughput sequencing has acceler-

ated the study of natural microbial communities. Many

microbial surveys rely on the sequencing of the small sub-

unit rRNA (16S or 18S rRNA) gene. However, the analysis

of microbial community structure using this molecular

technique is considered semi-quantitative because meth-

odological and biological biases can skew estimation of

species relative abundance in a community. For example,

the choice of DNA extraction method and PCR primers

significantly affects operational taxonomic unit (OTU)

representation in amplicon community profiles [1-3]. The

most well known biological bias in such profiles is vari-

ation in gene copy number (GCN) between species [4].

Note that GCN refers here specifically to the copy number

of the 16S rRNA gene, unless otherwise indicated.

GCN variation spans over an order of magnitude, from

1 to 15 in Bacteria, but only up to 5 in Archaea [5]. This

order of magnitude range biases both amplicon micro-

bial profiles and estimates of total microbial abundance

based on amplicon quantitative PCR (qPCR) data [6]. It

could be corrected by weighting read counts for a given

species by the inverse of its GCN [2,4,7,8], but informa-

tion about GCN is lacking for most microbial species.

Since related species have similar GCN [8,9], it is often

possible to accurately estimate GCN of an uncultured

organism if a closely related sequenced relative exists

[9,10], though this means dramatically reducing the
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search space to the subset of species with documented

GCN. Another possibility is to place reads on a phylo-

genetic tree and calculate GCN based on that of se-

quenced relatives using phylogenetically independent

contrasts (PIC) [9,11,12]. This method has the advantage

of not restricting search space, but its implementation is

computationally intensive [9]. Ultimately, correcting for

GCN bias is still an open problem that no readily avail-

able software adequately addresses.

GCN bias limits our ability to produce accurate micro-

bial profiles and compromises efforts that rely on rela-

tive or absolute abundance, such as the comparison of

microbiomes [13], or the development of predictive

models [14]. The effect of biases such as GCN may read-

ily be apparent through the discrepancies noted in hu-

man microbiome studies using different interrogation

techniques [15-17], despite the deployment of standard

operating procedures [18,19]. Here we introduce Copy-

Righter, a new method and easy-to-use software to correct

GCN bias in amplicon and qPCR studies. We test this

software using mock read datasets and illustrate the effects

of correction on human gut and bioreactor-associated

microbial communities.

Methods
Variation in gene copy number within species

As a pre-requisite for curating the GCN in the Integrated

Microbial Genomes (IMG) system, we investigated the

natural variation in GCN between strains of the same spe-

cies. We used the curated GCN entries in the Ribosomal

RNA Database (rrnDB) [20], which included 153 bacterial

and archaeal species containing 2 to 40 strains. The differ-

ence (d) between the mean (x) and extremum (maximum

or minimum) GCN for these species was calculated and

plotted. Except for a single species (Bifidobacterium

animalis), this difference generally had the upper bound:

d ≤ 0.105 x + 0.720 (Additional file 1: Figure S1).

Calculation of gene copy number in sequenced genomes

The CGN was inferred from 4,512 sequenced microbial

genomes downloaded from IMG version 4.0, released in

October 2012. Though GCN is reported by IMG, errors

in the GCN records required us to perform manual cur-

ation. RNAmmer 1.2 [21] and INFERNAL 1.1rc1 [22]

were run independently to estimate the GCN of these

genomes. The GCN of a particular genome was consid-

ered suspicious if: 1) it was smaller than 1 or larger than

15; 2) the average contig length was smaller than 200

kbp; 3) it was not identical to that predicted by INFERNAL

or RNAmmer; or 4) it differed significantly from IMG's or

rrnDB's average for this species (>1.2 f(x); Additional file 1:

Figure S1). A resolution of suspicious GCN was attempted

by ignoring the IMG record and: 1) using the GCN

determined by INFERNAL or RNAmmer if it was

consistent with rrnDB; 2) using the value from INFER-

NAL or RNAmmer if this genome was not represented

in rrnDB but its scaffold length was longer than 200

kbp; and 3) using IMG's 5S or 23S rRNA GCN if it

agreed with rrnDB's GCN (when IMG's 16S rRNA

GCN was zero). This correction was repeated as neces-

sary after removing potentially truncated 16S rRNA

genes (<1,220 bp). Suspicious GCNs that could not be

corrected were removed from subsequent analyses.

This procedure detected 278 suspicious values, 259 of

which could be corrected, resulting in GCN values for

2,982 genomes. This analysis can be reproduced using

the CopyRighter preprocessing scripts available at

http://github.com/fangly/AmpliCopyrighter/releases.

Reconstruction of the gene copy number of microbial

taxa

We estimated the GCN of archaeal and bacterial taxa in

Greengenes from October 2012 [23]. First, text searches

were performed to match each IMG genome name to a

Greengenes species name and ID. These IDs were then

replaced by the ID of their representative sequence from

the Greengenes file of OTUs clustered at 99% identity.

This allowed us to place each genome and its GCN on

the Greengenes phylogenetic tree (with OTUs clustered

at 99% identity) and prune the tree. For genomes match-

ing to the same Greengenes OTU, an average of their

GCN was calculated. Estimates of GCN for each ances-

tral node in the tree were calculated using the PIC

method [11], which essentially combines the GCN of se-

quenced daughter species on the tree linearly based on

their phylogenetic distance. However, several nodes in a

tree can belong to the same taxon. To accommodate for

this, the GCN of a taxon was calculated as the weighted

average of the GCN for the corresponding nodes, with

the weight being proportional to the number of nodes

making up the GCN estimate. The results were GCN es-

timates plotted from species to phylum level on the

Greengenes taxonomy. This method was implemented

using the Bio::Phylo Perl modules [24] and Newick Util-

ities [25], and can be run using the scripts available from

http://github.com/fangly/AmpliCopyrighter/releases.

Phylogenetic and taxonomic signal of microbial gene

copy number

We built a tree based on the Greengenes taxonomy,

using an arbitrary branch length of 1.0, and attached the

empirical GCNs to the corresponding taxa. The tree was

parsed and pruned with the APE [26] and Picante [27] R

libraries, and the Phytools library [28] computed the λ

statistic [29], which expresses the strength of phylogen-

etic signal. The value of λ ranges from 0, representing an

absence of link between a trait and a phylogenetic tree,

to 1, indicating a strong link. A P value was calculated
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from a likelihood ratio test against the null hypothesis

that λ is 0. This statistic was calculated using the Green-

genes taxonomic tree constructed above and repeated

using the Greengenes phylogenetic tree.

Estimation of microbial gene copy number for

unsequenced species

The PIC method was combined with rerooting [12] to

estimate the GCN of unsequenced species (Figure 1A).

These estimates were then mapped on the Greengenes

taxonomy. Specifically, when several tree nodes mapped

to a single taxon, estimated GCNs were removed if em-

pirical values were present, and the mean of the

remaining values was calculated. This intensive compu-

tation was performed for all 177,814 Greengenes records

on the tree on 48 to 64 core high-performance com-

puters, resulting in a table of pre-computed GCNs for

all Greengenes OTUs and taxa. The scripts written for

Figure 1 CopyRighter flowchart for the correction of microbial amplicon datasets. (A) Pre-computation of genome copy number (GCN)

based on a tree-based taxonomy and reference genomes. (B) The processing of microbial data through off-the-shelf programs. (C) The correction

of microbial data to estimate relative abundance, absolute abundance and average GCN in given samples. OTU, operational taxonomic unit; qPCR,

quantitative polymerase chain reaction; rRNA, ribosomal RNA.
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this step used the Newick Utilities [25] for quick process-

ing of the Newick-formatted tree and can be downloaded

from http://github.com/fangly/AmpliCopyrighter/releases.

Correction algorithm

We implemented a Perl program called CopyRighter, that

uses modules from Bio-Community (http://search.cpan.

org/dist/Bio-Community/) [30] and systematically corrects

16S rRNA gene amplicon datasets by taking into ac-

count the varying GCN in microbial species (Figure 1C).

CopyRighter is available under the GNU General Public

Licence v3.0 at http://github.com/fangly/AmpliCopyrigh-

ter/releases. CopyRighter reads OTU tables (in tabular,

biom, QIIME, GAAS or UniFrac format) that contain

Greengenes taxonomic assignments. For each OTU,

CopyRighter looks up its estimated GCN from the pre-

computed table described above and weights the number

of 16S rRNA gene amplicon reads of this OTU by the

inverse of its estimated GCN to obtain its relative

abundance (as a percentage): ri ¼
ci
g i
�

100

XS

j

cj

g j

, where ri is

the relative abundance of OTU i, ci its count, gi its GCN

and S is the community richness. OTUs without any

taxonomic assignment are assigned a GCN equal to the

average value in the community to prevent them from

affecting the relative abundance of other OTUs. The re-

sults are saved in a new account file in the same format

as the input file and the average GCN for each community

is returned. Provided qPCR results in a tab-delimited

text format, CopyRighter corrects qPCR numbers by

dividing them by the GCN averages in the corresponding

communities.

Validation using in silico mock communities

To assess the accuracy of CopyRighter, we simulated 90

microbial communities, divided into low, medium and

high richness groups (10,100 and 1,000 species, respect-

ively) using Grinder [31]. All communities were de-

signed with a power law rank-abundance structure [32],

the most abundant species representing 20% of the com-

munity (Additional file 2: Figure S2). For each of the 30

replicates per group, Grinder took IMG genomes and

assigned them a random abundance rank. These artificial

communities were sequenced in silico by Grinder using

the Roche-454 GS-FLX Ti technology routinely used in

microbial surveys. Each community was sequenced in

silico twice, once using the 16S rRNA gene amplicon ap-

proach (universal primers pyroLSSU926F AAACTYAA

AKGAATTGRCGG and pyrolSSU1392R ACGGGCGGT

GTGTRC, targeting gene hypervariable regions V6-V8),

and once using a shotgun metagenomic approach.

Validation using in vitro mock datasets

To further validate CopyRighter, we used published cell-

based and DNA-based in vitro mock datasets. The mock

16S rRNA gene amplicon dataset from Yuan and col-

leagues [2] was produced by pooling an equal number of

cells from 11 microbial species commonly found in the

human body, prior to DNA extraction and amplicon se-

quencing with universal primers specific to the V1-V2

hypervariable regions (cell-based mock). We also used a

V3-V5 16S rRNA gene amplicon dataset from the Hu-

man Microbiome Project (accession SRR074387) [18,33],

which was generated by extracting the DNA from 22 mi-

crobial species separately, and pooling their genomic

DNA in the ratio needed to obtain an equal number of

16S rRNA gene copies for each species (DNA-based

mock). The cell-based and DNA-based in vitro mock

datasets were sequenced using a Roche-454 GS-FLX Ti

sequencer [2,33]. We processed these data bioinformati-

cally using the 16S rRNA gene amplicon protocol de-

scribed below.

Processing of 16S rRNA gene amplicon read datasets

An OTU clustering and sequence-similarity taxonomic

annotation approach was used to process 16S rRNA

gene amplicon datasets. Reads from distinct samples

were first separated according to their multiplex identi-

fier using QIIME [34] and their 454 sequencing errors

were corrected using Acacia [35]. Sequences were

trimmed to recover the mode of the length distribution

(that is, 300 bp generally). CD-HIT-OTU [36] was used

to remove chimeras and cluster reads into 97% identity

OTUs, which were then given a taxonomic affiliation by

performing a BLASTN search [37] against the Green-

genes database. The resulting OTU table was rarefied to

1,000 reads (when possible) using at least 100 repetitions,

and summarized at the genus level using Bio-Community

scripts.

Post-processing of mock datasets

We calculated the expected species relative abundance

for each in vitro mock community. For cell-based

mocks, the number of cells for each species was simply

normalized to 100%. For DNA-based mocks, the total

number of 16S rRNA gene templates added in the DNA

pool for each species was divided by the GCN of the

corresponding genome, and normalized to 100%. A pipe-

line was setup with Bpipe [38] to process the result of

16S rRNA gene amplicon datasets. Each dataset was

processed by converting read counts into relative abun-

dance (no correction) and correcting GCN at the phylo-

genetic and taxonomic level. The taxonomic string of

the OTUs in the sampled community was corrected

when inspection revealed an obvious difference in as-

signment compared to the sample communities. The
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data were Hellinger-transformed [39] normalized to 100%

and the euclidean distance between the resulting sample

community composition and the expected species relative

abundance was calculated for each sample. A unilateral

exact Mann–Whitney test was performed (wilcox.test

function in R) to estimate if the distances between cor-

rected and expected community profiles were significantly

lower than the distances between non-corrected and ex-

pected profiles.

Re-analysis of twin gut cohort microbiomes

A cohort of twins and their mother has been previously

followed using V1-V2 16S rRNA gene amplicon pyrose-

quencing to investigate the composition of their gut

microbiota [40,41]. We re-analyzed the 280 microbiomes

with at least 1,000 reads through the pipeline described

above, using a trimming threshold of 200 bp, and cor-

rected for GCN using CopyRighter at the phylogenetic

level. A first analysis consisted of summarizing the mi-

crobial data at the phylum level and calculating the

Berger-Parker α diversity index in each sample. Starting

with the samples with the most similar Berger-Parker

index, a bilateral Mann–Whitney test was run with an

increasing number of samples to determine the fraction

of non-significantly different samples before and after

correction. A second analysis was performed to analyze

the effect of correction on sample β diversity. We classi-

fied the data into enterotypes in R, as described previously

[15]. The Bray-Curtis distance was calculated using the

Vegan library [42], partition around medoids clustering

was performed using the FPC library and the average sil-

houette width and Calinski-Harabasz index were re-

corded. In addition, the indicator value of each genus was

calculated to identify potential indicator genera using the

R Indicspecies library [43].

Analysis of microbial abundance in anaerobic digesters

Replicate bioreactors were operated for 362 days to ob-

tain information about the total microbial abundance

(16S rRNA qPCR) and composition of microbial com-

munities (16S rRNA gene amplicon pyrosequencing

reads) (primers pyroLSSU926F and pyrolSSU1392R, tar-

geting region V6-V8) involved in the anaerobic digestion

process (Additional file 3: Supplementary Protocol). The

16S rRNA gene amplicon reads (deposited under acces-

sion number SRR1145444) were processed using the bio-

informatic pipeline described above, using 800 reads for

the rarefaction step, and corrected for GCN with Copy-

Righter at the phylogenetic level to obtain estimates of

relative abundance. qPCR results were also corrected by

CopyRighter to compare the microbial abundance (num-

ber of genomes/ml of extracted reactor fluid) between

sampling dates. The results were summarized at the

order level and plotted. Unilateral paired t-tests were

performed (t.test function in R) to determine if the total

abundance estimates from day 362 were lower than

those for day 27.

Results

Gene copy number taxonomic signal

Greengenes provides a phylogenetic tree based on bac-

terial and archaeal rRNA sequences, and a taxonomic

system derived from this tree [23]. We calculated the

GCN from over 2,900 sequenced microbial genomes

from the IMG database [44] using RNAmmer and IN-

FERNAL, and averaged these values for each of the 274

Greengenes taxa represented by multiple genomes. GCN

ranged from 1 for most Greengenes taxa (28.8%) to 15

copies for a single species, Photobacterium profundum

(Figure 2A).

Using the PIC method for reconstruction of ancestral

traits [11], we estimated the GCN for all Greengenes

taxa (Figure 2B). Variations between taxa were present

at different taxonomic levels. For example, the estimated

GCN for the Firmicutes (6.81) and Fusobacteria (4.81)

were well above that of other phyla. Similarly, at the

domain level, Bacteria (2.40) had a higher GCN than

Archaea (1.46).

We calculated the λ statistic of phylogenetic signal

[29] for empirical GCN using the Greengenes phylogen-

etic tree and found that GCN is correlated with phyl-

ogeny (λ = 0.844, P = 2.13e-176). This association was

also apparent when using the Greengenes taxonomy

which is a simplified and less resolved representation of

the phylogeny (λ = 0.546, P = 2.03e-38). This suggests

that GCN can be reliably inferred from microbial phyl-

ogeny and tree-based taxonomy.

CopyRighter

We have implemented a program called CopyRighter that

takes GCN into account when estimating OTU relative

abundance. CopyRighter is freely available under the GNU

General Public License v3.0 from http://github.com/fangly/

AmpliCopyrighter/releases. Exploiting the strong phylogen-

etic and taxonomic signal in GCN, we used PIC with

rerooting [12] to compute estimates of GCN for the

1.08 million records in Greengenes based on publicly

available GCN information from 2,900 reference genomes

(Figure 1A) (data available at http://github.com/fangly/

AmpliCopyrighter/releases). CopyRighter corrects the GCN

bias for each OTU in a microbial dataset using these esti-

mates (Figure 1C). Additionally, given qPCR assay data,

CopyRighter divides the number of 16S rRNA gene tem-

plates [45] by the calculated average GCN in the commu-

nity to estimate total microbial abundance in a sample.

Correcting microbial datasets with CopyRighter requires

executing a single command after any analysis pipeline

that produces community profiles (file of rarefied OTU
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counts, in tabular, biom, QIIME, GAAS or UniFrac format)

containing Greengenes taxonomic assignments (Figure 1B).

When correcting, CopyRighter can use two methods to

find the GCN of an OTU: 1) based on the location of its

assigned taxon on the Greengenes phylogenetic tree (iden-

tified by its taxon ID) (phylogenetic-level correction); or

2) based on the Greengenes taxonomic string of this taxon

(taxonomic-level correction). The output of CopyRighter

is a corrected file expressing OTU relative abundance (as

a percentage), GCN averages for each community and op-

tional corrected qPCR results. For ease-of-use, we created

a Galaxy front-end [46], available at http://toolshed.g2.bx.

psu.edu/view/fangly/copyrighter.

Software validation

To assess the accuracy of CopyRighter, we generated 90

microbial communities in silico and simulated their 16S

rRNA gene amplicon and metagenomic shotgun sequen-

cing using Grinder [31]. The distances between observed

and expected amplicon microbial profiles were signifi-

cantly smaller for GCN-corrected than for uncorrected

samples (Figure 3A-C). Phylogenetic-level correction

was generally slightly more accurate than taxonomic-

level correction. On average, distance decreased with the

richness of the mock communities tested, from 10 to

1,000 species (Figure 3A-C). However, CopyRighter cor-

rection was beneficial across this entire richness range,

Figure 2 Estimated gene copy number (GCN) of 274 Greengenes taxa represented by over 2,900 genomes. (A) Density plot of GCN. (B)

Distribution of GCN from phylum to order level.
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with a smaller distance for corrected than uncorrected

profiles (Figure 3A-C).

To complement the results from in silico mock commu-

nities, more realistic but low richness in vitro mock com-

munities were corrected in the same manner (Figure 3D,

E). Again, CopyRighter correction resulted in smaller dis-

tances between observed and expected profiles for the

DNA-based mock (Figure 3D), except in the case of the

cell-based mock community (Figure 3E).

Assuming that GCN correction is effective, we would

expect microbial profiles obtained from different methods

(for example, amplicon and metagenomic sequencing) to

be more similar after CopyRighter correction. When com-

paring the profile of 16S rRNA in silico mocks to the

whole genome-based profile of the corresponding metage-

nomic mock, we noted that GCN-corrected profiles had a

significantly smaller distance than non-corrected profiles

(Additional file 4: Figure S3).

Correction of human gut microbial profiles

To evaluate the impact of CopyRighter on the interpret-

ation of empirical datasets, we corrected GCN in human

gut microbiome profiles from lean and obese twins and

their mothers (153 individuals) [40,41]. The correction

led to phylum-level changes in relative abundance, with

an overall decrease of Bacteroidetes from a median of

31.1 to 21.7% and an increase of Firmicutes from a

median of 67.1 to 76.0% (Figure 4A and B). Microbiome

α diversity was measured using the Berger-Parker index

(that is, the relative abundance of the most abundant

phylum). The difference in Berger-Parker index between

corrected and non-corrected samples ranged from 0 to

23.3% (Figure 4C). Up to 53.6% of the samples did not

have a statistically different Berger-Parker index (bilateral

Mann–Whitney test, P < 0.05; Additional file 5: Figure S4).

We calculated the Bray-Curtis distances between all gut

microbiomes and clustered them using partition around

medoid to determine enterotypes, as previously described

[15]. The microbiomes initially clustered into two entero-

types (Figure 5A), but correcting for GCN bias indicates

that the data were better partitioned into three entero-

types (Figure 5B; Additional file 6: Figure S5B). As a con-

sequence, 23.9% of the samples would have been

misclassified without GCN correction (Additional file 6:

Figure S5A,B). In terms of β diversity (Additional file 6:

Figure S5C), sample separation was driven mainly by the

family Bacteroidaceae (genus Bacteroides) for enterotype

A', the families Lachnospiraceae (genera Ruminococcus,

Roseburia, Blautia and Coprococcus) and Coprobacillaceae

for enterotype B', and the families Prevotellaceae (genus

Prevotella) and Ruminococcaceae (genera Ruminococcus,

Faecalibacterium and Oscillospira) for enterotype C'.

Among these taxa, Prevotella was the only indicator spe-

cies (indicator value of 0.785 for enterotype C', P = 1e-4).

Figure 3 Boxplot of the accuracy of CopyRighter's correction based on the composition of 16S rRNA gene amplicon mock datasets at the

genus level. (A-C) In silico uneven Grinder datasets of varying richness, and (D,E) published in vitro mock datasets. The boxes represent the minimum,

maximum, median and interquartile range. The smaller the distance, the closer the observed profile is to the expected profile. Corrected profiles with a

significantly lower distance than the corresponding uncorrected profiles (unilateral exact Mann–Whitney test, P < 0.05) are marked with a star.
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Correction of absolute microbial abundance

To assess the effects of GCN correction on the estimated

absolute abundance of microorganisms, we analyzed sam-

ples from two replicate anaerobic digester bioreactors. For

each time point, total abundance was inferred from the

number of 16S rRNA gene templates determined by qPCR

and microbial profiles were generated based on 16S rRNA

gene amplicon reads. Copyrighter reported an average

GCN of 2.69 for the samples collected on day 27, and 1.61

for the day 362 samples. This was primarily due to a

A)

B)

C)

Figure 4 Phylum-level effects of gene copy number bias correction in 280 human gut microbiomes. (A) Uncorrected, (B) after

phylogenetic-level correction, and (C) difference in Berger-Parker α diversity index between the corrected and non-corrected samples. Samples in

all panels were sorted by increasing Berger-Parker difference.

Figure 5 Optimal number of enterotypes based on partition around medoid clustering of microbial profiles of the twin cohort at the

genus level. (A) Non-corrected samples, and (B) samples processed through CopyRighter. The optimal number of enterotypes is shaded and

represents the number of clusters with the largest average silhouette width (top panels) and Calinksi-Harabasz index (bottom panels).
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change in the ratio of Bacteria (mostly represented by

Clostridiales) to Archaea (mostly Methanosarcinales) over

the two time points; 2.75 to 1.11 in uncorrected data, and

from 2.33 to 0.460 in corrected data. Uncorrected qPCR

results (Figure 6A) indicated a significant biomass de-

crease from 13.3 to 7.72 × 109 genomes/ml extracted re-

actor fluid during the operation of the reactors (paired

t-test, P = 0.0288), while corrected numbers (Figure 6B)

were not different (paired t-test, P = 0.413), averaging

4.86 × 109 genomes/ml over the two time points.

Discussion

Gene copy number is linked to tree-based taxonomy

We determined the 16S rRNA GCN of over 2,900 se-

quenced genomes and assigned these values to 274

unique taxonomic locations in the Greengenes phylo-

genetic framework (Figure 2A). We found that one-third

of these taxa have a GCN of 1 (that is, a single 16S

rRNA gene), in apparent contrast with previous reports

of a modal GCN of two gene copies per genome [5,10].

This difference between GCN per taxon (that is, phylo-

genetically normalized) and per genome reflects that a

limited number of high-GCN taxa of medical or biotech-

nological interest have been the subject of extensive re-

search and sequenced many times. For example, IMG

contains 116, 78 and 47 genomes of Escherichia coli,

Staphylococcus aureus and Bacillus aureus, respectively,

species that all have a GCN higher than 5.

We identified large differences in GCN between taxa

at different taxonomic levels (Figure 2B). For example,

bacterial taxa appear to have an additional 16S rRNA

gene on average compared to archaeal taxa. Hence the

relative abundance of Archaea is possibly systematically

underestimated in amplicon surveys, compared to that

of Bacteria, a problem that may be confounded by some

primer sets [47].

Based on the λ statistic of phylogenetic signal, we deter-

mined that the distribution of GCN in microbial genomes

is not random. The value of λ typically varies from 0 for a

lack of signal, to 1 for a strong signal. GCN was strongly

correlated with the microbial phylogeny represented by

the Greengenes phylogenetic tree (λ = 0.844), consistent

with previous evidence for a phylogenetic signal in GCN

[9]. GCN was also correlated with the Greengenes tax-

onomy (λ = 0.546), because this taxonomy is derived from

the Greengenes phylogeny. However, the signal was

weaker in the taxonomy than in the phylogeny because

each Greengenes taxon may encompass multiple nodes of

the phylogenetic tree and is thus less precise. Neverthe-

less, the presence of GCN signal in microbial phylogeny

and taxonomy makes it possible to infer GCN for organ-

isms lacking a genome sequence.

Copyrighter is a new tool for gene copy number bias

correction

GCN varies by over an order of magnitude between

microbial species and, thus, a one-to-one relationship

between a 16S rRNA gene amplicon read and a micro-

bial cell cannot be assumed. Not accounting for GCN

differences between species can lead to misinterpretation of

16S rRNA gene amplicon profiles [48]. We have introduced

CopyRighter (Figure 1), a software tool that aims at

making amplicon surveys more quantitative by account-

ing for GCN bias. Our software is accurate because it

uses phylogenetically-informed GCN, and is fast because

we pre-compute these estimates for the entire microbial

Figure 6 Abundance of microbial orders in replicate anaerobic digesters. (A) Before and (B) after phylogenetic-level correction of relative

and total abundance. P values from unilateral paired t-tests are indicated, and marked with a star when significant (P < 0.05).
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tree using the PIC framework [12]. The approach and pre-

computation removes the need for computationally inten-

sive processes such as inserting sequences in a tree [9]

and, as a result, is extremely fast. For example, an OTU

table containing 1,000 OTUs distributed across 10 com-

munities only takes 14 seconds to process on a personal

computer (with an Intel U7300 processor running at

1.30 GHz).

CopyRighter improves estimates of relative abundance

CopyRighter was validated with 90 in silico mock ampli-

con datasets and produced microbial profiles closer to

the expected profiles than without correction (Figure 3),

and also more congruent with simulated metagenomes

(Additional file 4: Figure S3). These observations held

true regardless of community richness, even though ac-

curacy was seemingly decreased at lower richness levels,

reflecting the fact that any potential error when estimat-

ing the relative abundance of a species has a larger effect

on microbial profiles that include only few species, com-

pared to richer communities. Correction performed at

the phylogenetic level appeared slightly more accurate

than at the taxonomic level, presumably a result of the

higher GCN signal in the phylogeny compared to the

taxonomy. GCN correction also appeared beneficial

when validating CopyRighter with published DNA-based

in vitro mock communities, but not with the cell-based

in vitro mock community. Since correction was effective

on the in silico and DNA-based in vitro mocks, this re-

sult does not invalidate the performance of CopyRighter.

Instead, this shows that experimental procedures such as

DNA extraction may produce a pool of genomic DNA

that bears little resemblance to the original community

[1,2]. In some cases, these experimental biases may be of

higher magnitude than that introduced by GCN bias,

such that GCN correction may exacerbate observed differ-

ences between observed and expected community profiles

and appear ineffective (Additional file 7: Figure S6).

Gene copy number correction influences α and β

diversity

To evaluate the effects of CopyRighter on empirical

datasets, we re-analyzed human gut microbiomes from

a cohort of twins. Firmicutes and Bacteroidetes were

numerically dominant, both in corrected and uncor-

rected profiles (Figure 4A and B), as confirmed in previ-

ous microarray and metagenomic studies [13,49]. GCN

correction did, however, create large phylum-level shifts

in favor of the Firmicutes in many of these datasets,

resulting in significantly different Berger-Parker α diver-

sity estimates for about half the samples (Additional file 5:

Figure S4). These shifts appear counter-intuitive given

the higher average GCN of the Firmicutes relative to the

Bacteroidetes (6.81 versus 2.62) but can be explained by

the GCN values of individual high abundance phylo-

types in the samples, which are atypical for their phyla

(Additional file 8: Figure S7). Considering that the ratio

of bacterial phyla in the gut is linked with disorders

such as obesity [50], diabetes [51] and Clostridium diffi-

cile infections [52], it is important to correct for GCN

to fully understand the implications of the microbiota in

health and disease.

We also noted that GCN correction did not have a uni-

form effect on related gut microbiome samples, with the

Berger-Parker index changing anywhere from 0 to 23.3%

between uncorrected and corrected samples (Figure 4C).

In other words, even though all samples came from the

same type of habitat, GCN correction made no difference

for some samples and large phylum-level differences for

others. Therefore it should not be assumed that the effects

of GCN correction can be inferred based on habitat type;

rather samples should be individually corrected to allow

more robust biological interpretation.

Gut microbiomes have been classified into enterotypes

based on their prevalent microbial species [13]. Our enter-

otype classification results were generally consistent with

existing studies of the distal gut, defining two main Bac-

teroides and Prevotella-dominated enterotypes [15,53].

Considering that the ordination of human microbiomes

can result in smooth gradients [54], the exact number of

enterotypes is contested [13,15]. Though our analysis was

limited to a single cohort, the microbial profiles corrected

by CopyRighter support the existence of a third entero-

type based around Ruminococcus, in accordance with a

previous metagenomic study [13]. Thus, not accounting

for GCN has important implications and may lead to in-

correct enterotype classification.

Gene copy number correction affects absolute microbial

abundance estimates

To improve absolute microbial abundance estimates,

CopyRighter can be used to correct amplicon qPCR re-

sults that have a corresponding community profile. In

uncorrected 16S rRNA qPCR results from anaerobic di-

gesters, the biomass seemed to be halved over 355 days

(Figure 6A). However, corrected numbers indicate that

total biomass was not significantly different between the

two time points and the ratio of major functional

groups was also misrepresented (Figure 6B). This may

have important implications for interpreting community

dynamics and function.

Advantages and limitations of CopyRighter

Most microbial species have no genome representative

and their GCN is unknown, which is an impediment to

the correction of GCN in microbial datasets. In the
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CopyRighter approach, we have pre-computed GCN esti-

mates for over a million Greengenes records, an advance

made possible by leveraging publicly available genomes,

phylogenetic trees and taxonomic systems within the con-

text of the PIC framework. However, there are still many

phyla without genome representation, especially candidate

phyla [55], for which GCN estimates are likely not as ac-

curate as those from well-represented phyla. Further, not

all GCN values reported by IMG are correct, phylogenetic

trees are affected by lack of representation and uncertainty

[56], and the Greengenes taxonomy does not always in-

clude species information in its taxonomic strings. These

drawbacks limit the precision of our pre-computed GCN

estimates, but with further database growth and expert

curation in time, updates to CopyRighter data files will

make these problems less significant.

CopyRighter correction represents the last step of many

experimental and bioinformatic steps to estimate micro-

bial community composition. Community profiles can

be seriously compromised by experimental procedures

such as DNA extraction [1,2] (Figure 3E; Additional file 7:

Figure S6), whole genome multiple displacement amplifi-

cation [57,58], PCR [3,47] and sequencing [35,59]. In some

instances, these upstream issues may be more problematic

than GCN bias. Despite these potential limitations, our val-

idation using mock datasets demonstrate that Copyrighter-

based GCN correction is effective in improving the fidelity

of community profiles.

While Copyrighter brings us a step closer towards esti-

mating accurate OTU relative abundance in environmen-

tal surveys, it does not address genome copy number bias.

Genome copy number varies during the natural bacterial

life cycle, doubling during replication, and some endo-

symbiotic and thermophilic bacteria exhibit extreme

polyploidy or large genome copy variations [60-62]. The

magnitude and effects of genome copy number bias on

biological interpretations are largely unknown and will

be challenging to address in a systematic fashion.

Conclusions

CopyRighter is a user-friendly open source software tool

that enables rapid correction of GCN bias thereby im-

proving the accuracy of amplicon-based community

profiling and microbial biomass estimations. In addition,

the average community GCN calculated by CopyRighter

may provide insights into environmental conditions since

GCN reflects the ecological strategies of microbial species,

with higher average GCN in faster growing communities,

in locations where resources are not limiting [63,64].

As illustrated throughout the present study, correcting

for GCN is important since it can significantly alter esti-

mated total microbial abundance, α and β diversity and,

ultimately, biological interpretation. One should expect

the effects of CopyRighter correction to be more pro-

nounced when many species in a community differ

strongly in GCN; for example, when a microbial profile

contains many Archaea (GCN of 1.46 on average) and

Firmicutes (GCN of 6.81). However, communities often

contain tens to thousands of species, making prediction

of the effects of correction non-trivial. In practice, the

consequences of correction are different for every sam-

ple, even for samples originating from the same habitat,

as seen in the survey of the twin cohort microbiota. For-

tunately, CopyRighter is fast and compatible with popu-

lar taxonomy-based analysis workflows. We recommend

running Copyrighter systematically on every microbial

sample, if possible using phylogenetic-level rather than

taxonomic-level correction, to obtain the highest accur-

acy possible.

We have produced freely available data files of the

phylogenetically-based estimates of GCN for all OTUs

and taxa in the Greengenes database. We anticipate that

the CopyRighter methodology and software described

here will be extended to cover GCN in other taxonomies

(for example, Silva [65]), or other variable copy number

genes or intergenic marker regions, or different genome

characteristics altogether. For example, given appropri-

ate pre-computed estimates (Figure 1A), CopyRighter

could correct the GC percent bias introduced by se-

quencing microbial samples [66,67], genome length bias

in metagenome profiles [68], or improve fungal surveys,

in which the internal transcribed spacer sequenced can

vary by two orders of magnitude [69].

Additional files

Additional file 1: Figure S1. Variation in gene copy number between

strains of the same species in the Ribosomal RNA Database. The size of

the bubbles indicates the number of species represented, from 1 to 23.

Additional file 2: Figure S2. Rank-abundance plot of the low, medium

and high richness in silico mock communities generated with Grinder.

Additional file 3: Supplementary protocol: operating and sampling

anaerobic digesters.

Additional file 4: Figure S3. Boxplot of the agreement between in

silico 16S rRNA gene amplicon and metagenomic mock datasets with

and without Copyrighter correction. The boxes represent the minimum,

maximum, median and interquartile range; the lower the distance, the

better the agreement. Corrected profiles with a significantly lower

distance than the corresponding uncorrected profiles (unilateral exact

Mann–Whitney test, P < 0.05) are marked with a star.

Additional file 5: Figure S4. P values from bilateral Mann–Whitney

tests performed on the Berger-Parker index from corrected and non-

corrected twin microbiomes in function of the number of samples used.

The samples were sorted by increasing Berger-Parker difference.

Additional file 6: Figure S5. Enterotype classification of human gut

microbiomes of a twin cohort at the genus level. (A) Before correction,

(B) after phylogenetic-level correction, and (C) taxa driving the variance

between samples.

Additional file 7: Figure S6. Ordination plots illustrating how a large

bias can make the correction of another bias appear ineffective. (A)

Before and (B) after correction. For example, the large bias could be DNA
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extraction, and the smaller one gene copy number variation between

species.

Additional file 8: Figure S7. Genus-level heatmap of the human gut

microbiomes before and after gene copy number (GCN) correction.

Non-corrected and corrected profiles represent the average of the 280

samples. Numbers indicate the GCN of the various taxa identified in the

samples and bolded text emphasizes abundant taxa (over 5% in the

non-corrected data).
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