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Abstract

Humans gather information through conver-

sations involving a series of interconnected

questions and answers. For machines to assist

in information gathering, it is therefore essen-

tial to enable them to answer conversational

questions. We introduce CoQA, a novel data-

set for building Conversational Question An-

swering systems. Our dataset contains 127k

questions with answers, obtained from 8k

conversations about text passages from seven

diverse domains. The questions are conver-

sational, and the answers are free-form text

with their corresponding evidence highlighted

in the passage. We analyze CoQA in depth

and show that conversational questions have

challenging phenomena not present in existing

reading comprehension datasets (e.g., coref-

erence and pragmatic reasoning). We evaluate

strong dialogue and reading comprehension

models on CoQA. The best system obtains an

F1 score of 65.4%, which is 23.4 points behind

human performance (88.8%), indicating that

there is ample room for improvement. We

present CoQA as a challenge to the commu-

nity athttps://stanfordnlp.github.

io/coqa.

1 Introduction

We ask other people a question to either seek or

test their knowledge about a subject. Depending on

their answer, we follow up with another question

and their second answer builds on what has already

been discussed. This incremental aspect makes

human conversations succinct. An inability to

build and maintain common ground in this way is

part of why virtual assistants usually don’t seem

like competent conversational partners. In this

∗The first two authors contributed equally.

paper, we introduce CoQA,1 a Conversational

Question Answering dataset for measuring the

ability of machines to participate in a question-

answering style conversation. In CoQA, a machine

has to understand a text passage and answer a

series of questions that appear in a conversation.

We develop CoQA with three main goals in mind.

The first concerns the nature of questions in a

human conversation. Figure 1 shows a conver-

sation between two humans who are reading a

passage, one acting as a questioner and the other as

an answerer. In this conversation, every question

after the first is dependent on the conversation

history. For instance, Q5 (Who?) is only a single

word and is impossible to answer without knowing

what has already been said. Posing short questions

is an effective human conversation strategy, but

such questions are difficult for machines to parse.

As is well known, state-of-the-art models rely

heavily on lexical similarity between a question

and a passage (Chen et al., 2016; Weissenborn

et al., 2017). At present, there are no large-

scale reading comprehension datasets that contain

questions that depend on a conversation history

(see Table 1) and this is what CoQA is mainly

developed for.2

The second goal of CoQA is to ensure the

naturalness of answers in a conversation. Many

existing QA datasets restrict answers to contiguous

text spans in a given passage (Table 1). Such

answers are not always natural—for example,

there is no span-based answer to Q4 (How many?)

in Figure 1. In CoQA, we propose that the answers

can be free-form text, while for each answer, we

also provide a text span from the passage as a

rationale to the answer. Therefore, the answer

to Q4 is simply Three and its rationale spans

1CoQA is pronounced as coca.
2Concurrent with our work, Choi et al. (2018) also created

a conversational dataset with a similar goal, but it differs in

many aspects. We discuss the details in Section 7.
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Figure 1: A conversation from the CoQA dataset. Each

turn contains a question (Qi), an answer (Ai), and a

rationale (Ri) that supports the answer.

across multiple sentences. Free-form answers have

been studied in previous reading comprehension

datasets for example, MS MARCO (Nguyen

et al., 2016) and NarrativeQA (Kočiskỳ et al.,

2018), and metrics such as BLEU or ROUGE

are used for evaluation due to the high variance

of possible answers. One key difference in our

setting is that we require answerers to first select

a text span as the rationale and then edit it to

obtain a free-form answer.3 Our method strikes

a balance between naturalness of answers and

reliable automatic evaluation, and it results in a

high human agreement (88.8% F1 word overlap

among human annotators).

The third goal of CoQA is to enable building

QA systems that perform robustly across domains.

The current QA datasets mainly focus on a single

domain, which makes it hard to test the gen-

eralization ability of existing models. Hence we

collect our dataset from seven different domains—

children’s stories, literature, middle and high

school English exams, news, Wikipedia, Reddit, and

3In contrast, in NarrativeQA, the annotators were encour-

aged to use their own words and copying was not allowed in

their interface.

science. The last two are used for out-of-domain

evaluation.

To summarize, CoQA has the following key

characteristics:

• It consists of 127k conversation turns col-

lected from 8k conversations over text pas-

sages. The average conversation length is

15 turns, and each turn consists of a question

and an answer.

• It contains free-form answers and each an-

swer has a span-based rationale highlighted

in the passage.

• Its text passages are collected from seven di-

verse domains: five are used for in-domain

evaluation and two are used for out-of-

domain evaluation.

Almost half of CoQA questions refer back

to conversational history using anaphors, and a

large portion require pragmatic reasoning, making

it challenging for models that rely on lexical

cues alone. We benchmark several deep neural

network models, building on top of state-of-

the-art conversational and reading comprehension

models (Section 5). The best-performing system

achieves an F1 score of 65.4%. In contrast, humans

achieve 88.8% F1, 23.4% F1 higher, indicating

that there is a considerable room for improvement.

2 Task Definition

Given a passage and a conversation so far, the task

is to answer the next question in the conversation.

Each turn in the conversation contains a question

and an answer.

For the example in Figure 2, the conversation

begins with question Q1. We answer Q1 with A1

based on the evidence R1, which is a contiguous

text span from the passage. In this example,

the answerer only wrote the Governor as the

answer but selected a longer rationale The Virginia

governor’s race.

When we come to Q2 (Where?), we must

refer back to the conversation history, otherwise

its answer could be Virginia or Richmond or

something else. In our task, conversation history

is indispensable for answering many questions.

We use conversation history Q1 and A1 to answer

Q2 with A2 based on the evidence R2. Formally,

to answer Qn, it depends on the conversation
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Dataset Conversational Answer Type Domain

MCTest (Richardson et al., 2013) ✗ Multiple choice Children’s stories

CNN/Daily Mail (Hermann et al., 2015) ✗ Spans News

Children’s book test (Hill et al., 2016) ✗ Multiple choice Children’s stories

SQuAD (Rajpurkar et al., 2016) ✗ Spans Wikipedia

MS MARCO (Nguyen et al., 2016) ✗ Free-form text, Unanswerable Web Search

NewsQA (Trischler et al., 2017) ✗ Spans News

SearchQA (Dunn et al., 2017) ✗ Spans Jeopardy

TriviaQA (Joshi et al., 2017) ✗ Spans Trivia

RACE (Lai et al., 2017) ✗ Multiple choice Mid/High School Exams

Narrative QA (Kočiskỳ et al., 2018) ✗ Free-form text Movie Scripts, Literature

SQuAD 2.0 (Rajpurkar et al., 2018) ✗ Spans, Unanswerable Wikipedia

CoQA (this work) ✓ Free-form text, Unanswerable; Children’s Stories, Literature,

Each answer comes with a Mid/High School Exams, News,

text span rationale Wikipedia, Reddit, Science

Table 1: Comparison of CoQA with existing reading comprehension datasets.

Figure 2: A conversation showing coreference

chains in color. The entity of focus changes in Q4,

Q5, and Q6.

history: Q1, A1, . . ., Qn−1, An−1. For an un-

answerable question, we give unknown as the

final answer and do not highlight any rationale.

In this example, we observe that the entity of

focus changes as the conversation progresses. The

questioner uses his to refer to Terry in Q4 and he to

Ken in Q5. If these are not resolved correctly, we

end up with incorrect answers. The conversational

nature of questions requires us to reason from

multiple sentences (the current question and the

previous questions or answers, and sentences from

the passage). It is common that a single question

may require a rationale spanning across multiple

sentences (e.g., Q1, Q4, and Q5 in Figure 1). We

describe additional question and answer types in

Section 4.

Note that we collect rationales as (optional)

evidence to help answer questions. However, they

are not provided at testing time. A model needs

to decide on the evidence by itself and derive the

final answer.

3 Dataset Collection

For each conversation, we use two annotators,

a questioner and an answerer. This setup has

several advantages over using a single annotator

to act both as a questioner and an answerer: 1)

when two annotators chat about a passage, their

dialogue flow is natural; 2) when one annotator

responds with a vague question or an incorrect

answer, the other can raise a flag, which we use

to identify bad workers; and 3) the two annotators

can discuss guidelines (through a separate chat

window) when they have disagreements. These

measures help to prevent spam and to obtain high

agreement data.4 We use Amazon Mechanical

Turk to pair workers on a passage through the

ParlAI MTurk API (Miller et al., 2017).

4Due to Amazon Mechanical Turk terms of service, we

allowed a single worker to act both as a questioner and an

answerer after a minute of waiting. This constitutes around

12% of the data. We include this data in the training set only.
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3.1 Collection Interface

We have different interfaces for a questioner and

an answerer (see Appendix). A questioner’s role

is to ask questions, and an answerer’s role is

to answer questions in addition to highlighting

rationales. Both questioner and answerer see the

conversation that happened until now, that is,

questions and answers from previous turns and

rationales are kept hidden. While framing a new

question, we want questioners to avoid using exact

words in the passage in order to increase lexical

diversity. When they type a word that is already

present in the passage, we alert them to paraphrase

the question if possible. While answering, we want

answerers to stick to the vocabulary in the passage

in order to limit the number of possible answers.

We encourage this by asking them to first highlight

a rationale (text span), which is then automatically

copied into the answer box, and we further ask

them to edit the copied text to generate a natural

answer. We found 78% of the answers have at

least one edit such as changing a word’s case or

adding a punctuation.

3.2 Passage Selection

We select passages from seven diverse domains:

children’s stories from MCTest (Richardson et al.,

2013), literature from Project Gutenberg,5 middle

and high school English exams from RACE (Lai

et al., 2017), news articles from CNN (Hermann

et al., 2015), articles from Wikipedia, Reddit arti-

cles from the Writing Prompts dataset (Fan et al.,

2018), and science articles from AI2 Science

Questions (Welbl et al., 2017).

Not all passages in these domains are equally

good for generating interesting conversations.

A passage with just one entity often results in

questions that entirely focus on that entity. There-

fore, we select passages with multiple entities,

events, and pronominal references using Stanford

CoreNLP (Manning et al., 2014). We truncate

long articles to the first few paragraphs that result

in around 200 words.

Table 2 shows the distribution of domains. We

reserve the Reddit and Science domains for out-

of-domain evaluation. For each in-domain dataset,

we split the data such that there are 100 passages

in the development set, 100 passages in the test

set, and the rest in the training set. For each out-

5Project Gutenberg https://www.gutenberg.org.

#Q/A Passage #Turns per

Domain #Passages pairs length passage

In-domain

Children’s Sto. 750 10.5k 211 14.0

Literature 1,815 25.5k 284 15.6

Mid/High Sch. 1,911 28.6k 306 15.0

News 1,902 28.7k 268 15.1

Wikipedia 1,821 28.0k 245 15.4

Out-of-domain

Reddit 100 1.7k 361 16.6

Science 100 1.5k 251 15.3

Total 8,399 127k 271 15.2

Table 2: Distribution of domains in CoQA.

of-domain dataset, we only have 100 passages in

the test set.

3.3 Collecting Multiple Answers

Some questions in CoQA may have multiple

valid answers. For example, another answer to

Q4 in Figure 2 is A Republican candidate. In

order to account for answer variations, we collect

three additional answers for all questions in the

development and test data. Because our data

are conversational, questions influence answers,

which in turn influence the follow-up questions.

In the previous example, if the original answer

was A Republican Candidate, then the following

question Which party does he belong to? would not

have occurred in the first place. When we show

questions from an existing conversation to new

answerers, it is likely they will deviate from the

original answers, which makes the conversation

incoherent. It is thus important to bring them to a

common ground with the original answer.

We achieve this by turning the answer collection

task into a game of predicting original answers.

First, we show a question to an answerer, and

when she answers it, we show the original answer

and ask her to verify if her answer matches the

original. For the next question, we ask her to guess

the original answer and verify again. We repeat

this process with the same answerer until the

conversation is complete. The entire conversation

history is shown at each turn (question, answer,

original answer for all previous turns but not the

rationales). In our pilot experiment, the human

F1 score is increased by 5.4% when we use this

verification setup.
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Figure 3: Distribution of trigram prefixes of questions in SQuAD and CoQA.

4 Dataset Analysis

What makes the CoQA dataset conversational

compared to existing reading comprehension

datasets like SQuAD? What linguistic phenomena

do the questions in CoQA exhibit? How does the

conversation flow from one turn to the next? We

answer these questions in this section.

4.1 Comparison with SQuAD 2.0

SQuAD has been the main benchmark for read-

ing comprehension. In the following, we perform

an in-depth comparison of CoQA and the latest

version of SQuAD (Rajpurkar et al., 2018).

Figure 3(a) and Figure 3(b) show the distribution

of frequent trigram prefixes. Because of the free-

form nature of answers, we expect a richer variety

of questions in CoQA than in SQuAD. While

nearly half of SQuAD questions are dominated by

what questions, the distribution of CoQA is spread

across multiple question types. Several sectors

indicated by prefixes did, was, is, does, and and

are frequent in CoQA but are completely absent in

SQuAD. Whereas coreferences are non-existent

in SQuAD, almost every sector of CoQA contains

coreferences (he, him, she, it, they), indicating that

CoQA is highly conversational.

Because a conversation is spread over multiple

turns, we expect conversational questions and

answers to be shorter than in a standalone inter-

action. In fact, questions in CoQA can be made up

of just one or two words (who?, when?, why?). As

seen in Table 3, on average, a question in CoQA

SQuAD CoQA

Passage Length 117 271

Question Length 10.1 5.5

Answer Length 3.2 2.7

Table 3: Average number of words in passage,

question, and answer in SQuAD and CoQA.

SQuAD CoQA

Answerable 66.7% 98.7%

Unanswerable 33.3% 1.3%

Span found 100.0% 66.8%

No span found 0.0% 33.2%

Named Entity 35.9% 28.7%

Noun Phrase 25.0% 19.6%

Yes 0.0% 11.1%

No 0.1% 8.7%

Number 16.5% 9.8%

Date/Time 7.1% 3.9%

Other 15.5% 18.1%

Table 4: Distribution of answer types in SQuAD

and CoQA.

is only 5.5 words long whereas it is 10.1 for

SQuAD. The answers are a bit shorter in CoQA

than SQuAD because of the free-form nature of

the answers.

Table 4 provides insights into the type of

answers in SQuAD and CoQA. While the original

version of SQuAD (Rajpurkar et al., 2016) does
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Phenomenon Example Percentage

Relationship between a question and its passage

Lexical match Q: Who had to rescue her? 29.8%

A: the coast guard

R: Outen was rescued by the coast guard

Paraphrasing Q: Did the wild dog approach? 43.0%

A: Yes

R: he drew cautiously closer

Pragmatics Q: Is Joey a male or female? 27.2%

A: Male

R: it looked like a stick man so she kept him.

She named her new noodle friend Joey

Relationship between a question and its conversation history

No coref. Q: What is IFL? 30.5%

Explicit coref. Q: Who had Bashti forgotten? 49.7%

A: the puppy

Q: What was his name?

Implicit coref. Q: When will Sirisena be sworn in? 19.8%

A: 6 p.m local time

Q: Where?

Table 5: Linguistic phenomena in CoQA questions.

not have any unanswerable questions, the later

version (Rajpurkar et al., 2018) focuses solely

on obtaining them, resulting in higher frequency

than in CoQA. SQuAD has 100% span-based

answers by design, whereas in CoQA, 66.8% of

the answers overlap with the passage after ignoring

punctuation and case mismatches.6 The rest of the

answers, 33.2%, do not exactly overlap with the

passage (see Section 4.3). It is worth noting that

CoQA has 11.1% and 8.7% questions with yes

or no as answers whereas SQuAD has 0%. Both

datasets have a high number of named entities and

noun phrases as answers.

4.2 Linguistic Phenomena

We further analyze the questions for their rela-

tionship with the passages and the conversation

history. We sample 150 questions in the devel-

opment set and annotate various phenomena as

shown in Table 5.

If a question contains at least one content word

that appears in the rationale, we classify it as

lexical match. These constitute around 29.8% of

the questions. If it has no lexical match but is a

6If punctuation and case are not ignored, only 37% of the

answers can be found as spans.

paraphrase of the rationale, we classify it as

paraphrasing. These questions contain phenom-

ena such as synonymy, antonymy, hypernymy,

hyponymy, and negation. These constitute a large

portion of questions, around 43.0%. The rest,

27.2%, have no lexical cues, and we classify them

as pragmatics. These include phenomena like

common sense and presupposition. For example,

the question Was he loud and boisterous? is not a

direct paraphrase of the rationale he dropped his

feet with the lithe softness of a cat but the ratio-

nale combined with world knowledge can answer

this question.

For the relationship between a question and its

conversation history, we classify questions into

whether they are dependent or independent of the

conversation history. If dependent, whether the

questions contain an explicit marker or not. Our

analysis shows that around 30.5% questions do

not rely on coreference with the conversational

history and are answerable on their own. Almost

half of the questions (49.7%) contain explicit

coreference markers such as he, she, it. These

either refer to an entity or an event introduced

in the conversation. The remaining 19.8% do not

have explicit coreference markers but refer to an

entity or event implicitly (these are often cases of

ellipsis, as in the examples in Table 5).

254

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/ta

c
l/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
6
2
/ta

c
l_

a
_
0
0
2
6
6
/1

9
2
3
2
5
2
/ta

c
l_

a
_
0
0
2
6
6
.p

d
f b

y
 g

u
e
s
t o

n
 2

8
 A

u
g
u
s
t 2

0
2
2



Answer Type Example Percentage

Yes Q: is MedlinePlus optimized for mobile? 48.5%

A: Yes

R: There is also a site optimized for display on mobile devices

No Q: Is it played outside? 30.3%

A: No

R: AFL is the highest level of professional indoor American football

Fluency Q: Why? 14.3%

A: so the investigation could continue

R: while the investigation continued

Counting Q: how many languages is it offered in? 5.1%

A: Two

R: The service provides curated consumer health information in English and Spanish

Multiple choice Q: Is Jenny older or younger? 1.8%

A: Older

R: her baby sister is crying so loud that Jenny can’t hear herself

Fine grained breakdown of Fluency

Multiple edits Q: What did she try just before that? 41.4%

A: She gave her a toy horse.

R: She would give her baby sister one of her toy horses.

(morphology: give → gave, horses → horse; delete: would, baby sister one of her; insert: a)

Coreference insertion Q: what is the cost to end users? 16.0%

A: It is free

R: The service is funded by the NLM and is free to users

Morphology Q: Who was messing up the neighborhoods? 13.9%

A: vandals

R: vandalism in the neighborhoods

Article insertion Q: What would they cut with? 7.2%

A: an ax

R: the heavy ax

Adverb insertion Q: How old was the diary? 4.2%

A: 190 years old

R: kept 190 years ago

Adjective deletion Q: What type of book? 4.2%

A: A diary.

R: a 120-page diary

Preposition insertion how long did it take to get to the fire? 3.4%

A: Until supper time!

R: By the time they arrived, it was almost supper time.

Adverb deletion Q: What had happened to the ice? 3.0%

A: It had changed

R: It had somewhat changed its formation when they approached it

Conjunction insertion Q: what else do they get for their work? 1.3%

A: potatoes and carrots

R: paid well, both in potatoes, carrots

Noun insertion Q: Who did 1.3%

A: Comedy Central employee

R: But it was a Comedy Central account

Coreference deletion Q: What is the story about? 1.2%

A: A girl and a dog

R: This is the story of a young girl and her dog

Noun deletion Q: What is the ranking in the country in terms of people studying? 0.8%

A: the fourth largest population

R: and has the fourth largest student population

Possesive insertion Q: Whose diary was it? 0.8%

A: Deborah Logan’s

R: a 120-page diary kept 190 years ago by Deborah Logan

Article deletion Q: why? 0.8%

A: They were going to the circus

R: They all were going to the circus to see the clowns

Table 6: Analysis of answers that don’t overlap with the passage.
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4.3 Analysis of Free-form Answers

Because of the free-form nature of CoQA’s

answers, around 33.2% of them do not exactly

overlap with the given passage. We analyze

100 conversations to study the behavior of such

answers.7 As shown in Table 6, the answers Yes

and No constitute 48.5% and 30.3%, respectively,

totaling 78.8%. The next majority, around 14.3%,

are edits to text spans to improve the fluency (nat-

uralness) of answers. More than two thirds of these

edits are just one-word edits, either inserting or

deleting a word. This indicates that text spans are a

good approximation for natural answers—positive

news for span-based reading comprehension mod-

els. The remaining one third involve multiple

edits. Although multiple edits are challenging to

evaluate using automatic metrics, we observe that

many of these answers partially overlap with pas-

sage, indicating that word overlap is still a reliable

automatic evaluation metric in our setting. The

rest of the answers include counting (5.1%) and

selecting a choice from the question (1.8%).

4.4 Conversation Flow

A coherent conversation must have smooth tran-

sitions between turns. We expect the narrative

structure of the passage to influence our conver-

sation flow. We split each passage into 10 uniform

chunks, and identify chunks of interest in a given

turn and its transition based on rationale spans.

Figure 4 shows the conversation flow of the first

10 turns. The starting turns tend to focus on the

first few chunks and as the conversation advances,

the focus shifts to the later chunks. Moreover,

the turn transitions are smooth, with the focus

often remaining in the same chunk or moving to a

neighboring chunk. Most frequent transitions hap-

pen to the first and the last chunks, and likewise

these chunks have diverse outward transitions.

5 Models

Given a passage p, the conversation history

{q1, a1, . . . qi−1, ai−1}, and a question qi, the task

is to predict the answer ai. Gold answers a1,

a2, . . . , ai−1 are used to predict ai, similar to the

setup discussed in Section 3.3.

Our task can either be modeled as a con-

versational response generation problem or a

reading comprehension problem. We evaluate

7We only pick the questions in which none of its answers

can be found as a span in the passage.

Figure 4: Chunks of interest as a conversation

progresses. Each chunk is one tenth of a passage.

The x-axis indicates the turn number and the y-axis

indicates the chunk containing the rationale. The height

of a chunk indicates the concentration of conversation

in that chunk. The width of the bands is proportional to

the frequency of transition between chunks from one

turn to the next.

strong baselines from each modeling type and

a combination of the two on CoQA.

5.1 Conversational Models

Sequence-to-sequence (seq2seq) models have

shown promising results for generating conversa-

tional responses (Vinyals and Le, 2015; Serban

et al., 2016; Zhang et al., 2018). Motivated by their

success, we use a sequence-to-sequence with at-

tention model for generating answers (Bahdanau

et al., 2015). We append the conversation his-

tory and the current question to the passage, as

p <q> qi−n <a> ai−n . . . <q> qi−1 <a> ai−1

<q> qi, and feed it into a bidirectional long

short-term memory (LSTM) encoder, where n is

the size of the history to be used. We generate

the answer using an LSTM decoder which attends

to the encoder states. Additionally, as the answer

words are likely to appear in the original passage,

we employ a copy mechanism in the decoder

which allows to (optionally) copy a word from

the passage (Gu et al., 2016; See et al., 2017).

This model is referred to as the Pointer-Generator

network, PGNet.

5.2 Reading Comprehension Models

The state-of-the-art reading comprehension mod-

els for extractive question answering focus on

finding a span in the passage that matches the

question best (Seo et al., 2016; Chen et al.,

2017; Yu et al., 2018). Because their answers are

limited to spans, they cannot handle questions
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whose answers do not overlap with the passage

(e.g., Q3, Q4, and Q5 in Figure 1). However, this

limitation makes them more effective learners than

conversational models, which have to generate

an answer from a large space of pre-defined

vocabulary.

We use the Document Reader (DrQA) model

of Chen et al. (2017), which has demonstrated

strong performance on multiple datasets (Rajpurkar

et al., 2016; Labutov et al., 2018). Because DrQA

requires text spans as answers during training, we

select the span that has the highest lexical overlap

(F1 score) with the original answer as the gold

answer. If the answer appears multiple times in

the story we use the rationale to find the correct

one. If any answer word does not appear in the

story, we fall back to an additional unknown token

as the answer (about 17% in the training set).

We prepend each question with its past questions

and answers to account for conversation history,

similar to the conversational models.

Considering that a significant portion of an-

swers in our dataset are yes or no (Table 4), we

also include an augmented reading comprehension

model for comparison. We add two additional

tokens, yes and no, to the end of the passage—if the

gold answer is yes or no, the model is required to

predict the corresponding token as the gold span;

otherwise it does the same as the previous model.

We refer to this model as Augmented DrQA.

5.3 A Combined Model

Finally, we propose a model that combines the

advantages from both conversational models and

extractive reading comprehension models. We use

DrQA with PGNet in a combined model, in which

DrQA first points to the answer evidence in the

text, and PGNet naturalizes the evidence into an

answer. For example, for Q5 in Figure 1, we expect

that DrQA first predicts the rationale R5, and then

PGNet generates A5 from R5.

We make a few changes to DrQA and PGNet

based on empirical performance. For DrQA, we

require the model to predict the answer directly

if the answer is a substring of the rationale, and

to predict the rationale otherwise. For PGNet,

we provide the current question and DrQA’s span

predictions as input to the encoder and the decoder

aims to predict the final answer.8

8We feed DrQA’s oracle spans into PGNet during training.

6 Evaluation

6.1 Evaluation Metric

Following SQuAD, we use macro-average F1

score of word overlap as our main evaluation

metric.9 We use the gold answers of history to

predict the next answer. In SQuAD, for computing

a model’s performance, each individual prediction

is compared against n human answers resulting

in n F1 scores, the maximum of which is chosen

as the prediction’s F1.10 For each question, we

average out F1 across thesen sets, both for humans

and models. In our final evaluation, we use n = 4

human answers for every question (the original

answer and 3 additionally collected answers).

The articles a, an, and the and punctuations are

excluded in evaluation.

6.2 Experimental Setup

For all the experiments of seq2seq and PGNet, we

use the OpenNMT toolkit (Klein et al., 2017) and

its default settings: 2-layers of LSTMs with 500

hidden units for both the encoder and the decoder.

The models are optimized using SGD, with an

initial learning rate of 1.0 and a decay rate of 0.5.

A dropout rate of 0.3 is applied to all layers.

For the DrQA experiments, we use the imple-

mentation from the original paper (Chen et al.,

2017). We tune the hyperparameters on the devel-

opment data: the number of turns to use from the

conversation history, the number of layers, num-

ber of each hidden units per layer, and dropout

rate. The best configuration we find is 3 layers of

LSTMs with 300 hidden units for each layer. A

dropout rate of 0.4 is applied to all LSTM layers

and a dropout rate of 0.5 is applied to word embed-

dings. We used Adam to optimize DrQA models.

We initialized the word projection matrix with

GloVe (Pennington et al., 2014) for conversational

models and fastText (Bojanowski et al., 2017) for

reading comprehension models, based on empiri-

cal performance. We update the projection matrix

during training in order to learn embeddings for

delimiters such as <q>.

9SQuAD also uses exact-match metric, however, we think

F1 is more appropriate for our dataset because of the free-

form answers.
10However, for computing human performance, a human

prediction is only compared against n − 1 human answers,

resulting in underestimating human performance. We fix this

bias by partitioning n human answers into n different sets,

each set containingn−1 answers, similar to Choi et al. (2018).
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In-domain Out-of-dom. In-domain Out-of-dom.

Child. Liter. Mid-High. News Wiki. Reddit Science Overall Overall Overall

Development data

Seq2seq 30.6 26.7 28.3 26.3 26.1 N/A N/A 27.5 N/A 27.5

PGNet 49.7 42.4 44.8 45.5 45.0 N/A N/A 45.4 N/A 45.4

DrQA 52.4 52.6 51.4 56.8 60.3 N/A N/A 54.7 N/A 54.7

Augmt. DrQA 67.0 63.2 63.9 69.8 72.0 N/A N/A 67.2 N/A 67.2

DrQA+PGNet 64.5 62.0 63.8 68.0 72.6 N/A N/A 66.2 N/A 66.2

Human 90.7 88.3 89.1 89.9 90.9 N/A N/A 89.8 N/A 89.8

Test data

Seq2seq 32.8 25.6 28.0 27.0 25.3 25.6 20.1 27.7 23.0 26.3

PGNet 49.0 43.3 47.5 47.5 45.1 38.6 38.1 46.4 38.3 44.1

DrQA 46.7 53.9 54.1 57.8 59.4 45.0 51.0 54.5 47.9 52.6

Augmt. DrQA 66.0 63.3 66.2 71.0 71.3 57.7 63.0 67.6 60.2 65.4

DrQA+PGNet 64.2 63.7 67.1 68.3 71.4 57.8 63.1 67.0 60.4 65.1

Human 90.2 88.4 89.8 88.6 89.9 86.7 88.1 89.4 87.4 88.8

Table 7: Models and human performance (F1 score) on the development and the test data.

Augmt. DrQA+

Type Seq2seq PGNet DrQA DrQA PGNet Human

Answer Type

Answerable 27.5 45.4 54.7 67.3 66.3 89.9

Unanswerable 33.9 38.2 55.0 49.1 51.2 72.3

Span found 20.2 43.6 69.8 71.0 70.5 91.1

No span found 43.1 49.0 22.7 59.4 57.0 86.8

Named Entity 21.9 43.0 72.6 73.5 72.2 92.2

Noun Phrase 17.2 37.2 64.9 65.3 64.1 88.6

Yes 69.6 69.9 7.9 75.7 72.7 95.6

No 60.2 60.3 18.4 59.6 58.7 95.7

Number 15.0 48.6 66.3 69.0 71.7 91.2

Date/Time 13.7 50.2 79.0 83.3 79.1 91.5

Other 14.1 33.7 53.5 55.6 55.2 80.8

Question Type

Lexical Mat. 20.7 40.7 57.2 75.5 65.7 91.7

Paraphrasing 23.7 33.9 46.9 62.6 64.4 88.8

Pragmatics 33.9 43.1 57.4 64.1 60.6 84.2

No coref. 16.1 31.7 54.3 70.9 58.8 90.3

Exp. coref. 30.4 42.3 49.0 63.4 66.7 87.1

Imp. coref. 31.4 39.0 60.1 70.6 65.3 88.7

Table 8: Fine-grained results of different question and answer types in the development set. For the

question type results, we only analyze 150 questions as described in Section 4.2.

6.3 Results and Discussion

Table 7 presents the results of the models on the

development and test data. Considering the results

on the test set, the seq2seq model performs the

worst, generating frequently occurring answers

irrespective of whether these answers appear in

the passage or not, a well known behavior of

conversational models (Li et al., 2016). PGNet

alleviates the frequent response problem by focus-

ing on the vocabulary in the passage and it

outperforms seq2seq by 17.8 points. However,

it still lags behind DrQA by 8.5 points. A rea-

son could be that PGNet has to memorize the

whole passage before answering a question, a

huge overhead that DrQA avoids. But DrQA fails

miserably in answering questions with answers

that do not overlap with the passage (see row No

span found in Table 8). The augmented DrQA

circumvents this problem with additional yes/no

tokens, giving it a boost of 12.8 points. When

DrQA is fed into PGNet, we empower both

DrQA and PGNet—DrQA in producing free-form

answers, PGNet in focusing on the rationale

258

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/ta

c
l/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
6
2
/ta

c
l_

a
_
0
0
2
6
6
/1

9
2
3
2
5
2
/ta

c
l_

a
_
0
0
2
6
6
.p

d
f b

y
 g

u
e
s
t o

n
 2

8
 A

u
g
u
s
t 2

0
2
2



instead of the passage. This combination outper-

forms vanilla PGNet and DrQA models by 21.0

and 12.5 points, respectively, and is competitive

with the augmented DrQA (65.1 vs. 65.4).

Models vs. Humans The human performance

on the test data is 88.8 F1, a strong agreement indi-

cating that the CoQA’s questions have concrete

answers. Our best model is 23.4 points behind

humans.

In-domain vs. Out-of-domain All models per-

form worse on out-of-domain datasets compared

with in-domain datasets. The best model drops by

6.6 points. For in-domain results, both the best

model and humans find the literature domain

harder than the others because literature’s

vocabulary requires proficiency in English. For

out-of-domain results, the Reddit domain is ap-

parently harder. Whereas humans achieve high

performance on children’s stories, models perform

poorly, probably because of the fewer training

examples in this domain compared with others.11

Both humans and models find Wikipedia easy.

Error Analysis Table 8 presents fine-grained

results of models and humans on the development

set. We observe that humans have the highest

disagreement on the unanswerable questions. The

human agreement on answers that do not overlap

with passage is lower than on answers that do

overlap. This is expected because our evaluation

metric is based on word overlap rather than on

the meaning of words. For the question did Jenny

like her new room?, human answers she loved

it and yes are both accepted. Finding the perfect

evaluation metric for abstractive responses is still

a challenging problem (Liu et al., 2016; Chaganty

et al., 2018) and beyond the scope of our work.

For our models’ performance, seq2seq and PGNet

perform well on non-overlapping answers, and

DrQA performs well on overlapping answers,

thanks to their respective designs. The augmented

and combined models improve on both categories.

Among the different question types, humans

find lexical matches the easiest, followed by para-

phrasing, and pragmatics the hardest—this is ex-

pected because questions with lexical matches and

paraphrasing share some similarity with the pas-

sage, thus making them relatively easier to answer

11We collect children’s stories from MCTest, which con-

tains only 660 passages in total, of which we use 200 stories

for the development and the test sets.

History Augmt. DrQA+

size Seq2seq PGNet DrQA DrQA PGNet

0 24.0 41.3 50.4 62.7 61.5

1 27.5 43.9 54.7 66.8 66.2

2 21.4 44.6 54.6 67.2 66.0

all 21.0 45.4 52.3 64.5 64.3

Table 9: Results on the development set with

different history sizes. History size indicates the

number of previous turns prepended to the current

question. Each turn contains a question and its

answer.

than pragmatic questions. This is also the case with

the combined model, but we could not explain the

behavior of other models. Where humans find the

questions without coreferences easier than those

with coreferences, the models behave sporadi-

cally. Humans find implicit coreferences easier

than explicit coreferences. A conjecture is that

implicit coreferences depend directly on the previ-

ous turn, whereas explicit coreferences may have

long distance dependency on the conversation.

Importance of conversation history Finally,

we examine how important the conversation his-

tory is for the dataset. Table 9 presents the results

with a varied number of previous turns used

as conversation history. All models succeed at

leveraging history but the gains are little beyond

one previous turn. As we increase the history size,

the performance decreases.

We also perform an experiment on humans to

measure the trade-off between their performance

and the number of previous turns shown. Based

on the heuristic that short questions likely depend

on the conversation history, we sample 300 one or

two word questions, and collect answers to these

varying the number of previous turns shown.

When we do not show any history, human per-

formance drops to 19.9 F1, as opposed to 86.4 F1

when full history is shown. When the previous turn

(question and answer) is shown, their performance

boosts to 79.8 F1, suggesting that the previous turn

plays an important role in understanding the cur-

rent question. If the last two turns are shown, they

reach up to 85.3 F1, almost close to the perfor-

mance when the full history is shown. This sug-

gests that most questions in a conversation have a

limited dependency within a bound of two turns.

Augmented DrQA vs. Combined Model

Although the performance of the augmented
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Augmt. DrQA+

DrQA PGNet Human

Yes 76.2 72.5 97.7

No 64.0 57.5 96.8

Fluency 37.6 32.3 77.2

Counting 8.8 24.8 88.3

Multiple choice 0.0 46.4 94.3

Table 10: Error analysis of questions with answers

that do not overlap with the text passage.

DrQA is a bit better (0.3 F1 on the testing set)

than the combined model, the latter model has

the following benefits: 1) The combined model

provides a rationale for every answer, which can

be used to justify whether the answer is correct

or not (e.g., yes/no questions); and 2) we don’t

have to decide on the set of augmented classes

beforehand, which helps in answering a wide

range of questions like counting and multiple

choice (Table 10). We also look closer into the

outputs of the two models. Although the combined

model is still far from perfect, it does correctly

as desired in many examples—for example, for a

counting question, it predicts a rationale current

affairs, politics, and culture and generates an

answer three; for a question With who?, it predicts

a rationale Mary and her husband, Rick, and then

compresses it into Mary and Rick for improving

the fluency; and for a multiple choice question

Does this help or hurt their memory of the event?

it predicts a rationale this obsession may prevent

their brains from remembering and answers hurt.

We think there is still great room for improving the

combined model and we leave it to future work.

7 Related work

We organize CoQA’s relation to existing work

under the following criteria.

Knowledge source We answer questions about

text passages—our knowledge source. Another

common knowledge source is machine-friendly

databases, which organize world facts in the

form of a table or a graph (Berant et al., 2013;

Pasupat and Liang, 2015; Bordes et al., 2015;

Saha et al., 2018; Talmor and Berant, 2018).

However, understanding their structure requires

expertise, making it challenging to crowd-source

large QA datasets without relying on templates.

Like passages, other human-friendly sources are

images and videos (Antol et al., 2015; Das et al.,

2017; Hori et al., 2018).

Naturalness There are various ways to curate

questions: removing words from a declarative

sentence to create a fill-in-the-blank question

(Hermann et al., 2015), using a hand-written

grammar to create artificial questions (Weston

et al., 2016; Welbl et al., 2018), paraphrasing

artificial questions to natural questions (Saha et al.,

2018; Talmor and Berant, 2018), or, in our case,

letting humans ask natural questions (Rajpurkar

et al., 2016; Nguyen et al., 2016). While the for-

mer enable collecting large and cheap datasets,

the latter enable collecting natural questions.

Recent efforts emphasize collecting questions

without seeing the knowledge source in order

to encourage the independence of question and

documents (Joshi et al., 2017; Dunn et al., 2017;

Kočiskỳ et al., 2018). Because we allow a ques-

tioner to see the passage, we incorporate measures

to increase independence, although complete inde-

pendence is not attainable in our setup (Section 3.1).

However, an advantage of our setup is that the

questioner can validate the answerer on the spot

resulting in high agreement data.

Conversational Modeling Our focus is on ques-

tions that appear in a conversation. Iyyer et al.

(2017) and Talmor and Berant (2018) break down

a complex question into a series of simple ques-

tions mimicking conversational QA. Our work is

closest to Das et al. (2017) and Saha et al. (2018),

who perform conversational QA on images and a

knowledge graph, respectively, with the latter focus-

ing on questions obtained by paraphrasing templates.

In parallel to our work, Choi et al. (2018) also

created a dataset of conversations in the form of

questions and answers on text passages. In our

interface, we show a passage to both the questioner

and the answerer, whereas their interface only

shows a title to the questioner and the full passage

to the answerer. Because their setup encourages

the answerer to reveal more information for the fol-

lowing questions, their average answer length is

15.1 words (our average is 2.7). While the human per-

formance on our test set is 88.8 F1, theirs is 74.6 F1.

Moreover, although CoQA’s answers can be free-

form text, their answers are restricted only to ex-

tractive text spans. Our dataset contains passages

from seven diverse domains, whereas their dataset

is built only from Wikipedia articles about people.
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Concurrently, Saeidi et al. (2018) created a con-

versational QA dataset for regulatory text such as

tax and visa regulations. Their answers are limited

to yes or no along with a positive characteristic of

permitting to ask clarification questions when a

given question cannot be answered. Elgohary et al.

(2018) proposed a sequential question answer-

ing dataset collected from Quiz Bowl tourna-

ments, where a sequence contains multiple related

questions. These questions are related to the same

concept while not focusing on the dialogue aspects

(e.g., coreference). Zhou et al. (2018) is another

dialogue dataset based on a single movie-related

Wikipedia article, in which two workers are asked

to chat about the content. Their dataset is more

like chit-chat style conversations whereas our

dataset focuses on multi-turn question answering.

Reasoning Our dataset is a testbed of various rea-

soning phenomena occurring in the context of a con-

versation (Section 4). Our work parallels a growing

interest in developing datasets that test specific

reasoning abilities: algebraic reasoning (Clark,

2015), logical reasoning (Weston et al., 2016),

common sense reasoning (Ostermann et al., 2018),

and multi-fact reasoning (Welbl et al., 2018;

Khashabi et al., 2018; Talmor and Berant, 2018).

Recent Progress on CoQA Since we first re-

leased the dataset in August 2018, the progress

of developing better models on CoQA has been

rapid. Instead of simply prepending the current

question with its previous questions and answers,

Huang et al. (2019) proposed a more sophisticated

solution to effectively stack single-turn models

along the conversational flow. Others (e.g., Zhu

et al., 2018) attempted to incorporate the most

recent pretrained language representation model

BERT (Devlin et al., 2018)12 into CoQA and

demonstrated superior results. As of the time we

finalized the paper (Jan 8, 2019), the state-of-art

F1 score on the test set was 82.8.

8 Conclusions

In this paper, we introduced CoQA, a large

scale dataset for building conversational question

answering systems. Unlike existing reading

comprehension datasets, CoQA contains conver-

sational questions, free-form answers along with

12Pretrained BERT models were released in November

2018, which have demonstrated large improvements across

a wide variety of NLP tasks.

text spans as rationales, and text passages from

seven diverse domains. We hope this work will stir

more research in conversational modeling, a key

ingredient for enabling natural human–machine

communication.
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Figure 5: Annotation interfaces for questioner (top) and answerer (bottom).

Appendix

Worker Selection

First each worker has to pass a qualification test

that assesses their understanding of the guide-

lines of conversational QA. The success rate for

the qualification test is 57% with 960 attempted

workers. The guidelines indicate this is a conver-

sation about a passage in the form of questions

and answers, an example conversation and do’s

and don’ts. However, we give complete freedom

for the workers to judge what is good and bad

during the real conversation. This helped us in

curating diverse categories of questions that were

not present in the guidelines (e.g., true or false,

fill in the blank and time series questions). We

pay workers an hourly wage around 8–15 USD.

Annotation Interface

Figure 5 shows the annotation interfaces for both

questioners and answerers.

Additional Examples

We provide additional examples in Figure 7 and

Figure 6.
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Figure 6: In this example, the questioner explores

questions related to time.

Figure 7: A conversation containing No and unknown

as answers.
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